

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Vitamin D Supplementation for Managing COVID-19 in Patients with Vitamin D Deficiency: Meta-analysis and Trial Sequential Analysis of Randomized Controlled Trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-091903
Article Type:	Original research
Date Submitted by the Author:	01-Aug-2024
Complete List of Authors:	Zhu, Lemei; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations; Changsha Medical University Zhang, Yuan; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations Li, Xi; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations; Changsha Medical University Zou, Xuemin; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations; Changsha Medical University Bing, Pingping; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations Qi, Mingxu; University of South China, Department of Cardiovascular Medicine He, Binsheng; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations
Keywords:	COVID-19, Meta-Analysis, NUTRITION & DIETETICS, Health
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

1 2

1	Vitamin D Supplementation for Managing COVID-19 in Patients with Vitamin
2	D Deficiency : Meta-analysis and Trial Sequential Analysis of Randomized
3	Controlled Trials
4	Lemei Zhu ^{1,2} , Yuan Zhang ¹ , Xi Li ^{1,2} , Xuemin Zou ^{1,2} , Pingping Bing ^{1*} , Mingxu Qi ^{3*} , Binsheng He ^{1*}
5	1. Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations,
6	Changsha, 410219, China.
7	2. School of Public Health, Changsha Medical University, Changsha, 410219, China.
8	3. Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China,
9	Hengyang,421001, China
10	
11	Corresponding Author:
12	Pingping Bing, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical
13	Preparations, Changsha, 410219, China. (Email: <u>bpping@163.com</u>)
14	Mingxu Qi, Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South
15	China, Hengyang,421001, China. (Email: <u>qimingxuqi@163.com</u>)
16	Binsheng He, unan Key Laboratory of the Research and Development of Novel Pharmaceutical
17	Preparations, Changsha, 410219, China. (Email: <u>hbscsmu@163.com</u>)

18

1	
2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 16 7 16 7 16 17 17 17 17 17 17 17 17 17 17 17 17 17	
22	
23	
24 25	
25	
27	
28	
29	
30	
31	
32 33	
34	
35	
36	
57	
38	
39 40	
40 41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

19 Abstract

Background Vitamin D deficiency was prevalent among population. Former studies 20 21 showed that vitamin D supplementation might be useful for treating COVID-19 infection. Therefore, we performed a meta-analysis to explore vitamin D 22 23 supplementation efficacy in treating COVID-19 patients with vitamin D deficiency. 24 Method PubMed, Cochrane Library, Embase and Web of Science was lastly searched on June 1, 2024 to identifying randomized controlled trials exploring vitamin D 25 supplementation for patients with COVID-19 and vitamin D deficiency. The primary 26 27 outcomes included mortality during follow-up, 28-day mortality, need for mechanical ventilation and ICU. 28

29 **Result** A total of nine studies, comprising 814 participants, were included in the 30 analysis. The pooled results indicated that vitamin D supplementation was associated with a lower risk of mortality (RR 0.76; 95% CI 0.59 to 0.96). However, this apparent 31 benefit was not robust when examined through subgroup analysis, the leave-one-out 32 33 method, and trial sequential analysis. Consequently, the role of vitamin D supplementation in treating COVID-19 patients with vitamin D deficiency remains 34 35 inconclusive. Regarding other outcomes, there was no statistically significant difference between vitamin D supplementation and no supplementation in terms of 36 28-day mortality, the need for mechanical ventilation and ICU admission, or the 37 length of stay in the ICU and hospital. 38

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Conclusion Vitamin D supplementation couldn't effectively improve clinical outcomes of COVID-19 patients with vitamin D deficiency. As a result, our results didn't strongly support its use as a specific therapeutic measure against COVID-19. Keywords: Vitamin D supplementation; Vitamin D deficiency; COVID-19; Metaanalysis; Trial sequential analysis or opportunity of the text of

Strengths and limitations of this study

1. This study is the first meta-analysis specifically targeting patients with vitamin D

deficiency and COVID-19.

- 2. This meta-analysis conducted subgroup analyses based on the severity of COVID-
- 19, supplementation frequency, definition of vitamin D deficiency, development level
- of the country, risk of bias, and sample size.
- 3. This study used trial sequential analysis to examine the robustness of the meta-

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

- toerterien ont analysis results.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

55 Introduction

56 COVID-19, caused by the SARS-CoV-2 virus, is a highly transmissible and 57 potentially severe respiratory illness that has resulted in a global pandemic, affecting 58 millions of people worldwide with varying morbidity and mortality rates¹.

Vitamin D, a steroid hormone derived from cholesterol, plays a significant role in regulating the expression of various genes, including those in immune cells². Vitamin D deficiency is widespread across the globe; for example, 40% of the European population is reported to lack sufficient vitamin D³. Maintaining appropriate levels of vitamin D is essential for optimal respiratory immune function² ⁴⁻⁶. Despite this, the precise impact of vitamin D supplementation on preventing and treating COVID-19 remains a topic of debate. According to a systematic review, vitamin D supplementation can significantly reduce the severity of COVID-19 infection, suggesting its use as a supplementary treatment for COVID-197. In contrast, a 2021 meta-analysis that included eight randomized controlled trials (RCTs) found that vitamin D supplementation did not enhance clinical outcomes in patients infected with SARS-CoV-28.

Currently, no meta-analysis specifically focuses on COVID-19 patients with vitamin
D deficiency. To investigate the role of vitamin D supplementation in these patients,
we conducted a meta-analysis of randomized controlled trials to determine whether
vitamin D supplementation improves clinical outcomes in COVID-19 patients with
vitamin D deficiency.

77 Methods

This meta-analysis of RCTs was performed following the guidelines outlined in the
Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA)
checklist⁹. The study protocol was registered on PROSPERO (CRD42024573791).

Search strategy and selection criteria

A comprehensive literature search was conducted on June 1, 2024 across several databases including PubMed, Cochrane Library, Embase, and Web of science with Mesh and broad search terms. We also manually searched the reference lists of relevant review articles. After completing the initial research, we conducted the same search again to include the latest published studies. The detailed search strategy was in the appendix.

The retrieved literature was imported into EndNote X9. After removing duplicate references, it was assessed for eligibility by two reviewers. According to the PICO principle, inclusion criteria were: COVID-19 patients with vitamin D deficiency, intervention group using vitamin D supplementation, and the control group not using vitamin D supplementation, with reported relevant clinical outcomes. Exclusion criteria were: non-randomized controlled trials, and studies for which full text could not be retrieved. The definition of vitamin D deficiency was according to previous studies¹⁰⁻¹³.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

96 Data extraction

97 A comprehensive data extraction form was developed based on the guidelines98 outlined in the Cochrane Handbook for Systematic Reviews of Interventions. The

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

form was piloted on a subset of the included studies before extracting the following data: author details, participant characteristics, intervention details (type, duration, frequency, and other details), primary and secondary outcomes, follow-up times. The consistency between data extractors was measured using the Kappa value. **Quality assessment** Potential sources of bias in RCTs were assessed using Risk of Bias 2 (Rob2), a revised tool for assessing the risk of bias in randomized trials. Rob2 encompasses five key domains: 1. Randomization process; 2. Deviations from intended interventions; 3. Missing outcome data;4. Measurement of the outcome;5. Selection of the reported result. Within each domain, bias was evaluated and categorized as either low risk, some concerns, or high risk, depending on the circumstances and relevant evidence. Ultimately, the overall bias of each study was classified as either low risk, some concerns, or high risk, based on the comprehensive assessment of bias across the five domains. When there was a discrepancy in the assessment results for a certain domain, the outcome was resolved through discussion. The quality of evidence was assessed in line with the GRADE tools. Outcomes

- The primary outcomes were mortality during follow up and 28-day mortality. The
 secondary outcomes included need for mechanical ventilation and ICU admission,
 length of stay in hospital and ICU.
- 119 Statistically analysis
- 120 Dichotomous variables were presented as event number and total number. The

Page 9 of 45

BMJ Open

Mantel-Haenszel model was used for analyzing dichotomous variables. Continuous variables were presented as mean and standard deviation. The Inverse-variance method was used for analyzing continuous variables. The DerSimonian-Laird was used to assess the statistical heterogeneity across studies. $I^2 > 50\%$ was deemed as the existence of statistical heterogeneity. Considering the potential clinical heterogeneity, random-effects model was used for analysis. Subgroup analysis according to different characteristic (severity of COVID-19, vitamin D supplement, definition of vitamin D deficiency and so on) was conducted on mortality during follow-up. Sensitivity analysis was conducted through leave-one-out method. Trial sequential analysis was also performed to explore the robust of result. In trial sequential analysis, the statistical power was set to 80%. The funnel plot and Egger's test were used to assess the publication bias. In this study, trial sequential analysis was performed by Trial sequential Analysis software (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet). The meta-analysis was performed by Stata17. The level of statistical significance was set as P<.05. All statistical tests performed were 2 sided.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

-

Results

138 Literature search

A total of 178 studies were initially found across all databases, with 64 identified as duplicates. After screening titles and abstracts, 78 studies were excluded. The remaining 36 studies were then assessed for full text. Ultimately, 9 studies¹⁰⁻¹⁸ met the inclusion criteria and were included in the analysis (Figure 1).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

143 Baseline study characteristics

A total of 9 studies¹⁰⁻¹⁸, encompassing 814 participants, were included. The vitamin D dosage ranged from 3,000 IU to 60,000 IU. Two studies used a single high dose of vitamin D supplementation, while seven studies employed a continuous dosing regimen. Six studies defined vitamin D deficiency as <20 ng/ml, two studies as <30 ng/ml, and one study as <10 ng/ml. Additionally, two studies focused on severe COVID-19, and one study examined moderate to severe COVID-19 cases.

150 Quality assessment

Three studies had some concerns of bias, primarily due to their open-label design and
lack of blinding. Six studies were assessed to have a low risk of bias. The detailed
distribution of bias is shown in Figure 2.

154 The Kappa value, used to estimate the equivalence of data extraction in this study,155 was 0.86.

156 Mortality

157 Eight studies reported the mortality during follow-up. The pooled result showed that158 vitamin D supplementation had statistically significantly lower risk of mortality than

no vitamin D supplementation (RR 0.76; 95%CI 0.59 to 0.96) (Figure3A).

160 To assess the vitamin D's role in reducing hospitalization mortality, we analyzed 28-

161 day mortality. The pooled result showed that there was no statistically significantly

162 difference between vitamin D supplementation and no vitamin D supplementation

163 (RR 0.79; 0.49 to 1.26) (Figure3B).

164 Need for ICU admission and mechanical ventilation

Page 11 of 45

1

BMJ Open

2	
3	
4	
5	
5 6 7	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
24	
25	
26	
27	
28	
29	
30	
31	
27	
32 33	
34 35	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
56	
57	
58	
59	
60	

165 Three studies reported on the need for mechanical ventilation, and the pooled results showed no statistically significant difference between vitamin D supplementation and 166 167 no vitamin D supplementation (RR 0.90; 95% CI 0.69 to 1.17) (Figure4A). Four studies reported on the need for ICU admission, and the pooled results showed 168 169 no statistically significant difference between vitamin D supplementation and no 170 vitamin D supplementation (RR 0.84; 95% CI 0.45 to 1.56) (Figure4B). Length of stay in ICU and hospital 171 Six studies reported on the length of stay in the ICU, and the pooled results showed 172 173 no statistically significant difference between vitamin D supplementation and no vitamin D supplementation (MD -0.41; 95% CI -1.09 to 0.28) (Figure 5A). 174 Four studies reported on the length of stay in the hospital, and the pooled results 175 176 showed no statistically significant difference between vitamin D supplementation and no vitamin D supplementation (MD -0.07; 95% CI -0.61 to 0.46) (Figure5B). 177 Subgroup analysis 178 Considering the limited number of included studies, we performed a subgroup 179 analysis only on mortality during follow-up. The subgroups were defined based on the 180 181 severity of COVID-19, supplementation frequency, definition of vitamin D deficiency, development level of the country, risk of bias, and sample size. No 182 statistically significant differences were observed in any subgroup, except for the 183 developing country group (RR 0.70; 95% CI 0.50 to 0.98) (Figure6). 184 185 Sensitivity analysis Sensitivity analysis was performed on morality during follow-up by leave-one-out 186

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Page 12 of 45

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

187 method and trail sequential analysis.

188 Sensitivity analysis was performed on mortality during follow-up using the leave-one-

189 out method and trial sequential analysis (eFigure 1).

Using the leave-one-out method, we found that excluding the studies by Burgarin et al., Bychinin et al.¹⁰, Maghbooli et al.¹¹, and Singh et al.¹³ resulted in no statistically significant difference between vitamin D supplementation and no vitamin D supplementation.

We also performed a trial sequential analysis on mortality during follow-up. With
80% power, the pooled result showed no statistically significant difference (RR 0.74;
α-spending adjusted CI 0.46 to 1.19). The required sample size (RSA) was determined
to be 1874 (eFigure2).

198 Publication bias

The funnel plot of the above outcomes was symmetric. To more objectively assess publication bias, we also performed Egger's test, which showed no significant evidence of publication bias (P > 0.05).

202 Grade assessment

203 The quality of evidence for the above outcomes ranged from very low to moderate204 (Table2).

```
206 Discussion
```

207 Our study was the first to explore the efficacy of vitamin D in treating COVID-19

208 patients with vitamin D deficiency. We found that vitamin D supplementation could

Page 13 of 45

BMJ Open

reduce mortality during follow-up. However, this result should be interpreted with caution for the following reasons. Firstly, the leave-one-out method showed that nearly half of the studies could change the conclusion, indicating that the result was not robust. Secondly, in the subgroup analysis, most groups showed no statistically significance difference between vitamin D supplementation and no vitamin D supplementation. Thirdly, trial sequential analysis revealed no statistically significant difference between vitamin D supplementation and no vitamin D supplementation when adjusted confidence intervals were considered. The analysis also indicated that a larger sample size is needed to determine the true effect of vitamin D.

Regarding other outcomes in our study, vitamin D did not appear to reduce the need
for mechanical ventilation and ICU admission or shorten the length of stay in the ICU
and hospital. Overall, the efficacy of vitamin D in treating COVID-19 patients with
vitamin D deficiency remains inconclusive. More studies are needed to explore this
further.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

In 2023, Meng et al.'s meta-analysis¹⁹ explored the efficacy of vitamin D in treating COVID-19. Their results showed that while vitamin D supplementation couldn't reduce mortality, it might be beneficial in reducing the severity of illness caused by SARS-CoV-2, particularly in vitamin D-deficient patients. Additionally, their study indicated that vitamin D supplementation could reduce the need for ICU admission. However, they did not analyze the data based on follow-up time, and new research has since been published. Our study results show that vitamin D supplementation does not reduce the need for ICU admission. Recently, a review also showed that vitamin

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

D deficiency is linked to an increased risk of acquiring SARS-CoV-2 infection and poor COVID-19 prognosis, however, available evidence with regard to improved clinical outcomes with vitamin D supplementation is inconsistent²⁰. Furthermore, whether vitamin D can reduce mortality still requires further exploration. The relationship between vitamin D and COVID-19 has been a subject of extensive research, with mixed findings regarding its efficacy in preventing or treating the disease. Observational studies that initially suggested a link between low vitamin D levels and worse COVID-19 outcomes may have been confounded by other factors such as age, comorbidities, and socioeconomic status²¹⁻²⁵. These factors themselves are risk factors for both vitamin D deficiency and severe COVID-19, complicating the interpretation of results²⁶⁻³¹. A number of clinical trials have produced mixed results, with some showing no significant difference in outcomes between those receiving vitamin D supplementation and those who did not³²⁻³⁶. This inconsistency suggests that vitamin D may not have a substantial impact on COVID-19 outcomes. However, our study has certain limitations. First, the number of studies included is relatively small, with only nine randomized controlled trials and small sample sizes.

246 relatively small, with only nine randomized controlled trials and small sample sizes.
247 Second, although there was no significant statistical heterogeneity, clinical
248 heterogeneity among the studies cannot be ignored. The severity of patients' diseases
249 and the frequency and dosage of vitamin D supplementation varied among the studies.
250 To address this, we conducted a subgroup analysis and found that vitamin D
251 supplementation did not reduce mortality in different subgroups. Third, although our
252 conclusions suggest that vitamin D supplementation may reduce mortality, sensitivity

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

analysis revealed that the conclusions are not reliable. Therefore, more high-quality
research is needed in the future to further explore the role of vitamin D
supplementation in vitamin D deficient COVID-19 patients.

256

257 Conclusion

Our results showed that vitamin D supplementation does not significantly reduce mortality, the need for mechanical ventilation and ICU admission, or the length of stay in ICU and hospital. While vitamin D is essential for overall health and maintaining adequate levels is beneficial, current evidence does not strongly support its use as a specific therapeutic measure against COVID-19.

263

264 Acknowledgement

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

267

268 AUTHOR CONTRIBUTIONS

LMZ, PPB, MXQ and BSH: proposed the design, searched the literature, collected,
analysed and interpret the data, and wrote the report; LMZ, XMZ, YZ, and XL
searched and collected the literature; LMZ, YZ, XMZ, XL and BSH analysed and
interpreted the data.

60

273

274 Funding

> The work was supported by the Hunan Provincial Education Commission Foundation (20A056,22C0669,23A0664); The Hunan Provincial Health Commission Foundation (No.202112041226,D202302088596); the Innovation and Entrepreneurship Education Base of Public Health and Preventive Medicine (Hunan Education Bureau Notice 2019 No.333-93); and the Funding by young backbone teachers of Hunan province training program foundation of Changsha Medical University (Hunan Education Bureau Notice 2021 No.29-26).

Declaration of competing interest

The authors declare that they have no known competing finical interests or personal relationships that could have appeared to influence the work reported in this paper. Program

1 ว	
2 3	
4 5	
6	
/ 8	
9 10	
11	
12 13	
14	
16	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
19 20	
20 21	
22 23	
24	
25 26	
21 22 23 24 25 26 27 28	
29 30	
31	
32 33	
33 34 35 36	
36	
37 38	
39 40	
41	
42 43	
44 45	
46	
47 48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59 60	
20	

287	References
288	1. Lal A, Erondu NA, Heymann DL, et al. Fragmented health systems in COVID-19: rectifying
289	the misalignment between global health security and universal health coverage.
290	<i>Lancet (London, England)</i> 2021;397(10268):61-67. doi: 10.1016/s0140-
291	6736(20)32228-5 [published Online First: 2020/12/05]
292	2. Salehi Z, Askari M, Jafari A, et al. Dietary patterns and micronutrients in respiratory
293	infections including COVID-19: a narrative review. BMC public health
294	2024;24(1):1661. doi: 10.1186/s12889-024-18760-y [published Online First:
295	2024/06/22]
296	3. Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current
297	status worldwide. European journal of clinical nutrition 2020;74(11):1498-513. doi:
298	10.1038/s41430-020-0558-y [published Online First: 2020/01/22]
299	4. Grzesiak M, Herian M, Kamińska K, et al. Insight into vitamin D(3) action within the ovary-
300	Basic and clinical aspects. Advances in protein chemistry and structural biology
301	2024;142:99-130. doi: 10.1016/bs.apcsb.2024.04.003 [published Online First:
302	2024/07/27]
303	5. Li M, Zhao L, Hu C, et al. Improvement of Lung Function by Micronutrient Supplementation
304	in Patients with COPD: A Systematic Review and Meta-Analysis. <i>Nutrients</i> 2024;16(7)
305	doi: 10.3390/nu16071028 [published Online First: 2024/04/13]
306	6. Nguyen M, Aulick S, Kennedy C. Effectiveness of Vitamin D and Alpha-Lipoic Acid in
307	COVID-19 Infection: A Literature Review. Cureus 2024;16(4):e59153. doi:
308	10.7759/cureus.59153 [published Online First: 2024/05/28]

1 2

3		
4 5	309	7. Shah K, Varna VP, Sharma U, et al. Does vitamin D supplementation reduce COVID-19
6 7	310	severity?: a systematic review. QJM : monthly journal of the Association of Physicians
8		
9 10	311	2022;115(10):665-72. doi: 10.1093/qjmed/hcac040 [published Online First:
11 12	312	2022/02/16]
13 14 15	313	8. Kümmel LS, Krumbein H, Fragkou PC, et al. Vitamin D supplementation for the treatment
16 17 18	314	of COVID-19: A systematic review and meta-analysis of randomized controlled trials.
19 20	315	<i>Frontiers in immunology</i> 2022;13:1023903. doi: 10.3389/fimmu.2022.1023903
21 22 23	316	[published Online First: 2022/11/18]
24 25 26	317	9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated
20		
28 29	318	guideline for reporting systematic reviews. International journal of surgery (London,
30 31	319	England) 2021;88:105906. doi: 10.1016/j.ijsu.2021.105906 [published Online First:
32 33 34	320	2021/04/02]
35 36	321	10. Bychinin MV, Klypa TV, Mandel IA, et al. Effect of vitamin D3 supplementation on cellular
37 38 39	322	immunity and inflammatory markers in COVID-19 patients admitted to the ICU.
40 41	323	Scientific reports 2022;12(1):18604. doi: 10.1038/s41598-022-22045-y [published
42 43 44	324	Online First: 2022/11/05]
45 46	325	11. Maghbooli Z, Sahraian MA, Jamalimoghadamsiahkali S, et al. Treatment With 25-
47 48 49	326	Hydroxyvitamin D(3) (Calcifediol) Is Associated With a Reduction in the Blood
50 51 52	327	Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients
53 54	328	With COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-
55 56 57	329	Blinded Clinical Trial. Endocrine practice : official journal of the American College of
58 59 60	330	Endocrinology and the American Association of Clinical Endocrinologists
00		17

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2		
3 4 ; 5	331	2021;27(12):1242-51. doi: 10.1016/j.eprac.2021.09.016 [published Online First:
6 7 8	332	2021/10/16]
9 10	333 12.	Murai IH, Fernandes AL, Sales LP, et al. Effect of a Single High Dose of Vitamin D3 on
11 12 3 13	334	Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A
14 15 16	335	Randomized Clinical Trial. <i>Jama</i> 2021;325(11):1053-60. doi:
17 ; 18	336	10.1001/jama.2020.26848 [published Online First: 2021/02/18]
19 20 21	337 13.	Singh A, Rastogi A, Puri GD, et al. Therapeutic high-dose vitamin D for vitamin D-deficient
22 23 24	338	severe COVID-19 disease: randomized, double-blind, placebo-controlled study
25 3 26	339	(SHADE-S). Journal of public health (Oxford, England) 2024;46(2):256-66. doi:
27 . 28 . 29	340	10.1093/pubmed/fdae007 [published Online First: 2024/01/31]
30 ; 31 32	341 14.	Cervero M, López-Wolf D, Casado G, et al. Beneficial Effect of Short-Term
33 34	342	Supplementation of High Dose of Vitamin D(3) in Hospitalized Patients With COVID-
35 36 37	343	19: A Multicenter, Single-Blinded, Prospective Randomized Pilot Clinical Trial.
38 39 40	344	<i>Frontiers in pharmacology</i> 2022;13:863587. doi: 10.3389/fphar.2022.863587
41 42	345	[published Online First: 2022/07/22]
44 45		De Niet S, Trémège M, Coffiner M, et al. Positive Effects of Vitamin D Supplementation in
46 47	347	Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-
49 50	348	Controlled Trial. <i>Nutrients</i> 2022;14(15) doi: 10.3390/nu14153048 [published Online
52	349	First: 2022/07/28]
54 55		Dilokpattanamongkol P, Yan C, Jayanama K, et al. Impact of vitamin D supplementation
57 58	351	on the clinical outcomes of COVID-19 pneumonia patients: a single-center
59 60	352	randomized controlled trial. <i>BMC complementary medicine and therapies</i> 18

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

3 4 5	353	2024;24(1):97. doi: 10.1186/s12906-024-04393-6 [published Online First: 2024/02/22]
6 7 8	354	17. Domazet Bugarin J, Dosenovic S, Ilic D, et al. Vitamin D Supplementation and Clinical
8 9 10	355	Outcomes in Severe COVID-19 Patients-Randomized Controlled Trial. Nutrients
11 12 13	356	2023;15(5) doi: 10.3390/nu15051234 [published Online First: 2023/03/12]
14 15	357	18. Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation
16 17 18	358	for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study).
19 20 21	359	Postgraduate medical journal 2022;98(1156):87-90. doi: 10.1136/postgradmedj-2020-
22 23	360	139065 [published Online First: 2020/11/14]
24 25 26	361	19. Meng J, Li X, Liu W, et al. The role of vitamin D in the prevention and treatment of SARS-
27 28	362	CoV-2 infection: A meta-analysis of randomized controlled trials. Clinical nutrition
29 30 31	363	<i>(Edinburgh, Scotland)</i> 2023;42(11):2198-206. doi: 10.1016/j.clnu.2023.09.008
32 33 34	364	[published Online First: 2023/10/07]
35 36	365	20. Shetty AJ, Banerjee M, Prasad TN, et al. Do vitamin D levels or supplementation play A
37 38 39	366	role in COVID-19 outcomes?-a narrative review. Annals of palliative medicine
40 41	367	2024;13(1):162-77. doi: 10.21037/apm-23-113 [published Online First: 2023/12/21]
42 43 44	368	21. Bogomaz V, Shatylo S. Vitamin D as a predictor of negative outcomes in hospitalized
45 46 47	369	COVID-19 patients: An observational study. Canadian journal of respiratory therapy :
48 49	370	CJRT = Revue canadienne de la therapie respiratoire : RCTR 2023;59:183-89. doi:
50 51 52	371	10.29390/001c.87408 [published Online First: 2023/10/02]
53 54	372	22. di Filippo L, Terenzi U, Di lenno G, et al. Novel protective circulating miRNA are
55 56 57	373	associated with preserved vitamin D levels in patients with mild COVID-19
58 59 60	374	presentation at hospital admission not progressing into severe disease. Endocrine
		19

BMJ Open

1 2		
3	275	2024 dai: 40 4007/242020 024 02000 6 Faultiahad Oplian First: 2024/06/401
4 5	375	2024 doi: 10.1007/s12020-024-03900-6 [published Online First: 2024/06/10]
6 7 8	376	23. Mingiano C, Picchioni T, Cavati G, et al. Vitamin D Deficiency in COVID-19 Patients and
8 9 10	377	Role of Calcifediol Supplementation. Nutrients 2023;15(15) doi: 10.3390/nu15153392
11 12 13	378	[published Online First: 2023/08/12]
14 15	379	24. Wang Q, Tang X, Lv X, et al. Age at menarche and risk of ovarian hyperstimulation
16 17 18	380	syndrome in women undergoing IVF/ICSI cycles: a retrospective cohort study. BMJ
19 20	381	open 2024;14(2):e076867. doi: 10.1136/bmjopen-2023-076867 [published Online
21 22 23	382	First: 2024/02/17]
24 25 26	383	25. Yang YY, Shi LX, Li JH, et al. Piperazine ferulate ameliorates the development of diabetic
27 28	384	nephropathy by regulating endothelial nitric oxide synthase. Molecular medicine
29 30 31	385	reports 2019;19(3):2245-53. doi: 10.3892/mmr.2019.9875 [published Online First:
32 33	386	2019/01/22]
34 35 36	387	26. Tang L, Xiang Q, Xiang J, et al. A variant in the 3'-untranslated region of the MC2R gene
37 38 39	388	decreases the risk of schizophrenia in a female Han Chinese population. The Journal
40 41	389	of international medical research 2021;49(7):3000605211029504. doi:
42 43 44	390	10.1177/03000605211029504 [published Online First: 2021/07/17]
45 46 47	391	27. Chen Y, Chen L, Zhou Q. Genetic association between eNOS gene polymorphisms and
47 48 49	392	risk of carotid atherosclerosis : A meta-analysis. Herz 2021;46(Suppl 2):253-64. doi:
50 51 52	393	10.1007/s00059-020-04995-z [published Online First: 2020/10/24]
53 54	394	28. Yu T, Xu B, Bao M, et al. Identification of potential biomarkers and pathways associated
55 56 57	395	with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics
58 59 60	396	study. Frontiers in endocrinology 2022;13:981100. doi: 10.3389/fendo.2022.981100
00		20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

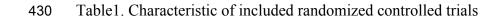
BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
14
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
50 51
51 52
54
55
56
57
58
59
60

405

1 2

First: 2023/05/24]


- 398 29. Aburto S, Cisterna M, Acuña J, et al. Obesity as a Risk Factor for Severe COVID-19 in
 399 Hospitalized Patients: Epidemiology and Potential Mechanisms. *Healthcare (Basel,*400 *Switzerland)* 2022;10(10) doi: 10.3390/healthcare10101838 [published Online First:
 401 2022/10/28]
- 30. Tadayon Najafabadi B, Rayner DG, Shokraee K, et al. Obesity as an independent risk
 factor for COVID-19 severity and mortality. *The Cochrane database of systematic reviews* 2023;5(5):Cd015201. doi: 10.1002/14651858.Cd015201 [published Online
- 406 31. Ubah CS, Kearney GD, Pokhrel LR. Asthma May Not be a Potential Risk Factor for
 407 Severe COVID-19 Illness: A Scoping Review. *Environmental health insights*408 2024;18:11786302231221925. doi: 10.1177/11786302231221925 [published Online
 409 First: 2024/01/08]
- 410 32. Klimek L, Hagemann J, Huppertz T, et al. COVID-19 and chronic rhinosinusitis:
 411 management and comorbidity what have we learned? *Expert review of clinical*412 *immunology* 2023;19(11):1399-406. doi: 10.1080/1744666x.2023.2244673 [published
 413 Online First: 2023/08/08]
 - 33. Mac C, Cheung K, Alzoubi T, et al. The Impact of Comorbidities among Ethnic Minorities
 on COVID-19 Severity and Mortality in Canada and the USA: A Scoping Review. *Infectious disease reports* 2024;16(3):407-22. doi: 10.3390/idr16030030 [published
- 6 417 Online First: 2024/05/28]
 - 418 34. Song Y, Yao L, Li S, et al. Psoriasis comorbidity management in the COVID era: a

BMJ Open

2	
3 4 419 5	pressing challenge. <i>Frontiers in microbiology</i> 2023;14:1294056. doi:
6 7 420	10.3389/fmicb.2023.1294056 [published Online First: 2023/11/29]
8 9 421 10	35. Chen Y, Zhong T, Song X, et al. Maternal anaemia during early pregnancy and the risk of
11 12 422 13	neonatal outcomes: a prospective cohort study in Central China. BMJ paediatrics
14 423 15 423	open 2024;8(1) doi: 10.1136/bmjpo-2023-001931 [published Online First: 2024/01/18]
16 17 424 18	36. Xia Y, Huang CX, Li GY, et al. Meta-analysis of the association between MBOAT7
19 20 425	rs641738, TM6SF2 rs58542926 and nonalcoholic fatty liver disease susceptibility.
21 22 426 23	Clinics and research in hepatology and gastroenterology 2019;43(5):533-41. doi:
24 25 427 26	10.1016/j.clinre.2019.01.008 [published Online First: 2019/03/03]
27 28 428	
29 30 429 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	
	22

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

- Table2. Quality of evidence
- Figure1. Flowchart of literature search
- Figure2. Risk of bias of included studies by Risk of Bias Tool 2
- Figure3. Vitamin D supplementation versus no vitamin D supplementation on
- mortality (A) during follow-up and 28-day mortality (B).
 - Figure4. Vitamin D supplementation versus no vitamin D supplementation on need
- for mechanical ventilation (A) and ICU admission (B).
- Figure 5. Vitamin D supplementation versus no vitamin D supplementation on length
- of stay in ICU (A) and hospital (B).
 - Figure6.Subgroup analysis of mortality during follow-up.

			BMJ Open	by соруг	njopen-2	
Table1. Characteristic of ind	cluded randomized	controlled trials		by copyright, including	bmjopen-2024-091903 or	
Study	Country	Severity of COVID-19	Intervention group	Control group of	T SVitamin	of Follow-up D
Bugarin2023	Croatia	Severe COVID- 19	10,000 IU of cholecalciferol daily during ICU stay	Standard care at the to to text	anement Sur	3 months
Bychinin2022	Russia	Severe COVID- 19	60,000 IU of cholecalciferol once per seven days followed by daily maintenance doses of 5000 IU. The high dose repeated on day 8, 16, 24, 32. The supplementation was administered until the patients was discharge from ICU.	Standard care standard care Standard care Standard care	perieur (ABES) .	During hospitalizatio
Cervero2022	Spain	NA	10,000 IU of cholecalciferol daily for 14 days	Standard care og	Solution of the second	28 days
Dilokpattanamongkol2024	Thailand	NA	2 mcg of alfacalcidol daily during the hospitalization	Standard care	Acceleration Accel	During hospitalizatio
			24		<u>Bibli</u> ographique de l	

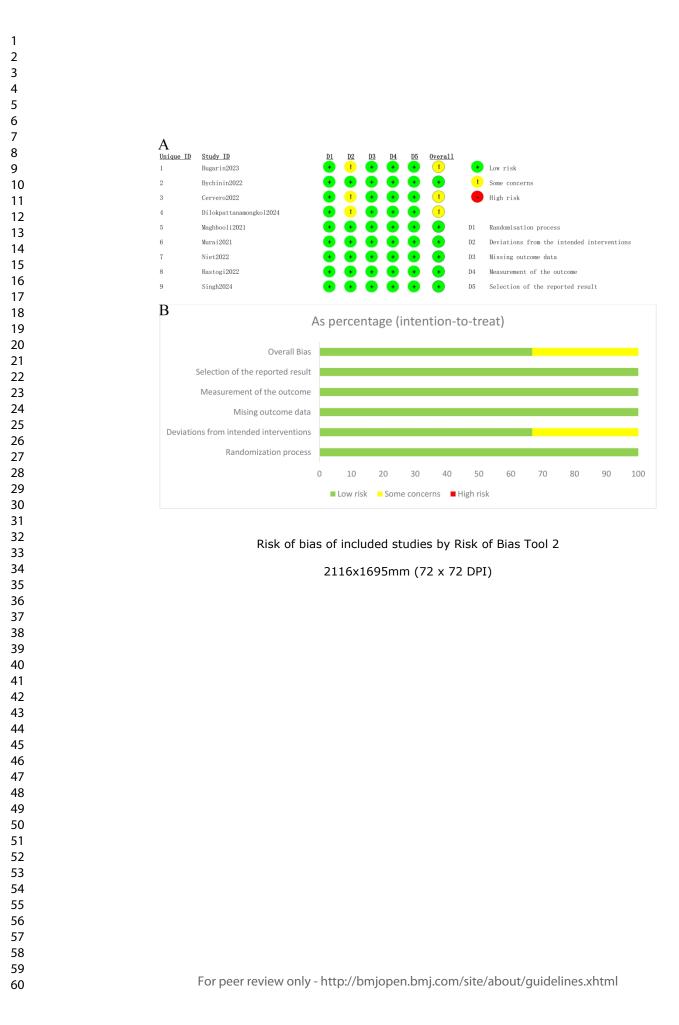
			BMJ Open	•	omjopen	
					bmjopen-2024-091903 or 26 March 2025. Do Enseignemen by copyright, including for uses related to	
Maghbooli2021	Iran	NA	3000-6000 IU per day of vitamin D3 for 30 days	Placebo	ding or 30 ng/L or 36 for us En Ma	2 months
Murai2021	Brazil	Moderate to severe COVID- 19	Single dose of 200,000 IU of vitamin D3	Placebo	nseignem relatec	4 months
Niet2022	Belgium	NA	25,000 IU of vitamin D3 per day over 4 consecutive days, followed by 25,000 IU per week up to 6 weeks		bill bill bill bill bill bill bill bill	9 weeks
Rastogi2022	India	NA	Daily 60000 IU of cholecalciferol for 7 days , and a weekly supplementation of 60000IU provided to those with 25(OH)D > 50 ng/ml or else continued on daily vitamin D 60,000 IU supplementation for another 7 days up until day 14		20ng/L mjopen.bmj.com/ on June 9, 2025 at Agence Bibliographique de l	3 weeks
			25		graphiqu	
	For pe	er review only - http://bm	jopen.bmj.com/site/abou	ut/guidelines.xhtm	e de l	

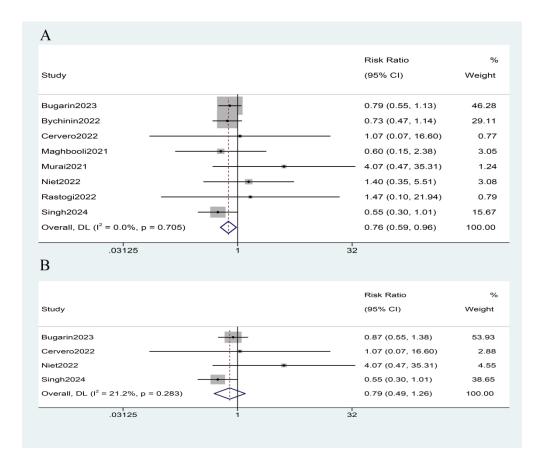
Page 27 of 45	5			BMJ Open	bmjopen-2 1 by copyr	
1 2 3 4 5	Singh2024	India	Severe	A single dose of Placebo	ight, including b<10 ng/ml	During
6	Singh2021	mana	Severe	60,000 IU of	g n 10 lig, lill for 26	hospitalization
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46				cholecalciferol Cholecalciferol	mjopen-2024-09190 <u>3 on 26 Ma</u> rch 2025. Downloaded from http://bmjopen.bmj.com/ on June 9, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . If by copyright, including for uses related to text and data mining, Al training, and similar technologies.	

d by copyright bmjopen-2024

Page 28 of 45

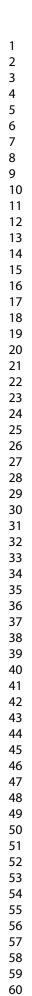
Outcomes	No. of participants (No. of trials)	Risk ratio (95%CI)	Mean difference (95%CI)	Risk of bias ^a	Inconsistency ^b	for use in the second s	Small study effects ^d	Certai evider
Mortality during follow- up	737 (8)	0.76 (0.59,0.96)		Down graded	Not down graded	Dowing alled and ted ment to to	Not down graded	Low
28-day mortality	442 (4)	0.79 (0.49,1.26)		Down graded	Not down graded	Down graded an in the state Down graded	Not down graded	Low
Need for mechanical ventilation	327 (3)	0.90 (0.69,1.17)	000	Down graded	Not down graded	ta m	Not down graded	Low
Need for ICU admission	349 (4)	0.84 (0.45,1.56)		Not down graded	Not down graded		Not down graded	Mode
Length of stay in ICU	582 (6)		-0.41 (-1.09,0.28)	Down graded	Down graded	Down graded	Not down graded	Very l
Length of stay in hospital	378 (4)		-0.07 (-0.61,0.46)	Not down graded	Down graded	Dowff graded	Not down graded	Low
ICU, intensive	care unit					sin 🔍		
ICU, intensive ^a Downgraded ^b Downgraded ^c Downgraded	by one level becar by one level beca	use heterogeneit use the limits of	y (I ²) >50%. the 95% confide		e from studies at h re 20% different to	nigh ristr of bias.	ates.	

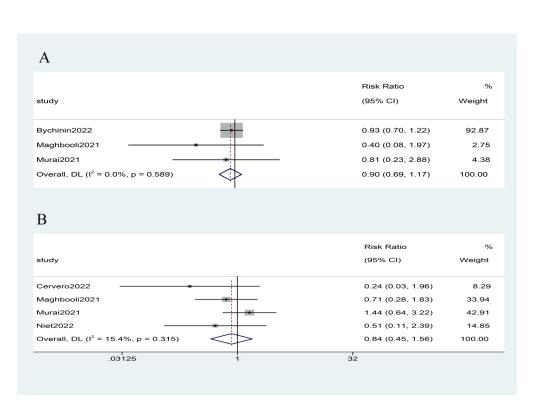

Identification of studies via databases and registers Identification Records removed before Records identified from*: screening: Databases (n = 178) Duplicate records removed Registers (n = 0) (n = 64) Records screened Records excluded** (n = 114) (n =78) Reports sought for retrieval Reports not retrieved (n =36) Screening (n = 0)Reports assessed for eligibility Reports excluded: (n =36) Study protocol (n=5) Review (n=2) Same study (n=2) Not vitamin D deficiency (n=18) etc. Included Studies included in review


Flowchart of literature search

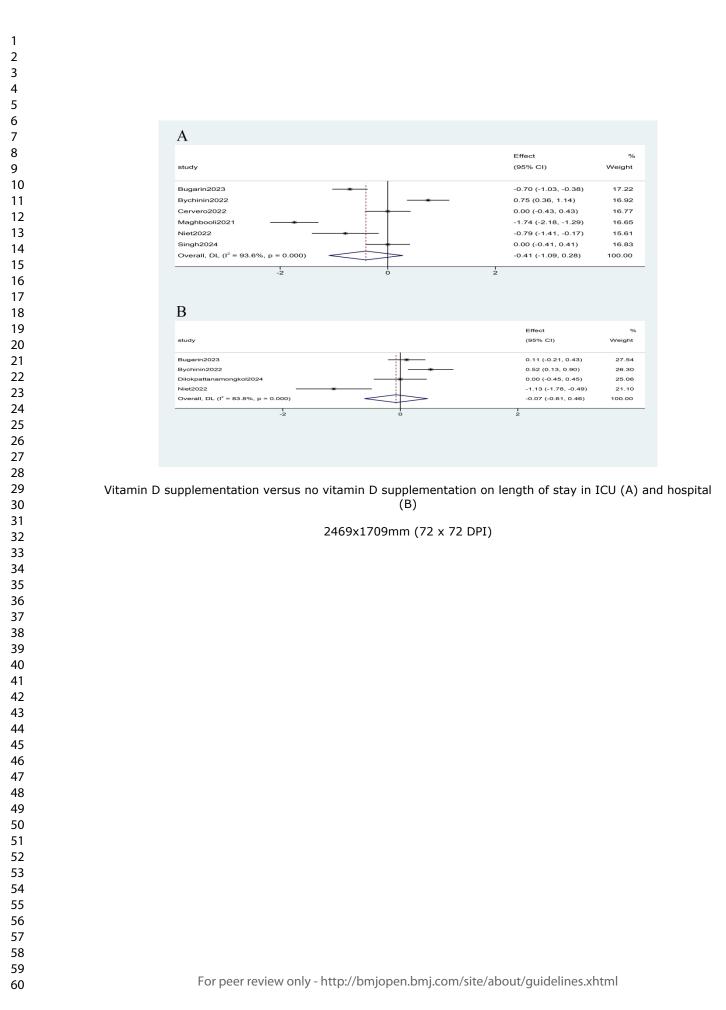
(n = 9)

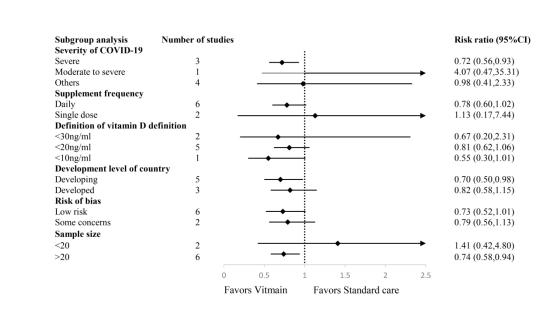
1389x2060mm (72 x 72 DPI)


BMJ Open: first published as 10.1136/bmjopen-2024-091903 on 26 March 2025. Downloaded from http://bmjopen.bmj.com/ on June 9, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.



Vitamin D supplementation versus no vitamin D supplementation on mortality (A) during follow-up and 28day mortality (B). BMJ Open: first published as 10.1136/bmjopen-2024-091903 on 26 March 2025. Downloaded from http://bmjopen.bmj.com/ on June 9, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.


2116x1806mm (72 x 72 DPI)



Vitamin D supplementation versus no vitamin D supplementation on mortality (A) during follow-up and 28day mortality (B).

1763x1274mm (72 x 72 DPI)

Subgroup analysis of mortality during follow-up.

1244x648mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplement

to peet eviewony

Search strategy

PubMed

1 2 3

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18 19

20

21

22

23 24

25

26

27 28

29

30

31

32 33

34

35

36 37

38

39

40 41

42 43

44

45 46

47

48

49 50

51

52

53

54 55

56

57

58 59

60

1. "COVID-19" [Mesh] OR "COVID-19" [tiab] OR "COVID 19" [tiab] OR "2019nCoV Infection" [tiab] OR "2019 nCoV Infection" [tiab] OR "2019-nCoV Infections" [tiab] OR "Infection, 2019-nCoV" [tiab] OR "SARS-CoV-2 Infection" [tiab] OR "Infection, SARS-CoV-2" [tiab] OR "SARS CoV 2 Infection" [tiab] OR "SARS-CoV-2 Infections" [tiab] OR "2019 Novel Coronavirus Disease" [tiab] OR "2019 Novel Coronavirus Infection" [tiab] OR "COVID-19 Virus Infection" [tiab] OR "COVID 19 Virus Infection" [tiab] OR "COVID-19 Virus Infections" [tiab] OR "Infection, COVID-19 Virus" [tiab] OR "Virus Infection, COVID-19" [tiab] OR "COVID19" [tiab] OR "Coronavirus Disease 2019" [tiab] OR "Disease 2019, Coronavirus" [tiab] OR "Coronavirus Disease-19" [tiab] OR "Coronavirus Disease 19" [tiab] OR "Severe Acute Respiratory Syndrome Coronavirus 2 Infection" [tiab] OR "COVID-19 Virus Disease" [tiab] OR "COVID 19 Virus Disease" [tiab] OR "COVID-19 Virus Diseases" [tiab] OR "Disease, COVID-19 Virus" [tiab] OR "Virus Disease, COVID-19" [tiab] OR "SARS Coronavirus 2 Infection" [tiab] OR "2019nCoV Disease" [tiab] OR "2019 nCoV Disease" [tiab] OR "2019-nCoV Diseases" [tiab] OR "Disease, 2019-nCoV" [tiab] OR "COVID-19 Pandemic" [tiab] OR "COVID 19 Pandemic" [tiab] OR "Pandemic, COVID-19" [tiab] OR "COVID-19 Pandemics" [tiab]

2. "Vitamin D"[Mesh] OR "vitamin D"[tiab] OR "vitamin D3"[tiab] OR "vit D"[tiab] OR "calciferol"[tiab] OR "cholecalciferol"[tiab] OR "vit D3"[tiab] OR "calcidiol"[tiab] OR "calcitriol"[tiab] OR "25 hydroxyvitamin d"[tiab] OR "25 hydroxyvitamin D3"[tiab] OR "25 hydroxycalciferol"[tiab] OR "1,25 dihydroxyvitamin OR "1.25 dihydroxyvitamin D"[tiab] D3"[tiab] OR "calcifediol"[tiab]

3. ((compar*[tiab]) OR ((singl*[tiab] or doubl*[tiab] or tripl*[tiab]) and (mask*[tiab] or blind*[tiab]))) OR (random*[tiab] or placebo[tiab] or controlled[tiab] or trial*[tiab])

4. #1 And #2 And #3

Cochrane Library

- 1. MeSH descriptor: [COVID-19] explode all trees
- 2. (COVID-19 OR COVID 19 OR 2019 nCoV Infection OR SARS-CoV-2 Infection OR Infection, SARS-CoV-2 OR SARS CoV 2 Infection OR SARS-CoV-2 Infections OR 2019 Novel Coronavirus Disease OR 2019 Novel Coronavirus Infection OR COVID-19 Virus Infection OR COVID 19 Virus Infection OR COVID-19 Virus Infections OR Infection, COVID-19 Virus OR Virus Infection, COVID-19 OR COVID19 OR Coronavirus Disease 2019 OR Disease 2019, Coronavirus OR Coronavirus Disease-19 OR Coronavirus Disease 19 OR Severe Acute Respiratory Syndrome Coronavirus 2 Infection OR COVID-19 Virus Disease OR COVID 19 Virus Disease OR COVID-19 Virus Diseases OR Disease, COVID-19 Virus OR Virus Disease, COVID-19 OR SARS Coronavirus 2 Infection OR 2019 nCoV Disease OR COVID-19 Pandemic

 (vitamin D OR vitamin D3 OR vit D OR vit D3 OR calciferol OR cholecalciferol OR calcidiol OR calcitriol OR 25 hydroxyvitamin d OR 25 hydroxyvitamin D3 OR 25 hydroxycalciferol OR 1,25 dihydroxyvitamin D OR 1,25 dihydroxyvitamin

7. ((compar*) OR ((singl* or doubl* or tripl*) and (mask* or blind*))) OR (random*

2. ((Covid-19) OR (Covid 19) OR (2019-nCoV Infection) OR (SARS-CoV-

5. ((vitamin D) OR (vitamin D3) OR (25 hydroxycalciferol) OR (1,25

AND

(mask* OR blind*))

((singl* OR doubl* OR tripl*)

OR random*:ti,ab OR placebo:ti,ab OR controlled:ti,ab OR trial*:ti,ab

OR Pandemic, COVID-19

OR COVID-19

OR COVID 19 Pandemic

4. MeSH descriptor: [Vitamin D] explode all trees

or placebo or controlled or trial*):ti,ab

Pandemics):ti,ab

D3 OR calcifediol):ti,ab

1. 'coronavirus disease 2019'/exp

dihydroxyvitamin D3)):ti,ab

8. #3 AND #6 AND #7

2 Infections)):ti,ab

3. #1 OR #2

6. #4 OR #5

Embase

3. #1 OR #2

6. #4 OR #5

7. #3 AND #6

8. compar* OR

9. #7 AND #8

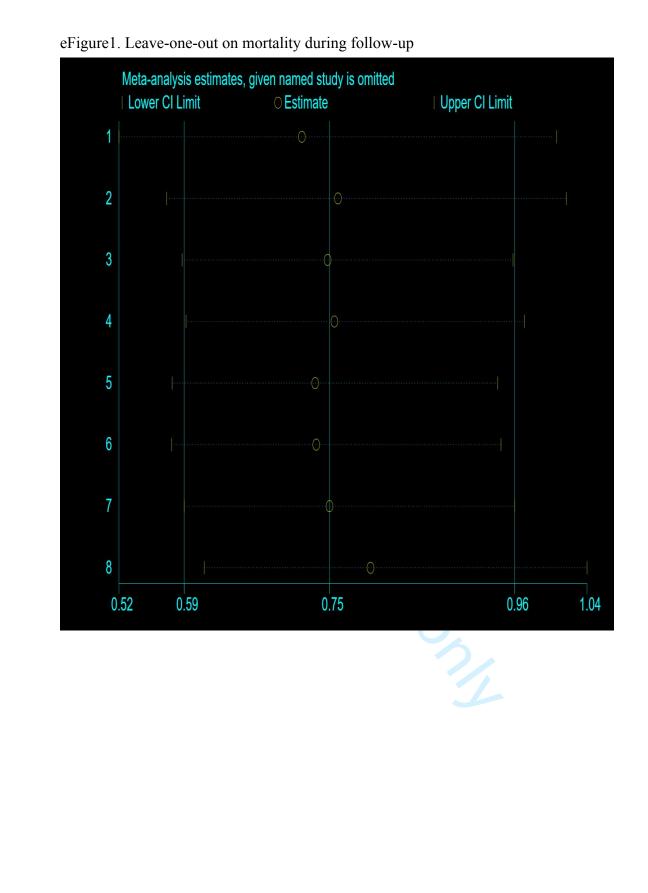
Web of Science

4. 'vitamin d'/exp

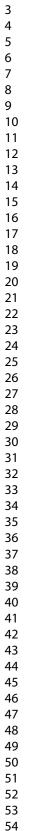
1		
2		
3		
4		
5		
4 5 6 7		
8		
9		
10		
11		
12		
13		
14 15		
15 16		
17		
18		
19		
20		
21 22		
23		
24		
25		
26		
27 28		
28 29		
30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

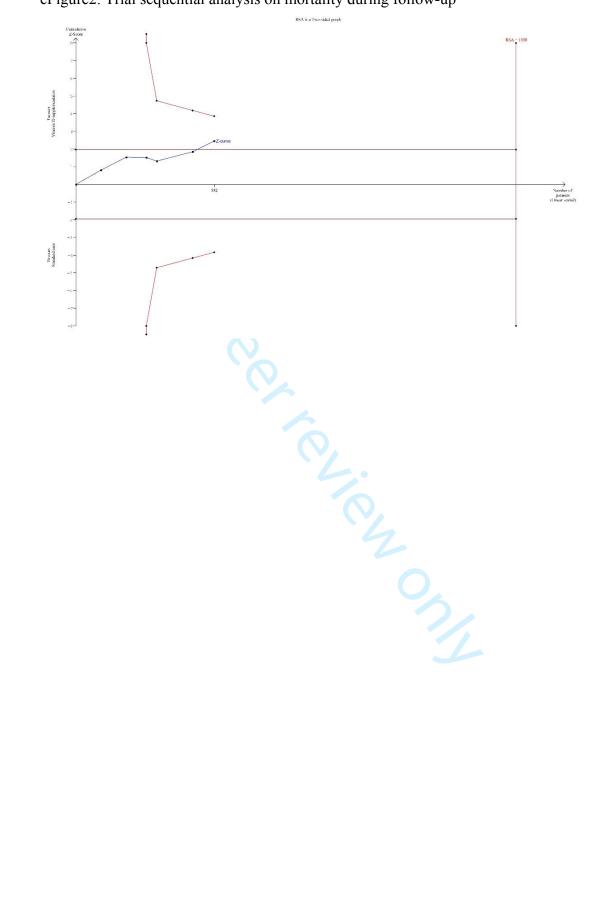
1. TS=(COVID-19 OR COVID 19 OR 2019-nCoV Infection OR 2019 nCoV

Infection OR 2019-nCoV Infections OR Infection, 2019-nCoV OR SARS-CoV-2 Infection OR Infection, SARS-CoV-2 OR SARS CoV 2 Infection OR SARS-CoV-2 Infections OR 2019 Novel Coronavirus Disease OR 2019 Novel Coronavirus Infection OR COVID-19 Virus Infection OR COVID 19 Virus Infection OR COVID-19 Virus Infections OR Infection, COVID-19 Virus OR Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

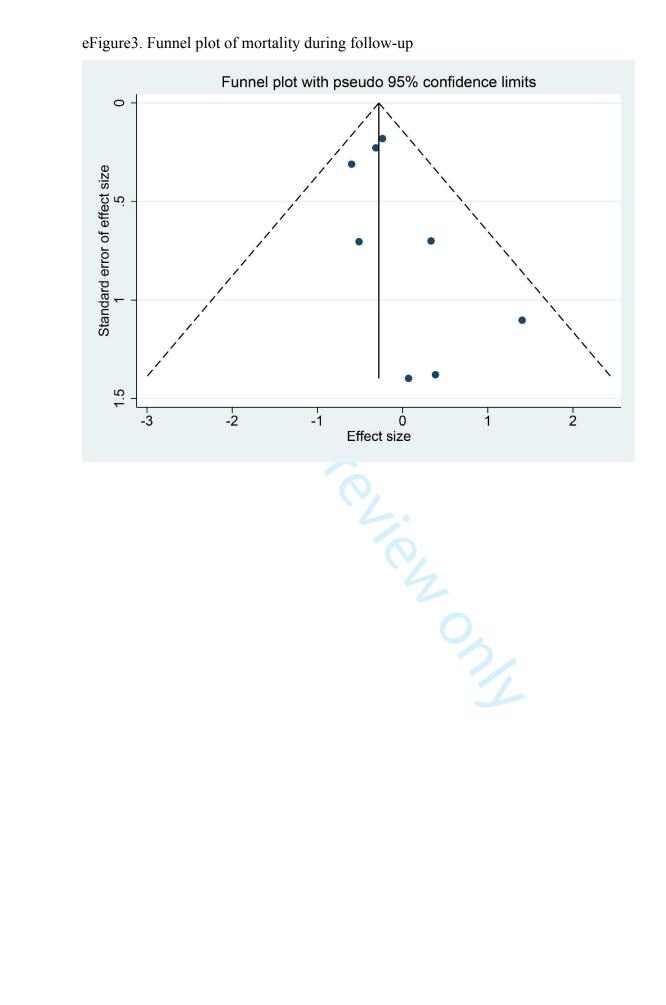

Virus Infection, COVID-19 OR COVID19 OR Coronavirus Disease 2019 OR Disease 2019, Coronavirus OR Coronavirus Disease-19 OR Coronavirus Disease 19 OR Severe Acute Respiratory Syndrome Coronavirus 2 Infection OR COVID-19 Virus Disease OR COVID 19 Virus Disease OR COVID-19 Virus Diseases OR Disease, COVID-19 Virus OR Virus Disease, COVID-19 OR SARS Coronavirus 2 Infection OR 2019-nCoV Disease OR 2019 nCoV Disease OR 2019-nCoV Diseases OR Disease, 2019-nCoV OR COVID-19 Pandemic OR COVID 19 Pandemic OR Pandemic, COVID-19 OR COVID-19 Pandemics)

- TS= (vitamin D OR vitamin D3 OR vit D OR vit D3 OR calciferol OR cholecalciferol OR calcidiol OR calcitriol OR 25 hydroxyvitamin d OR 25 hydroxyvitamin D3 OR 25 hydroxycalciferol OR 1,25 dihydroxyvitamin D OR 1,25 dihydroxyvitamin D3 OR calcifediol)
- . #1 AND #2

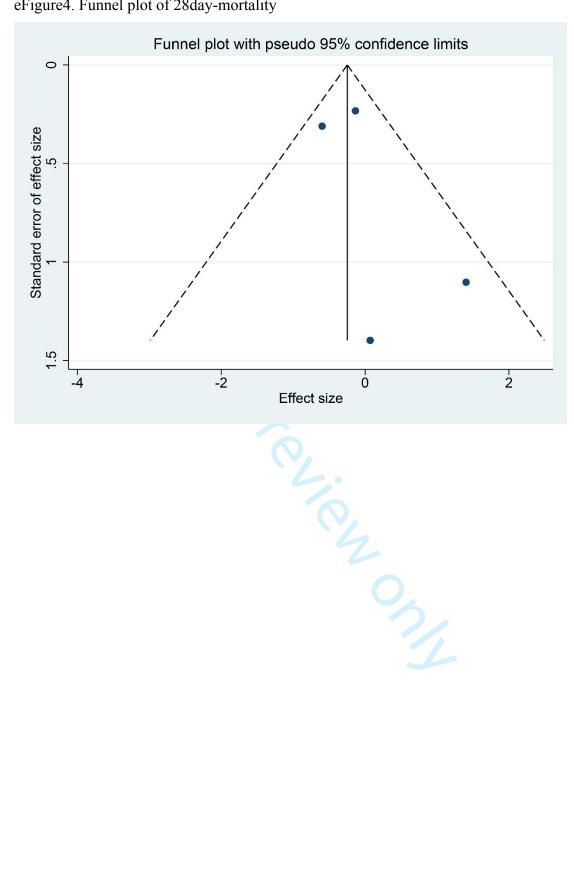

4. TS=(((compar*) OR ((singl* or doubl* or tripl*) and (mask* or blind*))) OR (random* or placebo or controlled or trial*))

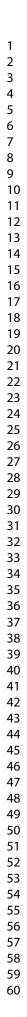

relievoni

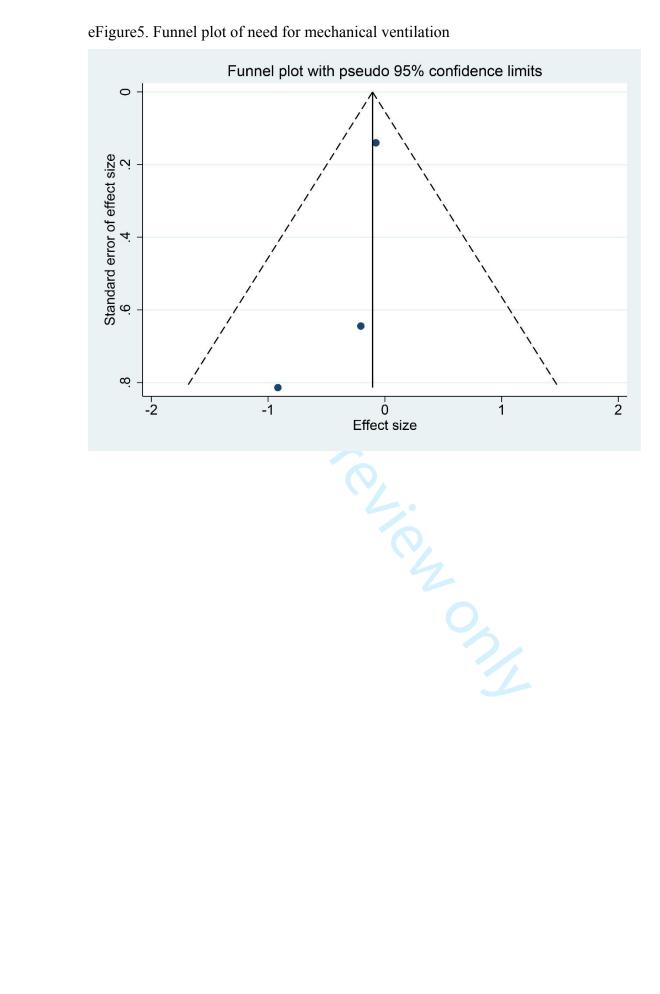
5. #3 AND #4



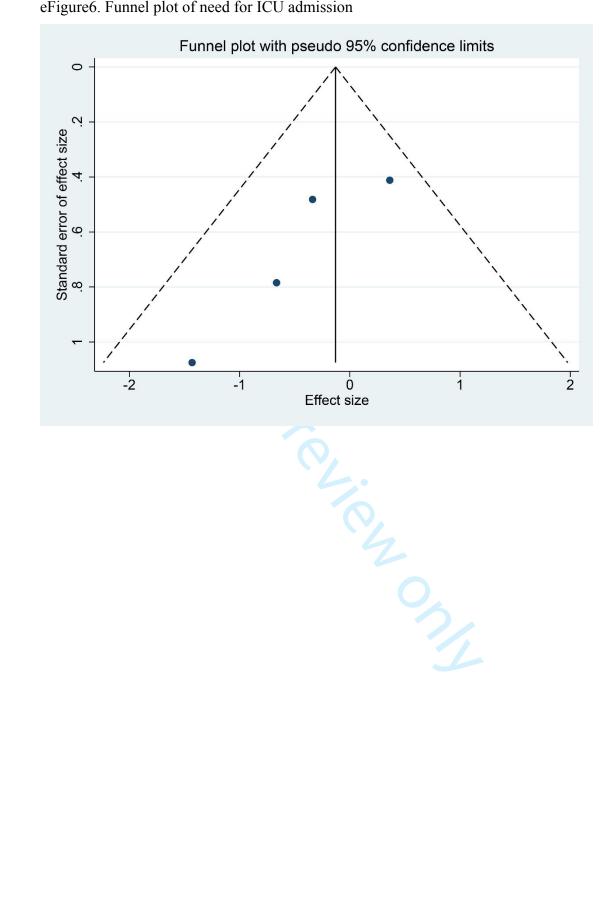
Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.



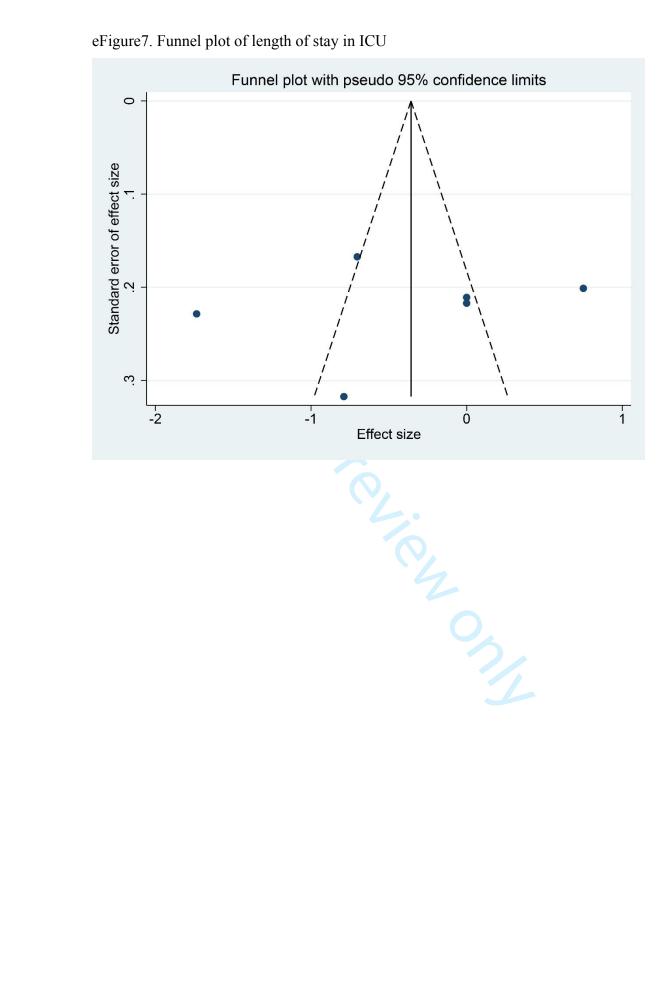

eFigure2. Trial sequential analysis on mortality during follow-up

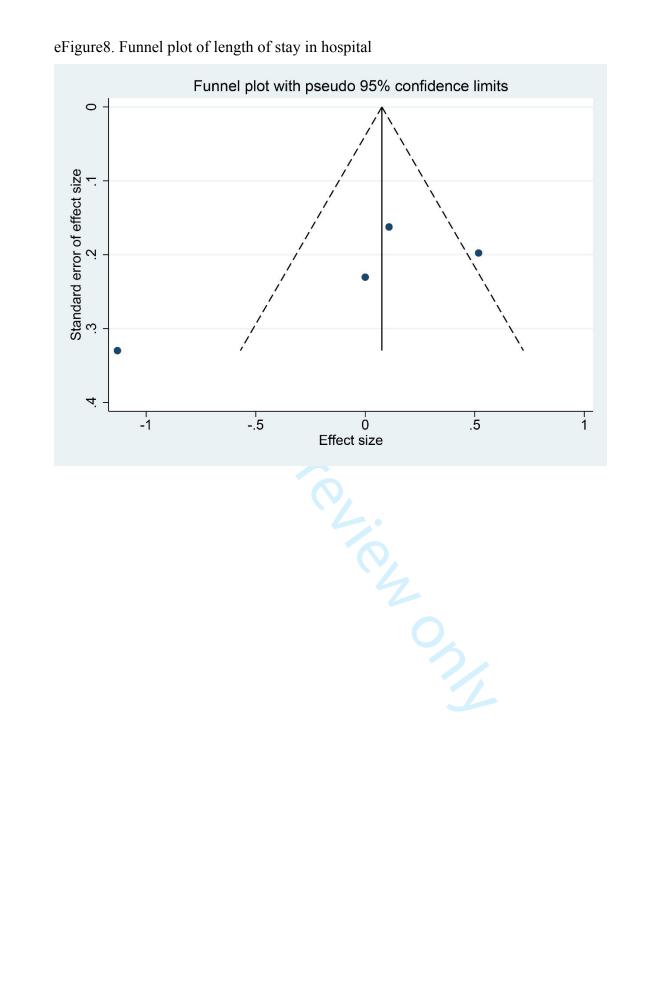


Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.



eFigure4. Funnel plot of 28day-mortality





Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

eFigure6. Funnel plot of need for ICU admission

Vitamin D Supplementation for Managing COVID-19 in Patients with Vitamin D Deficiency: A systematic review and Meta-analysis of Randomized Controlled Trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-091903.R1
Article Type:	Original research
Date Submitted by the Author:	22-Feb-2025
Complete List of Authors:	Zhu, Lemei; Changsha Medical University Zhang, Yuan; Changsha Medical University Li, Xi; Changsha Medical University Zou, Xuemin; Changsha Medical University Bing, Pingping; Changsha Medical University Qi, Mingxu; University of South China, Department of Cardiovascular Medicine He, Binsheng; Changsha Medical University
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Global health
Keywords:	COVID-19, Meta-Analysis, NUTRITION & DIETETICS, Health

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1	Vitamin D Supplementation for Managing COVID-19 in Patients with Vitamin
2	D Deficiency: A systematic review and Meta-analysis of Randomized Controlled
3	Trials
4	Lemei Zhu ^{1,2} , Yuan Zhang ¹ , Xi Li ^{1,2} , Xuemin Zou ^{1,2} , Pingping Bing ^{1*} , Mingxu Qi ^{3*} ,
5	Binsheng He ^{1*5}
6	1. Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical
7	Preparations, Changsha Medical University, Changsha, 410219, China.
8	2. School of Public Health, Changsha Medical University, Changsha, 410219, China.
9	3. Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of
10	South China, Hengyang, 421001, China
11	
12	
13	Corresponding Author:
14	Pingping Bing, Hunan Key Laboratory of the Research and Development of Novel
15	Pharmaceutical Preparations, Changsha, 410219, China. (Email: bpping@163.com)
16	Mingxu Qi, Department of Cardiovascular Medicine, Affiliated Nanhua Hospital,
17	University of South China, Hengyang, 421001, China. (Email: qimingxuqi@163.com)
18	Binsheng He, unan Key Laboratory of the Research and Development of Novel
19	Pharmaceutical Preparations, Changsha, 410219, China. (Email: hbscsmu@163.com)

1 2		
3	20	Abstract
/	21	Objectives Vitamin D deficiency was prevalent among population. Former studies
8 9 10	22	showed that vitamin D supplementation might be useful for treating COVID-19
	23	infection. Therefore, we performed a meta-analysis to explore vitamin D
13 14 15	24	supplementation efficacy in treating COVID-19 patients with vitamin D deficiency.
16 17 18	25	Design Systematic review and meta-analysis
19 20	26	Data sources PubMed, Cochrane Library, Embase and Web of Science.
21 22 23	27	Eligibility Criteria Randomized controlled trials exploring vitamin D
24 25	28	supplementation for patients with COVID-19 and vitamin D deficiency.
26 27 28	29	Data extraction and synthesis Two independent reviewers employed standardized
29 30 31	30	methods to search, screen, and code the included studies. The primary outcomes
32 33	31	included mortality during follow-up, 28-day mortality, need for mechanical
34 35 36	32	ventilation and ICU. The secondary outcome included length of stay in hospital and
37 38	33	ICU. The risk of bias was assessed using the Risk of Bias 2 tool. Depending on the
39 40 41	34	level of heterogeneity, either a random-effects model or a fixed-effects model was
	35	applied. The findings were summarized using GRADE evidence profiles and
44 45 46	36	synthesized qualitatively.
47 48 49	37	Results A total of nine studies, comprising 870 participants, were included in the
50 51	38	analysis. The pooled results indicated that vitamin D supplementation was associated
52 53 54	39	with a lower risk of mortality (Risk ratio 0.76; 95% CI 0.60 to 0.97). However, this
55 56	40	apparent benefit was not robust when examined through the leave-one-out method,
57 58 59 60	41	and trial sequential analysis. Regarding other outcomes, there was no statistically

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

significant difference between vitamin D supplementation and no supplementation in
terms of 28-day mortality, the need for mechanical ventilation and ICU admission.
Vitamin D supplementation was associated with a 0.41-day shorter length of stay in
the ICU (Mean difference -0.41; 95%CI -1.09 to 0.28) and a 0.07-day shorter length
of stay in the hospital (Mean difference -0.07; 95%CI -0.61 to 0.46) compared to no
supplementation; however, neither difference was statistically significant.

Conclusion Based on evidence of low to moderate quality, vitamin D 49 supplementation reduced the mortality rate during follow-up in COVID-19 patients 50 with vitamin D deficiency. However, it did not improve 28-day mortality, nor did it 51 reduce the need for mechanical ventilation and ICU admission, or the length of stay in 52 the ICU and hospital.

54 Keywords: Vitamin D supplementation; Vitamin D deficiency; COVID-19; Meta-

- 55 analysis; Trial sequential analysis

2		
3 4	58	Strengths and limitations of this study
5		
6 7	59	• This meta-analysis of RCTs was reported in accordance with the Preferred
8 9		
9 10	60	Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
11	(1	
12 13	61	checklist.
13		
15	62	• Comprehensive literature search across multiple databases to identify relevant
16 17	(2	studios
17	63	studies.
19	()	• Discrews inclusion criteria to ensure the quality and relevance of studies
20	64	• Rigorous inclusion criteria to ensure the quality and relevance of studies.
21 22	65	• Use of trial sequential analysis and sensitivity analysis to assess the statistical
23	05	• Ose of that sequential analysis and sensitivity analysis to assess the statistical
24	66	robustness of the results.
25 26	00	Tobustiless of the results.
27	67	• The number of studies included is limited, with only nine randomized controlled
28	07	• The number of studies included is initiated, with only line fundomized controlled
29 30	68	trials and relatively small sample sizes.
31	00	thats and relatively small sample sizes.
32	69	
33 34	0)	
35		
36		
37 38		
39		
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 58		
59		
60		
		4

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

70 Introduction

COVID-19, caused by the SARS-CoV-2 virus, is a highly transmissible and potentially severe respiratory illness that has resulted in a global pandemic, affecting millions of people worldwide with varying morbidity and mortality rates¹².

Vitamin D, a steroid hormone derived from cholesterol, plays a significant role in regulating the expression of various genes, including those in immune cells³. In hospitalized COVID-19 patients, vitamin D also showed anti-inflammatory effects⁴. Vitamin D deficiency is widespread across the globe; for example, 40% of the European population is reported to lack sufficient vitamin D, and vitamin D deficiency is also common in high-altitude regions such as Nepal, the Andes, and Tibet⁵ ⁶. Maintaining appropriate levels of vitamin D is essential for optimal respiratory immune function^{3 7-11}. Despite this, the precise impact of vitamin D supplementation on preventing and treating COVID-19 remains a topic of debate. According to a systematic review, vitamin D supplementation can significantly reduce the severity of COVID-19 infection, as measured by outcomes such as hospitalization rates, the need for mechanical ventilation, and mortality, suggesting its use as a supplementary treatment for COVID-1912. In contrast, a 2021 meta-analysis that included eight randomized controlled trials (RCTs) found that vitamin D supplementation did not enhance clinical outcomes in patients infected with SARS-CoV-2¹³. Recently, a meta-analysis conducted by Meng et al. explored the role of vitamin D in the prevention and treatment of SARS-CoV-2 infection. Their results suggested that vitamin D supplementation may have some beneficial impact on the

Page 7 of 54

BMJ Open

92 severity of illness caused by SARS-CoV-2, particularly in vitamin D deficient 93 patients. Although they specifically analyzed patients with vitamin D deficiency, the 94 studies they included were limited, and the analysis focused solely on mortality as the 95 outcome. Moreover, they did not perform comprehensive subgroup analyses, such as 96 based on the severity of vitamin D deficiency.

Amrein et al. raised another important point, namely that vitamin D is clearly not a cure-all and is likely effective only when there is a deficiency⁶. To comprehensively investigate the role of vitamin D supplementation in these patients, we conducted a meta-analysis of randomized controlled trials to determine whether vitamin D supplementation improves clinical outcomes (mortality during follow-up, 28-day mortality, need for mechanical ventilation and ICU and length of stay in hospital and ICU) in COVID-19 patients with vitamin D deficiency. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

105 Methods

This meta-analysis of RCTs was reported in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-analysis (PRISMA) checklist¹⁴. The study
protocol was registered on PROSPERO (CRD42024573791).

109 Search strategy and selection criteria

110 A comprehensive literature search was conducted on June 1, 2024 across several 111 databases including PubMed, Cochrane Library, Embase, and Web of science with 112 Mesh and broad search terms. We also manually searched the reference lists of 113 relevant review articles. After completing the initial research, we conducted the same

Page 8 of 54

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

search again to include the latest published studies. The detailed search strategy was in the appendix. The retrieved literature was imported into EndNote X9. After removing duplicate references, it was assessed for eligibility by two reviewers. Based on the PICO principle, the inclusion criteria we applied are as follows: P: COVID-19 patients with vitamin D deficiency; I: standard care plus vitamin D supplementation; C: standard care; O: mortality rate, need for mechanical ventilation or ICU admission, length of stay in ICU and hospital. Exclusion criteria were: non-randomized controlled trials, and studies for which full text could not be retrieved. The definition of vitamin D deficiency was according to previous studies^{6 15-17}. Any disputes will be resolved through discussion. **Data extraction** A comprehensive data extraction form was developed based on the guidelines outlined in the Cochrane Handbook for Systematic Reviews of Interventions. The form was piloted on a subset of the included studies before extracting the following data: author details, participant characteristics, intervention details (type, duration, frequency, and other details), primary and secondary outcomes, follow-up times.

132 The consistency between data extractors was measured using the Kappa value. Any133 disputes will be resolved through discussion.

Quality assessment

Potential sources of bias in RCTs were assessed using Risk of Bias 2 (Rob2), a revised tool for assessing the risk of bias in randomized trials¹⁸. Rob2 encompasses five key domains: 1. Randomization process;2. Deviations from intended interventions;3. Missing outcome data;4. Measurement of the outcome;5. Selection of the reported result. Within each domain, bias was evaluated and categorized as either low risk, some concerns, or high risk, depending on the circumstances and relevant evidence. Ultimately, the overall bias of each study was classified as either low risk, some concerns, or high risk, based on the comprehensive assessment of bias across the five domains. When there was a discrepancy in the assessment results for a certain domain, the outcome was resolved through discussion.

Outcomes

The primary outcomes were mortality during follow up and 28-day mortality. The secondary outcomes included need for mechanical ventilation and ICU admission, length of stay in hospital and ICU. Mortality during follow-up refers to the deaths that occurred during the follow-up period in each study. Since the follow-up durations vary across studies, the time frame for mortality during follow-up is not consistent. 28-day mortality specifically refers to the mortality rate from the start of the study up to day 28. Need for mechanical ventilation and ICU admission refers to patients who initially did not require mechanical ventilation or ICU admission but received mechanical ventilation or were admitted to the ICU during the study. Length of stay in hospital and ICU refers to the duration of hospitalization and ICU stay for patients who received different treatments.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Statistically analysis

Dichotomous variables were presented as event numbers and total numbers, with combined outcomes expressed as Risk Ratio (RR) with 95% Confidence Intervals (CIs). Continuous variables were presented as mean and standard deviation, with combined outcomes expressed as Mean Difference (MD) with 95% Confidence Intervals (CIs). The choice of analysis model was based on the level of heterogeneity. If $I^2 \ge 50\%$, heterogeneity was considered significant, and the DerSimonian-Laird method combined with a random-effects model was used for analysis. If $I^2 < 50\%$, no significant heterogeneity was assumed, and the Inverse-variance method combined with a fixed-effects model was used for analysis¹⁹. Subgroup analysis according to different characteristics (severity of COVID-19, vitamin D supplementation, definition of vitamin D deficiency, and so on) was conducted on mortality during follow-up. Sensitivity analysis was performed using the leave-one-out method. A funnel plot was generated to subjectively assess publication bias, and Egger's test was also conducted to objectively test for publication bias; if p > 0.05, no significant publication bias was assumed. In this study, trial sequential analysis was performed using Trial Sequential Analysis software (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet) (http://ctu.dk/tsa/). The meta-analysis was performed using Stata (STATA Corporation, Texas, USA) (https://www.stata.com/stata17/). The quality of evidence was assessed by GRADE guidelines²⁰.

Patient and public involvement

None.

1	
2	
3	
4	
5	
6	
/ 8	
o 9	
9 10	
11	
11 12	
13	
14	
15	
16	
12 13 14 15 16 17 18	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37 38	
38 39	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

117	
180	
181	Results
182	Literature search
183	A total of 178 studies were initially found across all databases, with 64 identified as
184	duplicates. After screening titles and abstracts, 78 studies were excluded. The
185	remaining 36 studies were then assessed for full text. Ultimately, 10 studies ^{15-17 21-27}
186	met the inclusion criteria and were included in the analysis (Figure1).
187	Baseline study characteristics
188	A total of 10 studies ^{15-17 21-26} , encompassing 870 participants, were included. The
189	vitamin D dosage ranged from 3,000 IU to 200,000 IU. Three studies used a single
190	high dose of vitamin D supplementation, while seven studies employed a continuous
191	dosing regimen. Seven studies defined vitamin D deficiency as <20 ng/ml, two
192	studies as <30 ng/ml, and one study as <10 ng/ml. Additionally, two studies focused
193	on severe COVID-19, and two study examined moderate to severe COVID-19 cases

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

194 (Table1).

195 **Quality assessment**

We evaluated the outcomes reported in the studies. We found that among the twentyeight relevant outcomes, fourteen were classified as low risk and fourteen as having some concerns. For example, the study by Soliman et al. did not provide detailed information on the randomization method, which raised concerns about the randomization process. In the studies by Singh et al. and others, vitamin D deficiency

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

was defined as <10 ng/ml, while Cervero et al. and Maghbooli et al. defined
deficiency as <30 ng/ml, which differed from the commonly accepted definition of
deficiency. Therefore, these studies also carried an overall risk of bias. The detailed
distribution of bias was shown in eTable1.

The Kappa value, used to estimate the equivalence of data extraction in this study, was 0.86.

207 Mortality

Night studies reported the mortality during follow-up. The pooled result showed that the risk of death in the vitamin D group was 24% lower than in the nonsupplementation group (RR 0.76; 95%CI 0.60 to 0.97) (Figure 2).

To assess the vitamin D's role in reducing hospitalization mortality, we analyzed 28day mortality. The pooled result showed that the risk of mortality was 21% lower in the vitamin D group, but this difference was not statistically significant (RR 0.78; 95%CI 0.55 to 1.38) (Figure2).

215 Need for ICU admission and mechanical ventilation

Three studies reported on the need for mechanical ventilation, and the pooled results showed the need for mechanical ventilation was 10% lower in the vitamin D group, but this difference was not statistically significant (RR 0.90; 95%CI 0.69 to 1.17) (Figure2).

Four studies reported on the need for ICU admission, and the pooled results showed the need for requiring ICU care was 12% lower in the vitamin D group, but this difference was not statistically significant (RR 0.88; 95%CI 0.51 to 1.52) (Figure2).

BMJ Open

223	Length of stay in ICU and hospital	
225	Length of stay in ree and hospital	

Six studies reported on the length of stay in the ICU, and the pooled results showed the average length of ICU stay was 0.41 days shorter in the vitamin D group, but this difference was not statistically significant (MD -0.41 days; 95%CI -1.09 to 0.28).

Four studies reported on the length of stay in the hospital, and the pooled results showed the average hospital stay was 0.07 days shorter in the vitamin D group, but this difference was also not statistically significant (MD -0.07 days; 95%CI -0.61 to

230 0.46) (Figure 3).

231 Subgroup analysis

Considering the limited number of included studies, we performed a subgroup analysis only on mortality during follow-up. Considering that participants' responses to vitamin D may vary due to differences in the severity of COVID-19, supplementation frequency, degree of vitamin D deficiency, development level of the country, risk of bias, and sample size across studies, we performed subgroup analyses based on these characteristics (Figure 4). There were no statistically significant group differences within any of the subgroups, so these results do not support an effect of the aforementioned characteristics on vitamin D.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

- 240 Sensitivity analysis
- 241 Sensitivity analysis was performed on morality during follow-up by leave-one-out242 method and trail sequential analysis.
- 243 Sensitivity analysis was performed on mortality during follow-up using the leave-one-
- out method and trial sequential analysis (eFigure 1).

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Using the leave-one-out method, we found that excluding the studies by Burgarin et al., Bychinin et al.²¹, Maghbooli et al.¹⁵, and Singh et al.¹⁷ resulted in no statistically significant difference between vitamin D supplementation and no vitamin D supplementation. This suggests that the result was not robust.

We also performed a trial sequential analysis on mortality during follow-up. With 80% power, the pooled result showed no statistically significant difference (RR 0.74; α -spending adjusted CI 0.46 to 1.19). The required sample size (RSA) was determined to be 1874 (eFigure2).

Publication bias

We plotted funnel plots for the aforementioned outcomes (eFigure3-8). However, due to the limited number of included studies, there is a considerable risk of bias when evaluating the symmetry of the funnel plots. To more objectively assess publication bias, we also performed Egger's test. The p-values for Egger's test for the above outcomes were all greater than 0.05, indicating no significant evidence of publication bias.

260 Grade assessment

The quality of evidence for the above outcomes ranged from very low to moderate (eTable2). Specifically, the quality of evidence was moderate for mortality during follow-up, 28-day mortality, need for mechanical ventilation, and need for ICU admission. In contrast, the quality of evidence was low for length of stay in ICU and length of stay in hospital.

267	Discu	ission

Our study comprehensively explored the efficacy of vitamin D in treating COVID-19 patients with vitamin D deficiency. We found that vitamin D supplementation could reduce mortality during follow-up. However, this result should be interpreted with caution for the following reasons. Firstly, the leave-one-out method showed that nearly half of the studies could change the conclusion, indicating that the result was not robust. Secondly, in the subgroup analysis, most groups showed no statistically significance difference between vitamin D supplementation and no vitamin D supplementation. This may be due to the limited number of studies included in the subgroup analysis, which may not accurately reflect the true effect. Thirdly, trial sequential analysis revealed no statistically significant difference between vitamin D supplementation and no vitamin D supplementation when adjusted confidence intervals were considered. The analysis also indicated that a larger sample size is needed to determine the true effect of vitamin D.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Regarding other outcomes in our study, vitamin D did not appear to reduce the need for mechanical ventilation and ICU admission or shorten the length of stay in the ICU and hospital. Overall, the efficacy of vitamin D in treating COVID-19 patients with vitamin D deficiency remains inconclusive. Due to the potential exclusion of vulnerable groups and the variability in the definitions of vitamin D deficiency, the interpretation of the results should be made with caution. More studies are needed to explore this further.

In 2023, Meng et al.'s meta-analysis²⁸ explored the efficacy of vitamin D in treating

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> COVID-19. Their results showed that while vitamin D supplementation couldn't reduce mortality, it might be beneficial in reducing the severity of illness caused by SARS-CoV-2, particularly in vitamin D-deficient patients. Additionally, their study indicated that vitamin D supplementation could reduce the need for ICU admission. However, they did not analyze the data based on follow-up time, and new research has since been published. Our study results show that vitamin D supplementation does not reduce the need for ICU admission. Recently, a review also showed that vitamin D deficiency is linked to an increased risk of acquiring SARS-CoV-2 infection and poor COVID-19 prognosis, however, available evidence with regard to improved clinical outcomes with vitamin D supplementation is inconsistent²⁹. Furthermore, whether vitamin D can reduce mortality still requires further exploration. The relationship between vitamin D and COVID-19 has been a subject of extensive

> research, with mixed findings regarding its efficacy in preventing or treating the disease. Observational studies that initially suggested a link between low vitamin D levels and worse COVID-19 outcomes may have been confounded by other factors such as age, comorbidities, and socioeconomic status³⁰⁻³⁴. These factors themselves are risk factors for both vitamin D deficiency and severe COVID-19, complicating the interpretation of results³⁵⁻⁴⁰. A number of clinical trials have produced mixed results, with some showing no significant difference in outcomes between those receiving vitamin D supplementation and those who did not⁴¹⁻⁴⁵. This inconsistency suggests that vitamin D may not have a substantial impact on COVID-19 outcomes. Another possible explanation is that the design and interpretation of some studies may be

problematic. It is well known that RCTs for vitamin D should be designed based on the criteria for nutrients, rather than using the pharmaceutical standards applied to drugs. As mentioned in the "Guidelines for optimizing design and analysis of clinical studies of nutrient effects", and as noted by Pilz S et al., designing an appropriate study protocol is key to accurately assessing the impact of vitamin D on health outcomes^{46 47}. Therefore, optimizing the study design is not only crucial for ensuring the reliability of the results, but also determines whether the evaluation of vitamin D intervention reflects its true effects.

The role of vitamin D in regulating the immune system has been extensively studied, especially in the context of viral infections^{48 49}. The onset and severity of COVID-19 are closely linked to the host's immune response, and vitamin D is believed to enhance the immune system's defense through multiple mechanisms⁴⁸. Specifically, vitamin D helps boost the innate immune response by enhancing the function of macrophages, monocytes, and dendritic cells, all of which play crucial roles in antiviral immunity⁴⁹. Additionally, vitamin D regulates T cell differentiation, promoting cell-mediated immune responses against infections, while also suppressing excessive immune reactions, such as cytokine storms, thereby reducing the severity of the COVID-19 disease course⁵⁰.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The role of vitamin D is particularly critical in the early stages of disease onset⁵¹. Studies have shown that early intervention can significantly improve immune function and slow disease progression^{21 52}. For instance, supplementing vitamin D before or at the early onset of symptoms helps to promptly regulate the immune response and

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> enhance the body's ability to combat the virus⁵³. In contrast, if intervention occurs later, after symptoms have manifested or during the later stages of the disease, the effects of vitamin D may be greatly diminished^{54 55}. By this point, the immune system may already be in a dysregulated state, particularly under the influence of high viral loads or cytokine storms, making it difficult for vitamin D alone to quickly restore immune function.

> Moreover, using high doses or active forms of vitamin D, such as 25(OH)D (calcidiol), may further enhance its therapeutic effects⁵⁶. 25(OH)D is the active form of vitamin D, and it works more rapidly than regular vitamin D3⁵⁷. High-dose vitamin D interventions have shown promising clinical effects during the early stages of the pandemic⁵⁷. In particular, for high-risk patients, timely high-dose vitamin D supplementation can significantly reduce the risk of disease worsening, especially in populations with low vitamin D levels⁵⁸.

Regarding high-risk groups, those at higher risk of COVID-19-related death include elderly patients, individuals with comorbidities, and patients with serum 25(OH)D concentrations below 20 ng/mL⁵⁹. The immune systems of older adults and those with chronic diseases are generally weaker, and their vitamin D levels are often lower, making them more susceptible to severe complications or death after infection⁶⁰. Additionally, studies have shown that if hospitalized patients have low vitamin D levels, their immune function is impaired, leading to more severe clinical outcomes⁵⁹. Therefore, for these high-risk groups, timely and appropriate vitamin D intervention could be a critical measure to reduce the mortality rate and severity of the COVID-19

disease course⁶¹.

However, it is important to note that vitamin D supplementation may also have potential adverse effects, such as hypercalcemia and hypoparathyroidism, particularly when taken in excessive doses^{62 63}. These adverse effects should be considered when evaluating the overall benefits and risks of vitamin D supplementation, especially in vulnerable populations.

In summary, vitamin D supplementation has the potential to reduce the incidence, severity, and mortality of COVID-19. However, its effectiveness depends on multiple factors, particularly the timing and dosage of intervention. Moreover, factors such as the economic status, sex, and age of patients may serve as effect modifiers that could influence the outcomes, which were not thoroughly analyzed in our study. Future research is needed to further clarify the optimal timing and dosage for vitamin D intervention, and whether personalized treatment plans based on patients' underlying conditions and vitamin D levels are necessary. Furthermore, during the pandemic, it is important to encourage high-risk populations (such as older adults and individuals with chronic diseases) to maintain adequate vitamin D levels to enhance immunity and improve the body's ability to combat COVID-19.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

In this study, we found significant differences in the definition of "vitamin D deficiency" across studies, which may introduce selection bias. Some studies defined deficiency as a serum vitamin D level below 30 ng/ml, while others used 20 ng/ml, which could lead to overdiagnosis or underdiagnosis of vitamin D deficiency. Specifically, for elderly patients, a higher threshold (e.g., 25 ng/ml) might result in

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> their exclusion from studies, thus affecting the study conclusions. We recommend that future research adopt standardized definitions of vitamin D deficiency and adjust the criteria based on patient characteristics (such as age, sex, and comorbidities) to reduce potential selection bias and misdiagnosis.

> Moreover, the variability in vitamin D categorization may impact the assessment of treatment efficacy. Due to the inconsistent standards for defining vitamin D deficiency across studies, some studies may have underestimated the effect of vitamin D on treatment outcomes. To improve the accuracy of results, we suggest that future studies consider individualized vitamin D deficiency criteria based on different population characteristics and further explore the impact of these criteria on treatment efficacy, ensuring that all patients with true vitamin D deficiency are included in the analysis.

However, our study also has other limitations. Firstly, the number of studies included is relatively small, with only nine randomized controlled trials and small sample sizes. Secondly, although there was no significant statistical heterogeneity, clinical heterogeneity among the studies cannot be ignored. The severity of patients' diseases and the frequency and dosage of vitamin D supplementation varied among the studies. To address this, we conducted a subgroup analysis and found that vitamin D supplementation did not reduce mortality in different subgroups. Thirdly, there is a potential risk of publication bias in our study. Although Egger's test did not show significant publication bias, the number of studies included in our analysis is relatively small, so caution is still needed when interpreting the risk of publication

Page 21 of 54

BMJ Open

bias. Lastly, although our conclusions suggest that vitamin D supplementation may
reduce mortality, sensitivity analysis revealed that the conclusions are not reliable.
Therefore, more high-quality research is needed in the future to further explore the
role of vitamin D supplementation in vitamin D deficient COVID-19 patients.

404 Conclusion

This study suggested that vitamin D supplementation might have reduced mortality during follow-up, but no significant difference was observed in mortality at 28 days. Additionally, vitamin D supplementation did not significantly improve the need for mechanical ventilation, ICU admission rate, or reduce hospital and ICU length of stay. While these results indicated that vitamin D might have had some impact on mortality in COVID-19 patients with vitamin D deficiency, the findings should be interpreted cautiously due to variations in the studies and potential selection biases. Future research should focus on high-quality clinical trials, particularly those considering individual differences, study design, and follow-up duration, to draw more reliable and consistent conclusions.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

416 Acknowledgement

We would like to give our sincere gratitude to the reviewers for their constructivecomments.

420 Author Contributions

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

1

Binsheng He is the guarantor of this study. LMZ, PPB, MXQ and BSH: proposed the
design, searched the literature, collected, analysed and interpret the data, and wrote
the report; LMZ, XMZ, YZ, and XL searched and collected the literature; LMZ, YZ,
XMZ, XL and BSH analysed and interpreted the data.

425

426 Funding

The work was supported by the Hunan Provincial Education Commission Foundation
(20A056,22C0669,23A0664); The Hunan Provincial Health Commission Foundation
(No.202112041226, D202302088596); the Innovation and Entrepreneurship
Education Base of Public Health and Preventive Medicine (Hunan Education Bureau
Notice 2019 No.333-93); and the Funding by young backbone teachers of Hunan
province training program foundation of Changsha Medical University (Hunan
Education Bureau Notice 2021 No.29-26).

434

435 **Declaration of competing interest**

The authors declare that they have no known competing finical interests or personalrelationships that could have appeared to influence the work reported in this paper.

438

439 **Ethical approval**

Ethical approval was not required for this study, since all data came from publishedarticles.

443	References
444	1. Lal A, Erondu NA, Heymann DL, et al. Fragmented health systems in COVID-19: rectifying
445	the misalignment between global health security and universal health coverage.
446	Lancet (London, England) 2021;397(10268):61-67. doi: 10.1016/s0140-
447	6736(20)32228-5 [published Online First: 2020/12/05]
448	2. Meng J, Tang H, Xiao Y, et al. Appropriate thromboprophylaxis strategy for COVID-19
449	patients on dosage, antiplatelet therapy, outpatient, and postdischarge prophylaxis: a
450	meta-analysis of randomized controlled trials. International journal of surgery (London,
451	<i>England)</i> 2024;110(6):3910-22. doi: 10.1097/js9.0000000000001307 [published
452	Online First: 2024/03/29]
453	3. Salehi Z, Askari M, Jafari A, et al. Dietary patterns and micronutrients in respiratory
454	infections including COVID-19: a narrative review. BMC public health
455	2024;24(1):1661. doi: 10.1186/s12889-024-18760-y [published Online First:
456	2024/06/22]
457	4. Sauša S, Kistkins S, Krūzmane L, et al. Impact of Vitamin D Therapy on C-Reactive Protein,
458	Ferritin, and IL-6 Levels in Hospitalised Covid-19 Patients. Proceedings of the Latvian
459	Academy of Sciences Section B Natural, Exact, and Applied Sciences 2023;77(3-
460	4):153-61. doi: doi:10.2478/prolas-2023-0021
461	5. Babu LK, Shaw S, Ghosh D. Bone mineral metabolism and different indices of skeletal
462	health of Ladakhi women living at high altitude. Osteoporosis and sarcopenia
463	2023;9(4):131-36. doi: 10.1016/j.afos.2023.11.001 [published Online First:
464	2024/02/20]

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

2	
Λ	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
4 5 6 7 8 9 11 12 13 14 15 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 23 24 25 27 28 30 312 33 34 35 36 378 301 323 34 35 36 378 378 378 378 378 378 378 378 378 378 378 378	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33 24	
24 25	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

465	6. Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current
466	status worldwide. European journal of clinical nutrition 2020;74(11):1498-513. doi:
467	10.1038/s41430-020-0558-y [published Online First: 2020/01/22]
468	7. Grzesiak M, Herian M, Kamińska K, et al. Insight into vitamin D(3) action within the ovary-
469	Basic and clinical aspects. Advances in protein chemistry and structural biology
470	2024;142:99-130. doi: 10.1016/bs.apcsb.2024.04.003 [published Online First:
471	2024/07/27]
472	8. Li M, Zhao L, Hu C, et al. Improvement of Lung Function by Micronutrient Supplementation
473	in Patients with COPD: A Systematic Review and Meta-Analysis. <i>Nutrients</i> 2024;16(7)
474	doi: 10.3390/nu16071028 [published Online First: 2024/04/13]
475	9. Nguyen M, Aulick S, Kennedy C. Effectiveness of Vitamin D and Alpha-Lipoic Acid in
476	COVID-19 Infection: A Literature Review. Cureus 2024;16(4):e59153. doi:
477	10.7759/cureus.59153 [published Online First: 2024/05/28]
478	10. Meng J, Liu W, Xiao Y, et al. The role of aspirin versus low-molecular-weight heparin for
479	venous thromboembolism prophylaxis after total knee arthroplasty: a meta-analysis of
480	randomized controlled trials. International journal of surgery (London, England)
481	2023;109(11):3648-55. doi: 10.1097/js9.000000000000656 [published Online First:
482	2023/08/14]
483	11. Meng J, Li X, Xiao Y, et al. Intensive or liberal glucose control in intensive care units for
484	septic patients? A meta-analysis of randomized controlled trials. Diabetes &
485	metabolic syndrome 2024;18(5):103045. doi: 10.1016/j.dsx.2024.103045 [published
486	Online First: 2024/05/27]

60

BMJ Open

2		
3 4	487	12. Shah K, Varna VP, Sharma U, et al. Does vitamin D supplementation reduce COVID-19
5		
6 7	488	severity?: a systematic review. QJM : monthly journal of the Association of Physicians
8		
9 10	489	2022;115(10):665-72. doi: 10.1093/qjmed/hcac040 [published Online First:
11 12 13	490	2022/02/16]
14 15	491	13. Kümmel LS, Krumbein H, Fragkou PC, et al. Vitamin D supplementation for the treatment
16 17 18	492	of COVID-19: A systematic review and meta-analysis of randomized controlled trials.
19 20	493	<i>Frontiers in immunology</i> 2022;13:1023903. doi: 10.3389/fimmu.2022.1023903
21		
22	494	[published Online First: 2022/11/18]
23		
24 25	495	14. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated
25	т <i>)</i> 5	The Trage way working a bassay Trim, et al. The Tritowick 2020 statement. All apadied
20		
28	496	guideline for reporting systematic reviews. International journal of surgery (London,
29		
30	497	<i>England)</i> 2021;88:105906. doi: 10.1016/j.ijsu.2021.105906 [published Online First:
31	497	
32		
33	498	2021/04/02]
34		
35	499	15. Maghbooli Z, Sahraian MA, Jamalimoghadamsiahkali S, et al. Treatment With 25-
36	177	To: Magnoodin 2, Canraian Wry, Cannaintogradantolanian C, St al. Troatmont With 20
37		
38	500	Hydroxyvitamin D(3) (Calcifediol) Is Associated With a Reduction in the Blood
39		
40	501	Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients
41	201	
42		
43	502	With COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-
44		
45	503	Blinded Clinical Trial. Endocrine practice : official journal of the American College of
46	000	
47 48		
40	504	Endocrinology and the American Association of Clinical Endocrinologists
50		
51	505	2021;27(12):1242-51. doi: 10.1016/j.eprac.2021.09.016 [published Online First:
52		
53	505	0004/40/40]
54	506	2021/10/16]
55		
56	507	16. Murai IH, Fernandes AL, Sales LP, et al. Effect of a Single High Dose of Vitamin D3 on
57		
58	500	
59	508	Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A

BMJ Open

1

1 2		
3 4 5	509	Randomized Clinical Trial. <i>Jama</i> 2021;325(11):1053-60. doi:
6 7	510	10.1001/jama.2020.26848 [published Online First: 2021/02/18]
8 9 10	511	17. Singh A, Rastogi A, Puri GD, et al. Therapeutic high-dose vitamin D for vitamin D-deficient
11 12 13	512	severe COVID-19 disease: randomized, double-blind, placebo-controlled study
14 15	513	(SHADE-S). Journal of public health (Oxford, England) 2024;46(2):256-66. doi:
16 17 18	514	10.1093/pubmed/fdae007 [published Online First: 2024/01/31]
19 20 21	515	18. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in
22 23	516	randomised trials. BMJ (Clinical research ed) 2019;366:I4898. doi: 10.1136/bmj.I4898
24 25 26	517	[published Online First: 2019/08/30]
27 28	518	19. Borenstein M. How to understand and report heterogeneity in a meta-analysis: The
29 30 31	519	difference between I-squared and prediction intervals. Integrative medicine research
32 33 34	520	2023;12(4):101014. doi: 10.1016/j.imr.2023.101014 [published Online First:
35 36	521	2024/06/28]
37 38 39	522	20. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of
40 41	523	evidence. Journal of clinical epidemiology 2011;64(4):401-6. doi:
42 43 44	524	10.1016/j.jclinepi.2010.07.015 [published Online First: 2011/01/07]
45 46 47	525	21. Bychinin MV, Klypa TV, Mandel IA, et al. Effect of vitamin D3 supplementation on cellular
47 48 49	526	immunity and inflammatory markers in COVID-19 patients admitted to the ICU.
50 51 52	527	Scientific reports 2022;12(1):18604. doi: 10.1038/s41598-022-22045-y [published
53 54	528	Online First: 2022/11/05]
55 56 57	529	22. Cervero M, López-Wolf D, Casado G, et al. Beneficial Effect of Short-Term
58 59	530	Supplementation of High Dose of Vitamin D(3) in Hospitalized Patients With COVID-
60		25

BMJ Open

1 2		
3 4 5	531	19: A Multicenter, Single-Blinded, Prospective Randomized Pilot Clinical Trial.
6 7 8	532	<i>Frontiers in pharmacology</i> 2022;13:863587. doi: 10.3389/fphar.2022.863587
9 10	533	[published Online First: 2022/07/22]
11 12 13	534	23. De Niet S, Trémège M, Coffiner M, et al. Positive Effects of Vitamin D Supplementation in
14 15 16	535	Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-
17 18	536	Controlled Trial. Nutrients 2022;14(15) doi: 10.3390/nu14153048 [published Online
19 20 21	537	First: 2022/07/28]
22 23	538	24. Dilokpattanamongkol P, Yan C, Jayanama K, et al. Impact of vitamin D supplementation
24 25 26	539	on the clinical outcomes of COVID-19 pneumonia patients: a single-center
27 28 29	540	randomized controlled trial. BMC complementary medicine and therapies
30 31	541	2024;24(1):97. doi: 10.1186/s12906-024-04393-6 [published Online First: 2024/02/22]
32 33 34	542	25. Domazet Bugarin J, Dosenovic S, Ilic D, et al. Vitamin D Supplementation and Clinical
35 36	543	Outcomes in Severe COVID-19 Patients-Randomized Controlled Trial. Nutrients
37 38 39	544	2023;15(5) doi: 10.3390/nu15051234 [published Online First: 2023/03/12]
40 41 42	545	26. Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation
43 44	546	for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study).
45 46 47	547	Postgraduate medical journal 2022;98(1156):87-90. doi: 10.1136/postgradmedj-2020-
48 49	548	139065 [published Online First: 2020/11/14]
50 51 52	549	27. Soliman AR, Abdelaziz TS, Fathy A. Impact of Vitamin D Therapy on the Progress
53 54 55	550	COVID-19: Six Weeks Follow-Up Study of Vitamin D Deficient Elderly Diabetes
56 57	551	Patients. PROCEEDINGS OF SINGAPORE HEALTHCARE doi:
58 59 60	552	10.1177/20101058211041405
		26

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

4	553	28. Meng J, Li X, Liu W, et al. The role of vitamin D in the prevention and treatment of SARS-
4	554	CoV-2 infection: A meta-analysis of randomized controlled trials. Clinical nutrition
5	555	<i>(Edinburgh, Scotland)</i> 2023;42(11):2198-206. doi: 10.1016/j.clnu.2023.09.008
4	556	[published Online First: 2023/10/07]
4	557	29. Shetty AJ, Banerjee M, Prasad TN, et al. Do vitamin D levels or supplementation play A
4	558	role in COVID-19 outcomes?-a narrative review. Annals of palliative medicine
4	559	2024;13(1):162-77. doi: 10.21037/apm-23-113 [published Online First: 2023/12/21]
4	560	30. Bogomaz V, Shatylo S. Vitamin D as a predictor of negative outcomes in hospitalized
4	561	COVID-19 patients: An observational study. Canadian journal of respiratory therapy :
4	562	CJRT = Revue canadienne de la therapie respiratoire : RCTR 2023;59:183-89. doi:
4	563	10.29390/001c.87408 [published Online First: 2023/10/02]
4	564	31. di Filippo L, Terenzi U, Di lenno G, et al. Novel protective circulating miRNA are
4	565	associated with preserved vitamin D levels in patients with mild COVID-19
4	566	presentation at hospital admission not progressing into severe disease. Endocrine
4	567	2024 doi: 10.1007/s12020-024-03900-6 [published Online First: 2024/06/10]
5	568	32. Mingiano C, Picchioni T, Cavati G, et al. Vitamin D Deficiency in COVID-19 Patients and
5	569	Role of Calcifediol Supplementation. <i>Nutrients</i> 2023;15(15) doi: 10.3390/nu15153392
4	570	[published Online First: 2023/08/12]
2	571	33. Wang Q, Tang X, Lv X, et al. Age at menarche and risk of ovarian hyperstimulation
4	572	syndrome in women undergoing IVF/ICSI cycles: a retrospective cohort study. BMJ
4	573	open 2024;14(2):e076867. doi: 10.1136/bmjopen-2023-076867 [published Online
4	574	First: 2024/02/17]

BMJ Open

2		
3 4 5	575	34. Yang YY, Shi LX, Li JH, et al. Piperazine ferulate ameliorates the development of diabetic
6 7 8	576	nephropathy by regulating endothelial nitric oxide synthase. Molecular medicine
9 10	577	reports 2019;19(3):2245-53. doi: 10.3892/mmr.2019.9875 [published Online First:
11 12 13	578	2019/01/22]
14 15 16	579	35. Tang L, Xiang Q, Xiang J, et al. A variant in the 3'-untranslated region of the MC2R gene
17 18	580	decreases the risk of schizophrenia in a female Han Chinese population. The Journal
19 20 21	581	of international medical research 2021;49(7):3000605211029504. doi:
22 23	582	10.1177/03000605211029504 [published Online First: 2021/07/17]
24 25 26	583	36. Chen Y, Chen L, Zhou Q. Genetic association between eNOS gene polymorphisms and
27 28 29	584	risk of carotid atherosclerosis : A meta-analysis. <i>Herz</i> 2021;46(Suppl 2):253-64. doi:
30 31	585	10.1007/s00059-020-04995-z [published Online First: 2020/10/24]
32 33 34	586	37. Yu T, Xu B, Bao M, et al. Identification of potential biomarkers and pathways associated
35 36 37	587	with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics
38 39	588	study. Frontiers in endocrinology 2022;13:981100. doi: 10.3389/fendo.2022.981100
40 41 42	589	[published Online First: 2022/10/04]
43 44	590	38. Aburto S, Cisterna M, Acuña J, et al. Obesity as a Risk Factor for Severe COVID-19 in
45 46 47	591	Hospitalized Patients: Epidemiology and Potential Mechanisms. Healthcare (Basel,
48 49 50	592	Switzerland) 2022;10(10) doi: 10.3390/healthcare10101838 [published Online First:
51 52	593	2022/10/28]
53 54 55	594	39. Tadayon Najafabadi B, Rayner DG, Shokraee K, et al. Obesity as an independent risk
56 57	595	factor for COVID-19 severity and mortality. The Cochrane database of systematic
58 59 60	596	reviews 2023;5(5):Cd015201. doi: 10.1002/14651858.Cd015201 [published Online
		28

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

First: 2023/05/24] 40. Ubah CS, Kearney GD, Pokhrel LR. Asthma May Not be a Potential Risk Factor for Severe COVID-19 Illness: A Scoping Review. Environmental health insights 2024;18:11786302231221925. doi: 10.1177/11786302231221925 [published Online First: 2024/01/08] 41. Klimek L, Hagemann J, Huppertz T, et al. COVID-19 and chronic rhinosinusitis: management and comorbidity - what have we learned? Expert review of clinical immunology 2023;19(11):1399-406. doi: 10.1080/1744666x.2023.2244673 [published Online First: 2023/08/08] 42. Mac C, Cheung K, Alzoubi T, et al. The Impact of Comorbidities among Ethnic Minorities on COVID-19 Severity and Mortality in Canada and the USA: A Scoping Review. Infectious disease reports 2024;16(3):407-22. doi: 10.3390/idr16030030 [published Online First: 2024/05/28] 43. Song Y, Yao L, Li S, et al. Psoriasis comorbidity management in the COVID era: a 2023;14:1294056. pressing challenge. Frontiers in microbiology doi: 10.3389/fmicb.2023.1294056 [published Online First: 2023/11/29] 44. Chen Y, Zhong T, Song X, et al. Maternal anaemia during early pregnancy and the risk of neonatal outcomes: a prospective cohort study in Central China. BMJ paediatrics open 2024;8(1) doi: 10.1136/bmjpo-2023-001931 [published Online First: 2024/01/18] 45. Xia Y, Huang CX, Li GY, et al. Meta-analysis of the association between MBOAT7 rs641738, TM6SF2 rs58542926 and nonalcoholic fatty liver disease susceptibility. Clinics and research in hepatology and gastroenterology 2019;43(5):533-41. doi:

BMJ Open

1 2		
3		
4	619	10.1016/j.clinre.2019.01.008 [published Online First: 2019/03/03]
5		
6 7	620	46. Heaney RP. Guidelines for optimizing design and analysis of clinical studies of nutrient
8		
9	621	effects. Nutrition reviews 2014;72(1):48-54. doi: 10.1111/nure.12090 [published
10	021	
11	622	Online First: 2013/12/18]
12 13	022	Online First. 2013/12/16
13	(2)	
15	623	47. Pilz S, Trummer C, Theiler-Schwetz V, et al. Critical Appraisal of Large Vitamin D
16		
17	624	Randomized Controlled Trials. <i>Nutrients</i> 2022;14(2) doi: 10.3390/nu14020303
18 19		
20	625	[published Online First: 2022/01/22]
21		
22	626	48. Meng J, Li X, Xiong Y, et al. The role of vitamin D in the prevention and treatment of
23		
24 25	627	tuberculosis: a meta-analysis of randomized controlled trials. Infection 2024 doi:
25	027	
27	(29	40 4007/245040 024 02446 - Invitighed Online First 2024/44/201
28	628	10.1007/s15010-024-02446-z [published Online First: 2024/11/29]
29		
30 31	629	49. Balla M, Merugu GP, Konala VM, et al. Back to basics: review on vitamin D and
32		
33	630	respiratory viral infections including COVID-19. Journal of community hospital internal
34		
35	631	medicine perspectives 2020;10(6):529-36. doi: 10.1080/20009666.2020.1811074
36 37		
38	632	[published Online First: 2020/11/17]
39		
40	633	50. Charan J, Goyal JP, Saxena D, et al. Vitamin D for prevention of respiratory tract
41 42		
42 43	634	infections: A systematic review and meta-analysis. Journal of pharmacology &
44	054	intections. A systematic review and meta-analysis, bound of pharmacology a
45	(25	ntermeenthereneuting 2012;2(4);200.2 dai: 10.4102/0076.500; 102605. Inviblighted
46	635	pharmacotherapeutics 2012;3(4):300-3. doi: 10.4103/0976-500x.103685 [published
47		
48 49	636	Online First: 2013/01/18]
50		
51	637	51. Prietl B, Treiber G, Pieber TR, et al. Vitamin D and immune function. Nutrients
52		
53 54	638	2013;5(7):2502-21. doi: 10.3390/nu5072502 [published Online First: 2013/07/17]
54 55		
56	639	52. Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, et al. Efficacy and Safety of
57		
58	640	Vitamin D Supplementation to Prevent COVID-19 in Frontline Healthcare Workers. A
59 60		
		20

Page 32 of 54

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

	641	Randomized Clinical Trial. Archives of medical research 2022;53(4):423-30. doi:
	642	10.1016/j.arcmed.2022.04.003 [published Online First: 2022/04/30]
)	643	53. Battersby AJ, Kampmann B, Burl S. Vitamin D in early childhood and the effect on
2	644	immunity to Mycobacterium tuberculosis. Clinical & developmental immunology
, 5	645	2012;2012:430972. doi: 10.1155/2012/430972 [published Online First: 2012/07/26]
5 7 8	646	54. Walker VP, Modlin RL. The vitamin D connection to pediatric infections and immune
)	647	function. <i>Pediatric research</i> 2009;65(5 Pt 2):106r-13r. doi:
2 3	648	10.1203/PDR.0b013e31819dba91 [published Online First: 2009/02/05]
1 5	649	55. Mailhot G, White JH. Vitamin D and Immunity in Infants and Children. Nutrients 2020;12(5)
5 7 3	650	doi: 10.3390/nu12051233 [published Online First: 2020/05/01]
) 	651	56. van den Heuvel EG, Lips P, Schoonmade LJ, et al. Comparison of the Effect of Daily
2	652	Vitamin D2 and Vitamin D3 Supplementation on Serum 25-Hydroxyvitamin D
1 5 5	653	Concentration (Total 25(OH)D, 25(OH)D2, and 25(OH)D3) and Importance of Body
7 3	654	Mass Index: A Systematic Review and Meta-Analysis. Advances in nutrition
) 	655	<i>(Bethesda, Md)</i> 2024;15(1):100133. doi: 10.1016/j.advnut.2023.09.016 [published
<u>2</u> 3 1	656	Online First: 2023/10/22]
5	657	57. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3
7 3 9	658	supplementation in raising serum 25-hydroxyvitamin D status: a systematic review
)	659	and meta-analysis. The American journal of clinical nutrition 2012;95(6):1357-64. doi:
<u>-</u> 3 1	660	10.3945/ajcn.111.031070 [published Online First: 2012/05/04]
5	661	58. Loucera C, Peña-Chilet M, Esteban-Medina M, et al. Real world evidence of calcifediol or
3	662	vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of
)		

BMJ Open

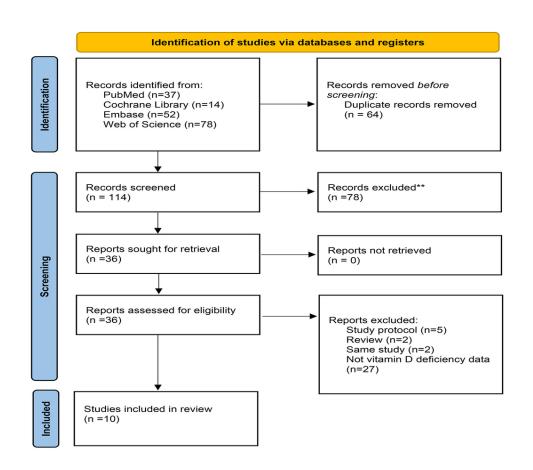
2		
3		
4	663	hospitalized Andalusian patients. <i>Scientific reports</i> 2021;11(1):23380. doi:
5		
6	664	10.1038/s41598-021-02701-5 [published Online First: 2021/12/05]
7	004	10. 1030/34 1330-02 1-02 / 01-3 [published Offiline First. 202 1/ 12/03]
8		
9	665	59. Nielsen NM, Junker TG, Boelt SG, et al. Vitamin D status and severity of COVID-19.
10	000	
11		
12	666	Scientific reports 2022;12(1):19823. doi: 10.1038/s41598-022-21513-9 [published
13		
14		
15	667	Online First: 2022/11/18]
16		
17	668	60. Kow CS, Ramachandram DS, Hasan SS, et al. The impact of vitamin D administration on
18	008	be. Now Co, Namachandram Do, Hasan Co, et al. The impact of vitamin D administration on
19		
20	669	mortality in COVID-19 patients: a systematic review and meta-analysis of randomized
21		
22	670	controlled trials. Inflammopharmacology 2024;32(5):3205-12. doi: 10.1007/s10787-
23		
24	(71	004 04504 0 Easthlight of Opling First, 0004/00/001
25	671	024-01564-2 [published Online First: 2024/09/03]
26		
27	672	61. Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? The lancet
28	072	
29		
30	673	<i>Diabetes & endocrinology</i> 2020;8(7):570. doi: 10.1016/s2213-8587(20)30183-2
31		
32		
33	674	[published Online First: 2020/05/24]
34		
35	675	62. Tebben PJ, Singh RJ, Kumar R. Vitamin D-Mediated Hypercalcemia: Mechanisms,
36	075	02. Tebberi FJ, Singri KJ, Kumai K. Vitamin D-mediated Typercalcemia. Mechanisms,
37		
38	676	Diagnosis, and Treatment. <i>Endocrine reviews</i> 2016;37(5):521-47. doi:
39		
40		
41	677	10.1210/er.2016-1070 [published Online First: 2016/09/03]
42		
	(70	62. Zittermann A. Trummer O. Theiler Colourte Mart all Learn term and classes to the 2000
43	678	63. Zittermann A, Trummer C, Theiler-Schwetz V, et al. Long-term supplementation with 3200
44		
45	679	to 4000 IU of vitamin D daily and adverse events: a systematic review and meta-
46	017	
47		
48	680	analysis of randomized controlled trials. European journal of nutrition
49		
50	60.4	
51	681	2023;62(4):1833-44. doi: 10.1007/s00394-023-03124-w [published Online First:
52		
53	607	2023/03/01]
54	682	
55		
56	683	
57	000	
58		
59	684	
60		
		20

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

> Table1. Characteristic of included randomized controlled trials

Figure1. Flowchart of literature search


Figure2. Vitamin D supplementation versus no vitamin D supplementation on mortality during follow-up, 28-day mortality, need for mechanical ventilation and

- need for ICU admission.
- Figure3. Vitamin D supplementation versus no vitamin D supplementation on length
- of stay in ICU and hospital.
- Figure4.Subgroup analysis of mortality during follow-up.

Study	Count	Severit	Intervention	Contr	Definiti	Follow-up
	ry	y of COVI D-19	group	ol group	on of Vitami n D deficie	· · · · F
					ncy	
Bugarin2023	Croati a	Severe COVI D-19	10,000 IU of cholecalcife rol daily during ICU stay	Stand ard care	<20ng/ ml	3 months
Bychinin2022	Russia	Severe COVI D-19	60,000 IU of cholecalcife rol once/ 7days followed by	Placeb o	<20ng/ ml	During hospitaliz tion
		e.	daily maintenanc e doses of 5000 IU. The high dose repeated on day 8, 16, 24, 32.			
Cervero2022	Spain	NA	10,000 IU of cholecalcife rol daily for 14 days	Stand ard care	<30ng/ ml	28 days
Dilokpattanamongk ol2024	Thaila nd	NA	2 mcg of alfacalcidol daily during the hospitalizati on	ard care	<20ng/ ml	During hospitalization
Maghbooli2021	Iran	NA	3000-6000 IU per day of vitamin D3 for 30 days	Placeb o	<30ng/ ml	2 months
Murai2021	Brazil	Moder ate to severe COVI D-19	Single dose of 200,000 IU of vitamin D3	Placeb o	<20ng/ ml	4 months
Niet2022	Belgiu	NA	25,000 IU	Placeb	<20ng/	9 weeks

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Rastogi2022	m	NA	of vitamin D3 per day over 4 consecutive days, followed by 25,000 IU per week up to 6 weeks Daily 60000 IU of cholecalcife rol for 7 days, and a weekly	o Placeb o	ml <20ng/ ml	3 weeks
		Per	supplement ation of 60000IU provided to those with 25(OH)D > 50 ng/ml or else continued on daily vitamin D 60,000 IU supplement ation for another 7 days up			
Singh2024	India	Severe	until day 14Asingledoseof60,000IUofcholecalciferol	Placeb o	<10 ng/ml	During hospitaliza tion
Soliman2022	Egypt	Moder ate to severe COVI D-19	200.000 units intramuscul arly once as a single dose	placeb o	<20ng/ ml	6 weeks

90x90mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 50	

60

1

Outcomes		f events/total Standard care	Risk ratio (95%	% CI)	Weight(%)	Risk ratio (95% CI)	Certainty o the evidenc
Mortality during follo	w-up						
Bugarin 2023	30/75	39/77			44.55	0.79 (0.55,1.13)	
Bychinin 2022	19/52	27/54			28.02	0.73 (0.47,1.14)	
Cervero 2022	1/41	1/44			▶ 0.74	1.07 (0.07,16.60)	
Maghbooli 2021	3/53	5/53			▶ 2.94	0.60 (0.15,2.38)	
Murai 2021	4/57	1/58			▶ 1.2	4.07 (0.47,35.31)	
Niet 2022	4/23	3/22			▶ 2.97	1.40 (0.35,5.51)	Moderate
Rastogi 2022	0/16	0/24			▶ 0.77	1.50 (0.10,22.29)	
Singh 2024	11/45	20/45 -	e		15.08	0.55 (0.30,1.01)	
Soliman 2021	7/40	3/16 —	· · ·		▶ 3.74	0.93 (0.28,3.17)	
Total	79/400	99/393			100	0.76 (0.60,0.97)	
I-V method, I ² =0.0%, J	p=0.783						
Mortality in hospital (or 28d						
Bugarin2023	23/75	27/77	_		61.19	0.87 (0.55,1.38)	
Cervero2022	1/41	1/44			→ 1.7	1.07 (0.07,16.6)	
Niet2022	4/57	1/58			→ 2.73	4.07 (0.47,35.31)	Moderate
Singh2024	11/45	20/75 -			34.38	0.55 (0.30,1.01)	
Total	39/218	49/224			100	0.78(0.55,1.38)	
I-V method, I ² =21.2%,	p=0.283					()	
Need for mechanical	ventilation						
Bychinin2022	33/52	37/54	_	_	92,87	0.93 (0.70,1.22)	
Maghbooli2021	2/53	5/53	•		2.75	0.40 (0.08,1.97)	
Murai2021	4/57	5/58			→ 4.38	0.81 (0.23,2.88)	Moderate
Total	39/162	47/165			100	0.90 (0.69,1.17)	
I-V method, $I^2 = 0.0\%$, j							
Need for ICU							
Cervero2022	1/41	5/49			- 6.82	0.24 (0.03,1.96)	
Maghbooli2021	6/53	10/63 -			33,95	0.71 (0.28,1.83)	
Murai2021	11/57	9/67			→ 46.44	1.44 (0.64,3.22)	Moderate
Niet2022	2/21	5/27		-	12.8	0.51 (0.11,2.39)	moderate
Total	20/172	29/206			100	0.88 (0.51,1.52)	
I-V method, $I^2 = 15.4\%$,		107 m JU			100	5.00 (0.51,1.52)	
- v methou, 1 -13.470,	p=0.515	0	0.5 1	1.5	2		

90x90mm (300 x 300 DPI)

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14	
15 16 17 18	
19 20 21 22	
23 24 25	
26 27 28 29	
30 31 32 33	
34 35 36 37	
38 39 40	
41 42 43 44	
45 46 47 48	
49 50 51 52	
53 54 55	
56 57 58	

60

Outcomes		D)/Total Standard care	Mean difference	(95% CI)	Weight(%)	Mean difference (95% CI)	Certainty of the evidence
Length of stay in ICU							
Bugarin2023	13(8.15)/75	19(8.89)/77	• _		17.22	-0.70 (-1.03,-0.38)	
Bychinin2022	15.5(10.37)/52	8(9.63)/54			16.92	0.75 (0.36,1.14)	
Cervero2022	7(2.96)/41	7(3.7)/44		_	16.77	0.00 (-0.43,0.43)	
Maghbooli2021	7(1.75)/53	11(2.75)/53 ←	•		16.65	-1.74 (-2.18,-1.29)	Low
Niet2022	4(4.2)/21	12.4(14.3)/22			15.61	-0.79 (-1.41,-0.17)	
Singh2024	10(3.7)/45	10(6.67)/45		_	16.83	0.00 (-0.41,0.41)	
Total					100	-0.41 (-1.09,0.28)	
D-L method, 1 ² =93.6%, p<	0.001						
Length of stay inhospital							
Bugarin2023	19(8.74)/75	18(9.63)/77		_	27.54	-0.11 (-0.21,0.43)	
Bychinin2022	20.5(13.33)/52	14.5(9.63)/54	-		26.3	0.52 (0.13,0.90)	
Dilokpattanamongkol2024	9(10.5)/44	9(5)/33		_	25.06	0.00 (-0.45,0.45)	Low
Niet2022	4(2.22)/21	8(4.44)/22	-		21.1	-1.13 (-1.78,-0.49)	
Total			\bullet	•	100	-0.07 (-0.61,0.46)	
D-L method, 1 ² =83.8%, p<	0.001	-2	0		2		
			Favours Vitmain D	Favours Standard care			

90x90mm (300 x 300 DPI)

Page 40 of 54

1	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
20	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 37 38 38 37 38 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 38 37 38 37 38 38 37 38 38 38 37 38 38 37 38 38 37 38 38 38 37 38 38 37 38 38 37 38 38 37 38 38 38 37 38 38 38 38 38 38 38 38 38 38	
22	
23	
24	
25	
26	
2/	
20 29	
30	
31	
32	
33	
34	
35	
37	
38	
39	
40	
41	
42	
43 44	
44	
46	
47	
48	
49	
50 51	
51	
53	
54	
55	
56	
57	
58	

59

60

1

Subgroup analysis	Number of studies	Risk ratio (95% CI)	Risk ratio (95% CI)	Test of group difference
Severity of COVID-19				
Severe	3	— B ——	0.72 (0.56,0.93)	
Moderate to severe	2		1.33 (0.46,3.86)	0.48
Others	4		→ 0.93 (0.37,2.34)	
Supplement frequency				
Daily	6		0.78 (0.60,1.02)	0.00
Single dose	3		0.68 (0.40,1.16)	0.66
Degree of vitamin D defi	ciency			
<30ng/ml	2		→ 0.67 (0.20,2.31)	
<20ng/ml	6		0.81 (0.62,1.06)	0.5
<10ng/ml	1		0.55 (0.30,1.01)	
Development level of cou	ntry			
Developing	7		0.74 (0.58,0.95)	0.27
Developed	2		→ 1.32 (0.39,4.52)	0.37
Risk of bias				
Low risk	4		0.81 (0.61,1.05)	0.20
Some concerns	5		10.62 (0.38,1.02)	0.39
Samlpe size				
<20	2		→ 0.93 (0.28,3.17)	0.67
>20	7		0.75 (0.59,0.96)	0.67
		0 0.5 1 1.5	2	
		Favours Vitmain D Favours Standard c:		

90x90mm (300 x 300 DPI)

	Supplement	
1.	Search strategy	Page2-4
2.	eTable1. Risk of bias of included studies	Page5-6
3.	eTable2. Quality of evidence	Page7
4.	eFigure1. Leave-one-out on mortality during follow-up	Page8
5.	eFigure2. Trial sequential analysis on mortality during follow-up	Page9
6.	eFigure3-8 Funnel plot	Page10-15

to beet terien only

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Search strategy

PubMed

1 2 3

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18 19

20

21

22

23 24

25

26

27 28

29

30

31

32 33

34

35

36 37

38

39

40

41 42

43

44

45 46 47

48

49 50

51

52

53

54 55

56

57

58 59

60

1. "COVID-19" [Mesh] OR "COVID-19" [tiab] OR "COVID 19" [tiab] OR "2019nCoV Infection" [tiab] OR "2019 nCoV Infection" [tiab] OR "2019-nCoV Infections" [tiab] OR "Infection, 2019-nCoV" [tiab] OR "SARS-CoV-2 Infection" [tiab] OR "Infection, SARS-CoV-2" [tiab] OR "SARS CoV 2 Infection" [tiab] OR "SARS-CoV-2 Infections" [tiab] OR "2019 Novel Coronavirus Disease" [tiab] OR "2019 Novel Coronavirus Infection" [tiab] OR "COVID-19 Virus Infection" [tiab] OR "COVID 19 Virus Infection" [tiab] OR "COVID-19 Virus Infections" [tiab] OR "Infection, COVID-19 Virus" [tiab] OR "Virus Infection, COVID-19" [tiab] OR "COVID19" [tiab] OR "Coronavirus Disease 2019" [tiab] OR "Disease 2019, Coronavirus" [tiab] OR "Coronavirus Disease-19" [tiab] OR "Coronavirus Disease 19" [tiab] OR "Severe Acute Respiratory Syndrome Coronavirus 2 Infection" [tiab] OR "COVID-19 Virus Disease" [tiab] OR "COVID 19 Virus Disease" [tiab] OR "COVID-19 Virus Diseases" [tiab] OR "Disease, COVID-19 Virus" [tiab] OR "Virus Disease, COVID-19" [tiab] OR "SARS Coronavirus 2 Infection" [tiab] OR "2019nCoV Disease" [tiab] OR "2019 nCoV Disease" [tiab] OR "2019-nCoV Diseases" [tiab] OR "Disease, 2019-nCoV" [tiab] OR "COVID-19 Pandemic" [tiab] OR "COVID 19 Pandemic" [tiab] OR "Pandemic, COVID-19" [tiab] OR "COVID-19 Pandemics" [tiab]

2. "Vitamin D"[Mesh] OR "vitamin D"[tiab] OR "vitamin D3"[tiab] OR "vit D"[tiab] OR "calciferol"[tiab] OR "cholecalciferol"[tiab] OR "vit D3"[tiab] OR "calcidiol"[tiab] OR "calcitriol"[tiab] OR "25 hydroxyvitamin d"[tiab] OR "25 hydroxyvitamin D3"[tiab] OR "25 hydroxycalciferol"[tiab] OR "1,25 dihydroxyvitamin OR "1.25 dihydroxyvitamin D"[tiab] D3"[tiab] OR "calcifediol"[tiab]

3. Deficiency[tiab]

4. "Mortality"[tiab] OR "Mechanical ventilation"[tiab] OR "Intensive care unit"[tiab] OR "Length of stay"[tiab]

5. ((compar*[tiab]) OR ((singl*[tiab] or doubl*[tiab] or tripl*[tiab]) and (mask*[tiab] or blind*[tiab]))) OR (random*[tiab] or placebo[tiab] or controlled[tiab] or trial*[tiab])

6. #1 AND #2 AND #3 AND #4 AND \$5

Cochrane Library

- 1. MeSH descriptor: [COVID-19] explode all trees
- (COVID-19 OR COVID 19 OR 2019 nCoV Infection OR SARS-CoV-2 Infection OR Infection, SARS-CoV-2 OR SARS CoV 2 Infection OR SARS-CoV-2 Infections OR 2019 Novel Coronavirus Disease OR 2019 Novel Coronavirus Infection OR COVID-19 Virus Infection OR COVID 19 Virus Infection OR COVID-19 Virus Infections OR Infection, COVID-19 Virus OR Virus Infection, COVID-19 OR COVID19 OR Coronavirus Disease 2019 OR Disease 2019, Coronavirus OR Coronavirus Disease-19 OR Coronavirus Disease 19 OR Severe Acute Respiratory Syndrome Coronavirus 2 Infection OR

COVID-19 Virus Disease OR COVID 19 Virus Disease OR COVID-19 Virus Diseases OR Disease, COVID-19 Virus OR Virus Disease, COVID-19 OR SARS Coronavirus 2 Infection OR 2019 nCoV Disease OR COVID-19 Pandemic OR COVID 19 Pandemic OR Pandemic, COVID-19 OR COVID-19 Pandemics):ti,ab

- 3. #1 OR #2
- 4. MeSH descriptor: [Vitamin D] explode all trees
- (vitamin D OR vitamin D3 OR vit D OR vit D3 OR calciferol OR cholecalciferol OR calcidiol OR calcitriol OR 25 hydroxyvitamin d OR 25 hydroxyvitamin D3 OR 25 hydroxycalciferol OR 1,25 dihydroxyvitamin D OR 1,25 dihydroxyvitamin D3 OR calcifediol):ti,ab
- 6. #4 OR #5
- 7. (Deficiency):ti,ab
- 8. (mortality or mechanical ventilation or intensive care unit):ti,ab
- 9. ((compar*) OR ((singl* or doubl* or tripl*) and (mask* or blind*))) OR (random* or placebo or controlled or trial*):ti,ab
- 10. #3 AND #6 AND #7 AND #8 AND #9

Embase

- 1. 'coronavirus disease 2019'/exp
- ((Covid-19) OR (Covid 19) OR (2019-nCoV Infection) OR (SARS-CoV-2 Infections)):ti,ab

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

- 3. #1 OR #2
- 4. 'vitamin d'/exp
- ((vitamin D) OR (vitamin D3) OR (25 hydroxycalciferol) OR (1,25 dihydroxyvitamin D3)):ti,ab
- 6. #4 OR #5
- 7. (Deficiency):ti,ab
- 8. (mortality or mechanical ventilation or intensive care unit):ti,ab
- 9. compar* OR ((singl* OR doubl* OR tripl*) AND (mask* OR blind*))
 OR random*:ti,ab OR placebo:ti,ab OR controlled:ti,ab OR trial*:ti,ab

10. #3 AND #6 AND #7 AND #8 AND #9

Web of Science

- TS=(COVID-19 OR COVID 19 OR 2019-nCoV Infection OR 2019 nCoV Infection OR 2019-nCoV Infections OR Infection, 2019-nCoV OR SARS-CoV-2 Infection OR Infection, SARS-CoV-2 OR SARS CoV 2 Infection OR SARS-CoV-2 Infections OR 2019 Novel Coronavirus Disease OR 2019 Novel Coronavirus Infection OR COVID-19 Virus Infection OR COVID 19 Virus Infection OR COVID-19 Virus Infections OR Infection, COVID-19 Virus OR Virus Infection, COVID-19 OR COVID19 OR Coronavirus Disease 2019 OR Disease 2019, Coronavirus OR Coronavirus Disease-19 OR Coronavirus Disease 19 OR Severe Acute Respiratory Syndrome Coronavirus 2 Infection OR COVID-19 Virus Disease OR COVID 19 Virus Disease OR COVID-19 Virus Diseases OR Disease, COVID-19 Virus OR Virus Disease, COVID-19 OR SARS Coronavirus 2 Infection OR 2019-nCoV Disease OR 2019 nCoV Disease OR 2019-nCoV Diseases OR Disease, 2019-nCoV OR COVID-19 Pandemic OR COVID 19 Pandemic OR Pandemic, COVID-19 OR COVID-19 Pandemics)
 - TS= (vitamin D OR vitamin D3 OR vit D OR vit D3 OR calciferol OR cholecalciferol OR calcidiol OR calcitriol OR 25 hydroxyvitamin d OR 25 hydroxyvitamin D3 OR 25 hydroxycalciferol OR 1,25 dihydroxyvitamin D OR 1,25 dihydroxyvitamin D3 OR calcifediol)
- 3. TS= (Deficiency)

- 4. TS= (mortality or mechanical ventilation or intensive care unit)
- 5. TS=(((compar*) OR ((singl* or doubl* or tripl*) and (mask* or blind*))) OR (random* or placebo or controlled or trial*))

iez oni

6. #1 AND #2 AND #3 AND #4 AND #5

Outcome	D1	D2	D3	D4	D5	Over bias
Study: Buga	rin2023					
Mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low
during follow up						
28-day mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low
Length of stay in	Low risk	Some concerns	Low risk	Low risk	Low risk	Som conc
ICU						
Length of stay in	Low risk	Some concerns	Low risk	Low risk	Low risk	Som conc
hospital						
Study: Bych	inin2022	6				
Mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low
during follow up						
Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low
mechanical ventilation						
Length of	Low risk	Low risk	Low risk	Low risk	Low risk	Low
stay in ICU						
Study: Cerve	ero2022					
Mortality	Low risk	Low risk	Low risk	Low risk	Some	Som
during follow up					concerns	conc
28-day mortality	Low risk	Low risk	Low risk	Low risk	Some concerns	Som
	Low risk	Some	Low risk	Low risk	Some	Som
stay in ICU		concerns			concerns	conc
Study: Dilok	pattanamon	gkol2024				
~	Low risk	Some	Low risk	Low risk	Low risk	Som
stay in		concerns				conc
hospital						
Study: Magl	nbooli2021					
Mortality	Low risk	Low risk	Low risk	Low risk	Some	Som
during					concerns	conc
follow up						
Need for	Low risk	Low risk	Low risk	Low risk	Some	Som
mechanical					concerns	conc
ventilation						
Need for	Low risk	Low risk	Low risk	Low risk	Some	Som
ICU					concerns	conc
admission						

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Length of	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
stay in ICU						
Study: Mura	ui2021					
Mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
during						
follow up						
Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
mechanical						
ventilation						
Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
ICU						
admission						
Study: Niet2		T 1	T • 1	T 1	T • 1	
Mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
during						
follow up	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
28-day	LOW IISK	LOW IISK	LOW IISK	LOW IISK	LOW IISK	LOW IIS
mortality Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
ICU	LOW HSK	LOW IISK	LOW IISK	LOW IISK	LOW IISK	
admission						
Length of	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
stay in						
ICU						
Length of	Low risk	Low risk	Low risk	Low risk	Low risk	Low ris
stay in						
hospital						
Study: Rasto		•				
Mortality	Low risk	Low risk	Low risk	Some	Low risk	Some
during				concerns		concern
follow up						
Study: Singl					6	
Mortality	Low risk	Low risk	Low risk	Low risk	Some	Some
during					concerns	concern
follow up						
28-day	Low risk	Low risk	Low risk	Low risk	Some	Some
mortality					concerns	concern
Length of	Low risk	Low risk	Low risk	Low risk	Some	Some
stay in					concerns	concern
ICU	2021					
Study: Solin		т • 1	T 1	T 1	0	
Mortality	Some	Low risk	Low risk	Low risk	Some	Some
during	concerns				concerns	concern
follow up						

D2: Deviations from the intended interventions

D3: Missing outcome data

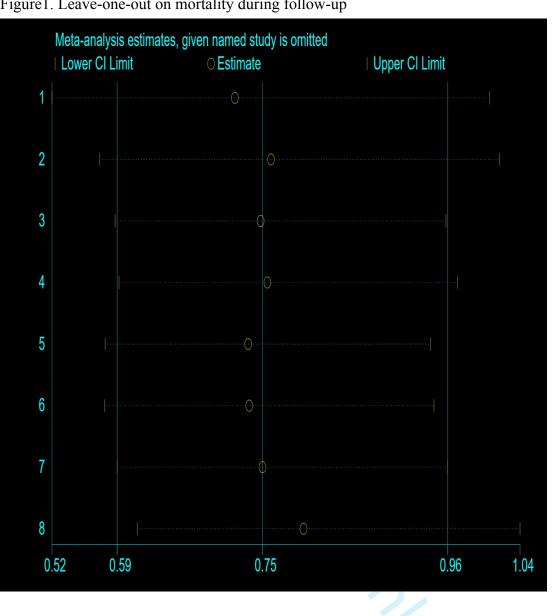
D4:	Measurement	of the	outcome

D5: Selection of the reported result

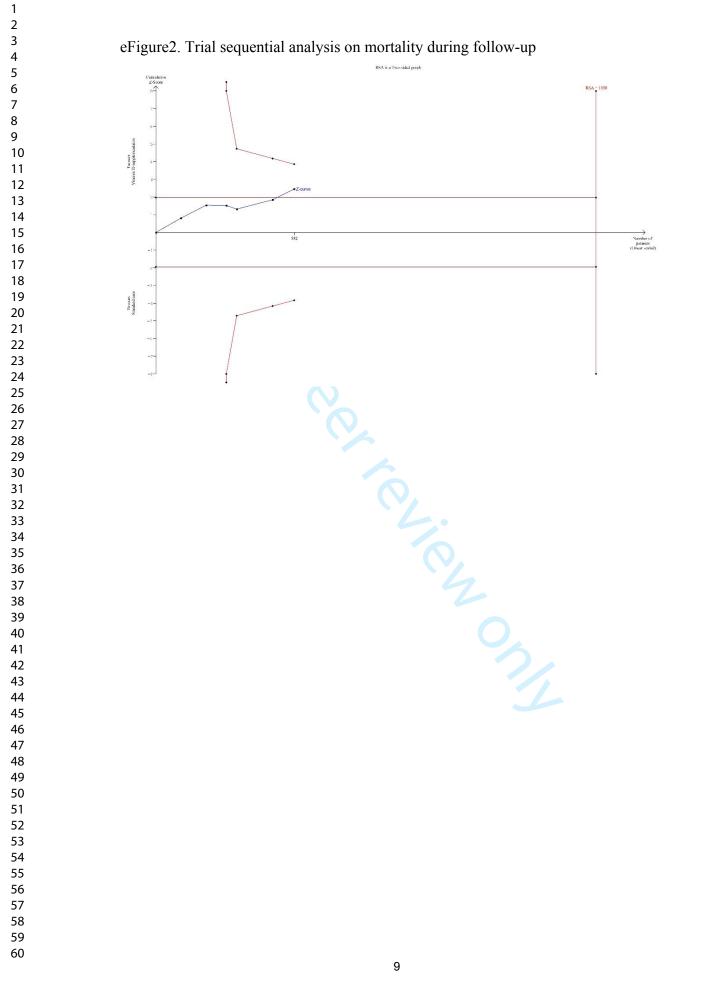
eTable2

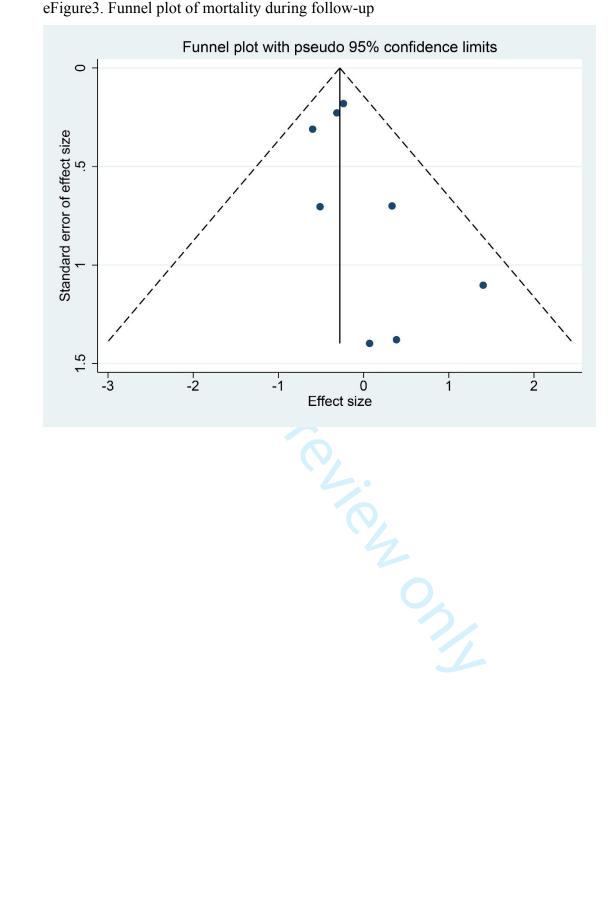
e l'able2.							1	
Outcom es	No. of particip ants (No. of trials)	Risk ratio (95%CI)	Mean differe nce (95%C I)	Risk of bias ^a	Inconsiste ncy ^b	Imprecis ion ^c	Smal l stud y effec ts ^d	Certai nty of eviden ce
Mortali ty during follow- up	737 (8)	0.76 (0.59,0. 96)		Not Dow n grad ed	Not down graded	Down graded	Not dow n grad ed	Moder ate
28-day mortalit y	442 (4)	0.79 (0.49,1. 26)		Not Dow n grad ed	Not down graded	Down graded	Not dow n grad ed	Moder ate
Need for mechan ical ventilat ion	327 (3)	0.90 (0.69,1. 17)	, C	Not Dow n grad ed	Not down graded	Down graded	Not dow n grad ed	Moder ate
Need for ICU admissi on	349 (4)	0.84 (0.45,1. 56)		Not dow n grad ed	Not down graded	Down graded	Not dow n grad ed	Moder ate
Length of stay in ICU	582 (6)		-0.41 (- 1.09,0. 28)	Not Dow n grad ed	Down graded	Down graded	Not dow n grad ed	Low
Length of stay in hospital	378 (4)		-0.07 (- 0.61,0. 46)	Not dow n grad ed	Down graded	Down graded	Not dow n grad ed	Low

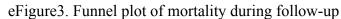
Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

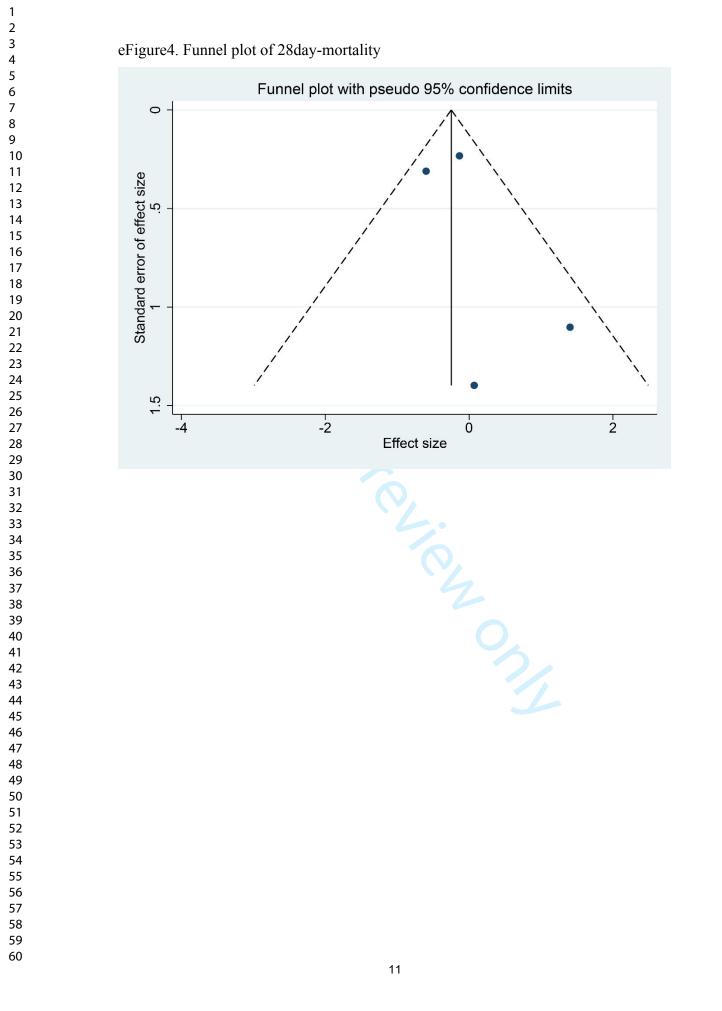

ICU, intensive care unit

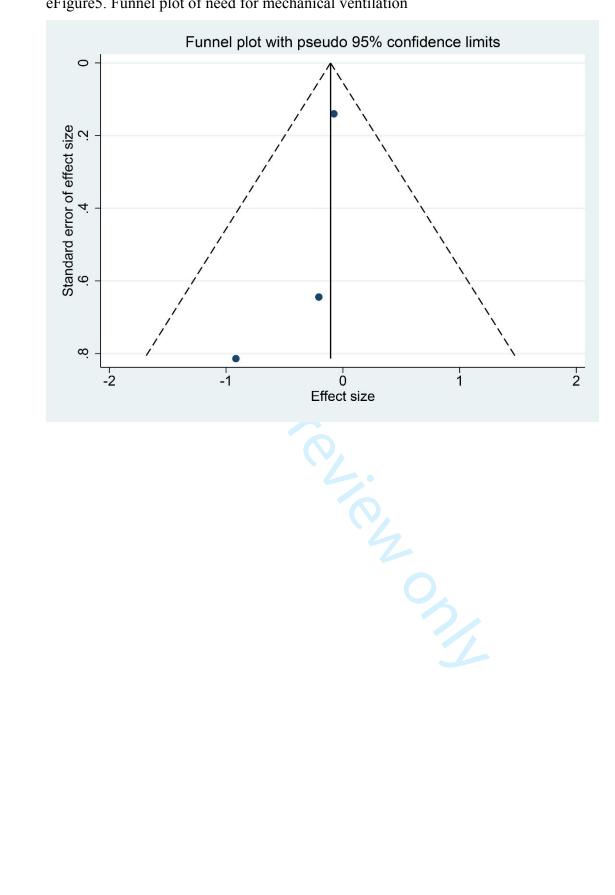
^a Downgraded by one level because >25% of participants in this comparison were from studies at high risk of bias.

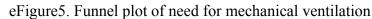

^b Downgraded by one level because heterogeneity $(I^2) > 50\%$.

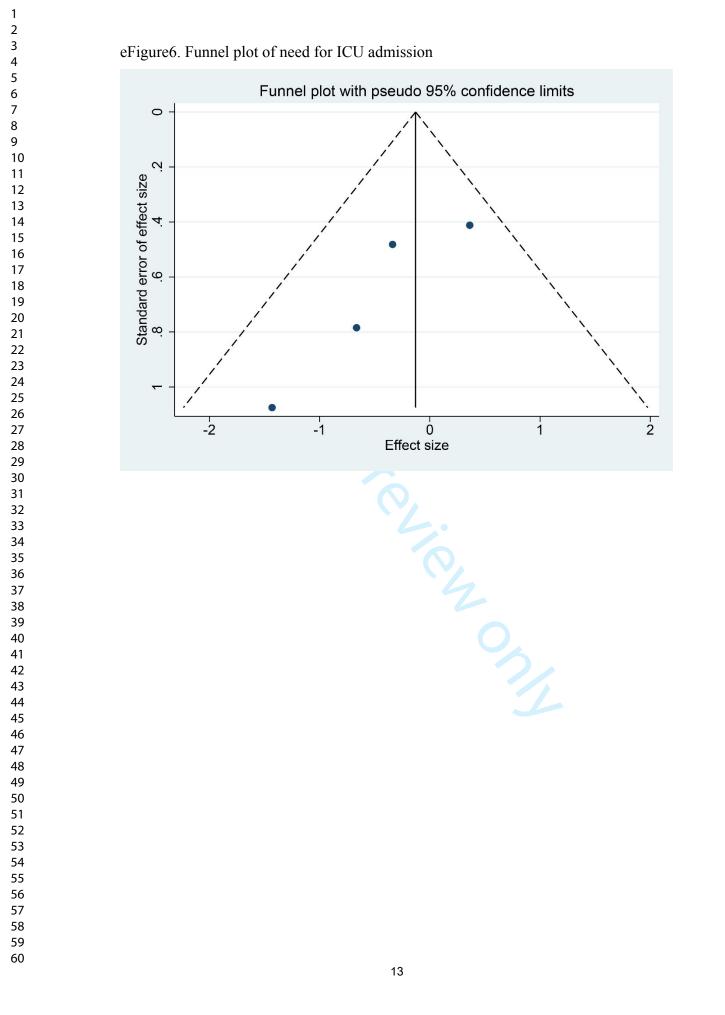

^c Downgraded by one level because the limits of the 95% confidence interval were 20% different to the point estimates.

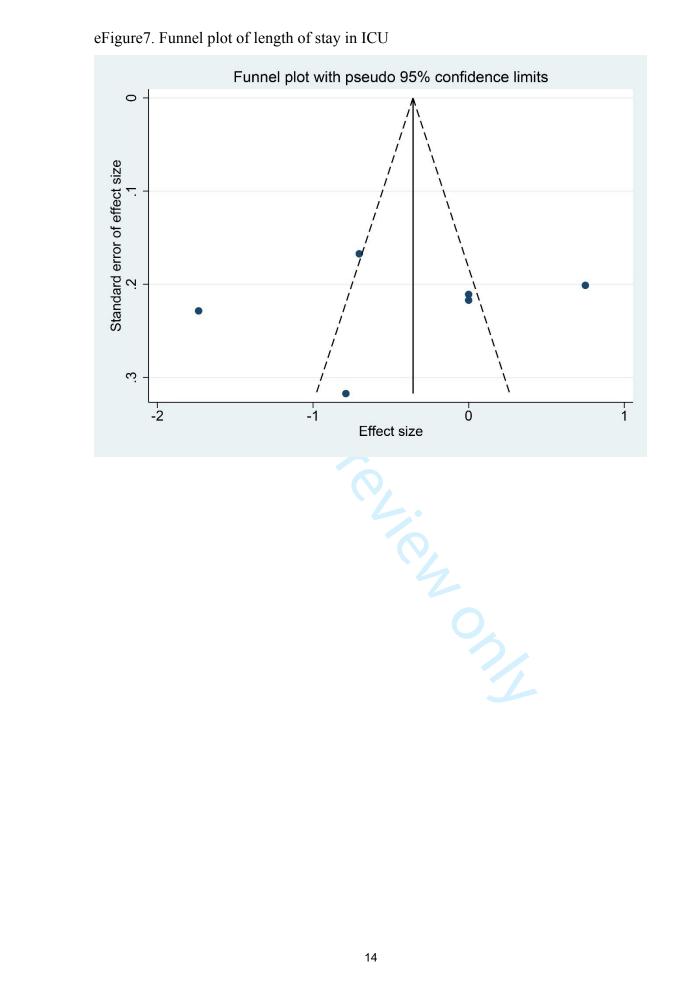

^D Downgraded by one level owing to small study bias.

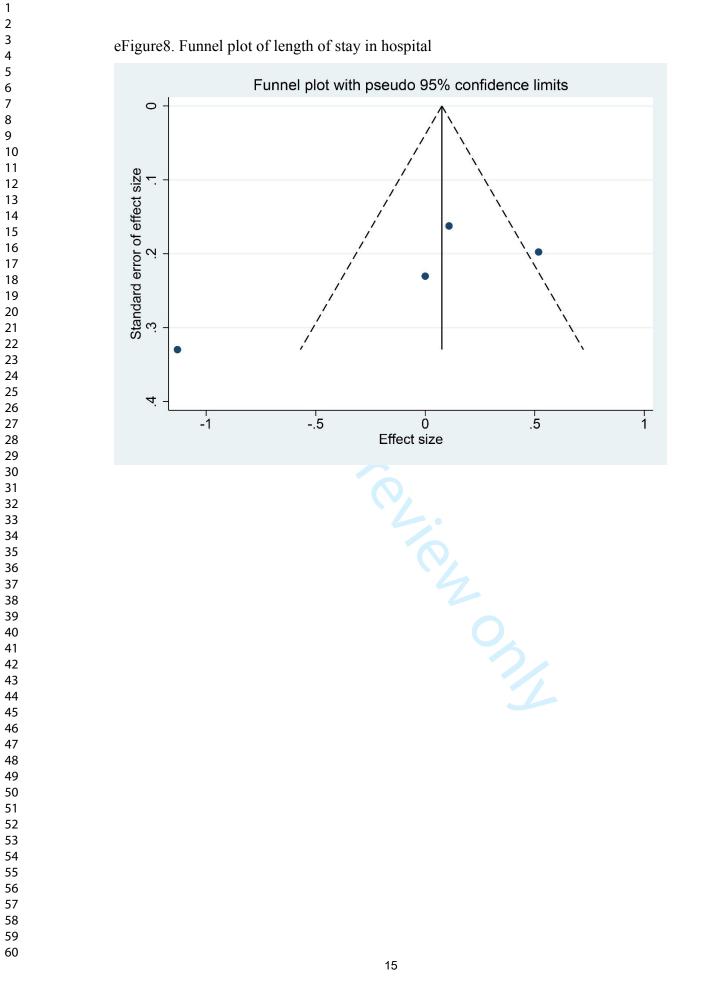



Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.









Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Vitamin D Supplementation for Managing COVID-19 in Patients with Vitamin D Deficiency: A systematic review and Meta-analysis of Randomized Controlled Trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-091903.R2
Article Type:	Original research
Date Submitted by the Author:	14-Mar-2025
Complete List of Authors:	Zhu, Lemei; Changsha Medical University Zhang, Yuan; Changsha Medical University Li, Xi; Changsha Medical University Zou, Xuemin; Changsha Medical University Bing, Pingping; Changsha Medical University Qi, Mingxu; University of South China, Department of Cardiovascular Medicine He, Binsheng; Changsha Medical University
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Global health
Keywords:	COVID-19, Meta-Analysis, NUTRITION & DIETETICS, Health

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

1	Vitamin D Supplementation for Managing COVID-19 in Patients with Vitamin
2	D Deficiency : A systematic review and Meta-analysis of Randomized Controlled
3	Trials
4	Lemei Zhu ^{1,2} , Yuan Zhang ¹ , Xi Li ^{1,2} , Xuemin Zou ^{1,2} , Pingping Bing ^{1*} , Mingxu Qi ^{3*} ,
5	Binsheng He ^{1*}
6	1. Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical
7	Preparations, Changsha Medical University, Changsha, 410219, China.
8	2. School of Public Health, Changsha Medical University, Changsha, 410219, China.
9	3. Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of
10	South China, Hengyang, 421001, China
11	
12	
13	Corresponding Author:
14	Pingping Bing, Hunan Key Laboratory of the Research and Development of Novel
15	Pharmaceutical Preparations, Changsha, 410219, China. (Email: bpping@163.com)
16	Mingxu Qi, Department of Cardiovascular Medicine, Affiliated Nanhua Hospital,
17	University of South China, Hengyang, 421001, China. (Email: qimingxuqi@163.com)
18	Binsheng He, Hunan Key Laboratory of the Research and Development of Novel
19	Pharmaceutical Preparations, Changsha, 410219, China. (Email: hbscsmu@163.com)

BMJ Open

1 2		
- 3 4 5	20	Abstract
	21	Objectives Vitamin D deficiency is prevalent among population. Previous studies
	22	have shown that vitamin D supplementation might be useful for treating COVID-19
	23	infection. Therefore, we performed a meta-analysis to explore vitamin D
	24	supplementation efficacy in treating COVID-19 patients with vitamin D deficiency.
	25	Design Systematic review and meta-analysis
	26	Data sources PubMed, Cochrane Library, Embase and Web of Science.
	27	Eligibility Criteria Randomized controlled trials exploring vitamin D
	28	supplementation for patients with COVID-19 and vitamin D deficiency.
	29	Data extraction and synthesis Two independent reviewers employed standardized
	30	methods to search, screen, and code the included studies. The primary outcomes
	31	included mortality during follow-up, 28-day mortality, need for mechanical
	32	ventilation and intensive care unit (ICU). The secondary outcome included length of
	33	stay in hospital and ICU. The risk of bias was assessed using the Risk of Bias 2 tool.
	34	Depending on the level of heterogeneity, either a random-effects model or a fixed-
	35	effects model was applied. The findings were summarized using GRADE evidence
	36	profiles and synthesized qualitatively.
	37	Results A total of nine studies, comprising 870 participants, were included in the
	38	analysis. The pooled results indicated that vitamin D supplementation was associated
	39	with a lower risk of mortality (Risk ratio 0.76; 95% CI 0.60 to 0.97). However, this
	40	apparent benefit was not robust when examined through the leave-one-out method,
	41	and trial sequential analysis. Regarding other outcomes, there was no statistically
60		2

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

significant difference between vitamin D supplementation and no supplementation in
terms of 28-day mortality, the need for mechanical ventilation and ICU admission.
Vitamin D supplementation was associated with a 0.41-day shorter length of stay in
the ICU (Mean difference -0.41; 95%CI -1.09 to 0.28) and a 0.07-day shorter length
of stay in the hospital (Mean difference -0.07; 95%CI -0.61 to 0.46) compared to no
supplementation; however, neither difference was statistically significant.

Conclusion Based on evidence of low to moderate quality, vitamin D 49 supplementation reduced the mortality rate during follow-up in COVID-19 patients 50 with vitamin D deficiency. However, it did not improve 28-day mortality, nor did it 51 reduce the need for mechanical ventilation and ICU admission, or the length of stay in 52 the ICU and hospital.

54 Keywords: Vitamin D supplementation; Vitamin D deficiency; COVID-19; Meta-

- 55 analysis; Trial sequential analysis

1 2	
3 4 58 5	Strengths and limitations of this study
6 7 59	• This meta-analysis of RCTs was conducted and reported in accordance with the
8 9 60 10	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
11 12 61 13	(PRISMA) checklist.
14 62 15	• A comprehensive literature search was performed across multiple databases to
16 17 63 18	identify relevant studies.
19 20 64 21	• Rigorous inclusion criteria were applied to ensure the quality and relevance of
²¹ 22 23 65	studies.
24 25 66 26	• Trial sequential analysis and sensitivity analysis were used to assess the statistical
27 28 67	robustness of the results.
29 30 68 31	• The number of studies included was limited, with only nine RCTs and relatively
32 33 69	small sample sizes, which may affect the generalizability of the results.
34 35 70 36 37 38 39 40 41 42 43 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

71 Introduction

COVID-19, caused by the SARS-CoV-2 virus, is a highly transmissible and
potentially severe respiratory illness that has resulted in a global pandemic, affecting
millions of people worldwide with varying morbidity and mortality rates¹².

Vitamin D, a steroid hormone derived from cholesterol, plays a significant role in regulating the expression of various genes, including those in immune cells³. In hospitalized COVID-19 patients, vitamin D also showed anti-inflammatory effects⁴. Vitamin D deficiency is widespread across the globe; for example, 40% of the European population is reported to lack sufficient vitamin D, and vitamin D deficiency is also common in high-altitude regions such as Nepal, the Andes, and Tibet⁵ ⁶. Maintaining appropriate levels of vitamin D is essential for optimal respiratory immune function^{3 7-11}. Despite this, the precise impact of vitamin D supplementation on preventing and treating COVID-19 remains a topic of debate. According to a systematic review, vitamin D supplementation can significantly reduce the severity of COVID-19 infection, as measured by outcomes such as hospitalization rates, the need for mechanical ventilation, and mortality, suggesting its use as a supplementary treatment for COVID-19¹². In contrast, a 2021 meta-analysis that included eight randomized controlled trials (RCTs) found that vitamin D supplementation did not enhance clinical outcomes in patients infected with SARS-CoV-2¹³. Recently, a meta-analysis conducted by Meng et al. explored the role of vitamin D in the prevention and treatment of SARS-CoV-2 infection. Their results suggested that vitamin D supplementation may have some beneficial impact on the

Page 7 of 55

BMJ Open

93 severity of illness caused by SARS-CoV-2, particularly in vitamin D deficient 94 patients. Although they specifically analyzed patients with vitamin D deficiency, the 95 studies they included were limited, and the analysis focused solely on mortality as the 96 outcome. Moreover, they did not perform comprehensive subgroup analyses, such as 97 based on the severity of vitamin D deficiency.

Amrein et al. raised another important point, namely that vitamin D is clearly not a cure-all and is likely effective only when there is a deficiency⁶. To comprehensively investigate the role of vitamin D supplementation in these patients, we conducted a meta-analysis of randomized controlled trials to determine whether vitamin D supplementation improves clinical outcomes (mortality during follow-up, 28-day mortality, need for mechanical ventilation and ICU and length of stay in hospital and ICU) in COVID-19 patients with vitamin D deficiency. Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

106 Methods

107 This meta-analysis of RCTs was reported in accordance with the Preferred Reporting
108 Items for Systematic Reviews and Meta-analysis (PRISMA) checklist¹⁴. The study
109 protocol was registered on PROSPERO (CRD42024573791).

110 Search strategy and selection criteria

A comprehensive literature search was conducted on June 1, 2024 across several
databases including PubMed, Cochrane Library, Embase, and Web of science with
Mesh terms and broad search terms. We also manually searched the reference lists of
relevant review articles. After completing the initial research, we conducted the same

Page 8 of 55

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

search again to include the latest published studies. The detailed search strategy was provided in the appendix. The retrieved literature was imported into EndNote X9. After removing duplicate references, it was assessed for eligibility by two reviewers. Based on the PICO principle, the inclusion criteria we applied are as follows: P: COVID-19 patients with vitamin D deficiency; I: standard care plus vitamin D supplementation; C: standard care; O: mortality rate, need for mechanical ventilation or ICU admission, length of stay in ICU and hospital. Exclusion criteria were: non-randomized controlled trials, and studies for which full text could not be retrieved. The definition of vitamin D deficiency was according to previous studies^{6 15-17}. Any disputes will be resolved through discussion. **Data extraction** A comprehensive data extraction form was developed based on the guidelines outlined in the Cochrane Handbook for Systematic Reviews of Interventions. The form was piloted on a subset of the included studies before extracting the following data: author details, participant characteristics, intervention details (type, duration, frequency, and other details), primary and secondary outcomes, follow-up times. The consistency between data extractors was measured using the Kappa value. Any disputes will be resolved through discussion.

135 Quality assessment

Potential sources of bias in RCTs were assessed using Risk of Bias 2 (Rob2), a revised tool for assessing the risk of bias in randomized trials¹⁸. Rob2 encompasses five key domains: 1. Randomization process;2. Deviations from intended interventions;3. Missing outcome data;4. Measurement of the outcome;5. Selection of the reported result. Within each domain, bias was evaluated and categorized as either low risk, some concerns, or high risk, depending on the circumstances and relevant evidence. Ultimately, the overall bias of each study was classified as either low risk, some concerns, or high risk, based on the comprehensive assessment of bias across the five domains. When there was a discrepancy in the assessment results for a certain domain, the outcome was resolved through discussion.

Outcomes

The primary outcomes were mortality during follow up and 28-day mortality. The secondary outcomes included need for mechanical ventilation and ICU admission, length of stay in hospital and ICU. Mortality during follow-up refers to the deaths that occurred during the follow-up period in each study. Since the follow-up durations vary across studies, the time frame for mortality during follow-up is not consistent. 28-day mortality specifically refers to the mortality rate from the start of the study up to day 28. Need for mechanical ventilation and ICU admission refers to patients who initially did not require mechanical ventilation or ICU admission but received mechanical ventilation or were admitted to the ICU during the study. Length of stay in hospital and ICU refers to the duration of hospitalization and ICU stay for patients who received different treatments.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

158 Statistical analysis

Dichotomous variables were presented as event numbers and total numbers, with combined outcomes expressed as Risk Ratio (RR) with 95% Confidence Intervals (CIs). Continuous variables were presented as mean and standard deviation, with combined outcomes expressed as Mean Difference (MD) with 95% Confidence Intervals (CIs). The choice of analysis model was based on the level of heterogeneity. If $I^2 \ge 50\%$, heterogeneity was considered significant, and the DerSimonian-Laird method combined with a random-effects model was used for analysis. If $I^2 < 50\%$, no significant heterogeneity was assumed, and the Inverse-variance method combined with a fixed-effects model was used for analysis¹⁹. Subgroup analysis according to different characteristics (severity of COVID-19, vitamin D supplementation, definition of vitamin D deficiency, and so on) was conducted on mortality during follow-up. Sensitivity analysis was performed using the leave-one-out method. A funnel plot was generated to subjectively assess publication bias, and Egger's test was also conducted to objectively test for publication bias; if p > 0.05, no significant publication bias was assumed. In this study, trial sequential analysis was performed using Trial Sequential Analysis software (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet) (http://ctu.dk/tsa/). The meta-analysis was performed using Stata (STATA Corporation, Texas, USA) (https://www.stata.com/stata17/). The quality of evidence was assessed by GRADE guidelines²⁰.

Patient and public involvement

None.	
Results	
Literature search	
A total of 659 studies were initially found across all databases, with 71 identified as	Prot
duplicates. After screening titles and abstracts, 552 studies were excluded. The	ected b
remaining 36 studies were then assessed for full text. Ultimately, 10 studies ^{15-17 21-27}	у соруг
met the inclusion criteria and were included in the analysis (Figure1).	ight, in
Baseline study characteristics	cluding
A total of 10 studies ^{15-17 21-26} , encompassing 870 participants, were included. The	En for use
vitamin D dosage ranged from 3,000 IU to 200,000 IU. Three studies used a single	s relate
high dose of vitamin D supplementation, while seven studies employed a continuous	d to tex
dosing regimen. Seven studies defined vitamin D deficiency as <20 ng/ml, two	aperieur trand d
studies as <30 ng/ml, and one study as <10 ng/ml. Additionally, two studies focused	ata min
on severe COVID-19, and two studies examined moderate to severe COVID-19 cases	ing, Al
(Table1).	Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.
Quality assessment	, and si
We evaluated the outcomes reported in the studies. We found that among the twenty-	milar te
eight relevant outcomes, fourteen were classified as low risk and fourteen as having	chnolo
some concerns. For example, the study by Soliman et al. did not provide detailed	gies.
information on the randomization method, which raised concerns about the	c
randomization process. In the studies by Singh et al. and others, vitamin D deficiency	c
10	-

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

was defined as <10 ng/ml, while Cervero et al. and Maghbooli et al. defined
deficiency as <30 ng/ml, which differed from the commonly accepted definition of
deficiency. Therefore, these studies also carried an overall risk of bias. The detailed
distribution of bias is shown in eTable1.

206 The Kappa value, used to estimate the equivalence of data extraction in this study,207 was 0.86.

208 Mortality

Nine studies reported the mortality during follow-up. The pooled result showed that
the risk of death in the vitamin D group was 24% lower than in the nonsupplementation group (RR 0.76; 95%CI 0.60 to 0.97) (Figure2).

To assess the vitamin D's role in reducing hospitalization mortality, we analyzed 28day mortality. The pooled result showed that the risk of mortality was 21% lower in the vitamin D group, but this difference was not statistically significant (RR 0.78; 95%CI 0.55 to 1.38) (Figure2).

216 Need for ICU admission and mechanical ventilation

Three studies reported on the need for mechanical ventilation, and the pooled results
showed the need for mechanical ventilation was 10% lower in the vitamin D group,
but this difference was not statistically significant (RR 0.90; 95%CI 0.69 to 1.17)
(Figure2).

Four studies reported on the need for ICU admission, and the pooled results showed the need for requiring ICU care was 12% lower in the vitamin D group, but this difference was not statistically significant (RR 0.88; 95%CI 0.51 to 1.52) (Figure2).

BMJ Open

224	Length of stay in ICU and hospital
225	Six studies reported on the length of stay in the ICU, and the pooled results showed

the average length of ICU stay was 0.41 days shorter in the vitamin D group, but this
difference was not statistically significant (MD -0.41 days; 95%CI -1.09 to 0.28).

Four studies reported on the length of stay in the hospital, and the pooled results showed the average hospital stay was 0.07 days shorter in the vitamin D group, but this difference was also not statistically significant (MD -0.07 days; 95%CI -0.61 to

231 0.46) (Figure3).

232 Subgroup analysis

Considering the limited number of included studies, we performed a subgroup analysis only on mortality during follow-up. Considering that participants' responses to vitamin D may vary due to differences in the severity of COVID-19, supplementation frequency, degree of vitamin D deficiency, development level of the country, risk of bias, and sample size across studies, we performed subgroup analyses based on these characteristics (Figure 4). There were no statistically significant group differences within any of the subgroups, so these results do not support an effect of the aforementioned characteristics on vitamin D.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

241 Sensitivity analysis

242 Sensitivity analysis was performed on morality during follow-up by leave-one-out243 method and trail sequential analysis.

244 Sensitivity analysis was performed on mortality during follow-up using the leave-one-

out method and trial sequential analysis (eFigure 1).

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Using the leave-one-out method, we found that excluding the studies by Burgarin et al., Bychinin et al.²¹, Maghbooli et al.¹⁵, and Singh et al.¹⁷ resulted in no statistically significant difference between vitamin D supplementation and no vitamin D supplementation. This suggests that the result was not robust.

We also performed a trial sequential analysis on mortality during follow-up. With 80% power, the pooled result showed no statistically significant difference (RR 0.74; α -spending adjusted CI 0.46 to 1.19). The required sample size (RSA) was determined to be 1874 (eFigure2).

Publication bias

We plotted funnel plots for the aforementioned outcomes (eFigure3-8). However, due to the limited number of included studies, there is a considerable risk of bias when evaluating the symmetry of the funnel plots. To more objectively assess publication bias, we also performed Egger's test. The p-values for Egger's test for the above outcomes were all greater than 0.05, indicating no significant evidence of publication bias.

261 Grade assessment

The quality of evidence for the above outcomes ranged from very low to moderate (eTable2). Specifically, the quality of evidence was moderate for mortality during follow-up, 28-day mortality, need for mechanical ventilation, and need for ICU admission. In contrast, the quality of evidence was low for length of stay in ICU and length of stay in hospital.

268 Discussion

Our study comprehensively explored the efficacy of vitamin D in treating COVID-19 patients with vitamin D deficiency. We found that vitamin D supplementation could reduce mortality during follow-up. However, this result should be interpreted with caution for the following reasons. Firstly, the leave-one-out method showed that nearly half of the studies could change the conclusion, indicating that the result was not robust. Secondly, in the subgroup analysis, most groups showed no statistically significant difference between vitamin D supplementation and no vitamin D supplementation. This may be due to the limited number of studies included in the subgroup analysis, which may not accurately reflect the true effect. Thirdly, trial sequential analysis revealed no statistically significant difference between vitamin D supplementation and no vitamin D supplementation when adjusted confidence intervals were considered. The analysis also indicated that a larger sample size is needed to determine the true effect of vitamin D.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Regarding other outcomes in our study, vitamin D did not appear to reduce the need for mechanical ventilation and ICU admission or shorten the length of stay in the ICU and hospital. Overall, the efficacy of vitamin D in treating COVID-19 patients with vitamin D deficiency remains inconclusive. Due to the potential exclusion of vulnerable groups and the variability in the definitions of vitamin D deficiency, the interpretation of the results should be made with caution. More studies are needed to explore this further.

In 2023, Meng et al.'s meta-analysis²⁸ explored the efficacy of vitamin D in treating

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

COVID-19. Their results showed that while vitamin D supplementation couldn't reduce mortality, it might be beneficial in reducing the severity of illness caused by SARS-CoV-2, particularly in vitamin D-deficient patients. Additionally, their study indicated that vitamin D supplementation could reduce the need for ICU admission. However, they did not analyze the data based on follow-up time, and new research has since been published. Our study results show that vitamin D supplementation does not reduce the need for ICU admission. Recently, a review also showed that vitamin D deficiency is linked to an increased risk of acquiring SARS-CoV-2 infection and poor COVID-19 prognosis, however, available evidence with regard to improved clinical outcomes with vitamin D supplementation is inconsistent²⁹. Furthermore, whether vitamin D can reduce mortality still requires further exploration. The relationship between vitamin D and COVID-19 has been a subject of extensive

research, with mixed findings regarding its efficacy in preventing or treating the disease. Observational studies that initially suggested a link between low vitamin D levels and worse COVID-19 outcomes may have been confounded by other factors such as age, comorbidities, and socioeconomic status³⁰⁻³⁴. These factors themselves are risk factors for both vitamin D deficiency and severe COVID-19, complicating the interpretation of results³⁵⁻⁴⁰. A number of clinical trials have produced mixed results, with some showing no significant difference in outcomes between those receiving vitamin D supplementation and those who did not⁴¹⁻⁴⁵. This inconsistency suggests that vitamin D may not have a substantial impact on COVID-19 outcomes. Another possible explanation is that the design and interpretation of some studies may be

problematic. It is well known that RCTs for vitamin D should be designed based on the criteria for nutrients, rather than using the pharmaceutical standards applied to drugs. As mentioned in the "Guidelines for optimizing design and analysis of clinical studies of nutrient effects", and as noted by Pilz S et al., designing an appropriate study protocol is key to accurately assessing the impact of vitamin D on health outcomes^{46 47}. Therefore, optimizing the study design is not only crucial for ensuring the reliability of the results, but also determines whether the evaluation of vitamin D intervention reflects its true effects.

The role of vitamin D in regulating the immune system has been extensively studied, especially in the context of viral infections^{48 49}. The onset and severity of COVID-19 are closely linked to the host's immune response, and vitamin D is believed to enhance the immune system's defense through multiple mechanisms⁴⁸. Specifically, vitamin D helps boost the innate immune response by enhancing the function of macrophages, monocytes, and dendritic cells, all of which play crucial roles in antiviral immunity⁴⁹. Additionally, vitamin D regulates T cell differentiation, promoting cell-mediated immune responses against infections, while also suppressing excessive immune reactions, such as cytokine storms, thereby reducing the severity of the COVID-19 disease course⁵⁰.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

The role of vitamin D is particularly critical in the early stages of disease onset⁵¹.
Studies have shown that early intervention can significantly improve immune function
and slow disease progression^{21 52}. For instance, supplementing vitamin D before or at
the early onset of symptoms helps to promptly regulate the immune response and

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

enhance the body's ability to combat the virus⁵³. In contrast, if intervention occurs
later, after symptoms have manifested or during the later stages of the disease, the
effects of vitamin D may be greatly diminished^{54 55}. By this point, the immune system
may already be in a dysregulated state, particularly under the influence of high viral
loads or cytokine storms, making it difficult for vitamin D alone to quickly restore
immune function.

Moreover, using high doses or active forms of vitamin D, such as 25(OH)D (calcidiol), may further enhance its therapeutic effects⁵⁶. 25(OH)D is the active form of vitamin D, and it works more rapidly than regular vitamin D3⁵⁷. High-dose vitamin D interventions have shown promising clinical effects during the early stages of the pandemic⁵⁷. In particular, for high-risk patients, timely high-dose vitamin D supplementation can significantly reduce the risk of disease worsening, especially in populations with low vitamin D levels⁵⁸.

Regarding high-risk groups, those at higher risk of COVID-19-related death include elderly patients, individuals with comorbidities, and patients with serum 25(OH)D concentrations below 20 ng/mL⁵⁹. The immune systems of older adults and those with chronic diseases are generally weaker, and their vitamin D levels are often lower, making them more susceptible to severe complications or death after infection⁶⁰. Additionally, studies have shown that if hospitalized patients have low vitamin D levels, their immune function is impaired, leading to more severe clinical outcomes⁵⁹. Therefore, for these high-risk groups, timely and appropriate vitamin D intervention could be a critical measure to reduce the mortality rate and severity of the COVID-19

disease course⁶¹.

However, it is important to note that vitamin D supplementation may also have potential adverse effects, such as hypercalcemia and hypoparathyroidism, particularly when taken in excessive doses^{62 63}. These adverse effects should be considered when evaluating the overall benefits and risks of vitamin D supplementation, especially in vulnerable populations.

In summary, vitamin D supplementation has the potential to reduce the incidence, severity, and mortality of COVID-19. However, its effectiveness depends on multiple factors, particularly the timing and dosage of intervention. Moreover, factors such as the economic status, sex, and age of patients may serve as effect modifiers that could influence the outcomes, which were not thoroughly analyzed in our study. Future research is needed to further clarify the optimal timing and dosage for vitamin D intervention, and whether personalized treatment plans based on patients' underlying conditions and vitamin D levels are necessary. Furthermore, during the pandemic, it is important to encourage high-risk populations (such as older adults and individuals with chronic diseases) to maintain adequate vitamin D levels to enhance immunity and improve the body's ability to combat COVID-19.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

In this study, we found significant differences in the definition of "vitamin D
deficiency" across studies, which may introduce selection bias. Some studies defined
deficiency as a serum vitamin D level below 30 ng/ml, while others used 20 ng/ml,
which could lead to overdiagnosis or underdiagnosis of vitamin D deficiency.
Specifically, for elderly patients, a higher threshold (e.g., 25 ng/ml) might result in

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

their exclusion from studies, thus affecting the study conclusions. We recommend that
future research adopt standardized definitions of vitamin D deficiency and adjust the
criteria based on patient characteristics (such as age, sex, and comorbidities) to reduce
potential selection bias and misdiagnosis.

Moreover, the variability in vitamin D categorization may impact the assessment of treatment efficacy. Due to the inconsistent standards for defining vitamin D deficiency across studies, some studies may have underestimated the effect of vitamin D on treatment outcomes. To improve the accuracy of results, we suggest that future studies consider individualized vitamin D deficiency criteria based on different population characteristics and further explore the impact of these criteria on treatment efficacy, ensuring that all patients with true vitamin D deficiency are included in the analysis.

However, our study also has other limitations. Firstly, the number of studies included is relatively small, with only nine randomized controlled trials and small sample sizes. Secondly, although there was no significant statistical heterogeneity, clinical heterogeneity among the studies cannot be ignored. The severity of patients' diseases and the frequency and dosage of vitamin D supplementation varied among the studies. To address this, we conducted a subgroup analysis and found that vitamin D supplementation did not reduce mortality in different subgroups. Thirdly, there is a potential risk of publication bias in our study. Although Egger's test did not show significant publication bias, the number of studies included in our analysis is relatively small, so caution is still needed when interpreting the risk of publication

Page 21 of 55

BMJ Open

bias. Lastly, although our conclusions suggest that vitamin D supplementation may
reduce mortality, sensitivity analysis revealed that the conclusions are not reliable.
Therefore, more high-quality research is needed in the future to further explore the
role of vitamin D supplementation in vitamin D deficient COVID-19 patients.

405 Conclusion

This study suggested that vitamin D supplementation might have reduced mortality during follow-up, but no significant difference was observed in mortality at 28 days. Additionally, vitamin D supplementation did not significantly improve the need for mechanical ventilation, ICU admission rate, or reduce hospital and ICU length of stay. While these results indicated that vitamin D might have had some impact on mortality in COVID-19 patients with vitamin D deficiency, the findings should be interpreted cautiously due to variations in the studies and potential selection biases. Future research should focus on high-quality clinical trials, particularly those considering individual differences, study design, and follow-up duration, to draw more reliable and consistent conclusions.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

- - 417 Acknowledgement

We would like to give our sincere gratitude to the reviewers for their constructivecomments.

421 Author Contributions

Page 22 of 55

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BSH was the guarantor of this work. LMZ, PPB, MXQ and BSH: proposed the design, searched the literature, collected, analysed and interpret the data, and wrote the report; LMZ, XMZ, YZ, and XL searched and collected the literature; LMZ, YZ, XMZ, XL and BSH analysed and interpreted the data. Funding The work was supported by the Hunan Provincial Education Commission Foundation (20A056,23A0664,24A0683); The Hunan Provincial Health Commission Foundation (No.202112041226,D202302088596); the Innovation and Entrepreneurship Education Base of Public Health and Preventive Medicine (Hunan Education Bureau Notice 2019 No.333-93); and the Funding by young backbone teachers of Hunan province training program foundation of Changsha Medical University (Hunan Education Bureau Notice 2021 No.29-26, Hunan Education Bureau Notice 2023 No.318-26). **Declaration of competing interest** The authors declare that they have no known competing finical interests or personal relationships with any funding sources that could have appeared to influence the work reported in this paper. **Ethical approval** Ethical approval was not required for this study, since all data came from published articles.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

References

1. Lal A, Erondu NA, Heymann DL, et al. Fragmented health systems in COVID-19: rectifying the misalignment between global health security and universal health coverage. Lancet (London. England) 2021;397(10268):61-67. doi: 10.1016/s0140-6736(20)32228-5 [published Online First: 2020/12/05] 2. Meng J, Tang H, Xiao Y, et al. Appropriate thromboprophylaxis strategy for COVID-19 patients on dosage, antiplatelet therapy, outpatient, and postdischarge prophylaxis: a meta-analysis of randomized controlled trials. International journal of surgery (London, England) 2024;110(6):3910-22. doi: 10.1097/js9.000000000001307 [published Online First: 2024/03/29] 3. Salehi Z, Askari M, Jafari A, et al. Dietary patterns and micronutrients in respiratory infections including COVID-19: а narrative review. BMC public health 10.1186/s12889-024-18760-y [published 2024;24(1):1661. doi: Online First: 2024/06/22] 4. Sauša S, Kistkins S, Krūzmane L, et al. Impact of Vitamin D Therapy on C-Reactive Protein, Ferritin, and IL-6 Levels in Hospitalised Covid-19 Patients. Proceedings of the Latvian Academy of Sciences Section B Natural, Exact, and Applied Sciences 2023;77(3-4):153-61. doi: doi:10.2478/prolas-2023-0021 5. Babu LK, Shaw S, Ghosh D. Bone mineral metabolism and different indices of skeletal health of Ladakhi women living at high altitude. Osteoporosis and sarcopenia 2023;9(4):131-36. 10.1016/j.afos.2023.11.001 doi: [published Online First: 2024/02/20]

BMJ Open

2		
3		
4	467	6. Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current
5		
6	468	status worldwide. European journal of clinical nutrition 2020;74(11):1498-513. doi:
7	400	
8		
9	469	10.1038/s41430-020-0558-y [published Online First: 2020/01/22]
10		
11	170	
12	470	7. Grzesiak M, Herian M, Kamińska K, et al. Insight into vitamin D(3) action within the ovary-
13		
14	471	Basic and clinical aspects. Advances in protein chemistry and structural biology
15		
16		
17	472	2024;142:99-130. doi: 10.1016/bs.apcsb.2024.04.003 [published Online First:
18		
19	473	2024/07/27]
20	775	2024/01/21]
21		
22	474	8. Li M, Zhao L, Hu C, et al. Improvement of Lung Function by Micronutrient Supplementation
23		
24	175	in Patiente with COPD: A Custometic Deview and Mate Analysis, <i>Mutriante</i> 2024/16/7)
25	475	in Patients with COPD: A Systematic Review and Meta-Analysis. <i>Nutrients</i> 2024;16(7)
26		
27	476	doi: 10.3390/nu16071028 [published Online First: 2024/04/13]
28		
29		
30	477	9. Nguyen M, Aulick S, Kennedy C. Effectiveness of Vitamin D and Alpha-Lipoic Acid in
31		
32	478	COVID-19 Infection: A Literature Review. Cureus 2024;16(4):e59153. doi:
33	470	
34		
35	479	10.7759/cureus.59153 [published Online First: 2024/05/28]
36		
37	480	10. Zhang Y, Lian B, Yang S, et al. Metabotropic glutamate receptor 5-related autoimmune
38	400	To. Zhang T, Lian D, Tang S, et al. Metaboliopic glutamate receptor 5-related autoinmune
39		
40	481	encephalitis with reversible splenial lesion syndrome following SARS-CoV-2
41 42		
42	400	Madiate 000000000000000000000000000000000000
43	482	vaccination. <i>Medicine</i> 2023;102(7):e32971. doi: 10.1097/md.000000000032971
44 45		
	483	[published Online First: 2023/02/18]
46		u
47 48		
40 49	484	11. Li XF, Zhang YJ, Yao YL, et al. The association of post-embryo transfer SARS-CoV-2
49 50		
51	485	infection with early pregnancy outcomes in in vitro fertilization: a prospective cohort
52	100	
53		
54	486	study. American journal of obstetrics and gynecology 2024;230(4):436.e1-36.e12. doi:
55		
55 56	487	10 1016/i ajog 2023 12 022 Inubliched Online First: 2022/12/221
57	407	10.1016/j.ajog.2023.12.022 [published Online First: 2023/12/23]
58		
59	488	12. Shah K, Varna VP, Sharma U, et al. Does vitamin D supplementation reduce COVID-19
60		
		24

1

1 2								
3 4 48 5	39	severity?: a syste	matic review	v. QJM : ma	onthly journal of	the Associatic	on of Physi	icians
6 7 49	90	2022;115(10):665	-72. doi:	10.1093/c	jmed/hcac040	[published	Online	First:
8 9 49 10	91	2022/02/16]						
	92 13. Küm	nmel LS, Krumbeii	n H, Fragkoi	u PC, et al.	Vitamin D supp	elementation fo	or the treat	iment
13 14 49 15 49	93	of COVID-19: A s	ystematic re	eview and r	neta-analysis of	f randomized o	controlled t	trials.
16 17 49 18	94	Frontiers in im	munology	2022;13:10	23903. doi: ′	10.3389/fimmu	1.2022.102	3903
19 20 49	95	[published Online	First: 2022/	11/18]				
21 22 49 23	96 14. Pag	je MJ, McKenzie	JE, Bossuy	t PM, et al	The PRISMA	2020 stateme	nt: An upo	dated
24 25 49	97	guideline for repo	orting syster	matic reviev	vs. Internationa	n journal of su	ırgery (Loi	ndon,
26 27 49 28 49	98	<i>England)</i> 2021;88	3:105906. d	loi: 10.1016	6/j.ijsu.2021.105	906 [publishe	d Online	First:
29 30 49	99	2021/04/02]						
31 32 33 50	00 15. Ma	ghbooli Z, Sahra	ian MA, Ja	amalimogha	damsiahkali S,	et al. Treat	ment With	ו 25-
34 35 5(01	Hydroxyvitamin [D(3) (Calcife	ediol) Is A	ssociated With	a Reduction	i in the E	Blood
36 37 38 50)2	Neutrophil-to-Lym	phocyte Ra	itio Marker	of Disease Sev	verity in Hospit	talized Pat	tients
39 40 50	03	With COVID-19:	A Pilot M	lulticenter,	Randomized,	Placebo-Conti	rolled, Do	ouble-
41 42 43 50)4	Blinded Clinical T	rial. <i>Endoci</i>	rine practice	e : official journ	al of the Amer	rican Colle	ege of
44 45 46 50	05	Endocrinology a	and the A	American	Association o	of Clinical E	ndocrinolo	ogists
47		2021;27(12):1242	-51. doi:	10.1016/i.e	orac.2021.09.01	16 [published	Online	First:
49 50		2021/10/16]		, -		Li se		
52		-		D at al Ef	fact of a Single	High Doco of	Vitamin F)3 00
54 55	Jo 10. IVIUI	ai IH, Fernandes	AL, Sales L	P, et al. El	lect of a Single	HIGH DOSE OF		73 ON
56 50 57	09	Hospital Length	of Stay ir	n Patients	With Moderat	e to Severe	COVID-1	9: A
58 59 5 ²	10	Randomized	Clinical	Trial.	<i>Jama</i> 202	21;325(11):10	53-60.	doi:
60				25				

BMJ Open

2		
3		
4	511	10.1001/jama.2020.26848 [published Online First: 2021/02/18]
5 6		
7	512	17. Singh A, Rastogi A, Puri GD, et al. Therapeutic high-dose vitamin D for vitamin D-deficient
8		
9	513	severe COVID-19 disease: randomized, double-blind, placebo-controlled study
10	0.0	
11	E 1 1	(CLIADE C) lowership to althe (Outside England) 2024,46(2),256 66 dai
12 13	514	(SHADE-S). Journal of public health (Oxford, England) 2024;46(2):256-66. doi:
13 14		
15	515	10.1093/pubmed/fdae007 [published Online First: 2024/01/31]
16		
17	516	18. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in
18		
19	517	randomised trials. BMJ (Clinical research ed) 2019;366:I4898. doi: 10.1136/bmj.I4898
20	517	
21 22	540	
23	518	[published Online First: 2019/08/30]
24		
25	519	19. Borenstein M. How to understand and report heterogeneity in a meta-analysis: The
26		
27	520	difference between I-squared and prediction intervals. Integrative medicine research
28 29		
29 30	521	2023;12(4):101014. doi: 10.1016/j.imr.2023.101014 [published Online First:
31	521	2023, 12(4).101014. doi: 10.1010/j.inii.2023.101014 [published Online Thst.
32		
33	522	2024/06/28]
34		
35 36	523	20. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of
30 37		
38	524	evidence. <i>Journal of clinical epidemiology</i> 2011;64(4):401-6. doi:
39		
40	525	10.1016/j.jclinepi.2010.07.015 [published Online First: 2011/01/07]
41	020	
42	500	Of District MM I/I as TM Marchella, shak Effects (Linear Documentation and the
43 44	526	21. Bychinin MV, Klypa TV, Mandel IA, et al. Effect of vitamin D3 supplementation on cellular
45		
46	527	immunity and inflammatory markers in COVID-19 patients admitted to the ICU.
47		
48	528	Scientific reports 2022;12(1):18604. doi: 10.1038/s41598-022-22045-y [published
49		
50 51	529	Online First: 2022/11/05]
52	020	
53	500	
54	530	22. Cervero M, López-Wolf D, Casado G, et al. Beneficial Effect of Short-Term
55		
56	531	Supplementation of High Dose of Vitamin D(3) in Hospitalized Patients With COVID-
57		
58 59	532	19: A Multicenter, Single-Blinded, Prospective Randomized Pilot Clinical Trial.
60		
		26

2	
3 4 533 5	<i>Frontiers in pharmacology</i> 2022;13:863587. doi: 10.3389/fphar.2022.863587
6 7 534	[published Online First: 2022/07/22]
8 9 535 10	23. De Niet S, Trémège M, Coffiner M, et al. Positive Effects of Vitamin D Supplementation in
11 12 536 13	Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-
14 537 15	Controlled Trial. Nutrients 2022;14(15) doi: 10.3390/nu14153048 [published Online
16 17 538 18	First: 2022/07/28]
19 20 539 21	24. Dilokpattanamongkol P, Yan C, Jayanama K, et al. Impact of vitamin D supplementation
22 540 23	on the clinical outcomes of COVID-19 pneumonia patients: a single-center
24 25 541 26	randomized controlled trial. BMC complementary medicine and therapies
27 28 542	2024;24(1):97. doi: 10.1186/s12906-024-04393-6 [published Online First: 2024/02/22]
29 30 543 31	25. Domazet Bugarin J, Dosenovic S, Ilic D, et al. Vitamin D Supplementation and Clinical
32 33 544 34	Outcomes in Severe COVID-19 Patients-Randomized Controlled Trial. Nutrients
35 545 36	2023;15(5) doi: 10.3390/nu15051234 [published Online First: 2023/03/12]
37 38 546 39	26. Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation
40 547 41	for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study).
42 43 548 44	Postgraduate medical journal 2022;98(1156):87-90. doi: 10.1136/postgradmedj-2020-
45 46 549 47	139065 [published Online First: 2020/11/14]
48 550 49	27. Soliman AR, Abdelaziz TS, Fathy A. Impact of Vitamin D Therapy on the Progress
50 51 551 52	COVID-19: Six Weeks Follow-Up Study of Vitamin D Deficient Elderly Diabetes
53 552 54	Patients. PROCEEDINGS OF SINGAPORE HEALTHCARE doi:
55 56 553 57	10.1177/20101058211041405
58 59 554	28. Meng J, Li X, Liu W, et al. The role of vitamin D in the prevention and treatment of SARS-
60	27

1 2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

2		
3 4 5	555	CoV-2 infection: A meta-analysis of randomized controlled trials. Clinical nutrition
6 7 8	556	<i>(Edinburgh, Scotland)</i> 2023;42(11):2198-206. doi: 10.1016/j.clnu.2023.09.008
9 10	557	[published Online First: 2023/10/07]
11 12 13	558	29. Shetty AJ, Banerjee M, Prasad TN, et al. Do vitamin D levels or supplementation play A
14 15 16	559	role in COVID-19 outcomes?-a narrative review. Annals of palliative medicine
17 18	560	2024;13(1):162-77. doi: 10.21037/apm-23-113 [published Online First: 2023/12/21]
19 20 21	561	30. Bogomaz V, Shatylo S. Vitamin D as a predictor of negative outcomes in hospitalized
22 23	562	COVID-19 patients: An observational study. Canadian journal of respiratory therapy :
24 25 26	563	CJRT = Revue canadienne de la therapie respiratoire : RCTR 2023;59:183-89. doi:
27 28 29	564	10.29390/001c.87408 [published Online First: 2023/10/02]
30 31	565	31. di Filippo L, Terenzi U, Di lenno G, et al. Novel protective circulating miRNA are
32 33 34	566	associated with preserved vitamin D levels in patients with mild COVID-19
35 36	567	presentation at hospital admission not progressing into severe disease. Endocrine
37 38 39	568	2024 doi: 10.1007/s12020-024-03900-6 [published Online First: 2024/06/10]
40 41 42	569	32. Mingiano C, Picchioni T, Cavati G, et al. Vitamin D Deficiency in COVID-19 Patients and
43 44	570	Role of Calcifediol Supplementation. <i>Nutrients</i> 2023;15(15) doi: 10.3390/nu15153392
45 46 47	571	[published Online First: 2023/08/12]
48 49	572	33. Wang Q, Tang X, Lv X, et al. Age at menarche and risk of ovarian hyperstimulation
50 51 52	573	syndrome in women undergoing IVF/ICSI cycles: a retrospective cohort study. BMJ
53 54 55	574	open 2024;14(2):e076867. doi: 10.1136/bmjopen-2023-076867 [published Online
56 57	575	First: 2024/02/17]
58 59 60	576	34. Liao Y, Qi W, Li S, et al. Analysis of onset-to-door time and its influencing factors in
		28

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

1

1 2		
3 4 5	577	Chinese patients with acute ischemic stroke during the 2020 COVID-19 epidemic: a
6 7 8	578	preliminary, prospective, multicenter study. BMC health services research
9 10	579	2024;24(1):615. doi: 10.1186/s12913-024-11088-8 [published Online First:
11 12 13	580	2024/05/11]
14 15 16	581	35. Tang L, Xiang Q, Xiang J, et al. A variant in the 3'-untranslated region of the MC2R gene
17 18	582	decreases the risk of schizophrenia in a female Han Chinese population. The Journal
19 20 21	583	of international medical research 2021;49(7):3000605211029504. doi:
22 23	584	10.1177/03000605211029504 [published Online First: 2021/07/17]
24 25 26	585	36. Chen Y, Chen L, Zhou Q. Genetic association between eNOS gene polymorphisms and
27 28 29	586	risk of carotid atherosclerosis : A meta-analysis. <i>Herz</i> 2021;46(Suppl 2):253-64. doi:
30 31	587	10.1007/s00059-020-04995-z [published Online First: 2020/10/24]
32 33 34	588	37. Yu T, Xu B, Bao M, et al. Identification of potential biomarkers and pathways associated
35 36	589	with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics
37 38 39	590	study. Frontiers in endocrinology 2022;13:981100. doi: 10.3389/fendo.2022.981100
40 41 42	591	[published Online First: 2022/10/04]
43 44	592	38. Aburto S, Cisterna M, Acuña J, et al. Obesity as a Risk Factor for Severe COVID-19 in
45 46 47	593	Hospitalized Patients: Epidemiology and Potential Mechanisms. Healthcare (Basel,
48 49	594	Switzerland) 2022;10(10) doi: 10.3390/healthcare10101838 [published Online First:
50 51 52	595	2022/10/28]
53 54 55	596	39. Tadayon Najafabadi B, Rayner DG, Shokraee K, et al. Obesity as an independent risk
56 57	597	factor for COVID-19 severity and mortality. The Cochrane database of systematic
58 59 60	598	reviews 2023;5(5):Cd015201. doi: 10.1002/14651858.Cd015201 [published Online
		29

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	500	Eirst: 2022/05/241
5	599	First: 2023/05/24]
6 7 8	600	40. Ubah CS, Kearney GD, Pokhrel LR. Asthma May Not be a Potential Risk Factor for
9 10	601	Severe COVID-19 Illness: A Scoping Review. Environmental health insights
11 12 13	602	2024;18:11786302231221925. doi: 10.1177/11786302231221925 [published Online
14 15 16	603	First: 2024/01/08]
17 18	604	41. Klimek L, Hagemann J, Huppertz T, et al. COVID-19 and chronic rhinosinusitis:
19 20 21	605	management and comorbidity - what have we learned? Expert review of clinical
22 23 24	606	<i>immunology</i> 2023;19(11):1399-406. doi: 10.1080/1744666x.2023.2244673 [published
25 26	607	Online First: 2023/08/08]
27 28 29	608	42. Mac C, Cheung K, Alzoubi T, et al. The Impact of Comorbidities among Ethnic Minorities
30 31	609	on COVID-19 Severity and Mortality in Canada and the USA: A Scoping Review.
32 33 34	610	Infectious disease reports 2024;16(3):407-22. doi: 10.3390/idr16030030 [published
35 36 37	611	Online First: 2024/05/28]
38 39	612	43. Song Y, Yao L, Li S, et al. Psoriasis comorbidity management in the COVID era: a
40 41 42	613	pressing challenge. <i>Frontiers in microbiology</i> 2023;14:1294056. doi:
43 44	614	10.3389/fmicb.2023.1294056 [published Online First: 2023/11/29]
45 46 47	615	44. Chen Y, Zhong T, Song X, et al. Maternal anaemia during early pregnancy and the risk of
48 49 50	616	neonatal outcomes: a prospective cohort study in Central China. BMJ paediatrics
51 52	617	open 2024;8(1) doi: 10.1136/bmjpo-2023-001931 [published Online First: 2024/01/18]
53 54 55	618	45. Xia Y, Huang CX, Li GY, et al. Meta-analysis of the association between MBOAT7
56 57	619	rs641738, TM6SF2 rs58542926 and nonalcoholic fatty liver disease susceptibility.
58 59 60	620	Clinics and research in hepatology and gastroenterology 2019;43(5):533-41. doi:
		30

Page 32 of 55

BMJ Open

1 2	
3 4 621 5	10.1016/j.clinre.2019.01.008 [published Online First: 2019/03/03]
6 7 622 8	46. Heaney RP. Guidelines for optimizing design and analysis of clinical studies of nutrient
9 623 10	effects. Nutrition reviews 2014;72(1):48-54. doi: 10.1111/nure.12090 [published
11 12 624 13	Online First: 2013/12/18]
14 625 15	47. Pilz S, Trummer C, Theiler-Schwetz V, et al. Critical Appraisal of Large Vitamin D
16 17 626 18	Randomized Controlled Trials. Nutrients 2022;14(2) doi: 10.3390/nu14020303
19 20 627 21	[published Online First: 2022/01/22]
22 628 23	48. Meng J, Li X, Xiong Y, et al. The role of vitamin D in the prevention and treatment of
24 25 629 26	tuberculosis: a meta-analysis of randomized controlled trials. Infection 2024 doi:
27 28 630	10.1007/s15010-024-02446-z [published Online First: 2024/11/29]
29 30 631 31	49. Balla M, Merugu GP, Konala VM, et al. Back to basics: review on vitamin D and
32 33 632 34	respiratory viral infections including COVID-19. Journal of community hospital internal
35 633 36	medicine perspectives 2020;10(6):529-36. doi: 10.1080/20009666.2020.1811074
37 38 634 39	[published Online First: 2020/11/17]
40 635 41	50. Charan J, Goyal JP, Saxena D, et al. Vitamin D for prevention of respiratory tract
42 43 636 44	infections: A systematic review and meta-analysis. Journal of pharmacology &
45 46 637	pharmacotherapeutics 2012;3(4):300-3. doi: 10.4103/0976-500x.103685 [published
47 48 638 49	Online First: 2013/01/18]
50 51 639 52	51. Prietl B, Treiber G, Pieber TR, et al. Vitamin D and immune function. Nutrients
53 640 54	2013;5(7):2502-21. doi: 10.3390/nu5072502 [published Online First: 2013/07/17]
55 56 641 57	52. Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, et al. Efficacy and Safety of
58 59 642	Vitamin D Supplementation to Prevent COVID-19 in Frontline Healthcare Workers. A
60	31

Page 33 of 55

1

BMJ Open

1 2		
3 4 5	643	Randomized Clinical Trial. Archives of medical research 2022;53(4):423-30. doi:
6 7	644	10.1016/j.arcmed.2022.04.003 [published Online First: 2022/04/30]
8 9 10	645	53. Battersby AJ, Kampmann B, Burl S. Vitamin D in early childhood and the effect on
11 12 13	646	immunity to Mycobacterium tuberculosis. Clinical & developmental immunology
14 15	647	2012;2012:430972. doi: 10.1155/2012/430972 [published Online First: 2012/07/26]
16 17 18	648	54. Walker VP, Modlin RL. The vitamin D connection to pediatric infections and immune
19 20	649	function. <i>Pediatric research</i> 2009;65(5 Pt 2):106r-13r. doi:
21 22 23	650	10.1203/PDR.0b013e31819dba91 [published Online First: 2009/02/05]
24 25 26	651	55. Mailhot G, White JH. Vitamin D and Immunity in Infants and Children. Nutrients 2020;12(5)
20 27 28	652	doi: 10.3390/nu12051233 [published Online First: 2020/05/01]
29 30 31	653	56. van den Heuvel EG, Lips P, Schoonmade LJ, et al. Comparison of the Effect of Daily
32 33	654	Vitamin D2 and Vitamin D3 Supplementation on Serum 25-Hydroxyvitamin D
34 35 36	655	Concentration (Total 25(OH)D, 25(OH)D2, and 25(OH)D3) and Importance of Body
37 38 39	656	Mass Index: A Systematic Review and Meta-Analysis. Advances in nutrition
40 41	657	<i>(Bethesda, Md)</i> 2024;15(1):100133. doi: 10.1016/j.advnut.2023.09.016 [published
42 43 44	658	Online First: 2023/10/22]
45 46	659	57. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3
47 48 49	660	supplementation in raising serum 25-hydroxyvitamin D status: a systematic review
50 51 52	661	and meta-analysis. The American journal of clinical nutrition 2012;95(6):1357-64. doi:
53 54	662	10.3945/ajcn.111.031070 [published Online First: 2012/05/04]
55 56 57	663	58. Loucera C, Peña-Chilet M, Esteban-Medina M, et al. Real world evidence of calcifediol or
58 59	664	vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of
60		32

Page 34 of 55

BMJ Open

1

2		
3 4 5	665	hospitalized Andalusian patients. <i>Scientific reports</i> 2021;11(1):23380. doi:
6 7	666	10.1038/s41598-021-02701-5 [published Online First: 2021/12/05]
8 9 10	667	59. Nielsen NM, Junker TG, Boelt SG, et al. Vitamin D status and severity of COVID-19.
11 12 13	668	Scientific reports 2022;12(1):19823. doi: 10.1038/s41598-022-21513-9 [published
14 15	669	Online First: 2022/11/18]
16 17 18	670	60. Kow CS, Ramachandram DS, Hasan SS, et al. The impact of vitamin D administration on
19 20 21	671	mortality in COVID-19 patients: a systematic review and meta-analysis of randomized
21 22 23	672	controlled trials. Inflammopharmacology 2024;32(5):3205-12. doi: 10.1007/s10787-
24 25 26	673	024-01564-2 [published Online First: 2024/09/03]
27 28	674	61. Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? The lancet
29 30 31	675	<i>Diabetes & endocrinology</i> 2020;8(7):570. doi: 10.1016/s2213-8587(20)30183-2
32 33 34	676	[published Online First: 2020/05/24]
35 36	677	62. Tebben PJ, Singh RJ, Kumar R. Vitamin D-Mediated Hypercalcemia: Mechanisms,
37 38 39	678	Diagnosis, and Treatment. <i>Endocrine reviews</i> 2016;37(5):521-47. doi:
40 41	679	10.1210/er.2016-1070 [published Online First: 2016/09/03]
42 43 44	680	63. Zittermann A, Trummer C, Theiler-Schwetz V, et al. Long-term supplementation with 3200
45 46 47	681	to 4000 IU of vitamin D daily and adverse events: a systematic review and meta-
48 49	682	analysis of randomized controlled trials. European journal of nutrition
50 51 52	683	2023;62(4):1833-44. doi: 10.1007/s00394-023-03124-w [published Online First:
53 54	684	2023/03/01]
55 56 57	685	
58 59 60	686	
		33

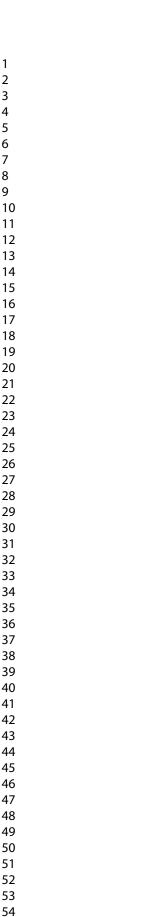
Table1. Characteristic of included randomized controlled trials

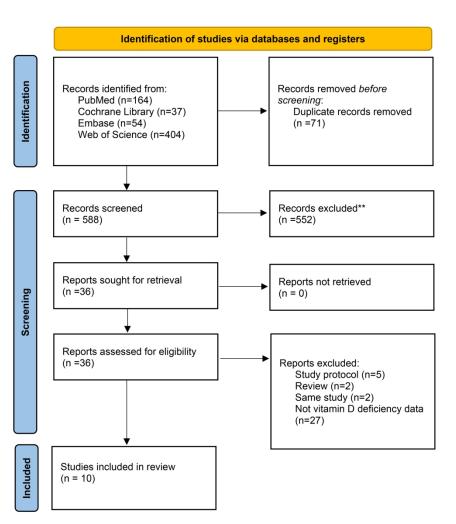
Figure1. Flowchart of literature search

Figure2. Vitamin D supplementation versus no vitamin D supplementation on

mortality during follow-up, 28-day mortality, need for mechanical ventilation and

- need for ICU admission.
- Figure3. Vitamin D supplementation versus no vitamin D supplementation on length
- of stay in ICU and hospital.
 - Figure4.Subgroup analysis of mortality during follow-up.


Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.


Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Study	Count	Samanit	Intervention	Conta	Dofiniti	Follow w
Study	Count ry	Severit y of COVI D-19	Intervention group	Contr ol group	Definiti on of Vitami n D deficie ncy	Follow-uj
Bugarin2023	Croati a	Severe COVI D-19	10,000 IU of cholecalcife rol daily during ICU stay	Stand ard care	<20ng/ ml	3 months
Bychinin2022	Russia	Severe COVI D-19	60,000 IU of cholecalcife rol once/ 7days followed by daily maintenanc e doses of 5000 IU. The high dose repeated on day 8, 16, 24, 32.	Placeb o	<20ng/ ml	During hospitaliz tion
Cervero2022	Spain	NA	10,000 IU of cholecalcife rol daily for 14 days	Stand ard care	<30ng/ ml	28 days
Dilokpattanamongk ol2024	Thaila nd	NA	2 mcg of alfacalcidol daily during the hospitalizati on	ard care	<20ng/ ml	During hospitaliz tion
Maghbooli2021	Iran	NA	3000-6000 IU per day of vitamin D3 for 30 days	Placeb o	<30ng/ ml	2 months
Murai2021	Brazil	Moder ate to severe COVI D-19	Single dose of 200,000 IU of vitamin D3	Placeb o	<20ng/ ml	4 months

Niet2022	Belgiu	NA	25,000 IU		<20ng/	9 weeks
	m		of vitamin	0	ml	
			D3 per day over 4			
			- · -			
			consecutive			
			days,			
			followed by 25,000 IU			
			25,000 IU per week up			
			to 6 weeks			
Rastogi2022	India	NA	Daily 60000	Placeb	<20ng/	3 weeks
Rastogizozz	India		IU of	0	ml	JWCCKS
			cholecalcife	0	1111	
			rol for 7			
	Ų,		days, and a			
			weekly			
			supplement			
			ation of			
			60000IU			
			provided to			
			those with			
			25(OH)D >			
			50 ng/ml or			
			else			
			continued			
			on daily			
			vitamin D			
			60,000 IU			
			supplement ation for			
			days up until day 14			
Singh2024	India	Severe	A single	Placeb	<10	During
-0			dose of	0	ng/ml	hospitaliz
			60,000 IU		-0,	tion
			of			
			cholecalcife			
			rol			
Soliman2022	Egypt	Moder	200.000	placeb	<20ng/	6 weeks
		ate to	units	0	ml	
		severe	intramuscul			
		COVI	arly once as			
			un y once us			
		D-19	a single			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

211x283mm (300 x 300 DPI)

1	
י ר	
2	
3	
4	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 29 30	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
25	
د∠ ₄د	
24	
25	
26	
27	
28	
29	
20	
20	
31 32 33 34 35 36	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

Outcomes		f events/total Standard care	Risk ratio (95% CI)		Weight(%)	Risk ratio (95% CI)	Certainty of the evidence
Mortality during follo	w-up						
Bugarin 2023	30/75	39/77			44.55	0.79 (0.55,1.13)	
Bychinin 2022	19/52	27/54	_		28.02	0.73 (0.47,1.14)	
Cervero 2022	1/41	1/44			0.74	1.07 (0.07,16.60)	
Maghbooli 2021	3/53	5/53			2.94	0.60 (0.15,2.38)	
Murai 2021	4/57	1/58			1.2	4.07 (0.47,35.31)	
Niet 2022	4/23	3/22			2.97	1.40 (0.35,5.51)	Moderate
Rastogi 2022	0/16	0/24		• •	0.77	1.50 (0.10,22.29)	
Singh 2024	11/45	20/45 -	e		15.08	0.55 (0.30,1.01)	
Soliman 2021	7/40	3/16 -			3.74	0.93 (0.28,3.17)	
Total	79/400	99/393			100	0.76 (0.60,0.97)	
I-V method, $I^2 = 0.0\%$, I	p=0.783						
Mortality in hospital of	or 28d						
Bugarin2023	23/75	27/77	B		61.19	0.87 (0.55,1.38)	
Cervero2022	1/41	1/44	·		1.7	1.07 (0.07,16.6)	
Niet2022	4/57	1/58			2.73	4.07 (0.47,35.31)	Moderate
Singh2024	11/45	20/75 -			34.38	0.55 (0.30,1.01)	
Total	39/218	49/224			100	0.78(0.55,1.38)	
I-V method, $I^2 = 21.2\%$,	p=0.283						
Need for mechanical	ventilation						
Bychinin2022	33/52	37/54	— B —		92.87	0.93 (0.70,1.22)	
Maghbooli2021	2/53	5/53			2.75	0.40 (0.08,1.97)	
Murai2021	4/57	5/58			4.38	0.81 (0.23,2.88)	Moderate
Total	39/162	47/165			100	0.90 (0.69,1.17)	
I-V method, $I^2 = 0.0\%$, I	p=0.589						
Need for ICU							
Cervero2022	1/41	5/49			6.82	0.24 (0.03,1.96)	
Maghbooli2021	6/53	10/63 -			33,95	0.71 (0.28,1.83)	
Murai2021	11/57	9/67			46.44	1.44 (0.64,3.22)	Moderate
Niet2022	2/21	5/27			12.8	0.51 (0.11,2.39)	
Total	20/172	29/206		-	100	0.88 (0.51,1.52)	
I-V method, $I^2 = 15.4\%$,	p=0.315					, -,	
	P 5.515	0	0.5 1	1.5 2			
		Fav	ours Vitmain D Favours	Standard care			

90x90mm (600 x 600 DPI)

1 2	
3 4	
5 6	
7 8	
9 10	
11 12 13	
14 15	
16 17	
18 19	
20 21	
22 23 24	
24 25 26	
27 28	
29 30	
31 32	
33 34 35	
36 37	
38 39	
40 41	
42 43 44	
44 45 46	
47 48	
49 50	
51 52	
53 54 55	
55 56 57	
58	

60

Outcomes	Mean (SD) Vitmain Stan		D)/Total Mean difference (95% CI)		Mean difference (95% CI)	Certainty of the evidence
Length of stay in ICU						
Bugarin2023	13(8.15)/75	19(8.89)/77	— •—	17.22	-0.70 (-1.03,-0.38)	
Bychinin2022	15.5(10.37)/5	2 8(9.63)/54		16.92	0.75 (0.36,1.14)	
Cervero2022	7(2.96)/41	7(3.7)/44	_	16.77	0.00 (-0.43,0.43)	
Maghbooli2021	7(1.75)/53	11(2.75)/53 ←		16.65	-1.74 (-2.18,-1.29)	Low
Niet2022	4(4.2)/21	12.4(14.3)/22	-	15.61	-0.79 (-1.41,-0.17)	
Singh2024	10(3.7)/45	10(6.67)/45		16.83	0.00 (-0.41,0.41)	
Total				100	-0.41 (-1.09,0.28)	
D-L method, 1 ² =93.6%, p<	0.001					
Length of stay inhospital						
Bugarin2023	19(8.74)/75	18(9.63)/77		27.54	-0.11 (-0.21,0.43)	
Bychinin2022	20.5(13.33)/5	2 14.5(9.63)/54		26.3	0.52 (0.13,0.90)	
Dilokpattanamongkol2024	9(10.5)/44	9(5)/33	+	25.06	0.00 (-0.45,0.45)	Low
Niet2022	4(2.22)/21	8(4.44)/22		21.1	-1.13 (-1.78,-0.49)	
Total			\bullet	100	-0.07 (-0.61,0.46)	
D-L method, I ² =83.8%, p<	0.001		-			
		-2	0 Favours Vitmain D Favours Standa	2 ard care		

90x90mm (600 x 600 DPI)

1		
2		
3		
2 3 4 5		
6 7		
7 8		
9		
10 11		
12 13		
13 14		
14 15		
16 17		
18		
19 20		
21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
51		
53		
54 55		
55		

Subgroup analysis	Number of studies	Risk ratio (95% CI)	Risk ratio (95% CI)	Test of group difference
Severity of COVID-19				
Severe	3	——	0.72 (0.56,0.93)	
Moderate to severe	2		▶ 1.33 (0.46,3.86)	0.48
Others	4		▶ 0.93 (0.37,2.34)	
Supplement frequency				
Daily	6		0.78 (0.60,1.02)	0.00
Single dose	3		0.68 (0.40,1.16)	0.66
Degree of vitamin D defic	tiency			
<30ng/ml	2		▶ 0.67 (0.20,2.31)	
<20ng/ml	6		0.81 (0.62,1.06)	0.5
<10ng/ml	1		0.55 (0.30,1.01)	
Development level of coun	ıtry			
Developing	7	—•	0.74 (0.58,0.95)	0.37
Developed	2		→ 1.32 (0.39,4.52)	0.57
Risk of bias				
Low risk	4		0.81 (0.61,1.05)	0.39
Some concerns	5		10.62 (0.38,1.02)	0.39
Samlpe size				
<20	2		• 0.93 (0.28,3.17)	0.7
>20	7	- _	0.75 (0.59,0.96)	0.67
	0	0.5 1	1.5 2	
		Favours Vitmain D Favours	Standard care	

90x90mm (600 x 600 DPI)

Supplement

1. Search strategy	Page2-4
2. eTable1. Risk of bias of included studies	Page5-6
3. eTable2. Quality of evidence	Page7
4. eFigure1. Leave-one-out on mortality during follow-up	Page8
5. eFigure2. Trial sequential analysis on mortality during follow-up	Page9
6. eFigure3-8 Funnel plot	Page10-15

to beet terien only

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18 19

20

21

22

23 24

25

26

27 28

29

30

31

32 33

34

35

36 37

38

39

40 41

42

43

44

45 46

47

48 49 50

51

52

53

54 55

56

57

58 59

60

PubMed

Search strategy

1. "COVID-19" [Mesh] OR "COVID-19" [tiab] OR "COVID 19" [tiab] OR "2019nCoV Infection" [tiab] OR "2019 nCoV Infection" [tiab] OR "2019-nCoV Infections" [tiab] OR "Infection, 2019-nCoV" [tiab] OR "SARS-CoV-2 Infection" [tiab] OR "Infection, SARS-CoV-2" [tiab] OR "SARS CoV 2 Infection" [tiab] OR "SARS-CoV-2 Infections" [tiab] OR "2019 Novel Coronavirus Disease" [tiab] OR "2019 Novel Coronavirus Infection" [tiab] OR "COVID-19 Virus Infection" [tiab] OR "COVID 19 Virus Infection" [tiab] OR "COVID-19 Virus Infections" [tiab] OR "Infection, COVID-19 Virus" [tiab] OR "Virus Infection, COVID-19" [tiab] OR "COVID19" [tiab] OR "Coronavirus Disease 2019" [tiab] OR "Disease 2019, Coronavirus" [tiab] OR "Coronavirus Disease-19" [tiab] OR "Coronavirus Disease 19" [tiab] OR "Severe Acute Respiratory Syndrome Coronavirus 2 Infection" [tiab] OR "COVID-19 Virus Disease" [tiab] OR "COVID 19 Virus Disease" [tiab] OR "COVID-19 Virus Diseases" [tiab] OR "Disease, COVID-19 Virus" [tiab] OR "Virus Disease, COVID-19" [tiab] OR "SARS Coronavirus 2 Infection" [tiab] OR "2019nCoV Disease" [tiab] OR "2019 nCoV Disease" [tiab] OR "2019-nCoV Diseases" [tiab] OR "Disease, 2019-nCoV" [tiab] OR "COVID-19 Pandemic" [tiab] OR "COVID 19 Pandemic" [tiab] OR "Pandemic, COVID-19" [tiab] OR "COVID-19 Pandemics" [tiab]

2. "Vitamin D"[Mesh] OR "vitamin D"[tiab] OR "vitamin D3"[tiab] OR "vit D"[tiab] "cholecalciferol"[tiab] OR "calciferol"[tiab] OR OR "vit D3"[tiab] OR "calcidiol"[tiab] OR "calcitriol"[tiab] OR "25 hydroxyvitamin d"[tiab] OR "25 hydroxyvitamin D3"[tiab] OR "25 hydroxycalciferol"[tiab] OR "1,25 dihydroxyvitamin OR "1.25 dihydroxyvitamin D"[tiab] D3"[tiab] OR "calcifediol"[tiab]

3. Deficiency[tiab] OR Deficient[tiab] OR Deficiencies[tiab] OR Insufficiency[tiab] OR Insufficient[tiab] OR Inadequacy[tiab] OR Inadequate[tiab] OR Depleted[tiab]

4. "Mortality"[tiab] OR "Mechanical ventilation"[tiab] OR "Intensive care unit"[tiab] OR "Length of stay"[tiab]

5. ((compar*[tiab]) OR ((singl*[tiab] or doubl*[tiab] or tripl*[tiab]) and (mask*[tiab] or blind*[tiab]))) OR (random*[tiab] or placebo[tiab] or controlled[tiab] or trial*[tiab])

6. #1 AND #2 AND #3 AND #4 AND \$5

Cochrane Library

- 1. MeSH descriptor: [COVID-19] explode all trees
- 2. (COVID-19 OR COVID 19 OR 2019 nCoV Infection OR SARS-CoV-2 Infection OR Infection, SARS-CoV-2 OR SARS CoV 2 Infection OR SARS-CoV-2 Infections OR 2019 Novel Coronavirus Disease OR 2019 Novel Coronavirus Infection OR COVID-19 Virus Infection OR COVID 19 Virus Infection OR COVID-19 Virus Infection, COVID-19 Virus OR Virus Infection, COVID-19 OR COVID19 OR Coronavirus Disease 2019 OR

Disease 2019, Coronavirus OR Coronavirus Disease-19 OR Coronavirus Disease 19 OR Severe Acute Respiratory Syndrome Coronavirus 2 Infection OR COVID-19 Virus Disease OR COVID 19 Virus Disease OR COVID-19 Virus Diseases OR Disease, COVID-19 Virus OR Virus Disease, COVID-19 OR SARS Coronavirus 2 Infection OR 2019 nCoV Disease OR COVID-19 Pandemic OR COVID 19 Pandemic OR Pandemic, COVID-19 OR COVID-19 Pandemics):ti,ab

3. #1 OR #2

- 4. MeSH descriptor: [Vitamin D] explode all trees
- (vitamin D OR vitamin D3 OR vit D OR vit D3 OR calciferol OR cholecalciferol OR calcidiol OR calcitriol OR 25 hydroxyvitamin d OR 25 hydroxyvitamin D3 OR 25 hydroxycalciferol OR 1,25 dihydroxyvitamin D OR 1,25 dihydroxyvitamin D3 OR calcifediol):ti,ab
- 6. #4 OR #5
- (Deficiency OR Deficient OR Deficiencies OR Insufficiency OR Insufficient OR Inadequacy OR Inadequate OR Depletion OR Depleted):ti,ab
- 8. (mortality or mechanical ventilation or intensive care unit):ti,ab
- ((compar*) OR ((singl* or doubl* or tripl*) and (mask* or blind*))) OR (random* or placebo or controlled or trial*):ti,ab
- 10. #3 AND #6 AND #7 AND #8 AND #9

Embase

- 1. 'coronavirus disease 2019'/exp
- ((Covid-19) OR (Covid 19) OR (2019-nCoV Infection) OR (SARS-CoV-2 Infections)):ti,ab
- 3. #1 OR #2
- 4. 'vitamin d'/exp
- ((vitamin D) OR (vitamin D3) OR (25 hydroxycalciferol) OR (1,25 dihydroxyvitamin D3)):ti,ab
- 6. #4 OR #5
- (Deficiency OR Deficient OR Deficiencies OR Insufficiency OR Insufficient OR Inadequacy OR Inadequate OR Depletion OR Depleted):ti,ab
- 8. (mortality or mechanical ventilation or intensive care unit):ti,ab
- 9. compar* OR ((singl* OR doubl* OR tripl*) AND (mask* OR blind*)) OR random*:ti,ab OR placebo:ti,ab OR controlled:ti,ab OR trial*:ti,ab

10. #3 AND #6 AND #7 AND #8 AND #9

Web of Science

- TS=(COVID-19 OR COVID 19 OR 2019-nCoV Infection OR 2019 nCoV Infection OR 2019-nCoV Infections OR Infection, 2019-nCoV OR SARS-CoV-2 Infection OR Infection, SARS-CoV-2 OR SARS CoV 2 Infection OR SARS-CoV-2 Infections OR 2019 Novel Coronavirus Disease OR 2019 Novel Coronavirus Infection OR COVID-19 Virus Infection OR COVID 19 Virus Infection OR COVID-19 Virus Infections OR Infection, COVID-19 Virus OR Virus Infection, COVID-19 OR COVID19 OR Coronavirus Disease 2019 OR Disease 2019, Coronavirus OR Coronavirus Disease-19 OR Coronavirus Disease 19 OR Severe Acute Respiratory Syndrome Coronavirus 2 Infection OR COVID-19 Virus Disease OR COVID 19 Virus Disease OR COVID-19 Virus Disease OR Disease, COVID-19 Virus OR Virus Disease, COVID-19 OR SARS Coronavirus 2 Infection OR 2019-nCoV Disease OR 2019 nCoV Disease OR 2019-nCoV Diseases OR Disease, 2019-nCoV OR COVID-19 Pandemic OR COVID 19 Pandemic OR Pandemic, COVID-19 OR COVID-19 Pandemics)
- TS= (vitamin D OR vitamin D3 OR vit D OR vit D3 OR calciferol OR cholecalciferol OR calcidiol OR calcitriol OR 25 hydroxyvitamin d OR 25 hydroxyvitamin D3 OR 25 hydroxycalciferol OR 1,25 dihydroxyvitamin D OR 1,25 dihydroxyvitamin D3 OR calcifediol)
- 3. TS= (Deficiency OR Deficient OR Deficiencies OR Insufficiency OR Insufficient OR Inadequacy OR Inadequate OR Depletion OR Depleted)
- 4. TS= (mortality or mechanical ventilation or intensive care unit)
- 5. TS=(((compar*) OR ((singl* or doubl* or tripl*) and (mask* or blind*))) OR (random* or placebo or controlled or trial*))
- 6. #1 AND #2 AND #3 AND #4 AND #5

eTable1. Risk of bias of included studies

Outcome	D1	eTable1. Risk of bias of included studies								
Outcome	DI	D2	D3	D4	D5	Overall bias				
Study: Buga	rin2023					0103				
Mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk				
during	Low lisk					Low lisk				
follow up										
28-day	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk				
mortality										
Length of	Low risk	Some	Low risk	Low risk	Low risk	Some				
stay in		concerns				concerns				
ICU										
Length of	Low risk	Some	Low risk	Low risk	Low risk	Some				
stay in		concerns				concerns				
hospital										
Study: Bych		4								
Mortality	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk				
during										
follow up										
Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk				
mechanical										
ventilation		x	T		T	× • •				
Length of	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk				
stay in										
ICU	2022									
Study: Cerve		T	T and all		C	Come				
Mortality	Low risk	Low risk	Low risk	Low risk	Some	Some				
during					concerns	concerns				
follow up 28-day	Low risk	Low risk	Low risk	Low risk	Some	Some				
mortality	LOW IISK	LOW IISK	LOW IISK	LOW IISK	concerns	concerns				
Length of	Low risk	Some	Low risk	Low risk	Some	Some				
stay in	LOW HSK	concerns	LOW HSK		concerns	concerns				
ICU		concerns			concerns	concerns				
Study: Dilok	pattanamon	gkol2024		~						
~	Low risk	Some	Low risk	Low risk	Low risk	Some				
stay in		concerns				concerns				
hospital										
Study: Maghbooli2021										
Mortality	Low risk	Low risk	Low risk	Low risk	Some	Some				
during					concerns	concerns				
follow up										
Need for	Low risk	Low risk	Low risk	Low risk	Some	Some				
mechanical					concerns	concerns				
ventilation										
Need for	Low risk	Low risk	Low risk	Low risk	Some	Some				
ICU					concerns	concerns				
admission										

Length of stay in ICULow risk riskLow risk Low riskLow risk Low									
ICÚStudy: Murai2021MortalityLow riskLow riskLow riskLow riskLow riskLow riskLow riskMortalityLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeedforLow riskLow riskL	Length of	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk		
ICÚ Study: Murai2021Icow risk Low riskLow risk Low riskLow risk Low riskLow risk Low riskLow risk Low riskMortality follow upLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed for totality admissionLow riskLow riskL	stay in								
Study: Murai2021 Low risk	-								
Mortality during follow upLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed for mechanical ventilationLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed for LCU admissionLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Niet2022Mortality during follow upLow riskLow									
during follow upLow risk low riskLow risk low risk			I ow risk	I ow risk	I ow risk	I ow risk	I ow risk		
follow up Need for LOW riskLow risk Low riskLow risk ConcernsLow risk ConcernsLow risk ConcernsSome concernsSome	-	LOW HSK							
Need for mechanical ventilationLow risk nor riskLow risk nor riskLo	•								
mechanical ventilationLow riskLow riskLow riskLow riskLow riskLow riskNeed tCU admissionLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Niet2022Mortality during follow upLow riskLow riskLow riskLow riskLow riskLow riskLow risk28-day mortalityLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed admissionLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed for Low riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed admissionLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskULow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Mortality ULow riskLow riskLow riskLow riskSome concerns<	-	T · 1	T · 1	T · 1	T · 1	T · 1	T · 1		
ventilationomegaomegaomegaomegaomegaomegaNeedforLow riskLow r		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk		
Need for ICU admissionLow riskLow riskLow riskLow riskLow riskLow riskStudy: Nict2022Mortality during follow upLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow risk28-day admissionLow riskLow risk <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
ICU admissionICU admissionICU study: Niet2022Icw riskLow risk									
admissionInterview	Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk		
Study: Niet2022 Mortality Low risk	ICU								
Study: Niet2022 Low risk	admission								
Mortality during follow upLow risk vor riskLow ris		022							
during follow upLow riskLow riskLow riskLow riskLow riskLow risk28-day mortalityLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed ICU admissionIow riskLow risk <t< td=""><td></td><td></td><td>I ow risk</td><td>I ow risk</td><td>I ow rick</td><td>Low risk</td><td>I ow rick</td></t<>			I ow risk	I ow risk	I ow rick	Low risk	I ow rick		
follow upLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed for ICU admissionLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of stayLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of stayLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskUcu ULow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Mortality during follow upLow riskLow riskLow riskLow riskSome concernsSome concernsSome concernsSome concernsStudy: Singh2024Low riskLow riskLow riskLow riskLow riskLow riskSome concernsSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskLow riskLow riskSome concernsSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskLow riskSome concernsSome concernsSome concernsSome concernsLength of stayLow riskLow riskLow riskLow riskLow riskLow riskSome concernsSome concernsLength of stayLow riskLow riskLow risk <t< td=""><td></td><td>LOW IISK</td><td></td><td>LOWIISK</td><td></td><td>LOWTISK</td><td></td></t<>		LOW IISK		LOWIISK		LOWTISK			
28-day mortalityLow riskLow riskLow riskLow riskLow riskLow riskLow riskNeed ICU admissionLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of stayLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of stayLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of stayLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Mortality during follow upLow riskLow riskLow riskLow riskSome concernsSome concernsSome concernsStudy: Singh2024Low riskLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskLow riskSome concernsSome concernsLength of tCULow riskLow riskLow riskLow riskLow riskSome concernsStudy: Soliman2021Low riskLow riskLow riskLow riskLow riskSome concernsD1: Randomisation processLow riskLow riskLow riskLow riskLow riskLow risk<	•								
mortalityNeed for LOW riskLow risk Low riskLow risk ConcernsLow risk ConcernsCow risk ConcernsCom risk ConcernsSome C	-	x • 1	x • 1	x • 1	× • 1	x · 1	× • 1		
Need for ICU admissionLow risk riskLow risk Low riskLow risk ConcernsLow risk ConcernsLow risk ConcernsSome ConcernsS	5	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk		
ICU admissionICW riskLow riskLow riskLow riskLow riskLow riskLength of tCULow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of totutLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Study: Rastogi2022Mortality toturing follow upLow riskLow riskLow riskSome concernsLow riskSome concerns									
admissionLow risk stay in ICULow risk Low risk <td>Need for</td> <td>Low risk</td> <td>Low risk</td> <td>Low risk</td> <td>Low risk</td> <td>Low risk</td> <td>Low risk</td>	Need for	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk		
Length of stay in ICULow risk low riskLow risk 	ICU								
Length of stay in ICULow risk low riskLow risk 	admission								
stayin ICULow riskLow riskLow riskLow riskLow riskLow riskLength of stayLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Rastogi2022Image: Some concerns follow upLow riskLow riskSome concerns follow upLow riskSome concerns follow upSome concerns follow up		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk		
ICULow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLength of stay in hospitalLow riskLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Mortality during follow upLow riskLow riskLow riskSome concernsLow riskSome concernsStudy: Singh2024SiteSome concernsLow riskLow riskLow riskSome concernsSome concernsStudy: Singh2024Low riskLow riskLow riskLow riskSome concernsSome concernsStudy: Singh2024Low riskLow riskLow riskLow riskSome concernsSome concerns28-day follow upLow riskLow riskLow riskLow riskSome concernsSome concerns28-day turing follow upLow riskLow riskLow riskLow riskSome concernsSome concerns28-day turing follow upLow riskLow riskLow riskLow riskSome concernsSome concernsStudy: Soliman2021Mortality during follow upSome concernsLow riskLow riskLow riskSome concernsD1: Randomisation processSome concernsSome concernsSome concernsSome concernsSome concerns	0	Low Hok		Low Hok		Low Hok			
Length of stay in hospitalLow riskLow riskLow riskLow riskLow riskLow riskStudy: Rastogi2022Mortality during follow upLow riskLow riskLow riskSome concernsLow riskSome concernsStudy: Singb2024Mortality during follow upLow riskLow riskLow riskLow riskSome concernsSome concernsStudy: Singb2024Mortality during follow upLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow risk to miskLow riskLow riskLow riskSome concernsSome concernsSome concerns28-day mortalityLow risk to mortalityLow riskLow riskLow riskSome concernsSome concernsStudy: Soliman2021Mortality concerns follow upSome concernsLow riskLow riskLow riskSome concernsSome concernsD1: Randomisation process	-								
stayin hospitalininininStudy: Rastogi2022Mortality during follow upLow risk iskLow risk concernsSome concernsLow risk concernsSome concernsStudy: Singh2024Mortality during follow upLow risk iskLow risk concernsLow risk concernsSome concernsMortality during follow upLow risk iskLow risk concernsLow risk concernsSome concerns28-day mortalityLow risk iskLow risk concernsLow risk concernsLow risk concernsSome concerns28-day mortalityLow risk iskLow risk concernsLow risk concernsSome concernsSome concerns28-day mortalityLow risk concernsLow risk concernsLow risk concernsSome concernsSome concerns28-day mortalityLow risk concernsLow risk concernsLow risk concernsSome concernsSome concerns100 cutifiedLow risk concernsLow risk concernsLow risk concernsSome concernsSome concernsStudy: Soliman2021Low risk concernsLow risk concernsLow risk concernsSome concernsSome concernsD1: Randomisation processLow riskLow risk concernsLow risk concernsLow risk concernsLow risk concerns		T · 1	T · 1	T · 1	T · 1	T · 1	T · 1		
hospitalImage: Study: Rastory 2022MortalityLow riskLow riskLow riskSome concernsLow riskSome concernsduringImage: Study: Sing 2024Image: Some concernsImage: Some concernsSome concernsSome concernsMortalityLow riskLow riskLow riskLow riskLow riskSome concernsSome concernsStudy: Sing 2024Image: Some concernsImage: Some concernsSome concernsSome concernsSome concernsMortality follow upImage: Some row riskImage: Some row riskImage: Some row riskImage: Some row riskSome row riskSome concernsSome concerns28-day mortality Image: Some ICUImage: Low risk riskImage: Low risk riskImage: Low risk riskImage: Some row riskSome row row riskSome row row row row row row row row row row	-	LOW TISK	LOW TISK	LOW TISK	LOW TISK	LOW TISK	Low risk		
Study: Rastogi2022Mortality during follow upLow risk riskLow risk Low riskLow risk concernsLow risk concernsSome concernsStudy: Singb2024Mortality during follow upLow risk Low riskLow risk Low riskLow risk Low riskLow risk concernsSome concernsSome concerns28-day mortalityLow risk Low riskLow risk Low riskLow risk Low riskLow risk Low riskLow risk concernsSome concerns28-day mortalityLow risk Low riskLow risk Low riskLow risk Low riskLow risk concernsSome concerns28-day mortalityLow risk Low riskLow risk Low riskLow risk Low riskSome concernsSome concerns28-day mortalityLow risk Low riskLow risk Low riskLow risk Low riskSome concernsSome concerns1CULow risk concernsLow risk Low riskLow risk Low riskLow risk concernsSome concernsStudy: Soliman2021Low risk concernsLow risk concernsLow risk concernsSome concernsSome concernsD1: Randomisation processLow riskLow risk concernsLow risk concernsLow risk concernsLow risk concerns	5								
Mortality during follow upLow risk low riskLow risk low riskLow risk concernsLow risk concernsSome concernsStudy: Singb2024Low risk during follow upLow risk low riskLow risk low riskLow risk low riskLow risk concernsSome concernsSome concerns28-day mortalityLow risk low riskLow risk low riskLow risk low riskLow risk low riskLow risk concernsSome concernsSome concerns28-day mortalityLow risk low riskLow risk low riskLow risk low riskLow risk low riskLow risk concernsSome concernsSome concernsLength of stay in ICULow risk low riskLow risk low riskLow risk low riskLow risk concernsSome concernsSome concernsStudy: Soliman2021Some concerns follow upLow risk low riskLow risk low riskLow risk concernsLow risk concernsSome concernsD1: Randomisation processSome concernsSome concernsSome concernsSome concerns	_								
during follow upconcernsconcernsStudy: Singh2024Some variantLow riskLow riskLow riskSome concernsSome concernsMortality follow upLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskSome concernsSome concernsLength of ICULow riskLow riskLow riskLow riskSome concernsSome concernsStudy: Soliman2021Low riskLow riskLow riskLow riskSome concernsSome concernsMortality during follow upSome concernsLow riskLow riskLow riskSome concernsSome concernsD1: Randomisation processSome concernsSome concernsSome concernsSome concernsSome concerns	Study: Rasto	ogi2022							
during follow upconcernsconcernsStudy: Singh2024Some variantLow riskLow riskLow riskSome concernsSome concernsMortality follow upLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskSome concernsSome concerns28-day mortalityLow riskLow riskLow riskLow riskSome concernsSome concernsLength of ICULow riskLow riskLow riskLow riskSome concernsSome concernsStudy: Soliman2021Low riskLow riskLow riskLow riskSome concernsSome concernsMortality during follow upSome concernsLow riskLow riskLow riskSome concernsSome concernsD1: Randomisation processSome concernsSome concernsSome concernsSome concernsSome concerns	Mortality	Low risk	Low risk	Low risk	Some	Low risk	Some		
follow upImage: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024MortalityLow riskLow riskLow riskLow riskLow riskSomeSomeduringImage: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024SomeSomeduringImage: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 202428-dayImage: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 202428-dayImage: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Study: Soliman2021Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024MortalitySomeImage: Low riskImage: Low riskImage: Single 2024Image: Single 2024Image: Single 2024Study: Soliman2021Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024Image: Single 2024MortalitySomeImage: Low riskImage: Low riskImage: Low riskImage: Single 2024Image: Single 2024MortalitySomeImage: Low riskImage: Low riskImage: Low riskImage: Low riskImage: Single 2024Image: Diameter 2024Image: Low riskImage: Low riskImage: Low riskImage: Low riskImage: Low riskImage: Low riskImage: Diameter 2025Image: Low riskImage: Low risk	5				concerns		concerns		
Study: Singh2024Mortality during follow upLow risk low riskLow risk low riskLow risk low riskLow risk concernsSome concerns28-day mortalityLow risk low riskLow risk low riskLow risk low riskLow risk concernsSome concerns1CUSome concernsLow risk low riskLow risk low riskLow risk concernsSome concernsStudy: Soliman2021Low risk concernsLow risk low riskLow risk low riskLow risk concernsSome concernsD1: Randomisation processSome concernsSome concernsSome concerns	_				•••••••		••••••		
Mortality during follow upLow risk riskLow risk concernsSome concernsSome concerns28-day mortalityLow risk riskLow risk concernsLow risk concernsSome concernsSome concerns28-day mortalityLow risk riskLow risk concernsLow risk concernsSome concernsSome concerns28-day mortalityLow risk riskLow risk concernsLow risk concernsSome concernsSome concernsLength of stay in ICULow risk concernsLow risk concernsLow risk concernsLow risk concernsSome concernsSome concernsStudy: Soliman2021Some concerns follow upLow risk concernsLow risk concernsLow risk concernsSome concernsSome concernsD1: Randomisation processSome concernsSome concernsSome concernsSome concerns		2024							
during follow upLowLowConcernsconcerns28-day mortalityLow risk riskLow risk Low riskLow risk riskLow risk concernsSome concernsSome concernsLength of stay in ICULow risk riskLow risk Low riskLow risk Low riskLow risk concernsSome concernsSome concernsStudy: Soliman2021Low risk concernsLow risk concernsLow risk concernsLow risk concernsSome concernsD1: Randomisation processD1:Randomisation processSome concernsSome concernsSome concerns			I our might	I our right	I our rich	Como	Sama		
follow upImage: concerns of the conce	2	LOW IISK	LOW TISK	LOW IISK	LOW IISK				
28-day mortalityLow riskLow riskLow riskLow riskSome concernsSome concernsLength of stay in ICULow riskLow riskLow riskLow riskLow riskSome concernsSome concernsStudy: Soliman2021Mortality during follow upSome concernsLow riskLow riskLow riskSome concernsSome concernsD1: Randomisation process	•					concerns	concerns		
mortalityImage: Concerns of the stay in t	-								
Length of stay in ICULow risk Low riskLow risk Low riskLow risk Low riskSome concernsSome concernsStudy: Soliman2021Some Low riskLow risk Low riskLow risk Low riskSome concernsSome concernsMortality during follow upSome concernsLow risk Low riskLow risk Low riskSome concernsSome concernsD1: Randomisation process		Low risk	Low risk	Low risk	Low risk	Some	Some		
stayin ICUImage: stay in and interval and int	mortality					concerns	concerns		
stayin ICUImage: stay of the	Length of	Low risk	Low risk	Low risk	Low risk	Some	Some		
ICUICUICUICUICUStudy: Soliman2021Some concernsLow riskLow riskLow riskSome concernsSome concernsMortality during follow upSome concernsLow riskLow riskLow riskSome concernsSome concernsD1: Randomisation process	•								
Study: Soliman2021Mortality during follow upSome concerns oncernsLow risk concernsLow risk concerns concernsSome concerns concernsD1: Randomisation process	-								
Mortality during follow upSome concernsLow riskLow riskLow riskSome concernsSome concernsD1: Randomisation process		12021							
during follow upconcernsconcernsconcernsD1: Randomisation process	-		T a 1	T a 1	T	Same	Com		
follow up Image: Constraint of the second	2		Low risk	Low risk	Low risk				
D1: Randomisation process	•	concerns				concerns	concerns		
•	follow up								
•	D1: Random	nisation proc	ess						
		-		erventions					

D3: Missing outcome data

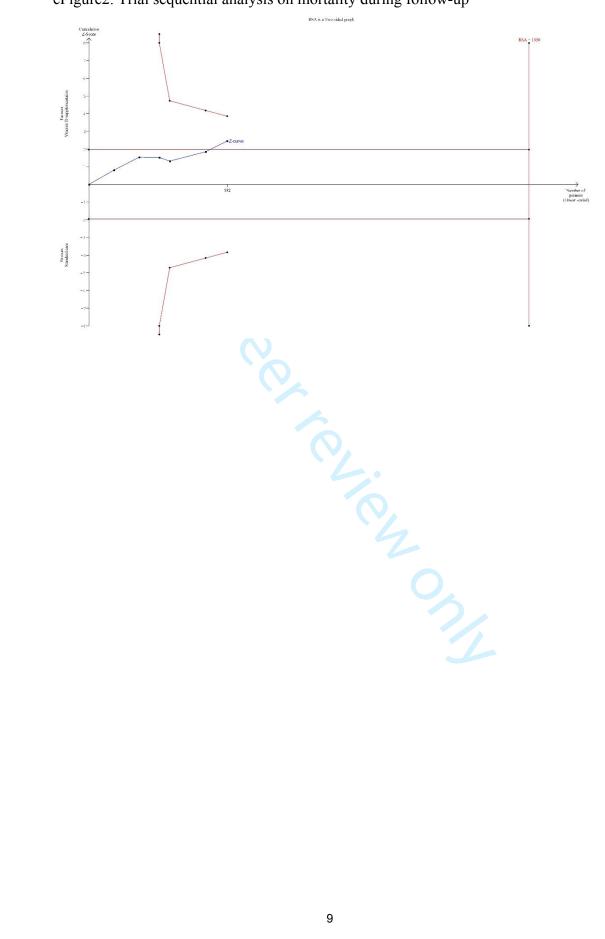
D4: Measurement of the outcome

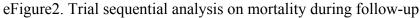
D5: Selection of the reported result

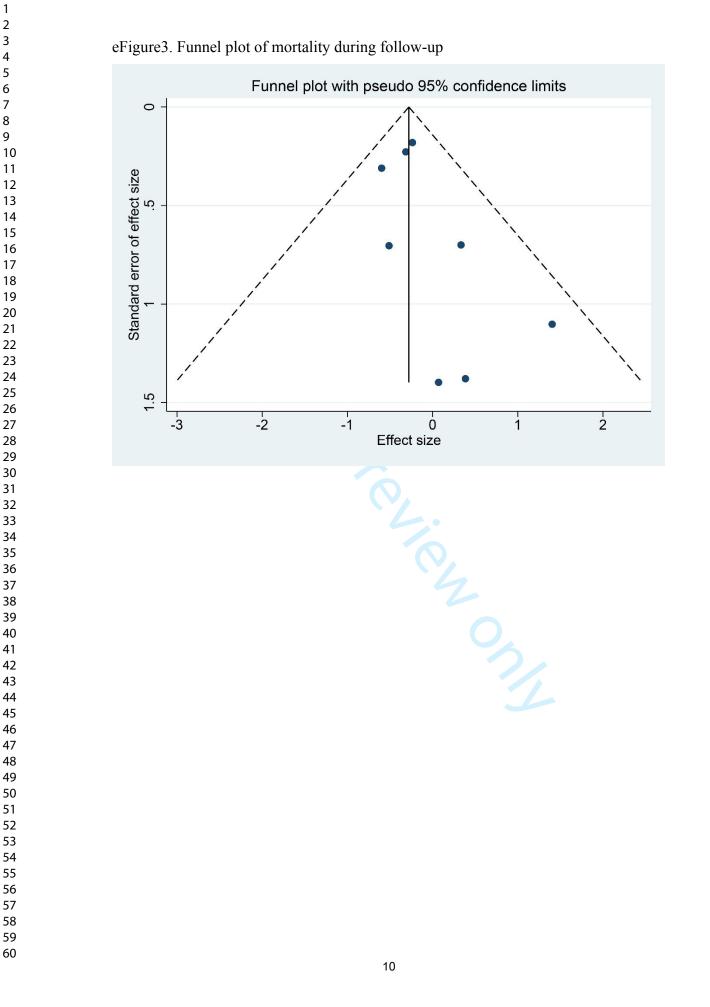
eTable2.

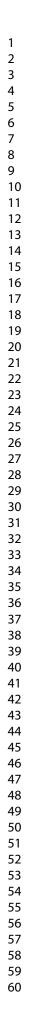
Outcom	No - C	Dial	Mari				Cross-1	Cartai
Outcom	No. of	Risk	Mean				Smal	Certai
es	particip	ratio	differe	Risk	. .		1	nty of
	ants	(95%CI	nce	of	Inconsiste	Imprecis	stud	eviden
	(No. of)	(95%C	bias ^a	ncy ^b	ion ^c	У	ce
	trials)		I)	orus			effec	
							ts ^d	
Mortali	737 (8)	0.76		Not	Not down	Down	Not	Moder
ty		(0.59,0.		Dow	graded	graded	dow	ate
during		96)		n			n	
follow-				grad			grad	
up				ed			ed	
28-day	442 (4)	0.79		Not	Not down	Down	Not	Moder
mortalit		(0.49,1.		Dow	graded	graded	dow	ate
у		26)		n	-	-	n	
-				grad			grad	
			6	ed			ed	
Need	327 (3)	0.90		Not	Not down	Down	Not	Moder
for		(0.69,1.		Dow	graded	graded	dow	ate
mechan		17)		n			n	
ical		,		grad			grad	
ventilat				ed			ed	
ion								
Need	349 (4)	0.84		Not	Not down	Down	Not	Moder
for ICU		(0.45,1.		dow	graded	graded	dow	ate
admissi		56)		n	Ň		n	
on		,		grad			grad	
				ed	4		ed	
Length	582 (6)		-0.41	Not	Down	Down	Not	Low
of stay			(-	Dow	graded	graded	dow	- / .
in ICU			1.09,0.	n		0	n	
			28)	grad	•		grad	
				ed			ed	
Length	378 (4)		-0.07	Not	Down	Down	Not	Low
of stay			(-	dow	graded	graded	dow	2011
in stuy			0.61,0.	n	Braada	O. unou	n	
hospital			46)	grad			grad	
nospital				ed			ed	
L				u			u	

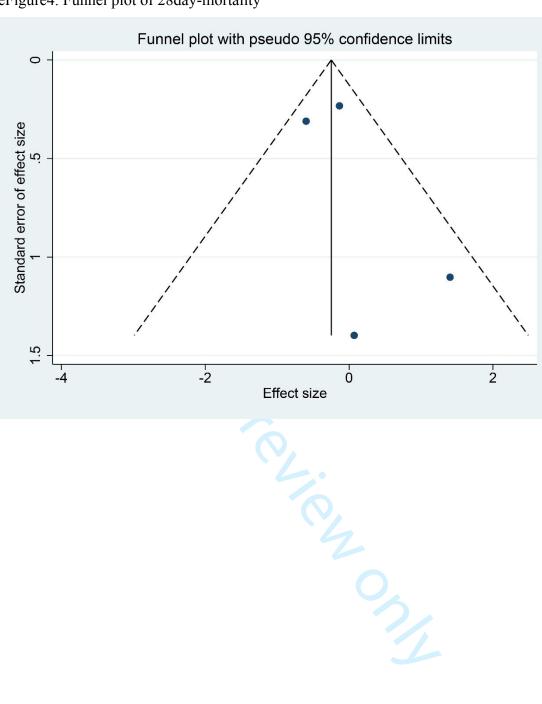
ICU, intensive care unit

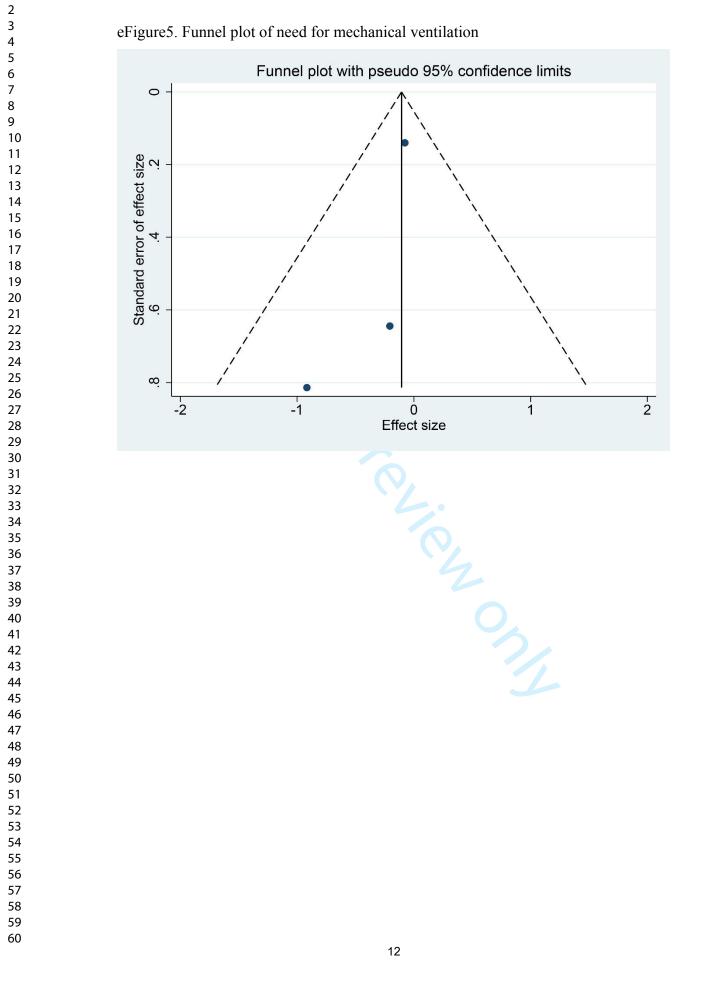

^a Downgraded by one level because >25% of participants in this comparison were from studies at high risk of bias.

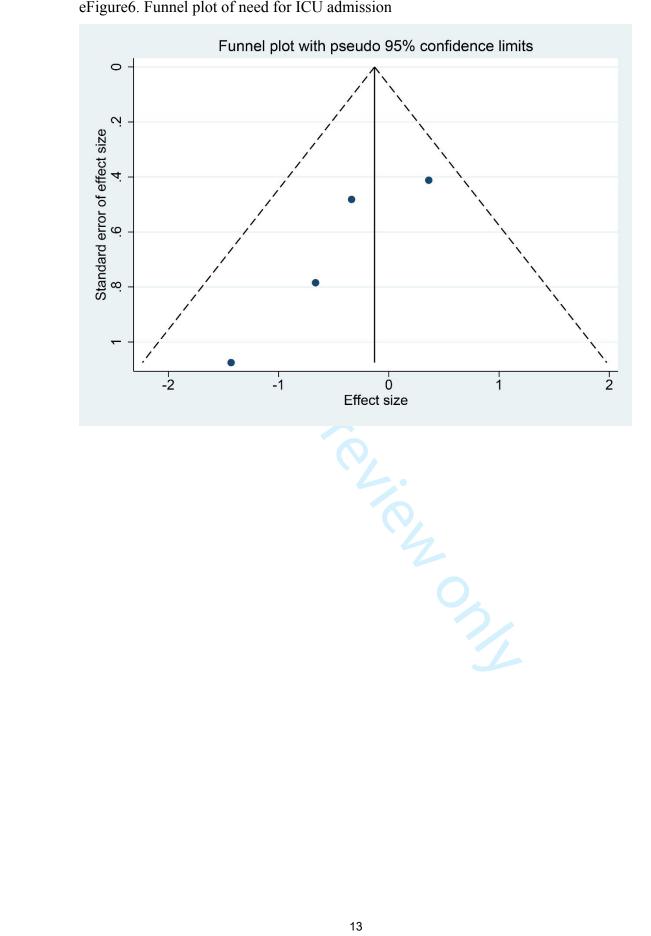

^b Downgraded by one level because heterogeneity $(I^2) > 50\%$.

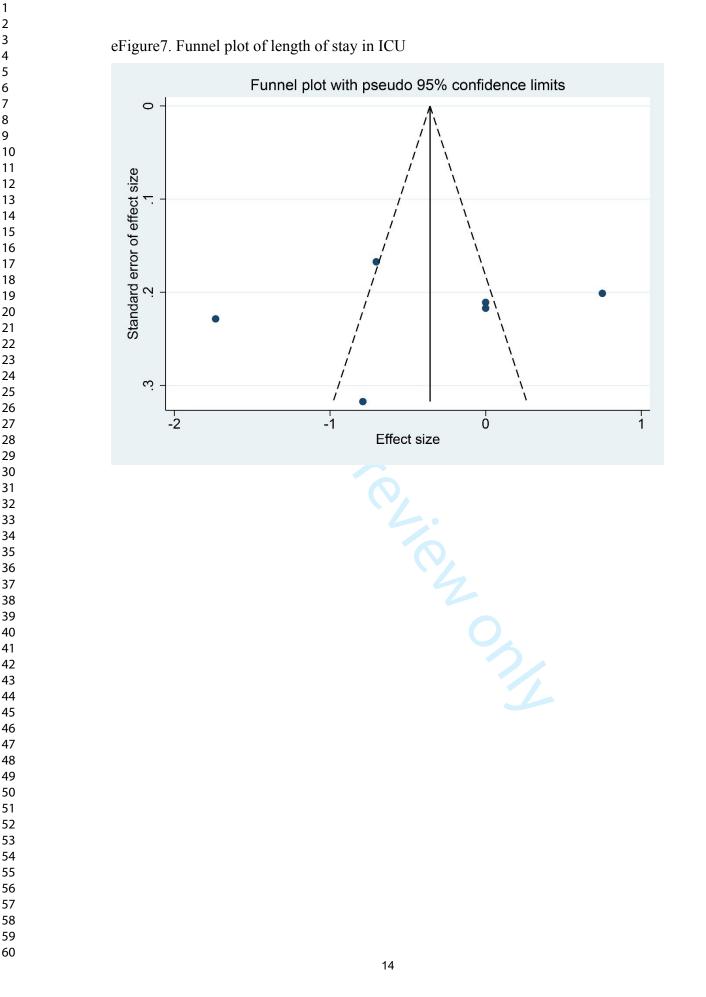

^c Downgraded by one level because the limits of the 95% confidence interval were 20% different to the point estimates.

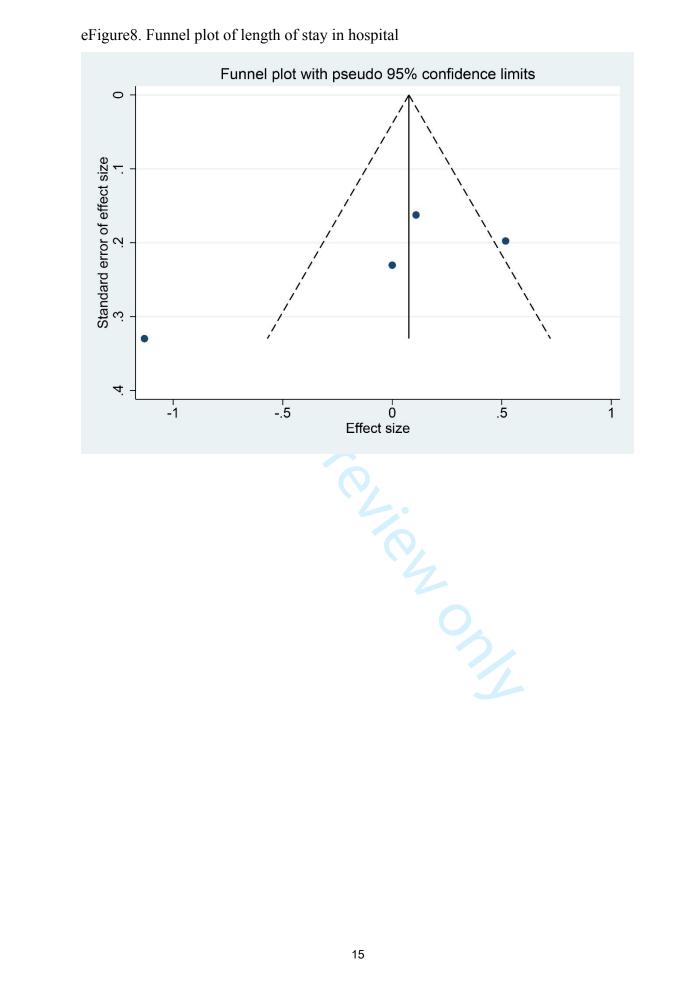

^D Downgraded by one level owing to small study bias.


1 2 3					
5	-	ut on mortality during fo	-		
$ \begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 52 $	eFigure1. Leave-one-or Study Omitting Burgarin Omitting Bychinin Omitting Cervero Omitting Maghbooli Omitting Murai Omitting Rastogi Omitting Soliman Random effects model	ut on mortality during for Risk Ratio	-	0.0298 0.0156 0.0183 0.0215 0.0996 0.0222 0.0235	Fau2 Tau 12 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0 0.0%
53 54 55 56 57 58 59 60		8			








eFigure4. Funnel plot of 28day-mortality

eFigure6. Funnel plot of need for ICU admission

