Supplementary Material

Development and validation of a clinical diagnostic model for myocardial ischemia in

borderline coronary lesions based on optical pumped magnetometer magnetocardiography:

a prospective observational cohort study

Contents

Development and validation of a clinical diagnostic model for myocardial ischemia in borderline
coronary lesions based on optical pumped magnetometer magnetocardiography: a prospective
observational cohort study 1
Optical pumped magnetometer magnetocardiography (OPM-MCG) post-processing steps 2
Supplementary Table and Figures3
Supplementary Figure 1 Graphical Abstracts: Diagnostic Model of Myocardial Ischemia in
Borderline Coronary Artery Lesions Based on OPM-MCG 3
Supplementary Figure 2 The Magnetic Field Distributions (MFDs) of Key Points (P, QRS, and
T onset and T peak) in the Cardiac Cycle of Healthy Individuals4
Supplementary Figure 3 Least Absolute Shrinkage and Selection Operator (LASSO) Regression5
Supplementary Figure 4 Confusion Matrix for the Diagnostic Model6
Supplementary Table 1 OPM-MCG Parameters and Definitions7
Supplementary Table 2 OPM-MCG Parameters of Univariable Logistic Regression Model P $<$
0.1
Supplementary Table 3 Diagnostic Model for Assessment of Myocardial Ischemia in Borderline
Coronary Artery Lesions

Optical pumped magnetometer magnetocardiography (OPM-MCG) post-processing steps

The post-processing process of OPM-MCG signals is as follows. Firstly, a composite gradient magnetometer array is constructed using a separate environmental monitoring channel, and the common mode projection components of the monitoring channel are subtracted from the OPM-MCG detection array channels, effectively suppressing environmental magnetic field drift and power frequency interference. Then, notching the 50Hz power frequency and its harmonic components of the data, and performing a 1-40Hz bandpass filter to further remove power frequency interference and limit the bandpass frequency to the main frequency range of the MCG. Finally, the denoised data is subjected to R-peak detection and recognition, with an average heartbeat cycle of 90 seconds as the length of the slice time, and the identified R-peak point is used as the time alignment point to slice the data and overlay it for average

Supplementary Table and Figures

Supplementary Figure 1 Graphical Abstracts: Diagnostic Model of Myocardial Ischemia in Borderline Coronary Artery Lesions Based on OPM-MCG

CCTA= coronary computed tomography angiography; OPM-MCG=optical pumped magnetometer magnetocardiography; ICA= invasive coronary angiography; FFR=fractional flow reserve; PCI= percutaneous coronary intervention; DCA=decision curve analysis.

Supplementary Figure 2 The Magnetic Field Distributions (MFDs) of Key Points (P, QRS, and T onset and T peak) in the Cardiac Cycle of Healthy Individuals

Supplementary Figure 3 Least Absolute Shrinkage and Selection Operator (LASSO) Regression

Figure legend :(A) LASSO model coefficient profiles of the 50 candidate parameters. As $\log \lambda$ increases, the regression coefficients continue to converge, and there are fewer parameters with non-zero regression coefficients.(B) Tuning parameter selection by cross-validation in the LASSO model. The solid vertical lines represent the partial likelihood deviance standard error (SE). The red dotted line indicates the cross-validation curve. The vertical dashed lines are drawn at the optimal values on the basis of the minimum criteria and 1-SE criteria. Considering the reasonableness of the variables included in this model, with the λ value of 0.02380779 was chosen.

Supplementary Figure 4 Confusion Matrix for the Diagnostic Model

Figure Legend: The confusion matrix compares the FFR diagnostic results with those from the predictive model. The color intensity represents the frequency of occurrences, with darker shades indicating higher frequencies.

Supplementary Table 1 OPM-MCG Parameters and Definitions

Parameters	Definition			
δ Ag _{max} -M	The maximum value of changes in magnetic field angle at intervals of a certain time τ within TT segment			
δ Ag _{min} -M	The minimum value of changes in magnetic field angle at intervals of a certain time τ within TT segment			
δ Ag _{std} -M	The standard deviation of changes in magnetic field angle at intervals of a certain time τ within TT segment			
δ Ag _{sum} -M	The sum of changes in magnetic field angle at intervals of a certain time τ within TT segment			
δDt_{max} -PN	The maximum value of changes in magnetic pole distance at intervals of a certain time τ within TT segment			
δDt_{min} -PN	The minimum value of changes in magnetic pole distance at intervals of a certain time τ within TT segment			
δDt_{std} -PN	The standard deviation of changes in magnetic pole distance at intervals of a certain time τ within TT segment			
δDt_{sum} -PN	The sum of changes in magnetic pole distance at intervals of a certain time τ within TT segment			
δ Ag _{max} -C	The maximum value of changes in current angle at intervals of a certain time τ within TT segment			
δ Ag _{min} -C	The minimum value of changes in current angle at intervals of a certain time τ within TT segment			
δ Ag _{std} -C	The standard deviation of changes in current angle at intervals of a certain time τ within TT segment			
δ Ag _{sum} -C	The sum of changes in current angle at intervals of a certain time τ within TT segment			
δ Ps _{max} -C	The maximum value of changes in the position of the current angle at intervals of a certain time τ within TT segment			
δPs_{std} -C	The standard deviation of changes in the position of the current angle at intervals of a certain time τ within TT segment			
δPs_{sum} -C	The sum of changes in the position of the current angle at intervals of a certain time τ within TT segment			
δAr_{max} -NP	The maximum value of changes in negative pole point area at intervals of a certain time τ within TT segment			
δ Ar _{min} -NP	The minimum value of changes in negative pole point area at intervals of a certain time τ within TT segment			
δ Ar _{std} -NP	The standard deviation of changes in negative pole point area at intervals of a certain time τ within TT segment			
δ Ar _{sum} -NP	The sum of changes in negative pole point area at intervals of a certain time τ within TT segment			
δ Ar _{bp} -NP	The change in negative pole point area between T-begin and T-peak			
Ar _{max} -NP	The maximum value of the negative pole point area at intervals of a certain time τ within TT segment			
Ar _{min} -NP	The minimum value of the negative pole point area at intervals of a certain time τ within TT segment			
δPs_{max} -NP	$\frac{1}{100}$ The maximum value of changes in the position of the negative pole point at intervals of a certain time τ within 5 segment			
δ Ps _{std} -NP	The standard deviation of changes in the negative of the positive pole point at intervals of a certain time τ within TT segment			
δPs_{sum} -NP	The sum of changes in the position of the negative pole point at intervals of a certain time τ within TT segment			
δ Ar _{max} -N	The maximum value of changes in negative pole area at intervals of a certain time τ within TT segment			

Parameters	Definition				
δ Ag _{max} -M	The maximum value of changes in magnetic field angle at intervals of a certain time τ within TT segment				
δ Ar _{min} -N	The minimum value of changes in negative pole area at intervals of a certain time τ within TT segment				
δAr_{std} -N	The standard deviation of changes in negative pole area at intervals of a certain time τ within TT segment				
δ Ar _{sum} -N	The sum of changes in negative pole area at intervals of a certain time τ within TT segment				
$\delta Ar_{bp}-N$	The change in nagative pole area between T-begin and T-peak				
Ar _{max} -N	The maximum value of the negative pole area at intervals of a certain time τ within TT segment				
Ar _{min} -N	The minimum value of the negative pole area at intervals of a certain time τ within TT segment				
δ ArRto _{max} -PN	The maximum value of changes in the ratio of positive and negative pole area at intervals of a certain time τ within TT segment				
δ ArRto _{min} -PN	The minimum value of changes in the ratio of positive and negative pole area at intervals of a certain time τ within TT segment				
δ ArRto _{std} -PN	The standard deviation of changes in the ratio of positive and negative pole area at intervals of a certain time τ within TT segment				
δ ArRto _{sum} -PN	The sum of changes in the ratio of positive and negative pole area at intervals of a certain time τ within TT segment				
δ Ar _{max} -PP	The maximum value of changes in positive pole point area at intervals of a certain time τ within TT segment				
δ Ar _{min} -PP	The minimum value of changes in positive pole point area at intervals of a certain time τ within TT segment				
δAr_{std} -PP	The standard deviation of changes in positive pole point area at intervals of a certain time τ within TT segment				
δAr_{sum} -PP	The sum of changes in positive pole point area at intervals of a certain time τ within TT segment				
δ Ar _{bp} -PP	The change in positive pole point area between T-begin and T-peak				
Ar _{max} -PP	The maximum value of the positive pole point area at intervals of a certain time τ within TT segment				
Ar _{min} -PP	The minimum value of the positive pole point area at intervals of a certain time τ within TT segment				
$\delta \mathbf{P}_{\mathbf{S}_{max}}$ -PP	The maximum value of changes in the position of the positive pole point at intervals of a certain time τ within TT segment				
$\delta \mathbf{P} \mathbf{s}_{\text{std}} \mathbf{-} \mathbf{P} \mathbf{P}$	The standard deviation of changes in the position of the positive pole point at intervals of a certain time τ within TT segment				
δ Ps _{sum} -PP	The sum of changes in the position of the positive pole point at intervals of a certain time τ within TT segment				
δ Ar _{max} -P	The maximum value of changes in positive pole area at intervals of a certain time τ within TT segment				
δ Ar _{min} -P	The minimum value of changes in positive pole area at intervals of a certain time τ within TT segment				
δAr_{std} -P	The standard deviation of changes in positive pole area at intervals of a certain time τ within TT segment				

Parameters	Definition			
δ Ag _{max} -M	The maximum value of changes in magnetic field angle at intervals of a certain time τ within TT segment			
δ Ar _{sum} -P	The sum of changes in positive pole area at intervals of a certain time τ within TT segment			
δ Ar _{bp} -P	The change in positive pole area between T-begin and T-peak			
Ar _{ma} x-P	The maximum value of the positive pole area at intervals of a certain time τ within TT segment			
Ar _{min} -P	The minimum value of the positive pole area at intervals of a certain time τ within TT segment			
MAg _{max} -TT	The maximum magnetic field angle at intervals of a certain time τ within TT segment			
CAg _{max} -TT	The maximum current angle at intervals of a certain time τ within TT segment			
MAg _{min} -TT	The minimum magnetic field angle at intervals of a certain time τ within TT segment			
CAg _{min} -TT	The minimum current angle at intervals of a certain time τ within TT segment			
MAg-Rp	The magnetic field angle of the R-peak			
$RtoAm-R_pT_pN$	The ratio of magnetic field amplitude at R-peak and the negative amplitude at T-peak			
RtoAm-R _p T _p P	The ratio o magnetic field amplitude at R-peak and the positive amplitude at T-peak			
RtoAm-R _p T _p	The ratio of magnetic field amplitudes at R-peak and T-peak			
MAg-RpTp	The magnetic field angle between R-peak and T-peak			
MAg-Tp	The magnetic field angle of the T-peak			
CAg _{max} -Tp	The maximum current angle at T-peak			
RtoAm-Tp	The ratio of positive to negative magnetic field amplitude at T-peak			
TT	The interval from the beginning of the T-wave to its peak within the cardiac cycle			
Dt = Distance, Ps =	= Position, Ag = Angle, Am = Magnitude, Ar = Area, Rto = Ratio, P = Positive, Positive Pole = PP, N = Negative, NP = Negative			

Dt = Distance, Ps = Position, Ag = Angle, Am = Magnitude, Ar = Area, Rto = Ratio, P = Positive, Positive Pole = PP, N = Negative, NP = Negative $Pole, M = Magnetic Field, C = Current, max = Maximum, min = Minimum, sum=Sum of all, std = Standard deviation, <math>\delta$ = Change value, TT= TT segment (the position from one-third of the T max amplitude (T onset) to T max (T peak)), R_p=R peak, T_p=T peak

Parameters	FFR-Positive N=68	FFR-Negative N=73	Odds Ratio	P value	BH-adjusted p-value
1 drameters			(95%CI)		
δ Ag _{max} -M	0.77 (0.47,5.76)	0.54 (0.43,0.72)	1.077(1.023-1.163)	0.021	0.034
δ Ag _{min} -M	-0.42 (-0.82,-0.28)	-0.26 (-0.42,-0.14)	0.964(0.924-0.992)	0.034	0.045
δ Ag _{std} -M	0.28 (0.14,2.06)	0.14 (0.10,0.20)	1.594(1.213-2.313)	0.004	0.009
δ Ag _{sum} -M	20.2 (9.88,45.5)	8.28 (4.55,11.8)	1.064(1.037-1.1)	< 0.001	< 0.001
δDt_{max} -PN	3.51 (2.16,12.9)	2.22 (1.89,3.16)	1.014(1.001-1.032)	0.063	0.071
δDt_{min} -PN	-2.38 (-4.70,-1.91)	-2.00 (-2.80,-1.63)	0.971(0.94-0.991)	0.023	0.035
δDt_{std} -PN	0.82 (0.63,3.45)	0.63 (0.52,0.89)	1.158(1.031-1.332)	0.024	0.035
δDt_{sum} -PN	66.6 (42.0,110)	33.3 (25.7,48.6)	1.026(1.015-1.039)	< 0.001	< 0.001
δ Ag _{max} -C	1.79 (1.27,9.10)	1.52 (1.16,2.98)	1.009(1-1.022)	0.089	0.091
δ Ag _{min} -C	-1.70 (-8.89,-1.01)	-0.91 (-1.75,0.00)	0.983(0.962-0.997)	0.051	0.063
δ Ag _{std} -C	0.80 (0.37,3.16)	0.45 (0.34,0.70)	1.117(1.026-1.252)	0.025	0.035
δ Ag _{sum} -C	29.8 (13.5,71.6)	11.9 (7.79,17.5)	1.014(1.006-1.025)	0.003	0.009
δ Ps _{max} -C	33.0 (1.41,125)	31.0 (1.00,34.0)	1.008(1.003-1.015)	0.004	0.009
δPs_{std} -C	3.57 (0.29,11.7)	3.20 (0.24,4.86)	1.073(1.019-1.14)	0.013	0.025
δ Ps _{sum} -C	74.4 (8.31,161)	33.4 (4.00,66.0)	1.01(1.005-1.015)	< 0.001	< 0.001
δ Ar _{max} -NP	182 (102,314)	105 (59.0,180)	1.002 (1.0002,1.003)	0.027	0.036
δ Ar _{std} -NP	31.7 (23.4,70.1)	25.7 (17.1,41.4)	1.004 (1.000,1.010)	0.067	0.073
δ Ar _{sum} -NP	3369 (2230,5728)	1672 (1277,2987)	1.00020 (1.00006, 1.00034)	0.005	0.011
Ar _{max} -NP	4269 (3260,6056)	3828 (2894,5406)	1.000101 (0.999989, 1.000213)	0.077	0.080
δ Ps _{sum} -NP	59.8 (39.8,104)	26.4 (20.1,51.1)	1.013(1.006-1.021)	0.001	0.005
δ Ar _{max} -N	539 (269,990)	404 (221,526)	1.001(1-1.002)	0.022	0.034
δ Ar _{min} -N	-267.00 (-565.25,-108.75)	-79.00 (-224.00,-15.00)	0.998(0.996-0.999)	0.002	0.008
δAr_{std} -N	160 (90.5,273)	114 (74.6,158)	1.005(1.002-1.008)	0.003	0.009
δ Ar _{sum} -N	19058 (10208,29054)	9520 (6202,15009)	1.000084 (1.000046, 1.000122)	< 0.001	< 0.001
Ar _{max} -N	56546 (44597,77766)	51431 (38201,58878)	1.000014 (1.000002, 1.000026)	0.025	0.035
δ ArRto _{max} -PN	0.01 (0.00,0.03)	0.00 (0.00,0.01)	4.494e+10(5.890e+2,3.427+29)	0.008	0.016

Supplementary Table 2 OPM-MCG Parameters of Univariable Logistic Regression Model P < 0.1

10

Parameters	FFR-Positive	FFR-Negative	Odds Ratio	Dyalua	BH-adjusted
T at attletets	N=68	N=73	(95%CI)	I value	p-value
δ ArRtomin-PN	-0.02 (-0.07,-0.01)	-0.02 (-0.04,-0.01)	<0.001 (0,0.062)	0.014	0.026
δ ArRto _{std} -PN	0.01 (0.00,0.02)	0.01 (0.00,0.01)	3.177e+16(1.758e+3,5.740e+29)	0.015	0.027
δ ArRto _{sum} -PN	0.85 (0.39,2.36)	0.58 (0.29,0.88)	1.539 (1.175,2.117)	0.004	0.009
δ Ar _{max} -PP	281 (141,704)	153 (111,286)	1.001 (1.001,1.003)	0.004	0.009
δ Ar _{min} -PP	-196.00 (-563.75,-109.50)	-153.00 (-226.00,-104.00)	0.998 (0.996,0.999)	0.003	0.009
δ Ar _{std} -PP	77.3 (35.5,167)	43.7 (32.1,79.7)	1.007 (1.003,1.012)	0.004	0.009
δ Ar _{sum} -PP	6608 (3410,14024)	3487 (2556,5786)	1.00012(1.000053, 1.000187)	< 0.001	< 0.001
Ar _{min} -PP	4626 (2618,6928)	5754 (3719,8258)	0.999933 (0.999933, 1.000003)	0.06	0.071
δ Ps _{max} -PP	3.61 (3.00,100)	3.00 (2.24,3.61)	1.011(1.005-1.019)	0.002	0.008
$\delta \mathbf{Ps}_{std}$ -PP	0.98 (0.66,8.50)	0.75 (0.57,0.90)	1.117(1.05-1.221)	0.003	0.009
δ Ps _{sum} -PP	73.8 (29.9,195)	32.8 (21.7,54.2)	1.012(1.006-1.019)	< 0.001	< 0.001
δ Ar _{max} -P	312 (150,692)	172 (70.0,362)	1.001(1-1.002)	0.007	0.015
δAr_{std} -P	135 (82.3,267)	109 (75.7,159)	1.002(1-1.005)	0.07	0.074
δ Ar _{sum} -P	15787 (7938,28576)	9566 (5985,15629)	1.000046 (1.000017, 1.000074)	0.001	0.005
MAg _{max} -TT	-48.00 (-66.89,15.5)	-67.39 (-72.03,-53.13)	1.019(1.009-1.029)	< 0.001	< 0.001
CAg _{max} -TT	58.2 (39.2,118)	43.1 (32.0,51.1)	1.018(1.009-1.028)	< 0.001	< 0.001
MAg _{min} -TT	-68.28 (-75.62,-41.24)	-71.98 (-77.61,-64.94)	1.009(1.000-1.018)	0.052	0.063
MAg-R _p	-53.44 (-70.66,-38.24)	-65.92 (-71.78,-50.54)	1.015(1.003-1.028)	0.017	0.028
RtoAm-R _p T _p N	7.35 (4.92,10.4)	5.68 (3.71,8.14)	1.055(1.005-1.126)	0.064	0.071
RtoAm-R _p T _p P	8.66 (6.03,12.9)	7.69 (5.56,11.1)	1.06(1.004-1.133)	0.061	0.071
RtoAm-R _p T _p	4.13 (3.08,5.01)	3.28 (2.36,4.50)	1.217(1.047-1.445)	0.016	0.028
MAg-T _p	-55.82 (-70.28,-12.79)	-67.91 (-72.69,-53.13)	1.015(1.006-1.026)	0.002	0.008
CAg _{max} -T _p	45.0 (27.6,74.7)	42.2 (30.7,46.9)	1.009(1.001-1.017)	0.037	0.047
RtoAm-T _p	0.81 (0.52,1.22)	0.75 (0.57,0.98)	1.519(0.978-2.618)	0.095	0.095

Dt = Distance, Ps = Position, Ag = Angle, Am = Magnitude, Ar = Area, Rto = Ratio, P = Positive, Pole = PP, N = Negative, NP = Negative Pole, M = Magnetic Field, C = Current, max = Maximum, min = Minimum, sum=Sum of all, std = Standard deviation, δ = Change value, TT = TT segment (the position from one-third of the T max amplitude (T onset) to T max (T peak)), R_p=R peak, T_p=T peak

Daramatara	Diagnostic model			
Farameters	В	OR	95%CI	P value
MAg _{max} -TT	1.385	3.995	(1.592-10.023)	0.003
δDt_{sum} -PN	0.671	1.956	(1.270-3.012)	0.002
δAg _{sum} -C	0.411	1.508	(0.989-2.298)	0.056
δAr _{sum} -N	0.641	1.899	(1.251-2.883)	0.003
δAr _{min} -N	0.515	1.674	(1.121-2.500)	0.012

Supplementary Table 3 Diagnostic Model for Assessment of Myocardial Ischemia in Borderline Coronary Artery Lesions

M= Magnetic Field; Ag= Angle; TT= from T onset to T peak; δ = Change value; DT= Distance; PN= Positive Pole to Negative Pole; C=Current; Ar= Area; N= Negative Pole; ; τ = one tenth of the time interval between TT segment.