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Abstract
Introduction  People living with HIV (PLWH) on antiretroviral 
therapy (ART) do not progress to AIDS. However, they still 
suffer from an increased risk of inflammation-associated 
complications. HIV persists in long-lived CD4+ T cells, which 
form the major viral reservoir. The persistence of this reservoir 
despite long-term ART is the major hurdle to curing HIV. 
Importantly, the size of the HIV reservoir is larger in individuals 
who start ART late in the course of infection and have a low 
CD4+/CD8+ ratio. HIV reservoir size is also linked to the levels 
of persistent inflammation on ART. Thus, novel strategies to 
reduce immune inflammation and improve the host response 
to control the HIV reservoir would be a valuable addition to 
current ART. Among the different strategies under investigation 
is metformin, a widely used antidiabetic drug that was recently 
shown to modulate T-cell activation and inflammation. 
Treatment of non-diabetic individuals with metformin controls 
inflammation by improving glucose metabolism and by 
regulating intracellular immunometabolic checkpoints such 
as the adenosin 5 monophosphate activated protein kinase 
and mammalian target of rapamycin, in association with 
microbiota modification.
Methods and analysis  22 PLWH on ART for more than 3 
years, at high risk of inflammation or the development of 
non-AIDS events (low CD4+/CD8+ ratio) will be recruited 
in a clinical single-arm pilot study. We will test whether 
supplementing ART with metformin in non-diabetic HIV-
infected individuals can reduce the size of the HIV reservoir 
as determined by various virological assays. The expected 
outcome of this study is a reduction in both the size of the HIV 
reservoir and inflammation following the addition of metformin 
to ART, thus paving the way towards HIV eradication.
Ethics and dissemination  Ethical approval: McGill 
university Health Centre committee number MP-37-2016-
2456. Canadian Canadian Institutes of Health Research/
Canadian HIV Trials Network (CTN) protocol CTNPT027. 
Results will be made available through publication in peer-
reviewed journals and through the CTN website.
Trial registration number  NCT02659306

Introduction
HIV persistence during antiretroviral therapy
Antiretroviral therapy (ART) decreases HIV 
plasma viral load below the limit of detection 

of clinical assays, leading to major improve-
ments in the health of people living with 
HIV (PLWH). However, these individuals 
on prolonged ART develop significant meta-
bolic complications that contribute to an 
increased risk of inflammatory non-AIDS 
events.1 Such clinical events are associated 
with persistent immune activation, and occur 
more often when ART initiation is delayed.2–4 
ART cannot clear latently infected memory 
CD4+ T cells, which persist to form the viral 
reservoir, responsible for the rapid viral 
rebound upon ART interruption.5 6 Determi-
nants of the size of the HIV reservoir include 
late ART initiation, low CD4+  T cell count, 
low CD4+/CD8+  ratio despite CD4+  T cell 
recovery and high levels of immune activa-
tion.7–10 Conversely, elite controllers, who 
have strong polyfunctional HIV-specific cyto-
toxic T-lymphocytes, have a smaller reservoir 
compared with ART-treated individuals.11 12 
These observations support a direct relation-
ship between the quality of the HIV-specific 
immune response, level of inflammation 

Strengths and limitations of this study

►► The Lilac study focuses on two main problems of an-
tiretroviral therapy (ART)-treated people living with 
HIV (PLWH): immune activation and HIV reservoirs.

►► Metformin is a well-tolerated antihyperglycaemic 
drug with anti-inflammatory effects which has been 
shown to restore T-cell function.

►► We hypothesise that metformin treatment in PLWH 
on ART will allow immune activation reduction and a 
diminution of the HIV reservoir size.

►► We will assess changes induces by metformin in 
both in blood and colon biopsies.

►► Although the Lilac study is a pilot trial on 22 PLWH 
on ART, it should provide sufficient sample size cal-
culations for larger studies.
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and HIV reservoir size. Therefore, strategies aiming at 
targeting and reducing immune activation and improving 
T-cell function may reduce the size of the HIV reservoir.

We and others have demonstrated that during primary 
HIV infection, the altered metabolic state of HIV-specific 
CD8+  T cells leads to persistent immune activation and 
immune exhaustion.13–15 These findings indicate that 
metabolism acts upstream of immune activation and 
influences immune responses.16 During chronic HIV 
infection, the switch from oxidative phosphorylation to 
aerobic glycolytic metabolism in response to persistent 
antigenic stimulation leads to terminal differentiation, 
reducing the pool of central memory T-cells.17 18 Such 
metabolic changes at the cellular level are regulated by 
nutrient-sensing and activation signalling pathways mainly 
mediated by phosphoinositide 3-kinase, mammalian 
target of rapamycin (mTOR) and adenosine monophos-
phate-activated protein kinase (AMPK).19 As for cancer 
cells, a ‘Warburg effect’ occurs whereby glucose trans-
port is markedly increased via aerobic glycolysis following 
persistent T-cell activation.20 Notably, during chronic viral 
infections, the energy sensor AMPK modulates glucose 
uptake for fuelling T-cell cytotoxic function.21 22

Collectively, these findings suggest that immunometab-
olism, which regulates T-cell proliferation and cytotoxic 
responses, may influence the size of the HIV reservoir.23 
Therefore, medication that improves T-cell metabo-
lism may enhance their function and may contribute to 
immune control of the HIV reservoir.

Metformin is an antidiabetic drug with immunometabolic 
effects
Isolated in the 1920s from French lilac, metformin 
(dimethylbiguanide) is widely used as a first-line treat-
ment for type II diabetes.24 This drug, which has limited 
side effects, acts as an antihyperglycaemic agent that 
promotes euglycaemia without the risk of hypogly-
caemia.25 By improving insulin sensitivity, metformin 
decreases insulin resistance in non-insulin-dependent 
diabetics by activating AMPK, thereby reducing hepatic 
gluconeogenesis and increasing glucose uptake in skel-
etal muscles.26

Metformin was recently shown to promote longevity 
in worms, rodents and diabetic individuals by mimicking 
a state of induced dietary restriction.27 Metformin has 
been demonstrated to decrease cancer and myocar-
dial infarction-related mortality in diabetic individuals, 
in addition to enhancing memory T-cell generation in 
mice.28 29 Mechanistically, metformin inhibits mTOR 
signalling independently of the insulin-signalling pathway 
by: (1) activating AMPK, a heterotrimeric serine/thre-
onine kinase complex that monitors cellular energy levels 
and acts as an upstream inhibitor of mTOR and (2) inhib-
iting Rag GTPases.30

Metformin promotes autophagy and modulates T-cell 
glycolysis by inhibiting mTOR, improving CD4+  T cell 
counts in diabetic PLWH initiating ART.31 The effects 
of metformin in PLWH may be due to: (1) its ability to 

overcome the inhibition AMPK by viral transactivator 
of transcription (Tat) protein32; (2) an anti-inflamma-
tory effect on the intestine by suppressing nuclear factor 
κB activation33; (3) an indirect anti-inflammatory effect 
caused by the reduced production of cytokines such as 
tumour necrosis factor-alpha (TNF-α) and interleukin-1 
(IL-1)34 and/or (4) changes in the composition of the 
gut microbiota which have been observed in mice and 
in humans.35–38 This last observation occurred in the 
absence of a glycaemic effect when metformin was admin-
istered intravenously to mice,39 suggesting that the micro-
biota plays a predominant role in metformin effect. The 
ability of metformin to affect the composition of the gut 
microbiota may also contribute to metformin’s antidia-
betic effect given that dysbiosis, that  is an imbalance in 
the composition of the microbiota, has been directly asso-
ciated with insulin resistance related to lipopolysaccha-
ride (LPS)-induced inflammation.35 36 39 Indeed, plasma 
levels of LPS are elevated in PLWH.40–42

Metformin has been recently considered to be an 
‘oncobiguanide’ due to its immunometabolic effect on 
cancer cells, paving the way for its current investigation 
in non-diabetic cancer patients.43 Gong et al have further 
shown that the use of metformin by diabetic, postmeno-
pausal women was associated with a reduced risk of breast 
cancer and reduced risk of death from cancer, compared 
with the use of other antidiabetic medications including 
insulin.44

In non-diabetic women treated for polycystic ovary 
syndrome, 12 weeks of metformin decreased levels of 
intracellular adhesion molecule-1, E-selectin, IL-6 and 
TNF-α.45 Recently, metformin was shown to have limited 
toxicity compared with placebo in non-diabetic, preg-
nant, obese women who received a daily prophylactic dose 
of 3.0 g from 12 to 18 weeks of gestation until delivery.46 
Encouragingly, these patients had reduced maternal 
gestational weight gain and a lower rate of pre-eclampsia 
compared with patients who received a placebo.

Based on its low toxicity profile46 and its ability to acti-
vate AMPK and to inhibit mTOR signalling, metformin 
is a promising new immunometabolic candidate.19 We 
hypothesise that in addition to ART, metformin could 
decrease immune activation and restore CD8+ T cell func-
tion to decrease the size of the HIV reservoir. Therefore, 
we designed a pilot study to test this hypothesis and to 
obtain estimates for sample size calculations required for 
larger scale studies.

Objectives
To establish the feasibility and optimal design of a full-
scale study on the effect of metformin in ART-treated 
PLWH, we designed a single-arm pilot study.

Primary outcomes
The primary outcome of this study will be the change in 
the size of the HIV reservoir in blood before and after 
12 weeks of metformin, and after 12 weeks of metformin 
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discontinuation as determined by PCR-based assays (total 
and integrated HIV DNA).

Secondary outcomes
The secondary outcomes of this study will be the following:

►► Safety of adding 12 weeks of metformin treatment to 
suppressive ART in PLWH.

►► Change in the size of the HIV reservoir in colon biop-
sies before and after 12 weeks of metformin, as deter-
mined by PCR-based assays (total and integrated HIV 
DNA).

►► The change in the size of the HIV reservoir before 
and after 12 weeks of metformin as determined by 
tat/rev induced limiting dilution assay  (TILDA), a 
novel PCR-based  assay that quantifies the frequency 
of CD4+ T-cells harbouring inducible HIV.47

►► The change in immune activation before and after 12 
weeks of metformin as measured by changes in the 
percentage of human leukocyte antigen-DR isotype 
(HLA-DR) and CD38 expressing T-cells, in both blood 
and colon biopsies.

Exploratory outcomes
The exploratory outcomes of this study will be the changes 
in the following before and after 12 weeks of metformin 
use, and after 12 weeks of metformin discontinuation.

►► The absolute CD4+  and CD8+  T cell counts and the 
CD4+/CD8+ ratio.

►► The plasma levels of fasting glucose, glycosylated 
haemoglobin (HbA1c), lipid profile, total cholesterol, 
high-density lipoprotein (HDL), low-density lipopro-
tein  (LDL), triglycerides, C  reactive protein (CRP) 
and D-dimer to assess the hepatic and renal functions.

►► The plasma levels of the following soluble inflamma-
tory factors: interferon-alpha (IFN-α), TNF-α, IL-1, 
IL-6, IFN-γ-inducible protein 10 (IP-10) and LPS to 
assess the anti-inflammatory effect of metformin.

►► The composition of the gut microbiota in stool 
samples.

Methods and analysis
Study design, settings, sample size and recruitment strategy
The study protocol described herein meets the 2013 Stan-
dard Protocol Items: Recommendations for Interven-
tional Trials guidelines.48 49

Comparisons will be made by repeated measures of the 
outcomes at baseline, during and after metformin use 
(figure 1 and in table 1).

A total of 22 HIV-infected participants will be recruited; 
it is estimated that there will be a 10% lost to follow-up/
study non-completion. Based on our prior studies, it is 
expected that approximately 50% of participants will 
consent to participate in the optional substudy examining 
the effect of metformin on the composition of the gut 
immune environment in gut mucosa samples obtained by 
colonoscopy.50 51 A convenient sample of 22 participants 
was chosen without formal power calculations. The data 
that will be obtained in this study should suffice for calcu-
lations for future studies.

Participants will be recruited by clinicians at the 
Chronic Viral Illness Service at the McGill University 
Health Centre (Montréal, QC, Canada) and the Immu-
nodeficiency Clinic of the Ottawa Hospital (Ottawa, ON, 
Canada); each of these clinics provides care to 1300–2300 
PLWH. Teleconferences and face-to-face meetings will 

Figure 1  Study design depicting study visits, intervention and laboratory assessments. ART, antiretroviral therapy; HbA1c, 
glycosylated haemoglobin; VL, viral load. 
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be organised between the investigators and research 
nurses to help support patient recruitment. Further-
more, conferences on the importance of inflammation 
in HIV infection and on innovative therapies to alleviate 
inflammation (such as metformin) will be organised by 
the investigators to target community groups, treating 
physicians and healthcare providers.

Inclusion criteria
Eligible participants will meet the following criteria 
to be considered eligible for entry into the study: (1) 
HIV-1-infected male or female at least 18 years of age; (2) 
successfully treated with ART for at least 3 years, the time 
necessary to establish a stable reservoir; (3) individuals 
on a stable ART regimen with plasma viral load below the 
limit of detection without any recorded blips for at least 3 
months, (4) people with a CD4+/CD8+ ratio ≤0.7 at base-
line to select participants with high risk of inflammation 
and non-AIDS events52 and (5) non-diabetic as defined 
HbA1c  <5.9% or prediabetic individuals with HbA1c 
between 6.0% and ≥6.4%.

Exclusion criteria
Individuals who meet any of the following criteria will be 
excluded from the study: (1) a known hypersensitivity/
allergy to the metformin; (2) active participation in an 

experimental therapy study or having received exper-
imental therapy within the last 6 months; (3) severe 
systemic diseases (uncontrolled hypertension, chronic 
renal failure) or active uncontrolled infections; (4) 
diabetes mellitus (HbA1c ≥6.5%) as defined by the Cana-
dian Clinical Practice Guidelines for the Prevention and 
Management of Diabetes24 53; (5) oral hypoglycaemic 
treatment or insulin; (6) statins or other anticholesterol 
treatments started in the last 3 months since statins are 
known to be anti inflammatory54; (7) a history of sickle 
cell anaemia and/or thalassaemia, impacting HbA1c 
measurement; (8) a history of congestive heart failure 
New York Heart Association Classification I-IV or having 
a cardiac pacemaker; (9) a history of lactic acidosis; (10) 
current use of stavudine and/or didanosine as metformin 
can increase the risk of lactic acidosis55; (11) severe 
liver or kidney disease based on physician evaluation; 
(12) elevated aspartate aminotransferase and alanine 
aminotransferase threefold above the upper normal 
limit; (13) elevated alkaline phosphatase twofold above 
upper normal limit; (14) elevated creatinine (above 150 
µmol/L); (15) current use of oral steroids; (16) a systemic 
infection within the last 1 month; (17) women who are 
pregnant or breast feeding.

Table 1  Schedule of events

Visit no

Study visits

Week, day

W-4 to −1
Screening

W0, D1
Baseline

W1, D1
(±1 day)

W4, D1
(±3 days)

W12, D1
(±3 days)

W24, D1
(±3 days)

V1 V2 V3 V4 V5 V6/final

Consent form X X

Medical history X

Concomitant medication X X X X X

Eligibility criteria X X

Physical examination X X X X

Adverse events X X X X X

Haematology* X X X X

Chemistry† X X X X

T-cell activation and inflammatory markers X X X

HIV viral load X X X X X

Size of HIV reservoir in latently infected CD4+ T cells X X X

Urine pregnancy test X X

Metformin administration X X X

Colon mucosal biopsies‡ X X

Stool sample collection for microbiota analysis X X X

*Complete blood count, CD4+ and CD8+ T cell counts.
†AST, ALT, Alk Phos, total bilirubin, triglycerides, cholesterol, HDL, LDL, creatinine, blood glucose, lipase, amylase, urea, creatine kinase, 
serum phosphate and fasting glucose.
‡Optional procedure.
AST, aspartate aminotransferase; ALT, alanine aminotransferase; Alk Phos, alkaline phosphatase; HDL, high-density lipoprotein; LDL, low-
density lipoprotein.
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Study intervention
This study will involve 500 mg and 850 mg doses of 
metformin hydrochloride (Glucophage; Sanofi-Aventis 
Canada). Metformin will be taken with meals throughout 
the study duration; in the first week, orally two times daily 
as 500 mg tablets to assess tolerability, following which the 
dose will be increased to 850 mg tablets two  times daily 
(weeks 2–12). These doses were chosen based on the 
mean dose used in diabetic individuals in whom meta-
bolic improvement has been described56–59; Treatment 
duration is based on the duration of use in non-diabetic 
patients treated for polycystic ovary syndrome in whom 
an inflammatory effect was observed45; Compliance will 
be monitored by the research study nurse at each visit by 
assessing pill counts and by telephone calls between each 
visit.

Since concomitant use of dolutegravir and metformin 
increases the plasma concentration of metformin60 61; 
participants using dolutegravir will take the 500 mg dose 
metformin two times daily throughout the study. Although 
the coadministration of dolutegravir and metformin was 
found to be well tolerated in individuals taking both medi-
cations,60 61 dose reduction of metformin may be consid-
ered according to participant tolerance and to clinician 
judgement.

Use of medications, alcohol, street drugs and natural 
remedies will be recorded. There will not be any restric-
tions on the use of natural remedies since none have 
been found to interact with metformin.

Adverse events and toxicity management
During each follow-up visit with a participant, information 
on adverse events (AEs) will be gathered and documented 
accordingly. AEs will be graded as mild, moderate, severe 
or life threatening according to the toxicity table and 
toxicity guidelines provided by the National Institutes of 
Health Division of AIDS Table for Grading the Severity of 
Adult and Pediatric Adverse Events, and will be assessed 
by causality as probably related, possibly related, unlikely 
to be related or not related to the study drug. The assess-
ment of safety will include clinical observation and moni-
toring of patient management and changes over times. 
The Canadian HIV Trials Network (CTN) will be respon-
sible for reporting serious AEs to Health Canada.

Clinical and laboratory assessments
Assessment of HIV reservoir size
The size of the HIV reservoir in peripheral blood and 
in colon biopsies (optional substudy) will be measured 
using PCR-based assays (total and integrated HIV DNA). 
In addition, the size of the inducible reservoir in blood 
CD4+ T cells will be measured by TILDA.

Frequency of cells harbouring total and integrated HIV 
DNA will be measured using a nested quantitative PCR 
that can detect a single copy of the viral genome in 105 
cells.62 While integrated HIV DNA is present in both 
latently and productively infected cells, the ratio between 

total and integrated has been shown to reflect residual 
HIV expression and de novo reverse transcription.63

As the majority of HIV DNA molecules are not repli-
cation competent,64 we will measure the frequency of 
cells producing HIV multiply spliced (ms) RNAs after T 
cell receptor (TCR) stimulation in blood CD4+ T-cells 
using TILDA.47 The estimate of the size of the reservoir 
provided by TILDA is intermediate between PCR-based 
assays and quantitative viral outgrowth assays and requires 
fewer  cells. While unspliced HIV RNAs are frequently 
detected in latently infected cells in the absence of viral 
production, HIV msRNA (Tat/Rev) reflect active viral 
production. We will take advantage of this unique feature 
of msRNA in a limiting dilution assay to measure the 
frequency of cells with inducible HIV on maximal stimu-
lation in CD4+ T-cells isolated from blood. Briefly, isolated 
CD4+ T-cells will be stimulated for 12 hours with phorbol 
myristate acetate/ionomycin. The stimulated cells will 
be serially diluted in a 96 well plate, lysed and the lysates 
will be used immediately for reverse transcriptase PCR. 
msRNA will be quantified by real-time PCR, and by using 
the maximum likelihood method, the frequency of cells 
harbouring inducible HIV msRNA in CD4+ T-cells will 
be calculated. The difference in the relative frequencies 
of CD4+ T-cells that are either activated or not activated 
represents the inducible latently infected cells.

Assessment of T-cell activation in blood
The levels of T-cell activation will be assessed in blood 
samples drawn at weeks 0, 12 and 24, as specified in 
figure 1 and table 1. Briefly, peripheral blood mononu-
clear cells (PBMCs) will be obtained by Ficoll gradient 
centrifugation. The PBMCs will either be labelled with 
the appropriate monoclonal antibodies or will be stored 
in liquid nitrogen until analysed. T-cell analysis will be 
performed using specific monoclonal antibodies as 
previously reported.41 65–67 The associated expressions of 
CD45RA, CCR7 and CD27 will be used to determine the 
percentages of naive (CD45RA+CCR7+CD27+), central 
memory (CD45RA–CCR7+CD27+), preterminal effector 
memory (CD45RA–CCR7–CD27–), transitional memory 
(CD45RA-CCR7+CD27+) and terminally differentiated 
(CD45RA+CCR7–CD27–) CD4+  and CD8+  T-cell subsets. 
The expression of the activation markers HLA-DR and 
CD38 will be assessed on the CD4+  and CD8+  T-cell 
subsets. FlowJo software will be used to analyse the data.

Assessment of HIV reservoirs and T-cell activation in gut mucosa 
samples
Since recent studies suggest that the mucosal immune 
system is the most important site of T-cell activation in 
HIV infection,68 the frequency of HLA-DR+CD38+ acti-
vated CD8+ T-cells in optional colon mucosal biopsies 
samples will be determined. Colon biopsies (around 
30) will be obtained by colonoscopy performed before 
metformin administration (week 0) and at the end of 
metformin treatment (week 12), as specified in figure 1 
and table 1.
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Gut T-cells will be isolated from biopsy samples by 
enzyme digestion using a collagenase-based method as 
reported previously.68–70 Briefly, fresh tissue biopsies will 
be incubated with type II collagenase for 30 min at 37°C 
in a shaking incubator. Tissues pieces will be mechani-
cally separated by repeated passage through a syringe. 
Viable lymphocytes will be separated from debris using 
Ficoll-Hypaque density gradient centrifugation. HIV 
reservoir will be measured by PCR-based assays (total and 
integrated HIV DNA) in sorted CD4+ T cells. It is unlikely 
that TILDA will be performed in mucosal T-cells are their 
number should be too low. The total frequency of acti-
vated CD4+ and CD8+ T-cells will be determined by flow 
cytometry as described above.

Assessment of inflammatory cytokines in plasma
Levels of inflammatory markers such as D-dimer and CRP 
are related to cardiovascular non-AIDS events during HIV 
infection. The ability of metformin therapy to reduce 
plasma levels of IFN-α, IL-1, IL-6, IP-10, TNF-α and LPS 
will be assessed by ELISA as previously reported.41 71

Assessment of gut microbiota composition
Recent studies have shown that metformin can change 
the composition of the gut microbiota.35 37 72 We hypoth-
esised that changes in microbiota composition influence 
markers of inflammation and immune activation. To 
assess this, stool samples will be collected before (week 
0) and after (week 12) metformin therapy, and after 12 
weeks of metformin discontinuation (week 24) into clean 
collection tubes. Stool samples will be immediately stored 
at −80°C until analysed. DNA will be extracted using the 
Qiagen Stool Mini Kit. The composition of the gut micro-
biota will be determined using DNA sequencing of 16S 
ribosomal RNA region of bacterial taxa.

Statistical analysis
Comparisons of HIV reservoir size and percentage of 
activated T-cells will be made between baseline, week 12 
and week 24. The data will be analysed by non-parametric 
statistical tests such as the Wilcoxon matched pairs test 
and the Friedman test. The threshold of significance will 
be 5%.

The same tests will be used to analyse data from blood 
and colon biopsies. Comparisons will also be made 
between mucosal and blood compartments within the 
same participant using the Wilcoxon matched pairs test 
and the Friedman test.

The Wilcoxon matched pairs test will be used to 
compare the number of bacterial taxa by type in stool 
samples before and after metformin therapy.

Patient and public involvement
►► Patients or public were not involved in the design of 

this study.
►► Compliance questionnaires will allow for assessment 

of participants’ experience.
►► Final results of the study are expected to be published 

but will not be specifically disseminated to participants.

Ethics and dissemination plan
Written informed consent will be obtained from all 
participants. All protocol amendments will be submitted 
to the research ethics board of each participating centre. 
The Investigator will seek prior ethics approval for any 
protocol deviations except when the change is intended 
to eliminate an immediate hazard to participants. In this 
case, the protocol deviation will be promptly reported to 
the data safety and monitoring committee of the CTN.

Dissemination plan
The results of the trial, regardless of outcome, will be 
disseminated through the traditional routes of scientific 
peer-reviewed publications, through international and 
national specialist conferences, and through the press 
release by CTN.

Discussion
The size of the HIV reservoir is influenced by a number 
of factors including late ART initiation, low CD4+ T-cell 
count, low CD4+/CD8+ ratio and high level of immune 
activation.7–10 Therapies that target and reduce immune 
activation are therefore critical to reduce the size of the 
HIV reservoir.

It has been shown that in HIV-specific CD8+ T-cells 
cellular metabolism is linked to immune responses and 
acts upstream of immune activation.13–15 We further 
propose that immunometabolism, which has been shown 
to affect the ability of T-cells to proliferate, would regulate 
optimal cytotoxic responses and influence the size of the 
HIV reservoir.23 Given metformin’s immunomodulatory 
properties,28–34 43 45 and its ability to improve CD4+ T-cell 
counts in one study of participants initiating ART,31 we 
propose that this antidiabetic medication may enhance 
T-cell effector function to control the HIV reservoir.

This study will test the hypothesis that the coadministra-
tion of metformin and ART will decrease the size of the 
viral reservoir and the levels of immune activation. If so, 
after 12 weeks of metformin therapy, participants should 
manifest a decrease in T-cell activation (ie, from week 0 to 
week 12) that may reverse after metformin discontinua-
tion (ie, from week 12 to week 24) as metformin’s anti-in-
flammatory effects are lost.

We have previously reported a 10-fold difference in 
the frequency of HLA-DR+CD38+ activated CD8+ T-cells 
between uninfected controls and aviraemic ART-treated 
individuals.65 73 A 50% reduction in the number of acti-
vated CD8+CD38+HLA-DR+ T-cells is estimated following 
metformin treatment. It is expected that the reduction 
of the frequency of activated CD8+ T-cells by metformin 
therapy will be more significant in the gut mucosa than 
in peripheral blood since this mucosal site is the major 
source of microbial translocation, a process that results in 
T-cell activation via activation of toll-like receptors.

Furthermore, measurements of circulating cytokines, 
of inflammatory mediators, and of LPS will be made to 
determine whether metformin treatment can also reduce 
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or suppress inflammatory mediators known to drive 
immune activation.

This single-arm pilot study will include 22 participants. 
Should the results of this study suggest that metformin 
can reduce immune activation and/or the size of the 
viral reservoir in HIV-infected participants on suppres-
sive ART, formal sample size calculations can be done for 
larger future studies.
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