Table 3

Confusion matrices for the physicians (survey responses from 61 physicians classifying lung ultrasound clips into their respective causes, numbers in parenthesis reflect classifications from the aggregated approach used to calculate area under the receiver operating characteristic curve), model performance on the test-2 holdback set at the frame and the encounter level

PhysiciansPredictedTotal
COVIDNCOVIDHPE
ActualCOVID173 (3)162 (3)34 (2)369 (8)
NCOVID177 (4)163 (1)30 (2)370 (7)
HPE138 (0)102 (0)302 (6)542 (6)
Total488 (7)427 (4)366 (10)
CNN-FramesPredictedTotal
COVIDNCOVIDHPE
ActualCOVID318825673451
NCOVID1176374134920
HPE109111927713999
Total447351162781
CNN-EncountersPredictedTotal
COVIDNCOVIDHPE
ActualCOVID6006
NCOVID1607
HPE0347
Total794
  • ‘Predicted’ represents the model or physicians’ opinions; ‘actual’ is the true label of the clip.

  • CNN, convolutional neural network; HPE, hydrostatic pulmonary edema.