
Additional file 1 – Model development 
We describe in more detail the methods used to develop the model in this section.  

 

Predictors 

Our proposed approach uses a conceptual model in which we estimate the risk of a 

patient experiencing an adverse event immediately after discharge from ICU. This 

risk score (RS1) is estimated from variables recorded during their stay in the ICU. 

After discharge from ICU, the patient’s risk of experiencing an adverse event within 
the next 24 hours is updated in a time-varying manner (RS2), using those 

measurements of the vital signs that are routinely measured during subsequent ward 

care.  

 
ICU-based feature representation: 

To estimate the risk of a patient experiencing an adverse event immediately after 

discharge from ICU, we considered candidate variables that were available 

electronically in our databases. The final list of candidate variables included the 

following physiological variables: 

o Heart rate (HR), measured in beats per minute 

o Respiratory rate (RR), in breaths per minute 

o Systolic (SBP), diastolic and mean blood pressure, in mmHg 

o Temperature, in degrees Celsius 

o Peripheral oxygen saturation (SpO2), in % 

o Level of consciousness, using the Glasgow Coma Scale (GCS) 

The following laboratory test results were included in the list: 

o Alveolar-arterial oxygen partial pressure gradient (AaDO2), in kPa 

o Albumin, in g/L 

o Bilirubin (total), in mol/L 

o Calcium (adjusted), in mmol/L 

o Creatinine, in mmol/L 

o C-reactive protein (CRP), in mg/L 

o Haematocrit (HCT), in % 

o Haemoglobin (HGB), in g/dL 

o Lactate, in mmol/L 

o Mean corpuscular volume (MCV), in fL 

o Ratio of partial pressure of oxygen : fraction of inspired oxygen (PaO2/FiO2), in 

kPa 

o pH 

o Platelet count, in 109 cells/L 
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o Potassium, in mmol/L 

o Sodium, in mmol/L 

o Urea, measured in mmol/L 

o Urine output, in mL 

o White blood cell count (WBC), in 109 cells/L 

The list also included demographic and administrative-based variables, such as age 

at admission, gender, number of hours between hospital admission and ICU 

admission, and the Index of Multiple Deprivation score (1), derived for patients with a 

valid postcode. We included variables related to procedures and treatments, such as 

the number of vasoactive drugs administered, total fluid balance, administration of 

insulin, enteral and parenteral nutrition feeding, and the use of mechanical 

ventilation, tracheostomy and central venous catheters.  

To determine the risk of future compound outcome after discharge from the ICU, we 

derived several features from all candidate variables acquired during the patients’ 
stay in the ICU. These features are based on the extremes of the variables 

considered. We generated maximum, minimum and variability (as given by the 

standard deviation) features for the physiological variables and laboratory test results 

from different periods of the ICU stay (including the first 24 hours of the patient in the 

ICU, their last 72, 48, and 24 hours, and/or their entire ICU stay). Additional 

dichotomous variables were generated if the values were in the upper or lower 5th 

percentile of the observed corresponding ranges, in order to account for potential 

non-linear associations of the variables with the adverse outcomes. Procedure and 

treatment variables were converted to dichotomous features for indicating whether a 

given procedure was performed or not, or whether a given medication was 

administered or not, over the entire ICU stay or in the last 24 hours of the ICU stay. 

This procedure resulted in 161 candidate features (including features from 

demographic information) for building a prediction model. 

Post-ICU feature representation:  

All vital-sign observations performed after discharge from ICU, as part of routine 

patient monitoring on acute care wards and collected prospectively for this study, 

were considered for analysis. Each set of vital signs include heart rate, systolic blood 

pressure, respiratory rate, body temperature, neurological status assessment using 

the Alert-Verbal-Painful-Unresponsive (AVPU) scale, peripheral oxygen saturation 

from pulse oximetry (SpO2), a record of whether the patient was receiving 

supplemental oxygen at the time of the SpO2 measurement, and the date and time of 

the observation. Vital-sign measurements are typically recorded every 4 or 6 hours 

throughout the patient’s stay on the ward. At each measurement timestamp, in case 
of an incomplete vital-sign observation set, we used the most recent value of each 

variable (i.e., by carrying forward the last measurement).  
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Pre-processing and missing data 

We identified obvious deviations from expected distributions and ranges of the data 

features using frequency graphs for all numerical and dichotomous features. 

Possible physiological ranges for the numerical features were defined according to 

clinical review and expert panel expertise, and values outside these ranges were not 

included in the analyses. Missing values were imputed with median and mode values 

from the feature distributions of numerical and dichotomous features, respectively. 

While other methods were considered, such as multiple imputation, the use of the 

median and mode was simpler and was deemed sufficient for this work in which the 

amount of missing data was low.  

All numerical features were then standardised using a zero-mean, unit-variance 

transformation (i.e., using the mean and standard deviations from the feature 

distributions). This prevents features with relatively small changes in their units of 

measurement (such as temperature) from being dominated by features with 

relatively large changes (such as blood pressure), thus ensuring that all features 

have similar dynamic ranges. 

For both imputation and normalisation, the parameters’ values (for the median, 
mode, mean and standard deviation) found for the development dataset were used.  

 

ICU-based model (RS1) 

We used all candidate features derived from the variables acquired during the 

patients’ stay in the ICU to build the first model. A L1-regularised logistic regression 

using the “glmnet” package in Matlab (Mathworks, Natick, Massachusetts, USA) for 

predicting the compound outcome (in-hospital death or re-admission to ICU). L1-

regularisation shrinks the less important features’ coefficients to zero thus effectively 

removing those features that are deemed to be uninformative to the outcome 

variable. We estimated the regularisation parameter using LASSO (Least Absolute 

Shrinkage and Selection Operator) regression in a 5-fold cross-validation on the 

development set. 

 

Vital-sign based model (RS2) 

For the second scoring system, RS2, we used the vital signs (heart rate, respiratory 

rate, systolic blood pressure, oxygen saturation, and temperature) recorded in 

hospital after discharge from the ICU. For this model, rather than a supervised 

learning approach, we considered a novelty detection method (or one-class 

classification method), which does not require an outcome variable for development 

(2). This is useful where event rates are extremely low, or total sample sizes are 

constrained. Similar approaches have been used in our previous research (3–6) and 

underpin a commercial, clinically-used system, described in (7). 
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We considered the construction of a multivariate, (possibly) multimodal model of 

normality, based on the vital-sign observation sets recorded during the 24 hours that 

preceded discharge home. If the patient had not died, was not re-admitted to the ICU 

and was not discharged by the 14th post-ICU day, we used recorded data on that 

day. These observation sets are thus assumed to contain the vital-sign values from 

the most stable period of the patient’s hospital stay, because these data were 

acquired when patients are at their most “stable” after discharge from ICU. This set 

of “normal” data contains 𝑁 = 1,082 5-dimensional vital-sign vectors, 𝐗 ={𝐱𝟏, … , 𝐱𝑵} ∈ ℝ5, which were subsequently used for the construction of our model of 

normality. 

A kernel density estimate, or KDE (2) was used to estimate the probability density 

function (pdf) of the set of five vital signs. This is in a non-parametric technique 

where no a priori assumptions about the form of the underlying probability 

distribution are made. Our notation follows that reported previously (5, 6). The data 

pdf 𝑝(𝐱) was estimated using the 𝑁 = 1,082 set of observations as shown in (SM1-

1). 𝑝(𝐱|𝐱𝑖, 𝜎) = 1𝑁(2𝜋)𝐷/2𝜎𝐷 ∑ exp (−|𝐱−𝐱𝑖|22𝜎2 )𝑁𝑖=1                         (SM1-1) 

This is a weighted sum of Gaussian kernels, each with identical variance 𝜎2 (i.e., 

isotropic kernels), centred on the observation sets 𝐱𝟏, … , 𝐱𝑵.  

The nearest-neighbour method was used to estimate the variance. Briefly, this 

method involves determining the squared Euclidean distance (∆) for each 

observation 𝑖 to its 10 nearest neighbours (NNs), as shown in (SM1-2). ∆𝑖 = 110 ∑ ‖𝐱𝑖 − 𝐱𝑗‖𝑗∈{𝑁𝑁𝑠}                           (SM1-2) 

This quantity, ∆, is then used to estimate the variance 𝜎2, as shown in (SM1-3). 𝜎 = 1𝑁 ∑ ∆𝑖𝑁𝑖=1                             (SM1-3) 

Estimation of the underlying pdf of normal vital-sign data provides a means of 

quantifying the degree to which a given set of observations is abnormal. The 

likelihood 𝑝(𝐱|𝐱𝑖, 𝜎), a measure which represents the probability of observing a set of 

measurements given a pdf, can be used for this purpose. Thus, we define the 

novelty score as in (SM1-4). 𝑧(𝐱) = − log 𝑝(𝐱|𝐱𝑖 , 𝜎)        (SM1-4) 

For normal data, the new observation 𝐱 will be similar to previously-seen normal 

observations 𝐱𝑖, and so the likelihood will be high. Consequently, the negative log-

likelihood will be low, and so the novelty score 𝑧(𝐱) will be low. Conversely, for 

abnormal data, the data will be dissimilar and the likelihood will be low, and 

consequently the novelty score 𝑧(𝐱) will be high. This procedure ensures that the 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open

 doi: 10.1136/bmjopen-2023-074604:e074604. 14 2024;BMJ Open, et al. Pimentel MAF



novelty score can be interpreted as most early warning scores (EWS), in that high 

scores are associated with higher abnormality of the vital signs.  

In short, this model allows the generation of a score corresponding to an assessment 

of whether a vital-sign set should be deemed “stable” with respect to the 
development dataset (i.e., the observation sets used for training the model). By 

extension, it further allows the model to estimate the degree of abnormality of a 

given vital-sign observation set.  

 

Risk Score Index (RSI) 

An overall risk score, the risk score index (RSI), was subsequently determined using 

a simple time-dependent linear combination of the two constituent risk scores, such 

that: 

 RSI = 𝛽 [(1 − 𝑡𝑇𝑚𝑎𝑥 ) RS1] + [( 𝑡𝑇𝑚𝑎𝑥) RS2]                 (Equation 1) 

 

where 𝑡 corresponds to the elapsed time (in hours) since the patient was discharged 

from ICU and has a maximum value of 𝑇𝑚𝑎𝑥 hours. The time-dependent weighting 

function allows the contribution of RS1 to gradually decrease with time after 

discharge from the ICU. The patient’s risk of future adverse events becomes 
increasingly determined by the values of the vital-sign measurements taken on the 

acute ward (i.e., RS2). The parameter 𝛽 is used to adjust the weight of RS1 with 

respect to the time since discharge from ICU, and the parameter 𝑇𝑚𝑎𝑥 corresponds 

to the time at which RS1 no longer affects RSI; i.e., when 𝑡 ≥ 𝑇𝑚𝑎𝑥, then RSI = RS2. 

The parameters 𝛽 and 𝑇𝑚𝑎𝑥 were determined using a grid-search algorithm with 3-

fold cross-validation, by defining a grid of possible values of 𝛽 = [0.1, 0.2,0.3, … , 200] and 𝑇𝑚𝑎𝑥 = [12, 24, 36, … , 336]. We selected the values of 𝛽 and 𝑇𝑚𝑎𝑥 

that corresponded to the highest mean area under the curve of the receiver 

operating characteristic (AUROC) value across all cross-validation folds, using the 

compound outcome of in-hospital death or ICU re-admission within the next 24 hours 

of a vital-sign observation. 

During the development of RSI, values of 𝛽 = 100.2 and 𝑇𝑚𝑎𝑥 = 96 hours, for the 

linear time-dependent weighting function (see Equation 1), were obtained and used 

to calculate the risk scoring index. 

 

Model validation and statistical analysis 

To validate the first model, RS1, its discrimination and calibration were analysed. 

Discrimination is defined as the ability of the model to separate non-event patients 

from patients who had an adverse event after ICU discharge, and was assessed 
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using the AUROC metric. Calibration assesses the degree of correspondence 

between the estimated probability of occurrence of an adverse event and that 

actually observed. This was tested using a goodness of fit test, the Hosmer-

Lemeshow “C” statistic (8). When the predicted probability of adverse events of the 

prognostic model differs significantly from the observed pattern, the calibration ability 

of the model is deemed to be poor. As the Hosmer-Lemeshow test does not 

measure the magnitude of miscalibration and is sensitive to sample size (9), 

calibration was also assessed with the Brier score and Cox’s calibration regression. 
The latter assesses the degree of miscalibration by fitting a logistic regression of 

observed survival to the predicted log-odds of survival from the risk model (10). The 

performance of the first model was examined both for the compound outcome and 

each adverse event (in-hospital death and ICU re-admission) individually. The ability 

of the first model to predict future adverse events at increasing intervals from ICU 

discharge was also examined by calculating the AUROC for future events by day 

after discharge (up to 120 days).  

The final model, RSI, was validated using the AUROC for the derived outcome of in-

hospital death or ICU re-admission within the next N hours of a vital-sign 

observation/measurement performed after ICU discharge, in line with previous 

studies for evaluating EWS systems (11, 12). We evaluated the model for different 

values of N, with 𝑁 = [12, 24, 36, 48, 72] hours. We note that in this case the AUROC 

represents how well the scoring system RSI discriminates between observation sets 

followed by an adverse event and those with no subsequent adverse outcome within 

the next N hours. Therefore, the unit of analysis is a vital-sign set rather than a 

patient-admission, as performed for the validation of the first model.  

We also considered each individual adverse event separately. To further understand 

the feasibility of implementation of the risk scoring systems in this setting, the burden 

of observation sets “triggered” for every correctly identified observation followed by 
an adverse event within 24 hours by the risk scoring system was also evaluated. 

We report the cross-validation results using the development dataset. This gives an 

estimate of how our models perform on a random set of samples from the OUH Trust 

that were not used for developing the model. We also report the external validation 

results using data from the RBH Trust. Confidence intervals were estimated using 

bootstrap confidence intervals via percentiles with 500 samples (13).  
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