eTable 1. Procedure of estimating mediation parameters using IOW approach	
Step 1:	An exposure model is run by regressing the exposure on all mediators and
The working model	covariates using a logistic regression model.
Step 2:	Based on the logistic regression model in step 1, inverse odds weights are
Create inverse odds	created by taking the inverse of the predicted odds for each observation
weights	in the exposed group. The exposed and unexposed groups are then
	reweighted as follows: exposed = inverse odds, unexposed = 1.
Step 3:	The total effect of the exposure, conditioning on potential confounders, is
Total effect model	estimated by using the Poisson generalized linear model with a log link
Step 4:	The direct effect model is similar to the total effect model but additionally
Direct effect model	includes the inverse odds weights constructed from the mediators, instead
	of controlling for the mediators themselves.
Step 5:	Building on the traditional difference-in-coefficients approach, the
Compute indirect effect	indirect effect is obtained by subtracting the direct effect from the total
	effect.
Step 6:	The standard errors and CIs are obtained by bootstrapping.
Estimate standard errors	

Stata code for mediation analysis with inverse odds weights and imputed data

cd "\\kifs03.user.ki.se\k9_users\$\zakhos\....." use midata.dta, clear

*Prepare the data for survival analysis mim, cat(manip) sortorder(zakirid): stset persontime, failure(cvdmort=1) scale(365.25) id(id) stsplit fu, at(0(1)10) trim

* User-written program to estimate mediation parameters capture program drop IOW program IOW, rclass capture drop loggodds predprob inverseodds weight_iow

*Step 1: run the exposure model logit sei_father i.edulevel i.sei_own i.smoke alco_risky ib3.physact ib2.diet ib2.bmi_cat /// fu i.origin age gender mstatus

*Step 2: create inverse odds weights predict logodds, xb gen predprob=exp(logodds)/(1+exp(logodds)) gen inverseodds=((1-predprob)/predprob)

gen weight_iow = 1 if sei_father==0
replace weight_iow = inverseodds if sei_father==1

*Step 3: Estimate the total effect (TE) mim, storebv: glm _d sei_father fu i.origin age gender mstatus, family(poisson) /// link(log) vce(cluster id) eform nolog base matrix bb_TE= e(b) scalar b_TE=bb_TE[1,1] return scalar b_TE=bb_TE[1,1]

*Step 4: Estimate the natural direct effect (NDE) mim, storebv: glm _d sei_father fu i.origin age gender /// mstatus [pweight= weight_iow], family(poisson) link(log) vce(cluster id) eform nolog base matrix bb_NDE=e(b) scalar b_NDE=bb_NDE[1,1] return scalar b_NDE=bb_NDE[1,1]

*Step 5: calculate the natural indirect effect (NIE) return scalar b_NIE=b_TE-b_NDE

end

*Step 6: bootstrap to get confidence intervals bootstrap r(b_NIE) r(b_NDE) r(b_TE), cluster(id) seed(12345) reps(1000): IOW estat bootstrap, all