- 1 Supplementary materials
- 2 Table S1 The details of search strategy.
- 3 Table S2 Characteristics of included studies.
- 4 Table S3 The details of included responder analysis methods.
- 5 Table S4 The characteristics of included studies.
- 6 Table S5 Reporting quality of included studies.
- 7 Table S6 The details of simulation performance.
- 8

9 Table S1 Characteristics of included studies.

Study	Country	Methods investigated	No. of trials simulated	Clinical area	Sample size of trials	No. of simulation replicates	Outcomes	Thresholds	Criteria to assess the performance of simulation
Peacock 2012	UK	Standard binary method Distributional	4	Low birth weight in pregnant women with or without smoking	1254	1000	Birth weight	The percentage of babies with low birth weight (birth weight	Bias, Coverage, Power
		approach		Low birth weight in pregnant women with different age	587			< 2500 g)	
				Low birth weight in pregnant women with or without urinary tract infection	44379				
				Low birth weight in pregnant women with or without drug use	906				
Garofolo 2013	USA	Adjusted baseline severity analyses Unadjusted baseline severity analyses	1	Hyperglycemic acute ischemic stroke	1400	1000	"success" and "failure"	For unadjusted analyses, scores of 0 to 1 (or 0 to 2) were considered to be "successes" while scores greater than 1 (or 2) were considered to be "failures," For adjusted analyses, subjects in a less severe prognosis group at baseline must achieve a better outcome to be considered a trial "success.".	Type-I error, Power

Wason 2013	UK	Standard binary method Augmented binary method	1	Cancer patients with capecitabine	106	NR	Probability of treatment success	we define a patient as successful if no toxicity or death occurs, no new lesions develop and the tumor size shrinkage between baseline and the final observation is greater than 30%.	Coverage, Power Precision or variance Type-I error
Sauzet Germa 2015	Germany	Skew-normal distribution method Normal distribution	4	Proportion of low birth weight women with or without smoking	876	20000	Low birth weight	The percentage of babies with low birth weight (birth weight < 2500 g)	Bias, Precision or variance
		method		pressure in white or non-white patients	1896		pressure	NK	
				Proportions of obesity primipari or multipari	1781		Obesity	The usual threshold of obesity is 30 kg/m ² .	
				Proportions of preterm primipari or multipari	1730		Preterm	Preterm means gestational age (GA) is under 37 completed weeks	
Jiang 2016	USA	Advanced nonasymptotic Bayesian (ANB) approach Simple asymptotic Bayesian (SAB) approach Simple nonasymptotic bayesian (SNB)	1	Aerobic exercise program for pain	145	1000	Pain	Difference in pain (DP) defined as the initial pain scores minus two times the pain scores at the end of the study	Coverage, Power, Precision or variance

BMJ Open

		method Traditional beta- binomial (TBB) method									
Wason 2016	UK	Standard binary method Augmented binary method	1	Rheumatoid arthritis	918	5000	ACR DAS28	ACR score was greater than or equal to the relevant threshold (20, 50 and 70) at 24 weeks. DAS28 score at 24 weeks was below an absolute threshold (2.6 or 3.2)	Type-I error, Power, Coverage		
Zhang 2016	USA	Standard binary method Model-based approach	1	Parkinson's disease	NR	10000	UPDRS	UPDRS scores at 1-, 2-, and 3-months post randomization are consistently below the baseline score.	Bias, Precision or variance		
10 11	10 UPDRS, the Unified Parkinson's Disease Rating Scale; ACR, the American College of Rheumatology; DAS28, the Disease Activity Score in 28 joints; 11 NR, Not										

Table S2 The details of search strategy.									
Embase <1974 to 2023 October 09>									
#1 ("Responder* analysis" or "Responder* analyses" or "Response* rate*" or "Dichotomi*" or									
"dichotomous" or "Distribution* approach*" or "Minimal clinically important difference*" or "Minimal									
important difference*" or "Minimum clinically important difference*" or "Minimum important									
difference*").ti. 6,365									
#2 (Dichotomi* or dichotomous or Binary or Categor*).ti. 34,114									
#3 Continuous.ti. 94,997									
#4 2 and 3 394									
#5 1 or 4 6,692									
Ovid MEDLINE(R) ALL <1946 to October 09, 2023>									
#1 ("Responder* analysis" or "Responder* analyses" or "Response* rate*" or "Dichotomi*" or									
"dichotomous" or "Distribution* approach*" or "Minimal clinically important difference*" or "Minimal									
important difference*" or "Minimum clinically important difference*" or "Minimum important									
difference*").ti. 4,394									
#2 (Dichotomi* or dichotomous or Binary or Categor*).ti. 32,428									
#3 Continuous.ti. 81,139									
#4 2 and 3 371									
#5 1 or 4 4,698									
PUBMED									
#1 ((((((("Responder* analysis"[Title]) OR ("Responder* analyses"[Title])) OR ("Response*									
rate*"[Title])) OR ("Dichotomi*"[Title])) OR ("dichotomous"[Title])) OR ("Distribution*									
approach*"[Title])) OR ("Minimal clinically important difference*"[Title])) OR ("Minimal important									
difference*"[Title])) OR ("Minimum clinically important difference*"[Title])) OR ("Minimum important									
difference*"[Title]) 3 326									
#2 (//Dichotomi*[Titlo]) OP (dichotomouc[Titlo])) OP (Dipony[Titlo])) OP (Cotogor*[Titlo]) 22 406									
#2 (((Dichotomini [Title]) OK (dichotomods[Title])) OK (Binary[Title])) OK (Categori [Title]) 52,400									
#3 Continuous[Title] 81,102									
#4 ((((Dichotomi*[Title]) OR (dichotomous[Title])) OR (Binary[Title])) OR (Categor*[Title])) AND									
(Continuous[Title]) 371									
#5 ((((((Dichotomi*[Title]) OR (dichotomous[Title])) OR (Binary[Title])) OR (Categor*[Title])) AND									
(Continuous[Title])) OR ((((((((("Responder* analysis"[Title]) OR ("Responder* analyses"[Title])) OR									
("Response* rate*"[Title])) OR ("Dichotomi*"[Title])) OR ("dichotomous"[Title])) OR ("Distribution*									
approach*"[Title])) OR ("Minimal clinically important difference*"[Title])) OR ("Minimal important									
difference*"[Title])) OR ("Minimum clinically important difference*"[Title])) OR ("Minimum important									
difference*"[Title])) 3,631									
Web of Science Core Collection									
#1 "TI=(""Responder* analysis"") OR TI=(""Responder* analyses"") OR TI=(""Response* rate*"")									
OR TI=(""Dichotomi*"") OR TI=(""dichotomous"") OR TI=(""Distribution* approach*"") OR									
TI=(""Minimal clinically important difference*"") OR TI=(""Minimal important difference*"") OR									
TI-(""Minimum clinically important difference*"") OR $TI-(""Minimum important difference*"") 9187$									
#2 "TI-(""bipary"") OP TI-(""categor*"") OP TI-(""Dichotomi*"") OP TI-(""dichotomous"")									
#3 "II=(""continuous"") 20/479									

#4 "#3 AND #2 994#5 "#4 OR #1 10080

#6 "#4 OR #1 and 2.1 Synthesis or 9.92 Statistical Methods or 9.162 Numerical Methods or 9.28
Pure Maths or 6.277 Asian Studies or 7.57 Modelling & Simulation or 7.63 Mechanics (Citation Topics Meso) 707

Table 55 TI	le details of included res	sponder analysis method	15.	
Method	Definition	Components Considered	Statistical Model Used	Adjustment for Covariates
Standard binary method	Treats the overall composite endpoint as a binary outcome (responder vs. non- responder).	 Binary outcome (responder vs. non- responder) Withdrawal or rescue therapy (treated as non- responders) 	Logistic regression model	- Baseline - Treatment arm
Augmented binary method	Combines continuous and binary components to estimate the probability of response between treatment arms.	- Continuous outcome score - Withdrawal or rescue therapy (treated as non- responders)	 Continuous GEE model for outcome scores Two logistic regression models for withdrawal / rescue therapy 	 Baseline Treatment arm Outcomes Additional covariates if needed
Distributional method	Uses the underlying continuous data distribution to estimate responder proportions without dichotomization.	- Mean difference in continuous outcome - Proportion below a predefined threshold (cut-point)	 Assumes normal distribution for both groups Uses sample means and standard deviation to estimate proportions below a cut-point CI for difference in means translated to CI for difference in proportions 	- Baseline - Treatment arm
Model-based method	Estimate probability of response using a model fitted to original continuous/discrete data.	One or more continuous/discrete variables	Logistic regression, GLM, or other parametric models	 Baseline Treatment arm Additional covariates if needed

Table S3 The details of included responder analysis methods

Table S4 Reporting quality of included studies.

Study	Aims of the simulatio n	Depende nce of samples	Starting seed	Random number generato r	Failures occur during simulation	Software to perform simulations	Softwa re to perfor m analysi s	Justification for data generation	Scenarios and statistical methods evaluated	Numbe r of simulati ons	Any justification for number of simulations	Criteria to evaluate the performa nce of statistical methods
Peacoc k 2012	1	1	0	0	0	1	1	1	1	1	0	1
Garofo lo 2013	1	1	0	0	0	1	1	1	1	1	0	1
Wason 2013	1	1	0	0	0	0	0	1	1	0	0	1
Sauzet 2015	1	1	0	0	0	1	1	1	1	1	0	1
Jiang 2016	1	1	0	0	0	1	1	1	1	1	0	1
Wason 2016	1	1	0	0	0	1	1	1	1	1	0	1
Zhang 2016	1	1	0	0	0	1	1	1	1	1	0	1

Table S5 Reporting quality of included studies.

Study	Simulation performance										
	Bias	Precision or	Accuracy	Type-I error	Power	Coverage					
		variance									
Standard binary methods vs.	other responder analys	is methods	•	-	1	1					
Wason 2016				Not favor augmented	Favor augmented binary	Favor augmented					
				binary method	method	binary method					
Wason 2013 - Simulation		Favor		Favor augmented	Not favor augmented						
data		augmented		binary method	binary method						
		binary method									
Wason 2013 - Trial data		Favor				Favor augmented					
		augmented				binary method					
		binary method									
Peacock 2012 - Trial 1 data					Favor distributional	Favor distributional					
					approach	approach					
Peacock 2012 - Trial 2 data	Favor distributional				Favor distributional	Favor distributional					
	approach				approach	approach					
Peacock 2012 - Trial 3 data	Favor distributional				Favor distributional	Favor distributional					
	approach				approach	approach					
Peacock 2012 - Trial 4 data	Not favor					Favor distributional					
	distributional					approach					
	approach										
Zhang 2016	Favor model-based	Favor model-									
	approach	based approach									
Responder analysis for differ	rent data distribution typ	bes									
Sauzet 2015 - normal	Not favor normal					Not favor normal					
distribution real data set	distribution method					distribution method					
Sauzet 2015 - lognormal	Not favor normal					Not favor normal					
distribution real data set	distribution method					distribution method					
Sauzet 2015 - Inverse	Not favor normal					Not favor normal					
transformation normal	distribution method					distribution method					
distribution real data set											
Sauzet 2015 - left skewed	Not favor normal					Not favor normal					
normal distribution real	distribution method					distribution method					

data set									
Sauzet 2015 – simulation for	Not favor normal								
different sample size from	distribution method								
20-500, skewness from <u>+</u> 1-									
<u>+</u> 20, Log standard deviation									
from 0.02-1									
Responder analysis with or w	vithout adjusted covariat	es							
Garofolo 2013				Not favor adjusted	Not favor adjusted baseline				
				baseline severity	severity analyses				
				analyses					
Different Bayesian responder analysis methods									
Jiang 2016 - Simulation data		Not favor SAB			Favor SAB				
Jiang 2016 - Trial data		Favor ANB			Favor ANB	Favor ANB			

Table S6 The details of simulation performance.

Study	Objective		Simulation performance							
		Bias	Precision or	Accuracy	Type-I error	Power	Coverage	on performance		
			variance							
Wason 2016	To demonstrate				There is no	The	The augmented	By using our proposed		
	whether the				evidence of type I	augmented	binary method	augmented binary		
	method does not				error rate inflation	binary	has the	method, the response		
	inflate the type I				for the augmented	method	reduction in Cl	rates for ACR and		
	error rate and show				binary method.	provides a	width, and gives	DAS28 end points		
	that it substantially					large gain in	an estimate	could be estimated to		
	improves the power					power for the	closer to its	the same degree of		
	of analyses.					example data	mean from	precision (i.e. same Cl		
						set and end	across all the	width) as the standard		
						point across	replicates.	binary approach but		
						the different		using a much smaller		
						sample sizes		sample size. The		
						considered.		method does not		
								cause any inflation to		
								the type I error rate		
Peacock 2012	To propose a dual					For a power	The	In analyzing data,		
– Trial 1	approach that					of 80%, the	distributional	precision as well as		
	analyses continuous					sample size	method gives a	power can be an issue		
	data using both					required to	CI that is nearly	and that, using the		
	means and					obtain a	a third of the	distributional		
	proportions to					significant	width of that of	approach, tighter Cls		
	replace					difference in	thresholds	for differences in		
	dichotomisation					distributional	method	proportions, relative		
	alone and that may					method is		risks and odds ratios		
	be useful in certain					smaller than		can be computed		
	situations.					thresholds		where the data are		
						method		intrinsically		
Peacock 2012		Bias for the				The	The thresholds	continuous.		
– Trial 2		estimated				estimated	method			
		difference in				power is	calculated CI is			

	proportion using		increased	on average	
	distributional		from 62%	twice as wide as	
	method (0.18) is		(thresholds	the	
	smaller than		(thresholds method) to	distributional	
	thresholds		almost 100%	one The	
	method (0.22)		distributional	coverage of the	
	method (0.52)		(uistributional		
			methou).	95% distributional Cl	
				as the	
				percentage of	
				cases that did	
				contain the	
				'true' difference	
				in proportion	
				0.062 was 94%.	
Peacock 2012	The bias for		The	The thresholds	
– Trial 3	distributional		estimated	method	
	estimated odds		power is	calculated CI is	
	ratio is 0.042		increased	on average	
	compared with a		from 20%	twice as wide as	
	mean bias of		(thresholds	the	
	0.048 for		method) to	distributional	
	thresholds		almost 79%	one. The	
	method		(distributional	coverage of the	
			method).	95% CI was	
				exactly 95% for	
				distributional	
				method.	
Peacock 2012	The bias for			The thresholds	
– Trial 4	distributional			method	
	estimated odds			calculated CI is	
	ratio is 0.138			on average	
	compared with a			twice as wide as	
	mean bias of			the	

		0.071 for thresholds method				distributional one. The coverage of the 95% CI was 92% for	
						method.	
Jiang 2016 - simulations	The purpose of this article is to develop a Bayesian distributional methodology that not only retains statistical precision but also reflects the true uncertainty.		The SAB method with correction tends to overestimate the true variation when cutoff points are far away from zero no matter what the		The SAB approach always deflates the true posterior uncertainty even when sample size is very large.		The SAB approach does improve the precision over usual methods for dichotomized data, but it does not reflect the true uncertainty especially when the threshold is in the tails of distribution.
Jiang 2016 – trial data			sample size is. The posterior variance of log(or) for ANB approach (i.e., 0.161) is approximately 40% smaller than the one based on the TBB approach (i.e., 0.262).		the TBB approach fails to detect the difference between two groups because its posterior credible interval includes 1. With the use of the ANB method, bowever the	The 95% CI of TBB is nearly twice as wide as 95% CI of ANB	

					difference is		
					significant		
					although it is		
					small		
Zhang 2016	To elaborate on	The empirical	For parameter				The model-based
	advantages of	estimator is	estimation, the				approach can be more
	model based	known to be	model-based				efficient, and more
	method and	unbiased in any	approach does				effective for dealing
	illustrate them with	finite sample,	require real				with missing data,
	a series of	while the model-	knowledge and				than the usual
	simulation studies	based estimators	careful				approach based on
	mimicking a study	may have a finite-	modeling of the				dichotomization. For
	of Parkinson's	sample bias that	distribution of				parameter estimation,
	disease, which	decreases to 0	Х.				the model-based
	involves	with increasing					approach generally
	longitudinal	sample size. We					requires correct
	continuous data in	can reduce the					specification of the
	the definition of a	sample size while					distribution of X.
	responder.	maintaining the					
		same precision by					
		using the model-					
		based estimator					
		instead of the					
		empirical					
		estimator.					
Wason 2013 -	We demonstrate		The augmented	The deviation from	The		The augmented binary
simulation	these increases in		binary approach	0.05 is generally	augmented		approach can be used
	precision and power		improves the	greater for the	binary		to increase the power
	using simulated		precision of the	logistic regression	approach is		to detect a difference
	data. We also apply		estimated	than for the	not with the		between the
	augmented binary		probability of	augmented binary	highest		probabilities of
	method to real data		success.	approach	power.		success under two
Wason 2013 -	from a phase II		The augmented			The augmented	different treatments in
trial	cancer trial and		binary method			binary method	a comparative trial.

	show that it results in a considerably narrower		can change the estimate of the success			gives reductions in the width of the CI in all	
	for the probability of tumour response.		considerably in some cases			Cases.	
Garofolo 2013	While the bias decreases with increasing sample size, the adjusted estimates of the treatment effect parameter are consistently less biased than the unadjusted estimates.			The type I error rates for both the unadjusted and categorically- adjusted methods are within the 95% confidence limits for all the sample sizes, hovering close to the nominal 5% level.	There is no drastic difference in the unadjusted and categorically- adjusted methods with respect to power in these varying treatment effect scenarios.		Under various treatment effect settings, the operating characteristics of the unadjusted and adjusted analyses do not substantially differ. Power and type I error are preserved for both the unadjusted and adjusted analyses.
Sauzet 2015 – normal	To investigate if the distributional	Normal distribution				Normal distribution	The distributional method with its
distribution	method remains	method is similar				method is	applicability for
real data set	reliable in the case	with skew-normal				similar with	common skewed data
	of deviations from	distribution				skew-normal	allows researchers to
	normality and	method				distribution	provide both
	propose a					method	continuous and
Sauzet 2015 –	generalisation of	Normal				Normal	dichotomised
lognormal	the distributional	distribution				distribution	estimates without
distribution	skowposs	method is similar				method is	nosing information or
real data set	distributions using	distribution				similar with	have the effect of
	the skew-normal	method				distribution	providing a practical

	distribution.				method	understanding of the
Sauzet 2015 –		Normal			Normal	difference in means in
Inverse		distribution			distribution	terms of proportions.
transformation		method is similar			method is	
normal		with skew-normal			similar with	
distribution		distribution			skew-normal	
real data set		method			distribution	
					method	
Sauzet 2015 –		Normal			Normal	
left skewed		distribution			distribution	
normal		method is similar			method is	
distribution		with skew-normal			similar with	
real data set		distribution			skew-normal	
		method			distribution	
					method	
Sauzet 2015 –		For data almost				
simulation for		normal the skew				
different		normal method				
sample size		did not perform				
from 20-500,		well unless the				
skewness from		sample size was				
<u>+</u> 1- <u>+</u> 20, Log		large enough.				
standard						
deviation from						
0.02-1						