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ABSTRACT
Objectives  Occupational noise-induced hearing loss 
(ONIHL) represents a prevalent occupational health 
condition, traditionally necessitating multiple pure-
tone audiometry assessments. We have developed and 
validated a machine learning model leveraging routine 
haematological and biochemical parameters, thereby 
offering novel insights into the risk prediction of ONIHL.
Design, setting and participants  This study analysed 
data from 3297 noise-exposed workers in Shenzhen, 
including 160 ONIHL cases, with the data set divided 
into D1 (2868 samples, 107 ONIHL cases) and D2 (429 
samples, 53 ONIHL cases). The inclusion criteria were 
formulated based on the GBZ49-2014 Diagnosis of 
Occupational Noise-Induced Hearing Loss. Model training 
was performed using D1, and model validation was 
conducted using D2. Routine blood and biochemical 
indicators were extracted from the case data, and a range 
of machine learning algorithms including extreme gradient 
boosting (XGBoost) were employed to construct predictive 
models. The model underwent refinement to identify the 
most representative variables, and decision curve analysis 
was conducted to evaluate the net benefit of the model 
across various threshold levels.
Primary outcome measures  Model creation data set and 
validation data sets: ONIHL.
Results  The prediction model, developed using XGBoost, 
demonstrated exceptional performance, achieving an 
area under the receiver operating characteristic curve 
(AUC) of 0.942, a sensitivity of 0.875 and a specificity 
of 0.936 on the validation data set. On the test data set, 
the model achieved an AUC of 0.990. After implementing 
feature selection, the model was refined to include only 
16 features, while maintaining strong performance on 
a newly acquired independent data set, with an AUC of 
0.872, a balanced accuracy of 0.798, a sensitivity of 
0.755 and a specificity of 0.840. The analysis of feature 
importance revealed that serum albumin (ALB), platelet 
distribution width (PDW), coefficient of variation in red cell 
distribution width (RDW-CV), serum creatinine (Scr) and 
lymphocyte percentage (LYMPHP) are critical factors for 
risk stratification in patients with ONIHL.

Conclusion  The analysis of feature importance identified 
ALB, PDW, RDW-CV, Scr and LYMPHP as pivotal factors 
for risk stratification in patients with ONIHL. The machine 
learning model, using XGBoost, effectively distinguishes 
patients with ONIHLamong individuals exposed to noise, 
thereby facilitating early diagnosis and intervention.

INTRODUCTION
Occupational noise-induced hearing loss 
(ONIHL) is characterised as a progressive 
sensorineural hearing impairment predomi-
nantly attributed to damage of the hair cells 
within the inner ear, consequent to prolonged 
exposure to high-intensity noise environ-
ments.1 As reported by WHO, approximately 
10% of the global workforce is impacted by 
elevated noise levels, with occupational noise 
exposure accounting for 7–21% of hearing 
loss among workers.2 A national occupational 
research agenda says that ONIHL has the 
highest prevalence of occupational diseases 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The model predicts occupational noise-induced 
hearing loss (ONIHL) using routine blood and bio-
chemical indicators, eliminating the need for audio-
metric tests or direct noise exposure data.

	⇒ It simplifies the diagnostic process, reducing time, 
costs and manpower requirements.

	⇒ It provides an accessible and efficient alternative for 
early screening and prevention of ONIHL.

	⇒ The study is limited to the Shenzhen population, and 
the model’s generalisability to other groups and set-
tings remains uncertain.

	⇒ The positive-to-negative sample ratio exceeds 
1:20, mirroring real-world conditions but limiting 
predictive accuracy; future integration of additional 
biomarkers, such as DNA methylation, may improve 
performance.
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in the USA.3 About 22 million US workers are currently 
exposed to hazardous occupational noise.4 This incidence 
is notably higher in developing countries.5 As the largest 
developing nation, China has witnessed an increasing 
trend in the incidence of occupational ONIHL in recent 
years. The prevalence of ONIHL has been reported to be 
over 20% among noise-exposed workers in China.6 Such 
hearing loss can result in communication challenges, 
social isolation, loneliness and depression, thereby 
adversely impacting patients' quality of life and leading 
to indirect economic losses for society.7 However, despite 
being a major global public health issue, early screening 
methods for ONIHL remain limited.

Currently, pure-tone audiometry (PTA) is regarded 
as the gold standard for diagnosing ONIHL.8 However, 
its reliance on costly audiological equipment and the 
necessity for highly trained professionals restrict its prac-
ticality for large-scale ONIHL screening among noise-
exposed occupational groups.9 Additionally, PTA relies 
on subjective auditory feedback and may be influenced 
by individual auditory adaptation. Consequently, there is 
a pressing need to develop a practical and user-friendly 
screening tool specifically designed for patients with 
ONIHL to prevent the advancement to clinically signif-
icant ONIHL. Numerous instances of ONIHL are char-
acterised by an initial deterioration in high-frequency 
hearing, which gradually progresses to impairments in 
low-frequency or speech frequency hearing.10 The early 
identification of individuals at high risk is essential for 
effective prevention and intervention strategies.

Consequently, the development of predictive models 
to screen high-risk populations for further evaluation 
represents a viable alternative approach. The growing 
volume of data has facilitated the application of machine 
learning (ML) techniques in the context of ONIHL. At 
present, a variety of methodologies employing either 
traditional statistical analysis or ML techniques are used 
to predict the risk of ONIHL. These methodologies 
frequently necessitate substantial human resources and 
present challenges in manual definition.11 The integra-
tion of ML within the field of audiology has demonstrated 
potential, particularly in its capacity to effectively analyse 
non-linear relationships within data, such as forecasting 
hearing thresholds for individuals exposed to specific risk 
factors.12 Abdollahi et al13 constructed eight ML models 
to forecast sensorineural hearing loss following radio-
therapy and chemotherapy, with five of these models 
demonstrating accuracy and precision exceeding 70%. 
Comparable levels of accuracy have been reported in 
other investigations employing ML models to predict 
sudden sensorineural hearing loss (SSNHL) and ototoxic 
hearing loss.14 15 Additionally, various studies have docu-
mented accuracy rates between 0.64 and 0.99 when using 
diverse ML algorithms and input parameters to predict 
ONIHL risk factors.16–20 Among the diverse array of ML 
techniques, support vector machines (SVM) models, 
random forest (RF) models and extreme gradient 
boosting (XGBoost) models have demonstrated superior 

performance in classification tasks.10 Although these 
studies demonstrate that ML can effectively predict various 
types of hearing loss, most existing models primarily rely 
on audiometric data rather than non-invasive biomarkers.

Established risk factors for ONIHL encompass age, 
medical history (including conditions such as hyperten-
sion and diabetes), history of noise exposure, tinnitus 
and behavioural factors such as smoking and physical 
activity.21–24 Furthermore, several biomarkers associated 
with inflammation, including elevated levels of white 
blood cells (WBCs), neutrophils (NE), monocytes (MO) 
and lymphocytes (LY), alongside metabolic parameters 
such as low-density lipoprotein (LDL) and high-density 
lipoprotein (HDL), are recognised as risk indicators for 
hearing loss.25 The chronic alterations in the inflamma-
tory state that occur with ageing, a phenomenon known 
as inflammaging, may contribute to or expedite long-
term auditory system damage.26 Red cell distribution 
width (RDW), a parameter traditionally used for the 
classification of anaemia, has recently been identified as 
being associated with inflammation and microcirculatory 
disorders.27 HDL and LDL have been reported to influ-
ence blood supply, thereby potentially affecting SSNHL.25 
While numerous studies have explored the relationship 
between hearing loss and various blood inflammatory 
and metabolic parameters, there is a paucity of research 
employing these parameters to predict ONIHL.

It is noteworthy that individuals exposed to occupa-
tional noise are subject to annual medical evaluations, 
which routinely include blood tests comprising both stan-
dard and biochemical analyses.15 Physicians often extract 
limited information from these routine blood test results. 
In light of this, our study seeks to comprehensively 
leverage routine haematological and biochemical indica-
tors, in conjunction with ML methodologies, to construct 
a risk prediction model for ONIHL. The objective is to 
facilitate early detection and intervention for ONIHL 
using data from standard medical examinations.

METHODS
Data collection and processing
The medical examination data were obtained from the 
Shenzhen Prevention and Treatment Center for Occupa-
tional Diseases from January 2023 to July 2024. The data 
were divided into two parts in chronological order: D1 
and D2. The first step involved data cleaning, removing 
samples with erroneous or abnormal values. The inclu-
sion criteria were formulated based on the GBZ49-2014 
Diagnosis of Occupational Noise-Induced Hearing Loss: (1) 
noise exposure duration ≥3 years and (2) bilateral high-
frequency (3000 Hz, 4000 Hz, 6000 Hz) average hearing 
threshold ≥40 dB. Exclusion criteria included pseudo-
hypacusis, exaggerated hearing impairment, drug-
induced hearing loss, traumatic hearing loss, infectious 
hearing loss, hereditary hearing loss, Ménière’s disease, 
sudden deafness, acoustic neuroma and auditory neurop-
athy. We divided the samples into two groups: the ONIHL 
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group and the noise-exposed normal hearing group. After 
preprocessing, a total of 3297 samples were retained, with 
D1 and D2 consisting of 2868 and 429 samples, respec-
tively. Among them, there were 107 and 53 cases of noise-
induced hearing loss, representing the positive samples. 
We then applied random sampling to split D1 into a 
training set and a test set at a 7:3 ratio. D2 was used as an 
independent test set.

All data sets included the following variables: sex, age, 
total protein (TP), albumin (ALB), glucose (GLU), 
cholesterol (CHO), triglycerides (TG), HDL, LDL, total 
bilirubin (TBIL), direct bilirubin (DBIL), indirect bili-
rubin (IBIL), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), blood urea nitrogen (BUN), 
serum creatinine (Scr), uric acid (UA), globulin (GLB), 
haemoglobin (Hb), red blood cell count (RBC), haema-
tocrit (HCT), mean corpuscular volume (MCV), mean 
corpuscular haemoglobin (MCH), mean corpuscular 
haemoglobin concentration (MCHC), WBC, eosino-
phil count (EOC), basophil count (BAC), lymphocyte 
count (LYMPHC), monocyte count (MOC), platelet 
count (PLT), neutrophil count (GRANC), eosinophil 
percentage (EOP), basophil percentage (BAP), coeffi-
cient of variation in red cell distribution width (RDW-
CV), mean platelet volume (MPV), platelet distribution 
width (PDW), plateletcrit (PCT), neutrophil percentage 
(GRANP), lymphocyte percentage (LYMPHP), mono-
cyte percentage (MOP), SD in red cell distribution width 
(RDW-SD), platelet-to-HDL ratio (PLT/HDL), glucose-
to-HDL ratio (GLU/HDL), platelet-to-lymphocyte ratio 
(PLT/LYMPHC), albumin-to-globulin ratio (A/G), 
neutrophil-to-lymphocyte ratio (S/L), triglyceride-
glucose index (TyG) and estimated glomerular filtration 
rate (eGFR) (the calculation formulas for TyG and eGFR 
are detailed in online supplemental additional 1).

In light of the pronounced class imbalance present 
across all data sets, we employed oversampling of the 
positive instances within the training set using the ‘​ovun.​
sample()’ function from the ROSE package. This func-
tion randomly replicates samples from the minority class, 

thereby equalising the number of positive and negative 
samples in the training set and achieving a balanced class 
distribution.28 This approach effectively increases the 
sample size of the minority class, mitigating the effects 
of class imbalance during model training. All data sets 
underwent Z-score normalisation, using the mean and SD 
derived from the training set data.

Framework
Employing occupational health examination data, we 
introduce an integrated framework for the identification 
of patients with noise-induced hearing loss, as illustrated 
in figure 1. Initially, we preprocessed two data sets, desig-
nated as D1 and D2. Data set D1 was partitioned into 
training and validation subsets in a 7:3 ratio, while data 
set D2 served as an independent test set for the evaluation 
of the final model. Due to the class imbalance present 
in the data set, we employed an oversampling technique 
on the training set. Subsequently, we used a comprehen-
sive array of ML algorithms, including XGBoost, logistic 
regression (LR), RF, SVM and k-nearest neighbour 
(KNN), to construct predictive models. We then applied 
feature selection methods to the most optimal predictor 
among the five to enhance the tool’s feasibility. The 
performance of the refined model was evaluated using an 
independent test set. We conducted a feature importance 
analysis to identify variables correlated with the incidence 
of noise-induced hearing loss. Additionally, we optimised 
the model to select the most representative variables and 
employed decision curve analysis (DCA) to evaluate the 
net benefit of the model across various threshold levels.

Model construction
In order to construct predictive models, we employed 
five ML algorithms: LR, RF, SVM, KNN and XGBoost. 
LR is a form of linear regression that uses the Sigmoid 
function to convert outputs into probabilities for clas-
sification purposes.29 RF comprises an ensemble of 
independently trained decision trees, with the ultimate 
prediction being derived through a voting mechanism 

Figure 1  A combined framework for identifying patients with occupational noise-induced hearing loss. AUC, area under 
the receiver operating characteristic curve; KNN, k-nearest neighbours; LR, logistic regression; mRMR, maximum relevance 
minimum redundancy; PCA, principal component analysis; PR-AUC, area under the precision–recall curve; RF, random forest; 
SVM, support vector machine; XGBoost, extreme gradient boosting.
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among these trees, thereby mitigating the risk of over-
fitting.30 SVM algorithm classifies samples by identifying 
an optimal hyperplane within the feature space, and it 
is capable of managing nonlinearly separable data.31 
KNN algorithm, an instance-based learning method, clas-
sifies samples according to the proximity of their KNN, 
making it particularly suitable for small data sets and 
straightforward to implement.32 XGBoost is an ensemble 
method based on decision trees that enhances model 
performance through a gradient boosting framework. It 
constructs decision trees in an iterative manner to mini-
mise model error, demonstrating particular efficacy in 
handling large-scale, high-dimensional data sets due to 
its robust generalisation capabilities and computational 
efficiency.33 All models were developed in R (V.4.3.1) 
using a standardised fivefold cross-validation frame-
work, with performance evaluated by the area under the 
receiver operating characteristic curve (AUC). Hyperpa-
rameter optimisation was performed via grid search to 
maximise validation AUC, supported by a heatmap illus-
trating key parameter interactions in XGBoost (online 
supplemental figure S1) and boxplots comparing cross-
validation stability across models (online supplemental 
figure S2). For XGBoost, critical parameters included 
tree depth (max_depth), learning rate (eta) and subsa-
mpling ratios, optimised to max_depth=7, eta=0.1 and 
subsampling ratios of 0.6. RF, SVM and KNN employed 
targeted tuning strategies—such as feature subset selec-
tion, regularisation balancing and dynamic neighbour 
selection—while LR used L2 regularisation. To ensure 
reproducibility, data splitting and randomisation were 
controlled by a global seed (​set.​seed(​123)), with parallel 
processing (four threads) accelerating computations. We 
chose the model with the best performance on the valida-
tion set for further optimisation.

Model evaluation
To evaluate model performance, considering the class 
imbalance in the validation and test sets, we used the 
following metrics to comprehensively assess model perfor-
mance: sensitivity, specificity, balanced accuracy, AUC, 
area under the precision–recall curve (PR-AUC), F1 score 
and precision. These metrics are defined as follows:

	﻿‍ Sensitivity = Recall = TPR = TP
TP+FN‍�

	﻿‍ Specificity = TNR = TN
TN+FP‍�

	﻿‍ Balanced Accuracy = TPR+TNR
2 ‍�

	﻿‍ Precision = TP
TP+FP‍�

	﻿‍ F1 score = 2 × Precision×Recall
Precision+Recall ‍�

The performance of all models was assessed using 
the 'pROC' package in R to calculate AUC and PR-AUC 
values.

TP, that is, true positive, is the number of cases of noise-
induced hearing loss. FP, that is, false positive, denotes 
the number of normal subjects incorrectly predicted as 
having ONIHL. TN, that is, true negative, indicates the 

number of healthy subjects correctly classified as normal. 
FN, that is, false negative, refers to the number of cases 
with ONIHL incorrectly classified as normal. All the 
above metrics range from 0 to 1.

Feature selection and feature importance analysis
Despite the relatively high performance of the prediction 
model using 48 features, there remains the possibility 
of redundant information or noise features that could 
adversely affect the decision-making process. To enhance 
the effective utilisation of features and streamline the 
model, we employed a combination of manual cura-
tion, principal component analysis (PCA) and maximum 
relevance minimum redundancy (mRMR) methods to 
extract essential features for the final model.34 In the 
manual curation process, we initially identified features 
that exhibited significant differences between positive 
and negative samples. To improve the stability of the 
predictive model, we eliminated features that contrib-
uted to significant collinearity.35 As a result, 16 features 
were retained. To ensure consistency, the number of 
feature subsets was also fixed at 16 during the applica-
tion of PCA and mRMR analysis. PCA selected principal 
components based on cumulative explained variance, 
retaining those accounting for up to 80% of the variance 
to balance dimensionality reduction and information 
preservation. Meanwhile, mRMR leveraged mutual infor-
mation to maximise feature relevance while minimising 
redundancy, ensuring an optimal feature subset. Further-
more, feature selection was conducted on the training set 
to mitigate the risk of overfitting. The analysis of feature 
importance facilitates the interpretation of the predictive 
model and aids in identifying the features most closely 
associated with ONIHL. In this context, Feature impor-
tance was assessed using XGBoost’s weight coefficients, 
with Gain (an internal statistical metric of XGBoost) 
highlighting features that maximally improve model 
performance while minimising redundancy.

Patient and public involvement
Patients and the public were not involved in the design, 
conduct, reporting, or dissemination plans of this 
research.

RESULTS
We initially gathered occupational health examination 
data from the Shenzhen Occupational Disease Preven-
tion and Control Institute for the period spanning 2023–
2024, with subgroup D1 comprising 2868 noise-exposed 
workers. Of these, 107 participants were diagnosed with 
ONIHL. Table  1 provides a detailed description of the 
characteristics of both noise-exposed individuals and 
patients with ONIHL. The five most prominent features 
exhibiting significant differences between the ONIHL 
and non-ONIHL samples include ALB, TP, Age, RDW-CV 
and PDW (online supplemental figure S3).
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Performance comparison of the five machine learning 
methods
Table 2 and online supplemental figure S4A, B show that 
the XGBoost algorithm has the highest AUC (0.942) 
and PR-AUC (0.791), as well as high recall (0.875) and 
balanced accuracy (0.905). The F1 score is only second 
to that of RF, making its overall performance excellent. 
The RF algorithm also performs well, with AUC (0.921) 
and PR-AUC (0.690), and a high balanced accuracy 
(0.872), indicating an outstanding overall performance. 
To maximise the identification of patients with ONIHL, 
the XGBoost algorithm was ultimately selected to further 
build the prediction model.

The results of the fivefold cross-validation on the 
training set show an AUC of 0.999, sensitivity of 0.995 and 
balanced accuracy of 0.998. Additionally, the XGBoost 
model demonstrates reliable performance on the test set 
(AUC=0.900, PR-AUC=0.648), as shown in figure 2A,B.

Feature selection for the final model
Several pairs of features were observed to have high 
correlations, such as MCH and RDW-CV, and GRANP 
and LYMPHP, which may introduce redundant informa-
tion and affect the model’s decision-making and stability 
(online supplemental figure S5 for related heat maps). 
Therefore, we used manual curation, PCA and mRMR 

Table 1  Statistical characteristics of noise-exposed 
hearing normal individuals and patients with ONIHL

Characteristics Control Case P value

N 2761 107

Sex <0.001**

 � Female 25 (0.91%) 21 (19.6%)

 � Male 2736 (99.1%) 86 (80.4%)

Age, year 38.5±7.65 43.5±7.17 <0.001**

TP, g/L 72.7±3.91 68.1±4.69 <0.001**

ALB, g/L 46.7±2.59 42.7±2.95 <0.001**

GLU, mmol/L 5.23±0.63 5.42±0.86 0.023*

CHO, mmol/L 4.89±0.86 4.90±1.02 0.930

TG, mmol/L 1.64±1.21 1.97±1.28 0.011*

LDL, mmol/L 1.32±0.26 1.31±0.31 0.717

HDL, mmol/L 3.03±0.62 3.02±0.77 0.833

TBIL, µmol/L 16.5±6.26 15.7±6.02 0.188

DBIL, µmol/L 3.02±1.24 2.80±1.16 0.061

IBIL, µmol/L 13.4±5.20 12.6±4.90 0.098

ALT, U/L 29.5±22.1 27.2±21.8 0.294

AST, U/L 24.7±9.79 27.5±42.3 0.503

BUN, mmol/L 5.04±1.18 5.06±5.07 0.966

Scr, µmol/L 85.1±11.2 76.7±16.9 <0.001**

UA, µmol/L 401±79.2 482±893 0.351

GLB, g/L 26.0±3.36 25.4±3.37 0.086

Hb, g/L 154±10.1 144±17.9 <0.001**

RBC, ×1012 /L 5.02±0.37 4.84±0.49 <0.001**

HCT, L/L 0.45±0.03 0.42±0.04 <0.001**

MCV, fL 89.6±4.77 87.6±8.47 0.015*

MCH, pg 30.8±1.86 29.9±3.47 0.007**

MCHC, g/L 344±6.82 341±12.3 0.013*

WBC, ×109 /L 6.09±1.53 6.81±1.61 <0.001**

EOC, ×109 /L 0.16±0.14 0.21±0.14 <0.001**

BAC, ×109 /L 0.03±0.02 0.03±0.02 0.019*

LYMPHC, ×109 /L 2.10±0.57 2.12±0.53 0.615

MOC, ×109 /L 0.37±0.12 0.44±0.13 <0.001**

PLT, ×109 /L 241±50.4 252±63.3 0.064

GRANC, ×109 /L 3.44±1.15 4.00±1.15 <0.001**

EOP, % 2.59±1.91 3.07±1.72 0.005**

BAP, % 0.51±0.27 0.38±0.23 <0.001**

RDW-CV, % 12.9±0.65 13.9±1.54 <0.001**

MPV, fL 10.2±1.05 10.2±1.07 0.758

PDW, fL 16.2±0.35 14.9±1.97 <0.001**

PCT, % 0.24±0.04 0.26±0.06 0.041*

GRANP, % 55.8±7.74 58.4±6.22 <0.001**

LYMPHP, % 35.0±7.32 31.5±5.71 <0.001**

MOP, % 6.09±1.41 6.46±1.35 0.006**

RDW-SD, % 41.9±1.96 44.1±3.91 <0.001**

Continued

Characteristics Control Case P value

PLT/HDL 189±55.0 202±65.5 0.046*

GLU/HDL 4.11±0.98 4.38±1.32 0.038*

PLT/LYMPHC 122±38.0 124±37.6 0.571

A/G 1.83±0.28 3.27±16.3 0.361

S/L 1.02±0.43 2.09±10.4 0.289

TyG 8.67±0.56 8.87±0.63 0.001**

eGFR, mL/
(min×1.73 m2)

91.8±3.84 92.3±5.18 0.349

Data are presented as N (%) or mean±SE.
P values were based on χ2 tests or t-test: *p<0.05, **p<0.01.
A/G, albumin-to-globulin ratio; ALB, albumin; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BAC, basophil 
count; BAP, basophil percentage; BUN, blood urea nitrogen; CHO, 
cholesterol; DBIL, direct bilirubin; eGFR, estimated glomerular 
filtration rate; EOC, eosinophil count; EOP, eosinophil percentage; 
GLB, globulin; GLU, glucose; GRANC, neutrophil count; GRANP, 
neutrophil percentage; Hb, haemoglobin; HCT, haematocrit; HDL, 
high-density lipoprotein; IBIL, indirect bilirubin; LDL, low-density 
lipoprotein; LYMPH, lymphocyte count; LYMPHP, lymphocyte 
percentage; MCH, mean corpuscular haemoglobin; MCHC, mean 
corpuscular haemoglobin concentration; MCV, mean corpuscular 
volume; MOC, monocyte count; MOP, monocyte percentage; MPV, 
mean platelet volume; ONIHL, occupational noise-induced hearing 
loss; PCT, plateletcrit; PDW, platelet distribution width; PLT, platelet 
count; RBC, red blood cell; RDW-CV, coefficient of variation in red 
cell distribution width; RDW-SD, SD in red cell distribution width; 
Scr, serum creatinine; S/L, neutrophil-to-lymphocyte ratio; TBIL, 
total bilirubin; TG, triglyceride; TP, total protein; TyG, triglyceride-
glucose index; UA, uric acid; WBC, white blood cell.

Table 1  Continued
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methods to identify the optimal features. As a result, 16 
features were used to reconstruct the XGBoost model 
from each of manual curation, PCA and mRMR (online 
supplemental table S1). The PCA and mRMR feature 
selection methods identified seven shared features, with 
three of the top five selected features overlapping: ALB, 
RDW-CV and Scr. The model constructed using 16 features 
selected by mRMR and PCA showed a slight improvement 
on the validation set compared with the model built with 
all 48 features. Specifically, the PCA model achieved an 
AUC of 0.957 and a PR-AUC of 0.741, while the mRMR 
model had an AUC of 0.957 and a PR-AUC of 0.720. In 
contrast, the model based on manual feature selection 
exhibited a decline in performance, with an AUC of 
0.919 and a PR-AUC of 0.540 (figure 3A,B). Similarly, the 
models constructed using mRMR and PCA demonstrated 
improvements in sensitivity and balanced accuracy on 
the validation set, with maximum increases of 29.2% and 
3.7%, respectively, under the condition that the threshold 
of the full features model was set to 0.1. In comparison, 
the model based on manual curation showed suboptimal 
performance across all evaluation metrics (figure  3C). 

We further evaluated the models using an independent 
test set (D2). In this test set, the manual curation model 
achieved an AUC of 0.830, the PCA model had an AUC 
of 0.837 and the mRMR model outperformed both with 
an AUC of 0.872 (figure 3D). The PR-AUC values were 
0.524, 0.540 and 0.594 for the manual curation, PCA and 
mRMR models, respectively, with mRMR again demon-
strating the best performance (figure  3E). Regarding 
sensitivity, specificity and balanced accuracy, the mRMR 
model exhibited the highest performance in the test 
set evaluation (figure 3F). Notably, the lowest sensitivity 
observed for the mRMR model on D2 was 75.5%, while 
all specificity scores remained above 78.0%. Overall, the 
model demonstrated strong performance on the inde-
pendent test set, indicating that the selected core features 
are sufficient for detecting noise-induced hearing loss 
among noise-exposed workers.

Feature importance ranking
To investigate which features contribute the most to the 
risk of ONIHL, we first used mRMR to select 16 important 
features and then built an XGBoost model based on 

Table 2  Performance comparison of the five machine learning methods

AUC PR-AUC Recall Precision Balanced accuracy F1 score

Logistic regression 0.923 0.683 0.938 0.200 0.896 0.330

Random forest 0.921 0.690 0.781 0.446 0.872 0.568

Support vector machine 0.797 0.369 0.750 0.140 0.786 0.235

k-Nearest neighbours 0.829 0.521 0.688 0.333 0.817 0.449

Extreme gradient boosting 0.942 0.791 0.875 0.346 0.905 0.496

The values of AUC, PR-AUC, recall, precision, balanced accuracy, and F1 score range from 0 to 1, with higher values indicating better 
performance.
AUC, area under the receiver operating characteristic curve; PR-AUC, area under the precision–recall curve.

Figure 2  Performance of the prediction model on the validation set of data set D1 and the test set of data set D2. (A) receiver 
operating characteristic (ROC) curves; (B) precision–recall curves. AUC, area under the ROC curve; PR-AUC, area under the 
precision–recall curve.
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Figure 3  Feature selection for the final model using principal component analysis (PCA), manual curation and maximum 
relevance minimum redundancy (mRMR). (A) Receiver operating characteristic (ROC) curves for models constructed with PCA-
selected, manual curation-selected and mRMR-selected features on the validation set of data set D1. (B) Precision–recall curves 
of the above models. (C) Comparison of sensitivity, specificity and balanced accuracy on the validation set of data set between 
the model constructed before and after feature selection. (D) ROC curve of models using selected features on the test set of 
data set D2. (E) Precision–recall curve of the above models. (F) Comparison of other metrics on the independent test set D2. 
AUC, area under the ROC curve; PR-AUC, area under the precision–recall curve.
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these features. Subsequently, we ranked these features 
according to their weights in the XGBoost model, as 
shown in figure 4. The feature importance of the predic-
tors based on PCA and manual curation is shown in 
online supplemental figures S6 and S7. The results indi-
cated that the top five features, in order of importance, 
were ALB, PDW, RDW-CV, Scr and LYMPHP. Further 
comparisons between the ONIHL and normal samples 
revealed significant differences in ALB, TP, Age, RDW-CV 
and PDW. These findings are highly consistent with the 
top-ranked results in the XGBoost model, indicating a 
strong correlation between these indicators (ALB, PDW, 
RDW-CV, Scr and LYMPHP) and ONIHL.

Decision curve analysis
DCA (figure  5) revealed distinct net benefit patterns 
across threshold probabilities for the three models. The 
‌mRMR model‌ demonstrated superior performance, 
achieving the highest net benefit over a broad threshold 
range (‌0.0–0.6), with particularly pronounced advantages 
at ‌lower thresholds (0.0–0.2)‌. In contrast, the ‌PCA model‌ 
exhibited competitive efficacy within the ‌moderate 
threshold interval (0.2–0.4)‌. Notably, both the ‌manual 
curation model‌ and the ‌‘All/None’ strategy‌ underper-
formed: manual curation yielded consistently lower net 
benefits across all thresholds, and ‘All/None’ resulted 

Figure 4  Feature importance ranking for the model built using features selected by maximum relevance minimum redundancy.

Figure 5  Decision curve analysis curves for models built using three different feature selection methods. mRMR, maximum 
relevance minimum redundancy; PCA, principal component analysis.
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in ‌negative net benefits‌ at thresholds below 0.3, indi-
cating clinical impracticality. These findings support a 
‌threshold-adaptive selection strategy‌: prioritising mRMR 
for thresholds≤0.4 (maximising robustness) and PCA for 
0.2–0.4 thresholds (balancing accuracy and efficiency). 
This approach optimises clinical utility by aligning model 
strengths with context-specific decision risks.

DISCUSSION
ONIHL represents a significant global public health 
concern.2 36 Despite its complexity, ONIHL is a prevent-
able condition.37 38 The Occupational Safety and Health 
Administration requires the implementation of hearing 
conservation programmes for workers exposed to noise 
levels of 85 decibels or higher, with the objective of safe-
guarding auditory health in noisy occupational envi-
ronments.39 Consequently, the development of a risk 
screening tool for ONIHL is crucial as a primary strategy 
for screening and prevention among workers exposed to 
occupational noise. In this study, we employed five ML 
algorithms using haematological test results to construct 
an ONIHL risk screening model. The models demon-
strated AUC values exceeding 0.85, with accuracy and 
sensitivity surpassing 0.75 in both validation and indepen-
dent test data sets. These results suggest that ML models 
are capable of accurately identifying patients with ONIHL 
within the population of noise-exposed workers.

In an evaluation of model performance on the validation 
set, the XGBoost model exhibited superior efficacy compared 
with all other algorithms assessed, achieving an AUC of 0.942 
and a PR-AUC of 0.791. The specificity and balanced accu-
racy metrics for the XGBoost model all exceeded 0.8 on the 
validation set. Furthermore, the XGBoost model maintained 
consistent performance on the test set, with an AUC of 0.900 
and a PR-AUC of 0.648. XGBoost is recognised as an ML 
technique that efficiently and flexibly manages missing data 
and integrates weak predictive models into a robust predic-
tive framework.40 As an open-source package, XGBoost 
has gained significant recognition in various ML and data 
mining competitions. For example, in 2015, 17 out of the 29 
winning solutions featured on Kaggle’s blog used XGBoost, 
and all of the top 10 winning teams in the 2015 KDD Cup also 
incorporated XGBoost into their solutions.41 In neurology, 
XGBoost achieved AUC values of 0.950 (mortality) and 
0.958 (functional outcomes) in patients with aneurysmal 
subarachnoid haemorrhage, outperforming LR.42 XGBoost 
has been applied to predict 5-year survival in elderly patients 
with intrahepatic cholangiocarcinoma (AUC=0.713, SEER 
database) and type 2 diabetes risk (accuracy=89.09%, 
AUC=0.9182 in Beijing residents).43 44 These advancements 
highlight XGBoost’s utility in high-dimensional clinical data 
sets with interpretable feature insights. Furthermore, our 
findings indicate that the predictive efficacy of the XGBoost 
model surpasses that of LR, RF, SVM and KNN. This aligns 
with previous research demonstrating that traditional LR 
frequently exhibits comparatively lower AUC values in ROC 
curve analyses, alongside higher prediction errors and 

inferior performance relative to more contemporary meth-
odologies.45 46

Screening for ONIHL is important, and various methods 
have been explored for this purpose. Otoacoustic emissions 
(OAE) testing, particularly distortion product OAE, is a 
sensitive tool for detecting early cochlear damage before 
significant hearing threshold shifts appear in PTA.47 It can 
identify subtle outer hair cell dysfunction in noise-exposed 
individuals, making it valuable for early intervention and 
monitoring.48 Auditory brainstem response (ABR) testing, 
another physiological method, assesses neural integrity 
and can detect hidden hearing loss even when audiometric 
thresholds remain normal.49 Despite their advantages, 
the large-scale application of OAE and ABR in occupa-
tional screening is limited by high costs, equipment avail-
ability and the need for trained operators. In contrast, our 
model predicts ONIHL risk solely from routine blood and 
biochemical indicators, eliminating the need for special-
ised audiometric assessments or noise exposure data. By 
analysing markers linked to inflammation, oxidative stress 
and immune response, it provides a cost-effective, scalable 
alternative for early screening. Integrating this approach 
with existing methods like OAE or ABR could further 
enhance ONIHL risk assessment, enabling earlier interven-
tions before irreversible damage occurs.

Consequently, the early identification and intervention of 
risk factors identified in our model could have substantial 
implications for the prevention of ONIHL among workers 
exposed to noise. The risk factors contributing to the devel-
opment of ONIHL are varied. We have developed a risk 
assessment model for ONIHL using clinical data and routine 
physical examination indicators, employing an ML algo-
rithm. This approach contrasts with most existing methods 
for predicting ONIHL risk, which predominantly depend 
on variables such as age, sex, medical history (including 
conditions like hypertension and diabetes), history of noise 
exposure and behavioural factors such as smoking and phys-
ical activity.16 50 51 For instance, prior research has developed 
risk models for workers exposed to noise, yielding favour-
able predictive outcomes. These models primarily incor-
porate risk factors such as industry type, duration of noise 
exposure and median peak intensity, which contrast with 
the physical examination indicators used in our study.20 
Wang et al10 formulated an ML-based risk assessment model 
for high-frequency hearing loss employing routine phys-
ical examination data, attaining an AUC of 0.868. This 
model, however, was principally designed for community 
residents and incorporated risk factors, including 13 blood 
test indicators, demographic characteristics, disease-related 
features, behavioural factors, environmental exposure and 
auditory cognitive factors, which differ from the population 
of noise-exposed workers in our study. Our model offers a 
more comprehensive approach than previous research by 
integrating a wide range of biochemical and routine blood 
indicators to assess the risk of ONIHL from multiple dimen-
sions. Unlike models that rely on hearing assessments and 
direct noise exposure measurements, our model focuses 
on routine blood and biochemical indicators, reducing the 
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need for specialised equipment and resources. This makes it 
a more efficient, cost-effective alternative for early detection 
and prevention of ONIHL, offering personalised risk assess-
ments without the reliance on extensive testing.

Routine blood tests administered at occupational disease 
prevention clinics are typically conducted on an annual 
basis. Based on these tests, the application of these indica-
tors can enhance early screening and provide warnings for 
prevalent occupational diseases. In our study, the developed 
model demonstrates the significance of haematological test 
data in screening for ONIHL. This includes variables such 
as age, sex, inflammatory and immune markers (eg, WBC, 
LYMPHP, MOC, BAP, EOC and GRANC), as well as oxida-
tive stress and metabolic markers (eg, ALB, Scr, RDW-CV 
and RDW-SD). Noise exposure influences haematolog-
ical parameters through complex immunoinflammatory 
pathways, which may both reflect and exacerbate cochlear 
damage. Studies have shown that ONIHL is closely associ-
ated with systemic immune and inflammatory responses, 
with WBC serving as a key inflammatory marker linked to 
ONIHL. A study analysing health examination data from 
3508 noise-exposed workers found that WBC levels were 
significantly higher in the NIHL group compared with those 
with normal hearing.52 This suggests that noise exposure 
may trigger chronic inflammatory responses in the body. At 
the cellular level, noise activates resident macrophages in 
the cochlea, triggering the release of pro-inflammatory cyto-
kines such as interleukin-1β and tumour necrosis factor-α.53 
54 This leads to increased permeability of the blood–laby-
rinth barrier, facilitating the infiltration of systemic immune 
cells—including MOC, GRANC and adaptive immune 
lymphocytes—into the inner ear.55 This immune influx 
amplifies local inflammation, creating a microenvironment 
that promotes sensory cell apoptosis and spiral ganglion 
degeneration. Notably, our study identified significant 
elevations in WBC, MOC and GRANC, aligning with these 
immunological responses. Chronic noise stress further 
disrupts systemic immune homeostasis, as demonstrated 
in animal models.55 Prolonged exposure induces immu-
nosuppressive changes, including a decrease in LYMPHP 
and a reduced CD4+/CD8+ T cell ratio, which may impair 
anti-inflammatory responses and regenerative capacity. This 
systemic immune imbalance is consistent with our findings 
of decreased LYMPHP in noise-exposed individuals. Addi-
tionally, our findings indicate that increased EOC levels may 
also serve as a risk factor for ONIHL. EOC may play a patho-
genic role in noise-induced inner ear vasculitis, a process 
increasingly recognised as a critical mediator of sensori-
neural damage. Elevated EOC levels have been associated 
with SSNHL, suggesting their potential as prognostic indica-
tors in inflammatory hearing disorders.56

Oxidative stress is a key mechanism underlying ONIHL.57 
RDW-CV/SD is a crucial marker of RBC oxidative damage, 
with increased RDW levels indicating decreased membrane 
stability.58 59 This instability shares a common patholog-
ical basis with noise-induced hair cell apoptosis. A positive 
correlation between RDW parameters (CV and SD) and 
the average hearing threshold further highlights the role of 

oxidative stress in ONIHL.60 These findings underscore the 
need to identify inflammatory conditions when screening 
workers at risk for chronic inflammation and ONIHL. ALB, 
a critical antioxidant protein, plays a protective role in main-
taining blood–labyrinth barrier integrity.61 Low ALB levels 
may weaken antioxidant defences and increase suscepti-
bility to hearing loss. Notably, ALB levels in patients with 
SSNHL were significantly lower than those in the control 
group (p<0.001).62 Furthermore, studies have shown a posi-
tive correlation between reduced eGFR and hearing loss, 
suggesting that impaired kidney function may contribute 
to cochlear microcirculatory dysfunction via inflammation-
mediated mechanisms.63 Since Scr is a key component in 
calculating eGFR, our observed reduction in Scr could 
reflect a broader metabolic or physiological shift rather than 
direct renal impairment alone. PDW, an indicator of platelet 
activation, may also play a role in ONIHL by promoting 
microvascular inflammation. Research has demonstrated 
a significant association between PDW and the severity of 
SSNHL.64 This finding is consistent with our study, as we also 
observed an association between PDW and ONIHL. Given 
that PDW is an indicator of platelet activation, its poten-
tial role in promoting microvascular inflammation may 
contribute to the pathophysiological mechanisms under-
lying ONIHL. Our results further support the notion that 
vascular and inflammatory responses play a crucial role in 
noise-induced cochlear damage. Age and male gender have 
been identified as risk factors for hearing loss.65 Leveraging 
artificial intelligence and big data analysis, haematological 
parameters can serve as predictive markers for ONIHL. 
An ML model based on XGBoost integrates inflammatory, 
oxidative stress and metabolic-related indicators to enhance 
risk assessment. Feature importance analysis highlights 
ALB, PDW, RDW-CV, Scr and LYMPHP as key predictors of 
ONIHL, reinforcing their potential role in early detection 
and risk stratification.

Although haematological indicators provide a low-cost 
and accessible approach for ONIHL prediction, their spec-
ificity remains limited, necessitating integration with objec-
tive auditory assessments such as ABR and OAE to enhance 
predictive accuracy. Additionally, the generalisability of our 
model requires further validation as it is currently based on 
a Shenzhen population and may not fully represent other 
demographic and occupational groups. The model’s preci-
sion and F1 score are also relatively low, primarily due to 
the severe class imbalance, with ONIHL cases being far 
less frequent than noise-exposed individuals with normal 
hearing. Despite these limitations, future studies can 
address these challenges by conducting large-scale, multi-
centre validations, employing advanced data-balancing 
techniques, and incorporating multi-omics data—such as 
metabolomics and transcriptomics—to unravel the molec-
ular mechanisms linking inflammation, oxidative stress 
and immune dysregulation in ONIHL. Such advancements 
will not only optimise predictive models but also facilitate 
their clinical application in occupational health screening 
and early intervention, ultimately improving hearing loss 
prevention strategies.
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CONCLUSION
In this study, we developed five ML models to construct a 
risk screening model for ONIHL, with the XGBoost-based 
model demonstrating superior performance. By integrating 
biochemical and haematological indicators with ML tech-
niques, this model effectively identifies individuals at high 
risk for ONIHL. This approach not only introduces a novel 
tool for the early screening of hearing loss but also lays the 
groundwork for the development of personalised interven-
tion strategies. In the future, the integration of additional 
biological data is anticipated to further augment the model’s 
predictive capabilities. Furthermore, this model holds poten-
tial for extension to forecast risks associated with other occu-
pational or chronic diseases, thereby offering substantial 
support for the maintenance and enhancement of public 
health.
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