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Spatial analysis 

We will combine multiple factor analysis (MFA) and Cokriging statistics procedures 

to provide a spatial analysis of the SALMANTICOR population.  

Our study will inquire and analyzed N individuals from M municipalities. Q 

questionnaires were handed to all the participants. Let X%&' be a matrix block where n is 

the number of participant of a m municipality and k is the correspondent questionnaire 

of our departing matrix D,-.. 

Therefore, depending on the type of k questionnaire, we will employ a PCA, MCA or 

CA, to each block  X%&' obtaining Y&' =
1

234
Y&' where λ&' is its first singular value.  

Hence, we join all the resulting  Y&' forming a X,-6 matrix where M are the 

municipalities and F the resulting factors. 

X&8 = [Y&1 Y&: … |Y&8|… |Y&6] 

Finally, a generalized PCA is applied on X,-6 

After performing MFA we will proceed to project the resulting coordinates that 

represents our municipalities over the resulting L latent variables obtaining R,-@. 

Adding the spatial coordinates u to each municipality we attain Z u = [u|R]. Once 

we get the Z u  matrix, we will apply a spatial interpolator such as Cokriging. 

We will then describe the spatial behavior of our samples using variograms. 

Variograms are illustrations of how the semivariance acts in function of the distance. 

Semivariance is defined as half the expectation between two different values at two 



locations (u and	u + h), and is used in univariate analyses. To transfer our analysis to a 

multivariate problem we will need to build crossvariograms.  

A crossvariogram γGH describes the degree of spatial dependence of our projected 

variables measuring the variation between two samples depending on the distance h (also 

known as lag) between them. 

After this step, we will define 

Γ h =
1
2

ZG u − ZG u + h ∙ ZH u − ZH u + h  

with i, j = 1…M and hence, the crossvariogram 

Using a more practical approach, we will need to build a set of experimental 

crossvariograms based on our matrix Z u .  

Therefore, we will obtaine @(@R1)
:

 experimental semivariograms, and subsequently 

these direct and crossvariograms will need to be fitted. The different parts of a theoretical 

semivariogram are: 

Nugget: It represents variability at small distances h	 ≈ 0 . 

Sill: The semivariance b value at which the semivariogram levels off. 

Range: The a distance at which the semivariogram reaches the sill value. 

The Linear Model of Coregionalization (LMC) permits all the @(@R1)
:

 semivariograms 

to be fitted as linear combinations of S basic semivariogram functions (Gaussian, 

Exponential, Spherical, etc). The LMC can be expressed as a multivariate nested 

semivariogram model. 

Γ h = BZgZ(h)
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where Γ h  is the S×S matrix of semivariogram values at lag h, and BZ is the S×S 

matrix of sills of the basic semivariogram function gZ(h). BZ has to be positive 

semidefinite, to assure that the variance-covariance matrix is also positive. 

Once Γ h  is set, we will need to interpolate over the different polygons that 

represents the municipalities and shape the province of Salamanca. For fulfilling this task, 

we will apply Cokriging. 

Cokriging is the multivariate extension of kriging, whose main purpose is to compute 

a weighted average of the sample values in close proximity to a grid point, polygon or 

volume. It searches for the best linear unbiased estimator, based on assumptions on 

covariances. There are different procedures such as ordinary, universal, or simple 

Cokriging.  

As an example, we present simple Cokriging.  

ZG_ u` = mG_ + wb
G ZG ub − mG

,
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where u` is an unsampled municipality and ub a sample location, wb
G  is the weight 

and m corresponds to the means of our variables. We can associate a simple cokriging 

system to this estimator as CGHwG = cGG_, where CGH is the M×M covariance matrix, and cGG_ 

is the M`×M	covariance matrix between the unsampled and sample locations. 

 

Machine learning 

The following table describes the selected machine learning (ML) algorithms to be used 

in the SALMANTICOR study. 

	Algorithm	 Type	 Description	
Random	Forest	 Combine	methods	 Classification	ensemble	through	a	combination	set	of	

non-correlated	independently	decision	trees	
Gradient	Boosting	 Combine	methods	 Ensemble	technique	in	which	decision	trees	are	not	

independently,	but	sequentially	



	Algorithm	 Type	 Description	
Logistic	regression	 Regression	 The	go-to	method	for	categorical	or	binary	

classification		
K-nearest	Neighbors	 Supervised	classification	 Classifies	each	unlabeled	example	by	the	majority	

label	among	its	k-nearest	neighbors	in	the	training	
set	

Support	Vector	Machine	 Supervised	classification	 Classification	and	regression	technique	through	
construction	of	separating	hyperplanes	to	maximize	
the	margin	and	to	produce	a	generalization	ability	

Linear	discriminant	analysis	 Linear	discriminant	 Searches	for	directions	in	the	data	that	have	the	
largest	variance	and	subsequently	project	the	data	
onto	it	combining	Fisher	vectors	

Naive	Bayes	classifier	 Probabilistic	supervised	
classification	

The	Bayesian	classification	is	used	as	a	probabilistic	
learning	method	

 

  


