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A Codifying discharge criteria

The original specification of the nurse-led discharge criteria [1] is presented as a

check list with some room for user interpretation. For example, one of the check

list questions is: ‘Urea and electrolytes normal?’ In order to apply the NLD

criteria to historical data we needed to codify them and remove any ambiguity.

To do so we first split the original criteria into 16 binary tests, where each

test places an upper and/or lower bound on a single physiological variable. If

the variable value lies within the bounds the test is passed. For the ‘Urea and

electrolytes’ criterion we defined four separate tests: one for urea and for each

of the three electrolytes identified, via clinical consultation, as most relevant to

patient discharge (potassium, sodium, creatinine). We took the ‘normal’ values

of these four variables from the bounds specified in the Philips DAR system in

use on GICU.

The blood gas test (R2) was originally multi-variable, either testing the

arterial blood gases (PaO2, PaCO2) or the peripheral capillary oxygen saturation

(SpO2) in the absence of an arterial line. To simplify R2 we neglected PaO2

and PaCO2 (which were missing with high frequency), and tested only SpO2

for all patients.

The airway test (R0) checks if the patient has a patent airway. For this test

we used the absence of an endotracheal tube (ETT) as a proxy for the airway

being patent.

Finally, we neglected the test of urine output since this could not be suc-

cessfully located in MIMIC (see section B.1).

Following this procedure we obtained the 15 codified binary tests presented

in table 1 of the main text, and referred to throughout as the NLD criteria.

We note here that the criterion value of 9g/dL, above which haemoglobin

is deemed acceptable, does not appear to be evidence based. We refer the
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reader to this discussion [2] on haemoglobin in critical care. More generally this

highlights the problematic nature of scoring systems that place fixed boundary

constraints on physiological parameters, even when these boundary values are

evidence based. We feel that this motivates the power and algorithmic flexibility

of a machine learning approach.

B Data preprocessing

In this section of the supplementary information we cover the details of the data

preprocessing that was required prior to analysis. The basics of these procedures

are outlined in the main text, and referenced to the relevant part of this section

fuller for explanation.

B.1 Data harmonisation and concept mapping

Extensive pre-processing was required for both MIMIC and GICU in order to

put the data in a workable format. One reason for this is that both datasets

are derived from clinical information systems (CIS) that were never designed

for secondary research purposes. Both MIMIC and GICU datasets contained

problems with inconsistent naming conventions for physiological parameters.

We determined that this problem was less severe in the portion of MIMIC-III

derived from the Metavision data source (as compared to Physionet). There-

fore, we restricted our study to this subset of the data. Despite this, extensive

concept mapping of disparate interventionIDs was required in order to obtain

physiological records that were coherent and as close to complete as possible. It

was not possible to identify a coherent measure of urine output in MIMIC-III.

This is an issue that has previously been discussed on the forums accompanying

the MIMIC website. Therefore, we were forced to neglect the discharge criteria

based on urine output throughout this study. In general the GICU dataset was
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easier to work with, in no small part thanks to working with the clinicians who

are responsible for administering the associated CIS. When working with both

datasets particular care was taken to ensure consistency of measurement units,

which differ between the two systems.

B.2 Inclusion criteria

As described in the main text we selected study subjects from the MIMIC and

GICU datasets according to a number of inclusion criteria. The main goal was

to obtain approximately equal sized samples of both patients who were ready

for discharge, and those who were not ready for discharge. The GICU data

is derived from the clinical information system in use on the general intensive

care unit at the Bristol Royal Infirmary. GICU is a combined critical care and

high-dependency unit that treats both level 2 and level 3 patients. The MIMIC

data is derived from patients admitted to critical care units at the Beth Israel

Deaconess Medical Center in Boston, Massachusetts between 2001 and 2012.

Initially we applied the following criteria when selecting subjects from the two

historical datasets:

• From MIMIC we selected patients from MIMIC-III who were admitted

to either medical or surgical intensive care, since this approximates the

patient type admitted to general intensive care in Bristol.

• From MIMIC we selected only patient from Metavision (see section B.1).

• We only included the first intensive care stay of any given hospital ad-

mission. This decision allowed us to calculate readmission rates to ICU.

(Readmission was one negative outcome considered following callout.)

• From GICU we included only patients who could be linked to Ward-

Watcher (administrative system) via their lifetime ID number.
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• From both data sources we selected only patients with a recorded callout

(ready for discharge time).

• Furthermore, we discarded any patients (GICU and MIMIC) that had

three of more feature variables with no recorded value.

• The two resulting cohorts of study subjects are summarised in table 2 of

the main text.

The first step in processing the data was to omit those intensive care stays

with no recorded callout. This omission removed any patients who died on ICU,

as well as those who should have had a callout recorded but for some reason it

was missing in the data. The second step was to define positive and negative

outcomes following callout (see main text). Patients with a positive outcome

were determined to be ready for discharge at the time of callout. Patients

with a negative outcome were determined to be not ready for discharge, either

because they were erroneously discharged or because they were discharged in

the knowledge that they were not fit (e.g. specialist unit transfer or palliative).

For MIMIC and GICU the rate of negative outcomes was 12.57% and 5.83%

percent respectively (see the bars at Xi = 0 in figure 1).

The next step was to increase the number of instances of NRFD in order

to balance to class sizes for training and testing purposes. To produce more

instances of NRFD we sampled from earlier in patient stays at times when they

were assumed to be not clinically fit for discharge. Heuristically we made the

decision that we should sample at least three days prior to callout to ensure no

ambiguity in RFD status (one or two days prior to callout it may be the case

that patients were RFD but were being held on to conservatively). We also

chose to exclude patients who were in the first 24 hours of their ICU stay from

this sampling. From figure 1 it is clear that, given the distribution in the length

of patient stays, there is only so far back in time we can sample and still obtain
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MIMIC GICU

Figure 1: Illustrating instances sampled at in integer multiples (Xi) of 24 hours
prior to callout. Patient callout is at Xi = 0. At this time patients with positive
outcome are considered ready for discharge (RFD), and patients with negative
outcome are considered not ready for discharge (NRFD). At Xi > 0 all patients
are considered NRFD regardless of subsequent outcome status.

enough instances of NRFD to balance the class sizes. Therefore, we sampled at

time points from to three to eight days prior to callout (Xi = [3, 4, 5, 6, 7, 8]).

The reason for sampling in exact multiples of 24 hours prior to callout was

to ensure the removal of time of day effects from the data (see section B.3).

An alternative strategy would be to sample and classify patients at a set time

point each day. This strategy would have the benefit of preserving the time

relationship of certain daily activities. For example, daily bloods are likely done

in the morning. Our strategy, of sampling in 24 hour multiples prior to callout

may introduce more variability in the time since last bloods, and possibly other

measurements/interventions. However, given that we wanted to work towards

a classifier that is not constrained by activities (such as discharge decisions)

occurring at fixed times of day, we feel that the chosen sampling strategy is

justified.

Sampling patient stays at Xi = [3, 4, 5, 6, 7, 8] prior to callout yielded 8425

and 3174 instances for MIMIC and GICU respectively. We then combined these

extra NRFD instances with the original instances (RFD and NRFD) sampled

at time of callout (Xi = 0), and re-sampled the larger class to obtain a 50:50
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ratio of RFD:NRFD. This re-sampling was conducted with the Python method:

SFrame.sample(fraction,seed). The resulting datasets for MIMIC and GICU

contained 7592 and 1870 instances respectively. The subsequent removal of

instances with missing data (see section C) reduced these to 5038 and 1851.

B.3 Time of day effects

Discharge decisions are invariability made in the morning (figure 2) after dis-

cussion at the morning hand over meeting and subsequent ward round. There

are non-random temporal signals in the value of certain physiological variables

(figure 3). Therefore, it is possible to train a reasonable classifier to identify

readiness for discharge by recognising non-random variation in variable values

due to time of day. For example: blood pressure is lower than average → it

must be morning time → this patient is more likely to be RFD. This highlights

a problem in identifying when patients are actually physically fit for discharge,

versus when they are declared so. It also means we must be careful when intro-

ducing extra instances of the negative class by sampling from earlier in patient

stays - this is why we always sampled in integer multiples of 24 hours prior to

callout.

The frequency with which the callout decision is taken around 11am (figure

2) highlights one important way that a decision support system could improve

upon ICU discharge practice: by prompting clinicians to consider discharge at

other, non-specified time points during the day.
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Figure 2: Histogram of the time of day at which patients were declared ready
for discharge (callout time) for: MIMIC (left) and GICU (right). The red line
indicates the mean of the distribution.

Figure 3: Variation in average physiological variable values by time of day for
the GICU dataset. We calculated the average value for a number of physiological
variables at each hour of the day over all patients in the GICU dataset. The
values for each variable are than scaled between 0 and 1 to be displayed on the
heatmap. Certain temporal patterns become visible. For example, heart rate
(HR) and blood pressure (BP) tend to be higher in the evening.

C Feature extraction and missing data

We constructed feature matrices for each cohort such that the NLD criteria could

easily be tested, and machine learning classifiers could be trained on the same

data. In these feature matrices each row represents an instance of either RFD of

NRFD, and each column represents a feature. Each of the NLD criteria tests the

numeric value of a single physiological parameter. Certain criteria test whether

the parameter lies within specified lower and upper bounds, while others impose
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only a single (lower or upper) bound (see table 1). Therefore, to evaluate a

criterion with two bounds requires two feature columns: one giving the minimum

value of the relevant parameter, and the other giving the maximum. A single

bound criterion requires only one feature column. For example, the features

‘resp min’ and ‘resp max’ are required for test R4, whereas to test R1 the feature

‘fio2 max’ alone is sufficient.

We calculated the required minima and maxima of the physiological param-

eters over four-hour sample windows, as specified by the original NLD criteria.

For the original instances (RFD and NRFD) this window constituted the four

hours immediately preceding callout. For the extra NRFD instances this was

the four hour window immediately preceding the earlier sample time (Xi days

prior to callout). In both cases the resulting feature columns contained large

amounts of missing data where variables had not been recorded during the spec-

ified window, as shown in table 1. This problem was worse with those variables

derived from laboratory tests (such as ‘bun’), which are infrequently collected

(approximately once every 24 hours). To replace some of the missing values

the sample window was extended from four to 36 hours. If a missing variable

was recorded during this extended window, the latest recorded value was taken

for both the minimum and maximum. Clinically it was expected that the main

source of missing data is that a variable is less likely to be recorded if it is not of

clinical concern. In such cases the extended sample window represents a conser-

vative estimation of a patient’s physiological state, by taking parameter values

at the last time when they were of concern to clinicians. For the five variables

corresponding to double-bound NLD criteria, but with large amounts of miss-

ing data (pain, k, bun, creatinine, na) the decision was taken to produce only a

single feature for each, rather than two, by taking only the final recorded value.

This reduction avoided significant value duplication between feature columns.
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Table 1: Summary of missing data in the MIMIC and GICU feature matrices.
Values are provided for the samples drawn at time of callout, and samples drawn
prior to callout (at Xi=[3,4,5,6,7,8]). The main values are the fraction of in-
stances with no value recorded during the four hour window. Values in brackets
give fraction of missing data when sample window is extended to 36 hours (see
text).

D Complete case analysis

In medical data there is likely to be meaning in missingness [3] i.e. data is not

missing at random but often due to some other reason. For historical data it is

not easy to discern the reasons for missing data, but a naive treatment of miss-

ingness is liable to bias the dataset and also to lose valuable information from

which to do statistical learning. In the main text we presented results produced

from an imputed version of the dataset. To impute the values of missing data

entries we used k-nearest neighbours imputation (with k = 5). To do this a

k-nearest neighbours model was constructed from the complete cases (instances

with no missing data). This model was then queried and the mean feature value

of the k = 5 nearest-neighbours of each instance was taken to replace any miss-

ing feature values for that instance. In this section we reproduce the results

from the main text but using a complete case analysis with all patients with
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missing data entries removed. In this way we investigate the sensitivity our

results to the missing data values and the k-nn imputation strategy. Beyond

this, the optimal treatment of missing data represents a significant avenue for

development prior to the deployment of our methodology as a real-time decision

support tool.

The removal of the entries with missing data (i.e. complete case analysis)

does not change the following key results:

• The random forest and logistic classifiers perform better than the original

NLD criteria.

• Weighting the NLD criteria by the feature importance of the logistic clas-

sifier improves performance.

• Broadly, which features are most predictive of readiness for discharge re-

mains unchanged, and is consistent between classifiers (Spearman’s rank

correlation coefficient 0.800 here, 0.761 for imputed data set).

The main difference introduced when moving from the complete case analysis

to the imputed data set is slight a drop in performance across the board for the

MIMIC cohort. On aggregate it becomes harder to identify MIMIC patients

that are ready for discharge when those with missing entries are included. For

GICU there is a slight change in the opposite direction. The NLD, random

forest and logistic classifier all perform slightly better when GICU patients with

missing data entries are included. These performance changes suggest non-

random structures in the way that data entries are missing, which likely relate

to differences in clinical practice. For example it may be that MIMIC patients

that are nearly ready for discharge a monitored less closely than more sick

patients and therefore have more missing data. The inclusion of patients with

missing data would introduce more of these ambiguous cases, which are nearly
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Predicted
RFD

Predicted
NRFD

RFD 11 2496
NRFD 2 2529

Table 2: Confusion matrix for NLD
criteria applied to MIMIC feature
matrix, with missing data entries
removed (complete case analysis).

Predicted
RFD

Predicted
NRFD

RFD 60 871
NRFD 5 915

Table 3: Confusion matrix for NLD
criteria applied to GICU feature
matrix, with missing data entries
removed (complete case analysis).

Predicted
RFD

Predicted
NRFD

RFD 75 6563
NRFD 8 6597

Table 4: Confusion matrix for NLD
criteria applied to MIMIC feature
matrix, with missing data filled us-
ing k-nearest neighbours. Equiva-
lent to table 2.

Predicted
RFD

Predicted
NRFD

RFD 117 1644
NRFD 7 1740

Table 5: Confusion matrix for NLD
criteria applied to GICU feature
matrix, with missing data filled us-
ing k-nearest neighbours. Equiva-
lent to table 3.

RFD but still being held in critical care. Although the performance changes

do not alter the conclusions drawn from the results in the main text, they do

suggest that strategies for dealing with missing data should be developed in

accordance with on-site clinical practice when deploying such a tool in order to

achieve optimal classifications.
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Figure 4: t-SNE embedding [4] of the feature space for GICU (left), and MIMIC
(right), for the imputed dataset. Green and red points indicate instances of RFD
and NRFD respectively. The more similar two instances (in terms of feature
values), the closer together they appear in the embedding space.

Figure 5: Equivalent to figure 4, but for the complete case data set.
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Table 6: Performance summary for the complete case analysis, equivalent to
table 3 in the main text. All scores are averaged over 100 train-test data splits
and given as: mean (standard deviation). All metrics other than AUROC and
Brier score are evaluated at a specificity of 0.7, using linear interpolation to
estimate this operating point in ROC-space. NLDweighted are the NLD criteria,
weighted by feature importances from the logistic classifier (table 4). LCextended

and RFextended are the machine learning classifiers with extended feature sets.

Table 7: Sensitivity values for the various classifiers over a range of false positive
rates (FPR), for the imputed data set. Specificity = 1 - FPR.
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Table 8: Sensitivity values for the various classifiers over a range of false positive
rates (FPR), for the complete case data set. Specificity = 1 - FPR.

Table 9: Feature importances under the complete case analysis, equivalent to
table 4 in the main text.
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E Implementation in code

Data extraction and preprocessing were conducted using SQL. We worked with

a local MySQL instance of the MIMIC-III data, and the Bristol (GICU) data

was accessed from the backend of the Philips DAR clinical information system

via Microsoft SQL Reporting Services on the hospital server. Additional patient

demographic information was obtained from the WardWatcher system, which

is the ICNARC reporting software in use on the general intensive care unit in

Bristol. Entries from WardWatcher were linked to the Philips data via patient

lifetime identification numbers. The data were then anonymised by the removal

of all sensitive information, including times and date, except for those variables

required for the analysis (see main text). Subsequent data processing and anal-

ysis was conducted in Python within UH Bristol. We used the machine learn-

ing package scikit-learn to train and test classifiers. In particular the method

GridsearchCV was used to optimise model hyperparamaters via multiple-source

cross-validation, optimising for the F1-score. This optimisation was conducted

over two folds, where each fold contained only data from a single source (either

GICU or MIMIC). The ‘best estimator’ parameter of GridsearchCV was set

to ‘True’ such that the optimised model was refitted to the full training data

(MIMIC and GICU). For the logistic classifier the regularisation hyperparame-

ter ‘c’ was optimised over a logarithmic range of twenty values between 1×10−3

and 1× 103. For the random forest three hyperparameters were optimised over

the following ranges: n estimators ∈ [20, 50, 100]; max features ∈ [20, 50, 100];

max depth ∈ [4, 5, 6, 7]. Feature importances were calculated using the Permu-

tationImportance method from the package ELI5, whereby the importance is

taken as the average loss in performance (AUROC score) when the feature val-

ues are randomly permuted.
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