The best selected hyperparameters
Algorithm | Hyperparameters | |
1 | Multiple linear regression | positive=False, n_jobs=2, fit_intercept=True, copy_X=True |
2 | Random forest regressor | n_estimators=90, min_samples_split=2, min_samples_leaf=1, max_samples 10000, max_features: sqrt, max_depth=10 |
3 | SVM regressor | C=9.11158, loss='epsilon_insensitive', max_iter=5000 |
4 | XGBoost regressor | subsample=1, min_child_weight=5, max_depth=6, learning_rate=0.1, colsample_bytree=0.75 |
5 | MLP | solver= ‘sgd’, Learning_rate= ‘adaptive’, hidden_layer_sizes: (20,), alpha: 0.001, activation: logistic |
6 | DL | Optimizer= ‘sgd’, batch_size=16, activation= ‘relu’ |
DL, deep learning; MLP, multilayer perceptron; SVM, support vector machine.