

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Maternal adverse pregnancy outcomes and childhood overweight at 3 to 8 years of age in Chinese women: a prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-076438
Article Type:	Original research
Date Submitted by the Author:	07-Jun-2023
Complete List of Authors:	Zhang, Rui; Tianjin Medical University, Department of Epidemiology and Biostatistics Gao, Ming; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Weiqin; Tianjin Women and Children's Health Center Liu, Hongyan; Tianjin Women and Children's Health Center Wang, Shuting; Tianjin Women and Children's Health Center Wang, Hui; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Ninghua; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Jing; Tianjin Medical University, Epidemiology and Biostatistics Li, Jing; Tianjin Medical University, Epidemiology and Biostatistics, School of Public Health Yu, Zhijie; Dalhousie University Hu, Gang; Pennington Biomedical Research Center Leng, Junhong; Tianjin Medical University, Department of Epidemiology and Biostatistics
Keywords:	EPIDEMIOLOGIC STUDIES, PAEDIATRICS, Obesity
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

 Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Maternal adverse pregnancy outcomes and childhood overweight at 3 to 8 years of age in Chinese women: a prospective cohort study

Rui Zhang^{1,*}, Ming Gao^{1,*}, Weiqin Li², Hongyan Liu², Shuting Wang², Hui Wang¹,

Ninghua Li¹, Jing Li^{1,3,4} Zhijie Yu⁵, Gang Hu⁶, Junhong Leng^{2,**}, Xilin Yang^{1,3,4,**}

*Equal contribution to the manuscript

Affiliations

¹Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China;

²Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China; Medical University, Tianjin 300070, China;

³Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin

300070, China;

⁴Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China;

⁵Population Cancer Research Program and Department of Pediatrics, Dalhousie

University 15000, Halifax, Canada;

⁶Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center,

Baton Rouge, Louisiana 70808, USA;

Correspondence and reprints addressed to

Prof. Xilin Yang, P.O. Box 154, School of Public Health, Tianjin Medical University,

22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tel: +86 22 83336617;

1 2 3	Fax: +86 22 83336608. Email: vxl@hotmail.com.or.vangxilin@tmu.edu.cn.
4	Tuk. 900 22 055500000, Email: yhteriotinan.com of yanghimitertina.cau.on,
5 6 7	or
8 9 10	Dr. Junhong Leng, Department of Project Office, Tianjin Women and Children's
11 12	Health Centre, Tianjin 300070, China; Tel: +86 22 5829 7792; Email:
13 14 15	ljhlzqljhlzq@163.com
16 17 18 19 20	
21	Word counts
22	
23	Abstract: 278
25	Main taxt: 2041
26	Main text. 2941
27	Number of tables: 3: Number of figures: 0
20 29	Number of ables. 5, Number of figures. 6
30	Number of references: 39
31	Trainoer of feletenees. 57
32	
33	
34 35	
36	
37	
38	
39	
41	
42	
43	
44 45	
45	
47	
48	
49	
50 51	
52	
53	
54	
55 56	
57	
58	
59	
60	2
	E E

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Abstract

Objectives: To explore associations between adverse pregnancy outcomes and childhood overweight at 3-8 years of age among Chinese women.

Design: A prospective cohort study.

Setting: Six central urban districts of Tianjin, China.

Participants: 1681 woman-child pairs.

Methods: 1681 woman-child pairs were followed up for 8 years in Tianjin, China. Demographic and clinical information including pregnancy outcomes was collected longitudinally, commencing from first antenatal care visit till postpartum period. Offspring height and weight were measured at 3-8 years of age. High and low weight/length ratios (WLR) at birth were respectively defined as \geq 90th and \leq 10th gestational age and sex-specific percentiles. Overweight for children at 3-5 and 6-8 years of age were respectively defined as body mass index (BMI)-for-age and -sex above the 2 z-score and 1 z-score curves of the World Health Organization's child growth standards. Binary logistic regression analysis was used to obtain odds ratios (ORs) and 95% confidence interval (CI) with a stepwise backward selection method to select independent predictors.

Primary Outcomes Measures: Childhood overweight.

Results: Of 1681 children, 10.7% (n=179) and 27.8% (n=468) developed overweight at 3-5 and 6-8 years of age, respectively. Large for gestational age (LGA) was associated with increased risk of overweight at 3-5 years of age (OR: 1.86, 95%CI: 1.27-2.72) while high WLR at birth was associated with increased risk of overweight

BMJ Open

at 6-8 years of age (1.82, 1.41-2.34). Low WLR at birth was associated with decreased risk of overweight at 6-8 years of age (0.52, 0.30-0.90).

Conclusions: LGA and high WLR at birth predicted childhood overweight at 3-5 and 6-8 years of age, respectively. Low WLR at birth was associated with decreased risk of childhood overweight at 6-8 years of age.

Key Words: Large for gestational age; Weight/length ratio; Childhood; Overweight

Strengths and limitations of this study

This study was conducted in the 3-tier antenatal care system in urban Tianjin, China and the representativeness of the study population is good.

This study had documented detailed demographic and clinical information of pregnant women from their first antenatal care visit till postpartum period, thus available for analysis.

This study did not record lifestyle factors of children such as physical activities, sleep time and dietary habits, which may exist residual confounding.

Most of women with gestational diabetes mellitus (GDM) in our study were from a randomized controlled trial and half of them received intensive care (IC). Although we had carefully adjusted for IC and its confounding effect may have not been removed completely.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1. Introduction

 Alongside adulthood overweight, childhood overweight has emerged as a serious public health issue worldwide. In 2019, World Health Organization (WHO) estimated that 38.2 million or 5.6% of children under 5 years of age were overweight globally. Furthermore, the prevalence of overweight among children and adolescents aged 5-19 years had risen dramatically from just 4% in 1975 to over 18% in 2016¹. As we all know, overweight during childhood is likely to continue into adulthood and is associated with increased risk of many short-term and long-term adverse health outcomes, including psychosocial comorbidity, cardiovascular diseases (CVD), type 2 diabetes (T2DM) as well as premature mortality². Consequently, it is of utmost importance to identify early risk factors for effective intervention and prevention of childhood overweight.

Childhood overweight is a complex, multifactorial condition stemming from interactions between genetic and non-genetic factors, including unhealthy dietary patterns, inadequate physical activities, shortened sleep duration, increased sedentary time and excessive psychological stress^{3, 4}. In addition, it is well established that intrauterine exposure to gestational diabetes mellitus (GDM) is associated with increased risk of childhood overweight^{5, 6}.

There are many studies demonstrating that GDM can predispose women at a high risk of adverse pregnancy outcomes^{7, 8}. Currently, only a few studies have explored the risk association between adverse pregnancy outcomes and childhood overweight with inconsistent findings. For example, a large cohort study from Canada found that children born with LGA of mothers with GDM were 2.79 times more likely to be overweight at 4-6 years of age compared to children born with appropriate for

BMJ Open

gestational age (AGA) of mothers without diabetes⁹. However, a retrospective study in Xiamen, China failed to find a significant association between infants with LGA of women with GDM and later overweight at 1-6 years of age¹⁰. A cross-sectional analysis from Australia found that low birth weight was associated with decreased risk of overweight among girls at 4-5 years of age¹¹. However, a retrospective study in Tianjin, China observed that low birth weight was not associated with overweight among children aged 3-6 years¹². It deserves further investigation of the risk association between adverse pregnancy outcomes and childhood overweight.

Using the long-term follow-up data of children born to women enrolled in a population-based prospective cohort in Tianjin, China, we aimed to explore the risk associations between adverse pregnancy outcomes and childhood overweight at 3-8 years of age.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

2. Subjects, Materials and Methods

2.1 Study settings and population

The study settings and population has been published previously¹³. Briefly, we established a universal screening and management system for GDM in six central urban districts of Tianjin, China in 1998¹⁴. The antenatal care was delivered by a 3-tier antenatal care system, consisting of 65 primary hospitals, 6 district-level Women and Children's Health Centers (WCHC) and other secondary obstetric hospitals, and a city-level WCHC, i.e., Tianjin WCHC (TWCHC) and other tertiary obstetric hospitals. On the basis of the GDM screening and management system and the 3-tier antenatal care network, we set up a cohort of pregnant women and their offspring.

From 2010 to 2012, a total of 22,302 pregnant women were registered at the

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

primary care hospital near their residence. They were offered a 50-gram 1-hour glucose challenge test (GCT) at 24-28th gestational weeks. Women with plasma glucose (PG) ≥7.8 mmol/L were referred to the TWCHC GDM Clinic to undergo a 75-gram 2-hour oral glucose tolerance test (OGTT) after an overnight fasting of at least 8 hours. GDM was diagnosed according to the International Association of Diabetes and Pregnancy Study Group (IADPSG)'s cut-points: fasting PG \geq 5.1 mmol/L or 1-hour PG \geq 10.0 mmol/L or 2-hour PG \geq 8.5 mmol/L¹⁵. Of them, 1251 women without a GCT result and 891 women with a positive GCT but without a standard OGTT result were excluded. Among the remaining 20,160 participants, 1,535 women were diagnosed with GDM and 1,040 of them with detailed delivery information were invited to participate in the study. Among the 18,625 women without GDM, 1,100 women were randomly selected into this study as the controls. In the 1,535 women with GDM, 948 of them participated in a randomized controlled trial (RCT) to test the effectiveness of intensive care (IC) of GDM during pregnancy on adverse pregnancy outcomes. The details of the RCT and IC have been published previously¹⁶. After further excluding 42 women who had stillbirth, neonatal death or non-singleton pregnancy, a total of 2,098 woman-child pairs were included in the long-term follow-up study.

At postpartum, 2,098 children born to the included women were invited to participate in the follow-up study and measured their body height and weight each year from 1 to 8 years of age. Finally, a total of 1,681 children underwent at least one postpartum follow-up visit and completed body height and weight measurements at 1 to 8 years of age.

2.2 Ethics

Ethical approval was obtained from the Ethics Committee for Clinical Research of

 Tianjin Women and Children's Health Centre. Written informed consent was obtained from all participants before data collection.

2.3 Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

2.4 Data collection and clinical measurement

Before the study, all researchers received uniform training to standardize the anthropometric and clinical measurements. Data were collected longitudinally from a series of questionnaires or extracted from the database of Maternal and Child Health Information System. At registration for pregnancy, we collected information on maternal height, weight, age, systolic blood pressure (SBP), diastolic blood pressure (DBP), education attainment, parity, family history of diabetes in first-degree relatives, smoking and drinking during pregnancy. Maternal height and weight were measured with light clothing and without shoes. Body weight at the first antenatal visit was regarded as the pre-pregnancy weight as the maternal weight was relatively stable during the first trimester of pregnancy¹⁷. Blood pressure was measured in a sitting position after at least 10 minutes of rest. Children's information including birthday, sex, body length and weight at birth and breastfeeding status were also obtained through questionnaires from their mothers. Body height and weight of offspring were measured at each of postpartum follow-up visits from 1 to 8 years of age. BMI was calculated as weight in kilograms divided by the square of height in meters. Weight/length ratio (WLR) at birth was calculated as weight in kilograms divided by body length in meters¹⁸.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2.5 Definition of adverse pregnancy outcomes and infant profile

Preterm birth and postterm pregnancy were defined as delivery at <37 and \geq 42 weeks of gestation^{19, 20}, respectively. Macrosomia and low birth weight were respectively defined as birthweight \geq 4000 g and <2500g^{16, 21}. LGA and small for gestational age (SGA) were respectively defined as birthweight \geq 90th gestational week and sex-specific percentiles and birthweight \leq 10th gestational week and sex-specific percentiles of Chinese standards²². High and low WLR at birth were respectively defined as WLR at birth \geq 90th and \leq 10th gestational age and sex-specific percentiles of Chinese standards¹⁸.

2.6 Definition of childhood overweight

According to the WHO's child growth standards, overweight for children at 3-5 and 6-8 years of age were defined as BMI-for-age and -sex above the 2 z-score and 1 z-score curves, respectively^{23, 24}. In this study, childhood overweight at 3-5 years of age was defined as overweight at either of 3, 4 or 5 years of age and childhood overweight at 6-8 years of age was defined as either overweight at 6, 7 or 8 years of age.

2.7 Statistical analysis

All statistical analyses were conducted using the Statistical Analysis System (Release 9.4, SAS Institute Inc., Cary, NC). Continuous variables were described as mean \pm standard deviation (SD) or median (interquartile range, IQR). Categorical variables were expressed as number (percentage). The differences of continuous variables between two groups were compared by Student's *t*-test or Mann-Whitney U test where appropriate. The differences of categorical variables between two groups were compared by Chi-square test or Fisher's exact test. We used binary logistic regression to obtain the odds ratios (ORs) and 95% confidence interval (CI) of adverse pregnancy outcomes for overweight in children at 3-5 years of age and 6-8 years of age. First, we

BMJ Open

calculated unadjusted ORs in univariable analysis. Second, we performed multivariable analysis to control for confounders. The variables adjusted in the multivariable model included maternal pre-pregnancy BMI, SBP, education attainment, family history of diabetes in first-degree relatives, GDM, IC status during pregnancy, unintentional intervention, child's sex, breastfeeding status and birthweight (for caesarean delivery only). At last, backward stepwise selection approach in the multivariable logistic regression (P=0.05 for exit) was used to identify adverse pregnancy outcomes that have independent predictive values for childhood overweight. All the tests were two-tailed and P values <0.05 were considered to be statistically significant.

2.8 Reporting Guidelines

We used the STROBE cohort checklist when writing our report²⁵.

3. Results

3.1. Characteristics of study participants

A total of 1681 children turned up at least one follow-up visit after delivery, with an overall response rate of 80.1%. Of them, 10.7% (n=179) and 27.8% (n=468) developed overweight at 3-5 and 6-8 years of age, respectively. At the first antenatal care visit, the mean age and BMI of their mothers were 28.9 (SD: 3.0) years and 23.1 (SD: 3.5) kg/m². Compared to children with normal weight, mothers of children who developed overweight at 3-5 years of age had higher pre-pregnancy BMI, SBP/DBP, were less likely to have education >12 years, and were more likely to have family history of diabetes in first-degree relatives and to have GDM; mothers of children who developed overweight at 6-8 years of age had higher pre-pregnancy BMI and higher SBP/DBP and were more likely to have GDM and to receive IC during pregnancy but less likely

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

to have education >12 years. Other characteristics including parity, smoking and drinking during pregnancy, and unintentional intervention were not significantly different between the two groups (Table 1).

3.2. Associations of adverse pregnancy outcomes and infant profile with offspring overweight at 3-5 years of age

Children who developed overweight at 3-5 years of age had a higher birthweight, higher rates of male sex, caesarean delivery, macrosomia, LGA and high WLR at birth than children with normal weight (Table 2). In univariable analysis, caesarean delivery, macrosomia, LGA and high WLR at birth were associated with markedly increased risk of offspring overweight (OR: 1.96, 95%CI: 1.36-2.84 & 2.63, 1.79-3.87 & 2.37, 1.66-3.39 & 2.09, 1.51-2.91, respectively). After adjusting for confounding factors, the associations of macrosomia, LGA and high WLR at birth with offspring overweight at 3-5 years of age were slightly attenuated but still significant (1.89, 1.25-2.85 & 1.86, 1.27-2.72 & 1.67, 1.18-2.37, respectively). The multivariable backward stepwise logistic regression analysis revealed that LGA was independently associated with increased risk of offspring overweight at 3-5 years of age (1.86, 1.27-2.72) (Table 3).

3.3. Associations of adverse pregnancy outcomes and infant profile with offspring overweight at 6-8 years of age

Children who developed overweight at 6-8 years of age had a higher birthweight, higher rates of male sex, caesarean delivery, macrosomia, LGA and high WLR at birth, and lower rates of low birth weight, SGA and low WLR at birth than children with normal weight (Table 2). In univariable analysis, caesarean delivery, macrosomia, LGA and high WLR at birth were associated with markedly increased risk of offspring overweight (OR: 1.69, 95%CI: 1.33-2.14 & 2.59, 1.91-3.50 & 2.42, 1.84-3.19 & 2.18,

1.72-2.77, respectively). Conversely, low birth weight, SGA and low WLR at birth were associated with decreased risk of offspring overweight (0.41, 0.17-0.98 & 0.48, 0.27-0.83 & 0.47, 0.28-0.80, respectively). In multivariable analysis, the associations of macrosomia, LGA and high WLR at birth with offspring overweight were slightly attenuated but still significant (1.92, 1.39-2.65 & 1.99, 1.49-2.67 & 1.82, 1.41-2.34, respectively). On the other hand, low birth weight, SGA and low WLR at birth were still associated with decreased risk of offspring overweight (0.41, 0.17-0.98 & 0.53, 0.30-0.95 & 0.52, 0.30-0.90, respectively). The backward stepwise logistic regression in the multivariable analysis revealed that high WLR at birth was independently associated with increased risk of offspring overweight at 6-8 years of age (1.82, 1.41-2.34), whereas low WLR at birth was associated with decreased risk of offspring overweight at 6-8 years of age (0.52, 0.30-0.90) (Table 3).

4. Discussion

In the present study, we found that (1) LGA predicted offspring overweight at 3-5 years of age; (2) high WLR at birth predicted offspring overweight at 6-8 years of age; (3) low WLR at birth was associated with decreased risk of offspring overweight at 6-8 years of age.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Several studies have investigated the association between LGA and offspring overweight but have inconsistent conclusions. A retrospective study in Xiamen, China (n=33,157) did not observe a significant association between LGA and childhood overweight among women with GDM at 1 to 6 years of age¹⁰. A cohort study in Greece (n=1667) also did not find any significant association between LGA and childhood overweight from 3 to 5 years of age²⁶. However, a large cohort study in Alberta, Canada (n=81,226) found that infants with LGA of women with GDM had a 179% higher risk

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

of being overweight at 4-6 years of age than infants with AGA of mothers without GDM. However, that study did not adjust for maternal pre-pregnancy BMI⁹. To our knowledge, our study is the first to evaluate the association between WLR at birth and long-term risk of childhood overweight. WLR at birth was found to correlate strongly with skinfold thickness and body fat store in newborn infants^{27, 28}. Moreover, the INTERGROWTH-21st Project demonstrated that WLR at birth was more closely associated with fat mass, fat-free mass, and body fat percentage than BMI or ponderal index in neonates²⁹. Therefore, the WLR at birth is a good parameter for evaluating the nutritional status of intrauterine growth and predicting metabolic complications in newborns with abnormal intrauterine growth^{27, 28}. In this connection, we observed that high WLR at birth was positively associated with overweight in children at 6-8 years of age.

The mechanisms by which LGA increases the risk of childhood overweight are not yet fully understood. However, it is becoming increasingly clear that GDM, maternal pre-pregnancy overweight and excessive pregnancy weight gain all predispose women to an elevated risk of LGA³⁰. These risk factors are accompanied with insulin resistance and hyperglycemia during pregnancy^{31, 32}, which can cause fetal hyperinsulinemia and maternal hypertriglyceridemia, and then lead to fetal overnutrition and high risk of LGA^{33, 34}. Intrauterine overnutrition may affect fat metabolism, insulin and leptin secretion by altering the development of the appetite control center in the fetal hypothalamus, thus leading to an imbalance of the fetal energy system and increasing the risk of childhood overweight^{35, 36}. Furthermore, a longitudinal study in Hungary found a positive correlation between cord serum leptin levels and WLR at birth³⁷. Cord blood leptin levels were found to be closely related to

BMJ Open

fetal fat store and may serve as an important regulator of fetal growth and development, energy intake, storage and expenditure, thus contributing to long-term childhood overweight^{37, 38}.

Our findings have strong public health and clinical implications. It is well established that childhood overweight can persist into adulthood and has been implicated in many chronic diseases. Hence, there is a strong need for taking measures to prevent childhood overweight to reduce the burden of overweight-related diseases in adulthood. Based on this long-term follow-up study, our findings highlighted the importance of improving adverse pregnancy outcomes, including LGA and high WLR at birth, for benefits of childhood overweight and possibly well-being in adulthood. Our previous RCT demonstrated that IC for pregnant women with GDM can improve adverse pregnancy outcomes, including LGA¹⁶. However, our meta-analysis showed that intensive management of GDM did not have a detectable effect on childhood obesity³⁹. Indeed, infants born with LGA and high WLR need special attention to the high risk of childhood overweight. Given to the high prevalence of childhood overweight, it is worthwhile to test the effect and cost-effectiveness of lifestyle intervention for prevention of childhood overweight among high-risk children, e.g., those born to be LGA and high WLR.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Our study had strengths and limitations. The strength of this study was conducted in the 3-tier antenatal care system in urban Tianjin, China and the representativeness of the study population is good. The second strength of the study was that we had documented detailed demographic and clinical information of pregnant women from their first antenatal care visit till postpartum period, thus available for analysis. Our

study also has several limitations. Firstly, some variables regarding lifestyle in the children were not recorded in the study, such as detailed information of breastfeeding duration, physical activities, sleep time and dietary habits, which may exist residual confounding. Secondly, most of women with GDM in our study were from an RCT and half of them received IC. Our previous meta-analysis failed to show that IC of GDM during pregnancy had a detectable effect on the risk of offspring overweight³⁹. Although we had carefully adjusted for IC and its confounding effect may have not removed completely.

5. Conclusion

In conclusion, in the long-term follow-up study of Chinese children, we found that LGA and high WLR at birth were predictive of overweight in children at 3-5 and 6-8 years of age, respectively. Special attention should be paid to children born with LGA and/or high WLR for prevention of childhood obesity. It is worthwhile to test the effectiveness and cost-effectiveness of lifestyle intervention for children at high risk of being overweight. We also observed some benefits for childhood overweight associated with low WLR at birth. Its long-term benefits and possibly harms need further investigations in the future, especially for overweight in adulthood.

Acknowledgements

The authors thank all the health professionals of Tianjin Antenatal Network for their involvement and contributions to the study.

Funding

This work was supported by Tianjin Key Medical Discipline (Specialty) Construction Project (Grant No: TJYXZDXK- 075C) and National Natural Science Foundation of China (Grant No: 82200932).

Competing interests statement

The authors declared no conflict of interest.

Author statement

X.Y. & J.Leng. conceived the idea and designed the study; R.Z. & M.G. analyzed the data and wrote the first draft; W.L., H.L., S.W. & J.Leng. collected the data; H.W., N.L., J.Li., Z.Y. & G.H. gave critical comments and edited the manuscript; All authors gave comments and contributed to the writing of the manuscript and agreed to submit and publish the manuscript. X.Y. & J.Leng took full responsibility for the work as a whole, including the study design, access to the data, and decision to submit.

Lien

Data availability statement

The datasets used and/or analyzed during the current study are available from the

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

corresponding author on reasonable request.

to peet teries only

References:

- World Health Organization. Facts about overweight and obesity, 2021. Accessed 23 May 2023. Available from https://www.who.int/news-room/factsheets/detail/obesity-and-overweight
- Di Cesare M, Sorić M, Bovet P, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC medicine 2019;17(1):212; 10.1186/s12916-019-1449-8
- Güngör NK. Overweight and obesity in children and adolescents. Journal of clinical research in pediatric endocrinology 2014;6(3):129-143; 10.4274/Jcrpe.1471
- 4. Lee EY, Yoon KH. Epidemic obesity in children and adolescents: risk factors and prevention. Frontiers of medicine 2018;12(6):658-666; 10.1007/s11684-018-0640-1
- Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet (London, England) 2010;375(9727):1737-1748; 10.1016/s0140-6736(10)60171-7
- Ardıç C, Çolak S, Uzun K, et al. Maternal Gestational Diabetes and Early Childhood Obesity: A Retrospective Cohort Study. Child Obes 2020;16(8):579-585; 10.1089/chi.2020.0183
- Yang X, Hsu-Hage B, Zhang H, et al. Women with impaired glucose tolerance during pregnancy have significantly poor pregnancy outcomes. Diabetes care 2002;25(9):1619-1624; 10.2337/diacare.25.9.1619
- Ye W, Luo C, Huang J, et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ (Clinical research ed.) 2022;377:e067946; 10.1136/bmj-2021-067946
- 9. Kaul P, Bowker SL, Savu A, et al. Association between maternal diabetes, being large for gestational age and breast-feeding on being overweight or obese in childhood. Diabetologia 2019;62(2):249-258; 10.1007/s00125-018-4758-0
- **10.** Chen YL, Han LL, Shi XL, et al. Adverse pregnancy outcomes on the risk of overweight offspring: a population-based retrospective study in Xiamen, China.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Scientific reports 2020;10(1):1549; 10.1038/s41598-020-58423-7

- Oldroyd J, Renzaho A, Skouteris H. Low and high birth weight as risk factors for obesity among 4 to 5-year-old Australian children: does gender matter? European journal of pediatrics 2011;170(7):899-906; 10.1007/s00431-010-1375-4
- Zhang X, Liu E, Tian Z, et al. High birth weight and overweight or obesity among Chinese children 3-6 years old. Preventive medicine 2009;49(2-3):172-178; 10.1016/j.ypmed.2009.07.013
- Leng J, Shao P, Zhang C, et al. Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, China. PloS one 2015;10(3):e0121029; 10.1371/journal.pone.0121029
- Yang X, Hsu-Hage B, Zhang H, et al. Gestational diabetes mellitus in women of single gravidity in Tianjin City, China. Diabetes care 2002;25(5):847-851; 10.2337/diacare.25.5.847
- 15. Metzger BE, Gabbe SG, Persson B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes care 2010;33(3):676-682; 10.2337/dc09-1848
- 16. Yang X, Tian H, Zhang F, et al. A randomised translational trial of lifestyle intervention using a 3-tier shared care approach on pregnancy outcomes in Chinese women with gestational diabetes mellitus but without diabetes. Journal of translational medicine 2014;12:290; 10.1186/s12967-014-0290-2
- Fattah C, Farah N, Barry SC, et al. Maternal weight and body composition in the first trimester of pregnancy. Acta obstetricia et gynecologica Scandinavica 2010;89(7):952-955; 10.3109/00016341003801706
- 18. Zong XN, Li H, Zhang YQ, et al. [Reference values and growth curves of weight/length, body mass index, and ponderal index of Chinese newborns of different gestational ages]. Zhonghua er ke za zhi = Chinese journal of pediatrics

2							
3 4		2021;59(3):181-	188; 10.3760/	cma.j.cn112	2140-202011	30-01063	
5 6	19.	ACOG Committ	ee Opinion N	lo 579: Def	inition of ter	m pregnanc	cy. Obstetrics
7 8		and	gyneco	ology		2013;122(5):1139-1140;
9		10.1097/01.AOC	G.0000437385	5.88715.4a			
11	20.	WHO: recomme	nded definitio	ons, termino	ology and for	rmat for sta	tistical tables
13		related to the per	rinatal period	and use of a	new certific	ate for caus	e of perinatal
15		deaths. Modifica	tions recomm	nended by I	FIGO as ame	ended Octol	per 14, 1976.
16		Acta obstetricia	et gynecologi	ca Scandina	vica 1977;50	6(3):247-25	3;
18 19	21.	Moreira AIM, So	ousa PRM, Sai	rno F. Low l	oirth weight	and its assoc	eiated factors.
20 21		Einstein	Sao Pa	aulo,	Brazil)	2018;16(4):eAO4251;
22 23		10.31744/einstei	n journal/201	8AO4251	,		
24 25	22.	Zhu L, Zhang F	R, Zhang S, e	et al. [Chin	ese neonata	l birth weig	ght curve for
26 27		different gestatio	nal age]. Zho	nghua er ke	za zhi = Chi	nese journal	of pediatrics
28 29		2015:53(2):97-10	03:	0		5	1
30 31	23.	World Health O	rganization. V	WHO child	growth stand	dards: traini	ng course on
32 33		child growth as	sessment. 20	008: Access	sed 23 May	2023. Av	ailable from
34 35		https://www.who	o int/publication	ons/i/item/9	7892415950)70	
36 37	24.	World Health (Drganization	Growth re	ference data	a for 5-19	vears 2007.
38		Accessed 23 M	av 2023 Av	ailable fror	n https://wv	vw who int/	tools/growth-
40		reference-data-fo	or-5to19-years	s/indicators/	bmi-for-age	_	
42	25.	von Elm E Altr	nan DG Egg	er Met al	The Strengt	thening the	Reporting of
43		Observational St	tudies in Enio	demiology ((STROBE)	statement: o	uidelines for
45		reporting obse	rvational st	tudies Io	urnal of	clinical e	enidemiology
47 48		2008.61(4).344-	349·101016/	i iclineni 20	007 11 008	•••••••	.pr ue mieregy
49 50	26	Moschonis G. G	rammatikaki	F. Manios V	V Perinatal	predictors o	of overweight
51 52	20.	at infancy and p	reschool child	thood: the C	FNESIS str	idv Internat	tional journal
53 54		of obesity (2005)	2008.32(1).3	$39_47 \cdot 1010$)38/si jio 080	03764	lionar journar
55 56	27	Yau KI Chang M	MH Weight t	o length rat	ioa good n	arameter for	r determining
57 58	_ / •	nutritional status	in nreterm	and full_terr	n newborns	Acta naed	iatrica (Oslo
59 60		national status					uu 100 (0510,
				20			

 Norway : 1992) 1993;82(5):427-429; 10.1111/j.1651-2227.1993.tb12715.x

- 28. Fok TF, Hon KL, Ng PC, et al. Use of anthropometric indices to reveal nutritional status: normative data from 10,226 Chinese neonates. Neonatology 2009;95(1):23-32; 10.1159/000151752
- **29.** Villar J, Puglia FA, Fenton TR, et al. Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21(st) project. Pediatric research 2017;82(2):305-316; 10.1038/pr.2017.52
- Bowers K, Laughon SK, Kiely M, et al. Gestational diabetes, pre-pregnancy obesity and pregnancy weight gain in relation to excess fetal growth: variations by race/ethnicity. Diabetologia 2013;56(6):1263-1271; 10.1007/s00125-013-2881-5
- 31. Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Annals of nutrition & metabolism 2015;66 Suppl 2:14-20; 10.1159/000371628
- **32.** Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ (Clinical research ed.) 2017;356:j1; 10.1136/bmj.j1
- 33. Heerwagen MJ, Miller MR, Barbour LA, et al. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. American journal of physiology. Regulatory, integrative and comparative physiology 2010;299(3):R711-722; 10.1152/ajpregu.00310.2010
- 34. Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? American journal of obstetrics and gynecology 2011;204(6):479-487; 10.1016/j.ajog.2010.11.039
- **35.** Oken E, Gillman MW. Fetal origins of obesity. Obesity research 2003;11(4):496-506; 10.1038/oby.2003.69
- **36.** Bouret SG. Early life origins of obesity: role of hypothalamic programming. Journal of pediatric gastroenterology and nutrition 2009;48 Suppl 1:S31-38;

10.1097/MPG.0b013e3181977375

- **37.** Ertl T, Funke S, Sárkány I, et al. Postnatal changes of leptin levels in full-term and preterm neonates: their relation to intrauterine growth, gender and testosterone. Biology of the neonate 1999;75(3):167-176; 10.1159/000014093
- 38. Schubring C, Kiess W, Englaro P, et al. Levels of leptin in maternal serum, amniotic fluid, and arterial and venous cord blood: relation to neonatal and placental weight. The Journal of clinical endocrinology and metabolism 1997;82(5):1480-1483; 10.1210/jcem.82.5.3935
- **39.** Gao M, Cao S, Li N, et al. Risks of overweight in the offspring of women with gestational diabetes at different developmental stages: A meta-analysis with more than half a million offspring. Obesity reviews : an official journal of the International Association for the Study of Obesity 2022;23(3):e13395; 10.1111/obr.13395

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 1. Maternal clinical characteristics stratified by offspring overweight status from 3 to 8

years	of	age
-------	----	-----

Characteristics	Normal	Overweight	P value
At 3-5 years of age(1502/179)			
Age, years	28.9±3.0	28.7±2.9	0.355ª
Height, cm	163.0±4.9	162.5±5.4	0.328 ^a
Pre-pregnancy BMI, kg/m ²	22.8±3.3	25.4±4.4	<0.001ª
SBP, mmHg	106.0±10.7	108.4±10.5	0.005 ^a
DBP, mmHg	68.8±7.6	70.8±7.9	0.001ª
Education >12 years	1255(83.6)	139(77.7)	0.047 ^b
Parity ≥1	62(4.1)	5(2.8)	0.388 ^b
Family history of diabetes in		00(45.0)	
first-degree relatives	137(9.1)	28(15.6)	0.0065
Smoking during pregnancy	14(0.9)	1(0.6)	0.935 ^b
Drinking during pregnancy	8(0.5)	1(0.6)	1.000 ^b
Gestational diabetes mellitus	718(47.8)	103(57.5)	0.014 ^b
IC status during pregnancy	322(21.4)	42(23.5)	0.534 ^b
Unintentional intervention	172(11.5)	22(12.3)	0.740 ^b
At 6-8 years of age(1213/468)			
Age, years	28.9±2.9	28.9±3.2	0.983ª
Height, cm	162.9±4.8	162.8±5.3	0.615 ^a
Pre-pregnancy BMI, kg/m ²	22.5±3.2	24.5±3.9	<0.001ª
SBP, mmHg	105.7±10.8	107.6±10.4	0.002 ^a
DBP, mmHg	68.6±7.7	70.2±7.7	<0.001ª
Education >12 years	1030(84.9)	364(77.8)	0.001 ^b
Parity ≥1	45(3.7)	22(4.7)	0.352 ^b
Family history of diabetes in	112/0.2)	52(11.1)	0.269b
first-degree relatives	113(9.3)	52(11.1)	0.208
Smoking during pregnancy	8(0.7)	7(1.5)	0.179 ^b
Drinking during pregnancy	7(0.6)	2(0.4)	1.000 ^b
Gestational diabetes mellitus	543(44.8)	278(59.4)	<0.001 ^b
IC status during pregnancy	240(19.8)	124(26.5)	0.003 ^b
Unintentional intervention	135(11.1)	59(12.6)	0.400 ^b

Data are presented as means±SD or n (%).

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; IC, intensive care; SD, standard deviation.

^aDerived from *t*-test.

^bDerived from Chi-square Test or Fisher's exact test.

	Normal	Overweight	P value
At 3-5 years of age (1502/179)		~	
Gestational age at delivery, weeks	39.0±1.5	39.0±1.5	0.946ª
Birthweight ka	3 4+0 5	3 6+0 5	<0.001
Infant male sex	796(53.0)	115(64.3)	0.004
Caesarean delivery	971(64.7)	140(78.2)	<0.001
Gestational week at delivery	371(04.7)	140(70.2)	0.001
Protorm hirth	66(4.4)	7(3.0)	0.000
Poetterm programov	00(+.+)	F(0.9)	
Positerin pregnancy	27(1.0)	5(2.0)	
Weight at birth			<0.001
Macrosomia	155(10.3)	42(23.5)	
Low birth weight	45(3.0)	3(1.7)	
Gestational age specific weight at			~0.001
birth			<0.001
Large for gestational age	207(13.8)	51(28.5)	
Small for gestational age	103(6.9)	4(2.2)	
Weight/length ratio at birth			<0.001
High weight/length ratio at birth	335(22.3)	69(38.6)	
Low weight/length ratio at birth	120(8.0)	7(3.9)	
Breastfeeding status			0.393 ^b
Exclusive breastfeeding	242(16.1)	23(12.9)	
Mixed breastfeeding	328(21.8)	45(25.1)	
Artificial feeding	932(62.1)	111(62.0)	
At 6-8 years of age (1213/468)			
Gestational age at delivery,	39.1±1.5	39.0±1.4	0.173ª
Weeks	24105		-0.001
Birthweight, kg	3.4 ± 0.5	3.6±0.5	< 0.001
	012(00.0)	299(03.9)	<0.001
Caesarean delivery	764(63.0)	347(74.2)	<0.001
Gestational week at delivery			0.923 ^b
Preterm birth	52(4.3)	21(4.5)	
Postterm pregnancy	24(2.0)	8(1.7)	
Weight at birth			<0.001
Macrosomia	104(8.6)	93(19.9)	
Low birth weight	42(3.5)	6(1.3)	-0.004
Gestational age specific weight at birth	111(11 6)	117(25.0)	<0.001
Large for gestational age	141(11.0)	117(25.0)	
Small IVI yesialional aye Weight/length ratio at hirth	92(1.0)	15(3.2)	<0.001
	000(40 E)	100/25 0)	SU.001
High weight/length ratio at birth	236(19.5)	168(35.9)	
Low weight/length ratio at birth	110(9.1)	17(3.6)	
Breastfeeding status			0.232 ^b
Exclusive breastfeeding	200(16.5)	65(13.9)	
Mixed breastfeeding	275(22.7)	98(20.9)	
Artificial feeding	738(60.8)	305(65.2)	

Table 2. Maternal pregnancy outcomes and infant profile stratified by offspring overweight

Data are presented as means±SD or median (IQR) or n (%).

Abbreviations: SD, standard deviation; IQR, interquartile range.

^aDerived from *t*-test.

^bDerived from Chi-square Test or Fisher's exact test.

	Overweight at 3	-5 years	Overweight at 6-8	8 years of
	of age (N=2	179)	age (N=46	68)
	OR (95 %CI)	P value	OR (95 %CI)	P value
Model 1				
Caesarean delivery	1.96(1.36-2.84)	<0.001	1.69(1.33-2.14)	<0.001
Gestational week at delivery				
Preterm birth	0.90(0.40-1.98)	0.784	1.05(0.62-1.76)	0.865
Term birth	Reference		Reference	
Postterm pregnancy	1.56(0.59-4.11)	0.366	0.86(0.39-1.94)	0.721
Weight at birth				
Macrosomia	2.63(1.79-3.87)	<0.001	2.59(1.91-3.50)	<0.001
Normal weight	Reference		Reference	
Low birth weight	0.65(0.20-2.11)	0.472	0.41(0.17-0.98)	0.045
Gestational age specific weight at birth				
Large for gestational age	2.37(1.66-3.39)	<0.001	2.42(1.84-3.19)	<0.001
Appropriate for gestational age	Reference		Reference	
Small for gestational age	0.37(0.14-1.03)	0.057	0.48(0.27-0.83)	0.009
Weight/length ratio at birth				
High weight/length ratio at birth	2.09(1.51-2.91)	<0.001	2.18(1.72-2.77)	<0.001
Normal weight/length ratio at birth	Reference		Reference	
Low weight/length ratio at birth	0.59(0.27-1.31)	0.194	0.47(0.28-0.80)	0.006
Model 2				
Caesarean delivery	1.36(0.91-2.01)	0.131	1.20(0.93-1.56)	0.162
Gestational week at delivery				
Preterm birth	0.90(0.40-2.03)	0.800	1.01(0.59-1.74)	0.975
Term birth				
Postterm pregnancy	1.41(0.50-3.95)	0.518	0.83(0.35-1.94)	0.662
Weight at birth				
Macrosomia	1.89(1.25-2.85)	0.002	1.92(1.39-2.65)	<0.001
Normal weight	Reference		Reference	
Low birth weight	0.68(0.20-2.26)	0.528	0.41(0.17-0.98)	0.046
Gestational age specific weight at birth			. ,	
Large for gestational age	1.86(1.27-2.72)	0.002	1.99(1.49-2.67)	<0.001
Appropriate for gestational age	Reference		Reference	
Small for gestational age	0.45(0.16-1.26)	0.128	0.53(0.30-0.95)	0.032
Weight/length ratio at birth	· · · · ·		· · · ·	
High weight/length ratio at birth	1.67(1.18-2.37)	0.004	1.82(1.41-2.34)	<0.001
Normal weight/length ratio at birth	Reference		Reference	
Low weight/length ratio at birth	0.67(0.30-1.50)	0.329	0.52(0.30-0.90)	0.018
Model 3	- (,			
Weight at birth				
Macrosomia	-	-	-	-
Normal weight				
Low birth weight	-	-	-	-
Gestational age specific weight at birth				
Large for gestational age	1 86(1 27-2 72)	0.002	_	_
Appropriate for destational age	Reference	0.002		
Small for destational age	0 45(0 16-1 26)	0 128	-	_
Weight/length ratio at birth	3.10(0.10 1.20)	0.720		
High weight/length ratio at hirth	-	_	1 82(1 41-2 34)	<0 001
Normal weight/length ratio at birth			Reference	-0.001
Low weight/length ratio at birth	-	_	0.52(0.30-0.90)	0.018
Abbreviations: OR, odds ratio: 95 %CL 9	5% confidence inter	val:	3.02(0.00 0.00)	0.010

Table 3. Odds ratios of adverse pregnancy outcomes and infant profile for offspring overweight status from 3 to 8 years of age

Model 1: Univariable analysis.

Model 2: Multivariable analysis, adjusted for pre-pregnancy body mass index, systolic blood pressure,

education attainment, family history of diabetes in first-degree relatives, gestational diabetes mellitus, intensive care status during pregnancy, unintentional intervention, child gender, breastfeeding status and birthweight (for caesarean delivery only).

Model 3: Adjusted for the variables listed in model 2 and backward stepwise approach was used to select pregnancy outcomes (P =0.05 for exit).

dinmo. J.

Reporting checklist for cohort study.

Instructions to authors

Based on the ST	ROBE col	hort guidelines.	
Instructions	to aut	hors	
Complete this ch items listed below	ecklist by w.	entering the page numbers from your manuscript where readers will find eac	ch of the
Your article may missing informat explanation.	not curre	ntly address all the items on the checklist. Please modify your text to include u are certain that an item does not apply, please write "n/a" and provide a sho	e the ort
Upload your con	pleted ch	ecklist as an extra file when you submit to a journal.	
In your methods	section, s	ay that you used the STROBE cohortreporting guidelines, and cite them as:	
von Elm E, Altm Reporting of Obs observational stu	an DG, E servationa idies.	gger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Il Studies in Epidemiology (STROBE) Statement: guidelines for reporting	;
		Reporting Item	Page Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
A1 / /	#1b	Provide in the abstract an informative and balanced summary of what	3
Abstract		was done and what was found	
Abstract Introduction		was done and what was found	
Abstract Introduction Background / rationale	<u>#2</u>	was done and what was found Explain the scientific background and rationale for the investigation being reported	5
Abstract Introduction Background / rationale Objectives	<u>#2</u> <u>#3</u>	 was done and what was found Explain the scientific background and rationale for the investigation being reported State specific objectives, including any prespecified hypotheses 	5
Abstract Introduction Background / rationale Objectives Methods	<u>#2</u> <u>#3</u>	was done and what was foundExplain the scientific background and rationale for the investigation being reportedState specific objectives, including any prespecified hypotheses	6
Abstract Introduction Background / rationale Objectives Methods Study design	# <u>2</u> # <u>3</u> # <u>4</u>	 was done and what was found Explain the scientific background and rationale for the investigation being reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper 	5 6 6-7

Page 29 of 30

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	6
6 7 8	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	
9 10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	
22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	9-
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	6
26 27 28 29	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9-
30 31 32 33 34	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
35 36 37 38	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	r
40 41 42 43	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	r
44 45 46 47	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	r
48 49 50 51 52	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
53 54	11/a			
55 56	INTSUILS			
57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.
5 6	Participants	<u>#13b</u>	Give reasons for non-participation at each stage
7 8 0	Participants	<u>#13c</u>	Consider use of a flow diagram
9 10 11	n/a		
12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.
19 20 21 22	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest
23 24	n/a		
25 26	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)
27 28 29	7		
30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.
35 36	10		
 37 38 39 40 41 42 43 	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
52 53	n/a		
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
58 59 60	Discussion	For p	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Key results	<u>#18</u>	Summarise key results with reference to study objectives	12
3 4 5 6 7	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14-15
8 9 10 11 12	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	12-13 Protecte
13 14 15	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	d by 14 y co
16 17	Other			pyrig
18 19	Information			Jht, in
20 21 22 23 24	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	cluding for us
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 77	EQUATOR Netwo	<u>ork</u> in co	Illaboration with Penelope.at	tr superieur (ABES) .) text and data mining, Al training, and similar technologies.
58 59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Adverse birth outcomes and childhood overweight at 3 to 8 years of age in Chinese women: a prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-076438.R1
Article Type:	Original research
Date Submitted by the Author:	24-Nov-2023
Complete List of Authors:	Zhang, Rui; Tianjin Medical University, Department of Epidemiology and Biostatistics Gao, Ming; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Weiqin; Tianjin Women and Children's Health Center Liu, Hongyan; Tianjin Women and Children's Health Center Wang, Shuting; Tianjin Women and Children's Health Center Wang, Hui; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Ninghua; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Jing; Tianjin Medical University, Epidemiology and Biostatistics, School of Public Health Yu, Zhijie; Dalhousie University Hu, Gang; Pennington Biomedical Research Center Leng, Junhong; Tianjin Medical University, Department of Epidemiology and Biostatistics
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Paediatrics, Public health, Epidemiology
Keywords:	EPIDEMIOLOGIC STUDIES, PAEDIATRICS, Obesity

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1	Adverse birth outcomes and childhood overweight at 3 to 8 years	
2	of age in Chinese women: a prospective cohort study	
3		
4	Rui Zhang ^{1,*} , Ming Gao ^{1,*} , Weiqin Li ² , Hongyan Liu ² , Shuting Wang ² , Hui Wang ¹ ,	
5	Ninghua Li ¹ , Jing Li ^{1,3,4} Zhijie Yu ⁵ , Gang Hu ⁶ , Junhong Leng ^{2,**} , Xilin Yang ^{1,3,4,**}	
6	*Equal contribution to the manuscript	
7	Affiliations	
8	¹ Department of Epidemiology and Biostatistics, School of Public Health, Tianjin	
9	Medical University, Tianjin 300070, China;	
10	² Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China;	
11	Medical University, Tianjin 300070, China;	
12	³ Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin	
13	300070, China;	
14	⁴ Tianjin Center for International Collaborative Research on Environment, Nutrition	
15	and Public Health, Tianjin 300070, China;	
16	⁵ Population Cancer Research Program and Department of Pediatrics, Dalhousie	
17	University 15000, Halifax, Canada;	
18	⁶ Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center,	
19	Baton Rouge, Louisiana 70808, USA;	
20	Correspondence and reprints addressed to	
21	Prof Xilin Yang P.O. Box 154 School of Public Health Tianiin Medical University	
22	22 Oixiangtai Road, Heping District, Tianiin 300070 China ⁻ Tel ⁻ +86 22 83336617 ⁻	
23	Fax: +86 22 83336608; Email: yxl@hotmail.com or yangxilin@tmu.edu.cn;	
1		
----------	----	--
2		
4	24	or
5		
6 7	25	Dr. Junhong Leng, Department of Project Office, Tianjin Women and Children's
8 9	26	Health Centre, Tianjin 300070, China; Tel: +86 22 5829 7792; Email:
10	07	libleslibles@162.som
11	21	ıjınzqıjınzq@105.com
12		
14		
15	28	
16		
1/	20	Word counts
10	29	word counts
20	30	Abstract: 279
21	50	Abstract. 27)
22	31	Main text: 3068
23	01	
24 25	32	Number of tables: 3. Number of figures: 1
26		
27	33	Number of references: 37
28		
29		
31		
32		
33		
34		
35 36		
37		
38		
39		
40 41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51		
52		
54		
55		
56		
57 58		
59		
60		_
		2

34 Abstract

35 Objectives: To explore associations between adverse birth outcomes and childhood
36 overweight at 3-8 years of age among Chinese women.

Design: A prospective cohort study.

38 Setting: Six central urban districts of Tianjin, China.

Participants: 1681 woman-child pairs.

Methods: 1681 woman-child pairs were followed up for 8 years in Tianjin, China. Demographic and clinical information including birth outcomes was collected longitudinally, commencing from first antenatal care visit till postpartum period. Offspring height and weight were measured at 3-8 years of age. High and low weight/length ratios (WLR) at birth were respectively defined as $\geq 90^{\text{th}}$ and $\leq 10^{\text{th}}$ gestational week and sex-specific percentiles. Overweight for children at 3-5 and 6-8 years of age were respectively defined as body mass index (BMI)-for-age and -sex above the 2 z-score and 1 z-score curves of the World Health Organization's child growth standards. Binary logistic regression analysis was used to obtain odds ratios (ORs) and 95% confidence interval (CI) with a stepwise backward selection method to select independent predictors.

Primary Outcomes Measures: Childhood overweight.

52 Results: Of 1681 children, 10.7% (n=179) and 27.8% (n=468) developed overweight 53 at 3-5 and 6-8 years of age, respectively. Large for gestational age (LGA) was 54 associated with increased risk of overweight at 3-5 years of age (aOR: 1.86, 95%CI: 55 1.27-2.72) while high WLR at birth was associated with increased risk of overweight

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I つつ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
<u>4</u> 1	
42	
12	
43 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	

60

at 6-8 years of age (1.82, 1.41-2.34). Low WLR at birth was associated with decreased
risk of overweight at 6-8 years of age (0.52, 0.30-0.90).

58 **Conclusions:** LGA and high WLR at birth predicted childhood overweight at 3-5 and

- 59 6-8 years of age, respectively. Low WLR at birth was associated with decreased risk of
- 60 childhood overweight at 6-8 years of age.
- 61 Key Words: Large for gestational age; Weight/length ratio; Childhood; Overweight

62 Strengths and limitations of this study

- This study was conducted in the 3-tier antenatal care system in urban Tianjin,
- 64 China and the representativeness of the study population is good.
- This study had documented detailed demographic and clinical information of
 pregnant women from their first antenatal care visit till postpartum period, thus
 available for analysis.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

- This study did not record lifestyle factors of children such as physical activities,
- 69 sleep time and dietary habits, which may exist residual confounding.
 - Most of women with gestational diabetes mellitus (GDM) in our study were from
 a randomized controlled trial and half of them received intensive care (IC).
 Although we had carefully adjusted for IC and its confounding effect may have not
 been removed completely.

74 1. Introduction

Alongside adulthood overweight, childhood overweight has emerged as a serious public health issue worldwide. In 2019, World Health Organization (WHO) estimated that 38.2 million or 5.6% of children under 5 years of age were overweight globally. Furthermore, the prevalence of overweight among children and adolescents aged 5-19 years had risen dramatically from just 4% in 1975 to over 18% in 2016[1]. As we all know, overweight during childhood is likely to continue into adulthood and is associated with increased risk of many short-term and long-term adverse health outcomes, including psychosocial comorbidity, cardiovascular diseases (CVD), type 2 diabetes (T2DM) as well as premature mortality[2]. Consequently, it is of utmost importance to identify early risk factors for effective intervention and prevention of childhood overweight.

Childhood overweight is a complex, multifactorial condition stemming from interactions between genetic and non-genetic factors, including unhealthy dietary patterns, inadequate physical activities, shortened sleep duration, increased sedentary time and excessive psychological stress[3, 4]. It has also been reported that the intrauterine and early postnatal conditions can have a significant impact on increased risk of developing overweight in later life[5, 6]. Therefore, the exploration for risk factors of childhood overweight could be extended to infant adverse birth outcomes.

93 Currently, only a few studies have explored the risk association between adverse 94 birth outcomes and childhood overweight with inconsistent findings. For example, a 95 cross-sectional analysis from Australia found that low birth weight was associated with 96 decreased risk of overweight among girls at 4-5 years of age[7]. However, a 97 retrospective study in Tianjin, China observed that low birth weight was not associated

BMJ Open

with overweight among children aged 3-6 years[8]. On the other hand, a retrospective study in Xiamen, China failed to find a significant association between infants with LGA of women with GDM and later overweight at 1-6 years of age[9]. However, a large cohort study from Canada found that children born with LGA of mothers with GDM were 2.79 times more likely to be overweight at 4-6 years of age compared to children born with appropriate for gestational age (AGA) of mothers without diabetes[10]. Therefore, it deserves further investigation of the risk association between adverse birth outcomes and childhood overweight.

Using the long-term follow-up data of children born to women enrolled in a population-based prospective cohort in Tianjin, China, we aimed to explore the risk associations between adverse birth outcomes and childhood overweight at 3-8 years of age. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

110 2. Subjects, Materials and Methods

2.1 Study settings and population

The study settings and population has been published previously[11]. Briefly, we established a universal screening and management system for GDM in six central urban districts of Tianjin, China in 1998[12]. The antenatal care was delivered by a 3-tier antenatal care system, consisting of 65 primary hospitals, 6 district-level Women and Children's Health Centers (WCHC) and other secondary obstetric hospitals, and a city-level WCHC, i.e., Tianjin WCHC (TWCHC) and other tertiary obstetric hospitals. On the basis of the GDM screening and management system and the 3-tier antenatal care network, we set up a cohort of pregnant women and their offspring.

From 2010 to 2012, a total of 22,302 pregnant women were registered at the

BMJ Open

primary care hospital near their residence. They were offered a 50-gram 1-hour glucose challenge test (GCT) at 24-28th gestational weeks. Women with plasma glucose (PG) \geq 7.8 mmol/L were referred to the TWCHC GDM Clinic to undergo a 75-gram 2-hour oral glucose tolerance test (OGTT) after an overnight fasting of at least 8 hours. GDM was diagnosed according to the International Association of Diabetes and Pregnancy Study Group (IADPSG)'s cut-points: fasting PG \geq 5.1 mmol/L or 1-hour PG \geq 10.0 mmol/L or 2-hour PG \geq 8.5 mmol/L[13]. Of them, 1251 women without a GCT result and 891 women with a positive GCT but without a standard OGTT result were excluded. Among the remaining 20,160 participants, 1,535 women were diagnosed with GDM and 1,040 of them were invited to participate in the study. Among the 18,625 women without GDM, 1,100 women were randomly selected into this study as the controls. In the 1,040 women with GDM, 948 of them participated in a randomized controlled trial (RCT) to test the effectiveness of intensive care (IC) of GDM during pregnancy on adverse pregnancy outcomes. The details of the RCT and IC have been published previously[14]. After further excluding 42 women who had stillbirth, neonatal death or non-singleton pregnancy, a total of 2,098 woman-child pairs were included in the long-term follow-up study.

At postpartum, 2,098 children born to the included women were invited to participate in the follow-up study and measured their body height and weight each year from 1 to 8 years of age. Finally, a total of 1,681 children underwent at least one postpartum follow-up visit and completed body height and weight measurements at 1 to 8 years of age.

2.2 Ethics

144 Ethical approval was obtained from the Ethics Committee for Clinical Research of

Page 9 of 33

145 Tianjin Women and Children's Health Centre (Approval code: 2009-02). Written146 informed consent was obtained from all participants before data collection.

2.3 Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting ordissemination plans of this research.

2.4 Data collection and clinical measurement

Before the study, all researchers received uniform training to standardize the anthropometric and clinical measurements. Data were collected longitudinally from a series of questionnaires or extracted from the database of Maternal and Child Health Information System. At registration for pregnancy, we collected information on maternal height, weight, age, systolic blood pressure (SBP), diastolic blood pressure (DBP), education attainment, parity, family history of diabetes in first-degree relatives, smoking and drinking during pregnancy. Maternal height and weight were measured with light clothing and without shoes. Body weight at the first antenatal visit was regarded as the pre-pregnancy weight as the maternal weight was relatively stable during the first trimester of pregnancy[15]. Blood pressure was measured in a sitting position after at least 10 minutes of rest. Children's information including birthday, sex, body length and weight at birth and breastfeeding status were also obtained through questionnaires from their mothers. Body height and weight of offspring were measured at each of postpartum follow-up visits from 1 to 8 years of age. BMI was calculated as weight in kilograms divided by the square of height in meters. Weight/length ratio (WLR) at birth was calculated as weight in kilograms divided by body length in meters^[16].

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2.5 Definition of adverse birth outcomes

Preterm birth and postterm pregnancy were defined as delivery at <37 and ≥42 weeks of gestation[17, 18], respectively. Macrosomia and low birth weight were respectively defined as birthweight \geq 4000 g and <2500g[14, 19]. LGA and small for gestational age (SGA) were respectively defined as birthweight $\geq 90^{\text{th}}$ gestational week and sex-specific percentiles and birthweight $\leq 10^{\text{th}}$ gestational week and sex-specific percentiles of Chinese standards^[20]. High and low WLR at birth were respectively defined as WLR at birth $\geq 90^{\text{th}}$ and $\leq 10^{\text{th}}$ gestational week and sex-specific percentiles of Chinese standards[16].

2.6 Definition of childhood overweight

According to the WHO's child growth standards, overweight for children at 3-5 and 6-8 years of age were defined as BMI-for-age and -sex above the 2 z-score and 1 zscore curves, respectively[21, 22]. In this study, childhood overweight at 3-5 years of age was defined as overweight at either of 3, 4 or 5 years of age and childhood overweight at 6-8 years of age was defined as either overweight at 6, 7 or 8 years of age.

184 2.7 Statistical analysis

All statistical analyses were conducted using the Statistical Analysis System (Release 9.4, SAS Institute Inc., Cary, NC). Continuous variables were described as mean \pm standard deviation (SD) or median (interquartile range, IQR). Categorical variables were expressed as number (percentage). The differences of continuous variables between two groups were compared by Student's *t*-test or Mann-Whitney U test where appropriate. The differences of categorical variables between two groups were compared by Chi-square test or Fisher's exact test. We used binary logistic regression

BMJ Open

to obtain the odds ratios (ORs) and 95% confidence interval (CI) of adverse birth outcomes for overweight in children at 3-5 years of age and 6-8 years of age. First, we calculated unadjusted ORs in univariable analysis. Second, we performed multivariable analysis to control for confounders. The variables adjusted in the multivariable model included maternal pre-pregnancy BMI, SBP, education attainment, family history of diabetes in first-degree relatives, GDM, IC status during pregnancy, unintentional intervention, child's sex, breastfeeding status and birthweight (for caesarean delivery only). At last, backward stepwise selection approach in the multivariable logistic regression (P = 0.05 for exit) was used to identify adverse birth outcomes that have independent predictive values for childhood overweight. All the tests were two-tailed and *P* values <0.05 were considered to be statistically significant.

203 2.8 Reporting Guidelines

204 We used the STROBE cohort checklist when writing our report[23].

3. Results

3.1. Characteristics of study participants

A total of 1681 children turned up at least one follow-up visit after delivery, with an overall response rate of 80.1%. Of them, 10.7% (n=179) and 27.8% (n=468) developed overweight at 3-5 and 6-8 years of age, respectively. At the first antenatal care visit, the mean age and BMI of their mothers were 28.9 (SD: 3.0) years and 23.1 (SD: 3.5) kg/m². Compared to children with normal weight, mothers of children who developed overweight at 3-5 years of age had higher pre-pregnancy BMI, SBP/DBP, were less likely to have education >12 years, and were more likely to have family history of diabetes in first-degree relatives and to have GDM; mothers of children who developed

BMJ Open

overweight at 6-8 years of age had higher pre-pregnancy BMI and higher SBP/DBP
and were more likely to have GDM and to receive IC during pregnancy but less likely
to have education >12 years. Other characteristics including parity, smoking and
drinking during pregnancy, and unintentional intervention were not significantly
different between the two groups (Table 1).

3.2. Associations of adverse birth outcomes with offspring overweight at 3-5 years of age

Children who developed overweight at 3-5 years of age had a higher birthweight, higher rates of male sex, caesarean delivery, macrosomia, LGA and high WLR at birth than children with normal weight (Table 2). In univariable analysis, caesarean delivery, macrosomia, LGA and high WLR at birth were associated with markedly increased risk of offspring overweight (OR: 1.96, 95%CI: 1.36-2.84 & 2.63, 1.79-3.87 & 2.37, 1.66-3.39 & 2.09, 1.51-2.91, respectively). After adjusting for confounding factors, the associations of macrosomia, LGA and high WLR at birth with offspring overweight at 3-5 years of age were slightly attenuated but still significant (aOR: 1.89, 1.25-2.85 & 1.86, 1.27-2.72 & 1.67, 1.18-2.37, respectively). The multivariable backward stepwise logistic regression analysis revealed that LGA was independently associated with increased risk of offspring overweight at 3-5 years of age (aOR: 1.86, 1.27-2.72) (Table 3).

3.3. Associations of adverse birth outcomes with offspring overweight at 6-8 years of age

Children who developed overweight at 6-8 years of age had a higher birthweight, higher
rates of male sex, caesarean delivery, macrosomia, LGA and high WLR at birth, and
lower rates of low birth weight, SGA and low WLR at birth than children with normal

Page 13 of 33

BMJ Open

weight (Table 2). In univariable analysis, caesarean delivery, macrosomia, LGA and high WLR at birth were associated with markedly increased risk of offspring overweight (OR: 1.69, 95%CI: 1.33-2.14 & 2.59, 1.91-3.50 & 2.42, 1.84-3.19 & 2.18, 1.72-2.77, respectively). Conversely, low birth weight, SGA and low WLR at birth were associated with decreased risk of offspring overweight (OR: 0.41, 0.17-0.98 & 0.48, 0.27-0.83 & 0.47, 0.28-0.80, respectively). In multivariable analysis, the associations of macrosomia, LGA and high WLR at birth with offspring overweight were slightly attenuated but still significant (aOR: 1.92, 1.39-2.65 & 1.99, 1.49-2.67 & 1.82, 1.41-2.34, respectively). On the other hand, low birth weight, SGA and low WLR at birth were still associated with decreased risk of offspring overweight (aOR: 0.41, 0.17-0.98 & 0.53, 0.30-0.95 & 0.52, 0.30-0.90, respectively). The backward stepwise logistic regression in the multivariable analysis revealed that high WLR at birth was independently associated with increased risk of offspring overweight at 6-8 years of age (aOR: 1.82, 1.41-2.34), whereas low WLR at birth was associated with decreased risk of offspring overweight at 6-8 years of age (aOR: 0.52, 0.30-0.90) (Table 3).

4. Discussion

In the present study, we found that (1) LGA predicted offspring overweight at 3-5 years of age; (2) high WLR at birth predicted offspring overweight at 6-8 years of age; (3) low WLR at birth was associated with decreased risk of offspring overweight at 6-8 years of age. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Several studies have investigated the association between LGA and offspring overweight but have inconsistent conclusions. A retrospective study in Xiamen, China (n=33,157) did not observe a significant association between LGA and childhood overweight among women with GDM at 1 to 6 years of age[9]. A cohort study in Greece

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

(n=1667) also did not find any significant association between LGA and childhood overweight from 3 to 5 years of age[24]. However, a large cohort study in Alberta, Canada (n=81,226) found that infants with LGA of women with GDM had a 179% higher risk of being overweight at 4-6 years of age than infants with AGA of mothers without GDM. However, that study did not adjust for maternal pre-pregnancy BMI[10]. To our knowledge, our study is the first to evaluate the association between WLR at birth and long-term risk of childhood overweight. WLR at birth was found to correlate strongly with skinfold thickness and body fat store in newborn infants[25, 26]. Moreover, the INTERGROWTH-21st Project demonstrated that WLR at birth was more closely associated with fat mass, fat-free mass, and body fat percentage than BMI or ponderal index in neonates[27]. Therefore, the WLR at birth is a good parameter for evaluating the nutritional status of intrauterine growth and predicting metabolic complications in newborns with abnormal intrauterine growth[25, 26]. In this connection, we observed that high WLR at birth was positively associated with overweight in children at 6-8 years of age while low WLR at birth was negatively associated with childhood overweight at 6-8 years of age.

The mechanisms by which LGA increases the risk of childhood overweight are not yet fully understood. However, it is becoming increasingly clear that GDM, maternal pre-pregnancy overweight and excessive pregnancy weight gain all predispose women to an elevated risk of LGA[28]. These risk factors are accompanied with insulin resistance and hyperglycemia during pregnancy[29, 30], which can cause fetal hyperinsulinemia and maternal hypertriglyceridemia, and then lead to fetal overnutrition and high risk of LGA[31, 32]. Intrauterine overnutrition may affect fat metabolism, insulin and leptin secretion by altering the development of the appetite control center in the fetal hypothalamus, thus leading to an imbalance of the fetal energy

Page 15 of 33

BMJ Open

system and increasing the risk of childhood overweight[33, 34]. Furthermore, a longitudinal study in Hungary found a positive correlation between cord serum leptin levels and WLR at birth[35]. Cord blood leptin levels were found to be closely related to fetal fat store and may serve as an important regulator of fetal growth and development, energy intake, storage and expenditure, thus contributing to long-term childhood overweight[35, 36].

Our findings have strong public health and clinical implications. It is well established that childhood overweight can persist into adulthood and has been implicated in many chronic diseases. Hence, there is a strong need for taking measures to prevent childhood overweight to reduce the burden of overweight-related diseases in adulthood. This long-term follow-up study supports that LGA and high WLR at birth need to be recognized as risk factors for childhood overweight. On the one hand, our findings highlighted the importance of improving adverse birth outcomes, including LGA and high WLR at birth, for benefits of childhood overweight and possibly well-being in adulthood. Our previous RCT demonstrated that IC for pregnant women with GDM can improve adverse birth outcomes, including LGA[14]. Therefore, to reduce the incidence of adverse birth outcomes by dietary and physical activity education during pregnancy is one of the possible measures to prevent childhood overweight. On the other hand, special attention should also be given to infants born with LGA and high WLR to help reduce the prevalence of childhood overweight and related chronic disease later in life. Our findings suggest that more efforts should be shifted to early lifestyle interventions for children at high risk of overweight, especially those born to be LGA and high WLR. Indeed, given to the high prevalence of childhood overweight. it is worthwhile to test the effect and cost-effectiveness of healthy lifestyle intervention for prevention of childhood overweight among high-risk children. In addition, our study

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

also indicates that low WLR at birth had a protective effect on childhood overweight at
6-8 years of age. However, it is still unclear its benefits and possibly harms in late
childhood and adulthood. Further investigations are needed to evaluate the association
of WLR with long-term overweight in the future.

Our study had strengths and limitations. The strength of this study was conducted in the 3-tier antenatal care system in urban Tianjin, China and the representativeness of the study population is good. The second strength of the study was that we had documented detailed demographic and clinical information of pregnant women from their first antenatal care visit till postpartum period, thus available for analysis. Our study also has several limitations. Firstly, some variables regarding lifestyle in the children were not recorded in the study, such as detailed information of breastfeeding duration, physical activities, sleep time and dietary habits, which may exist residual confounding. Secondly, most of women with GDM in our study were from an RCT and half of them received IC. In this respect, our previous meta-analysis failed to show that IC of GDM during pregnancy had a detectable effect on the risk of offspring overweight[37]. Although we had carefully adjusted for IC and its confounding effect may have not removed completely.

330 5. Conclusion

In summary, in the long-term follow-up study of Chinese children, we found that LGA and high WLR at birth were predictive of overweight in children at 3-5 and 6-8 years of age, respectively. Special attention should be paid to children born with LGA and/or high WLR for prevention of childhood overweight. It is worthwhile to test the

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
12	
1/	
14	
15	
10	
10	
10	
20	
20	
ו∠ רר	
22	
25	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

335 effectiveness and cost-effectiveness of lifestyle intervention for children at high risk of being overweight. We also observed some benefits for childhood overweight associated 336 with low WLR at birth. Its long-term benefits and possibly harms need further 337 338 investigations in the future, especially for overweight in adulthood.

- Acknowledgements 339
- The authors thank all the health professionals of Tianjin Antenatal Network for their 340 involvement and contributions to the study. 341

342

Funding 343

344 This work was supported by Tianjin Key Medical Discipline (Specialty) Construction ıdı Project (Grant No: TJYXZDXK- 075C) and National Natural Science Foundation of 345

China (Grant No: 82200932). 346

348 Competing interests statement

349 The authors declared no conflict of interest.

350 Author statement

X.Y. & J.Leng. conceived the idea and designed the study; R.Z. & M.G. analyzed the
data and wrote the first draft; W.L., H.L., S.W. & J.Leng. collected the data; H.W.,
N.L., J.Li., Z.Y. & G.H. gave critical comments and edited the manuscript; All authors
gave comments and contributed to the writing of the manuscript and agreed to submit
and publish the manuscript. X.Y. & J.Leng took full responsibility for the work as a
whole, including the study design, access to the data, and decision to submit.

358 Data availability statement

359 The datasets used and/or analyzed during the current study are available from the

360 corresponding author on reasonable request.

References:

- World Health Organization. Facts about overweight and obesity, 2021. Accessed 23 May 2023. Available from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
- Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, Laxmaiah A, Kengne AP, Bentham J: The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. *BMC medicine* 2019, 17(1):212.
- 3. Güngör NK: **Overweight and obesity in children and adolescents**. *Journal of clinical research in pediatric endocrinology* 2014, **6**(3):129-143.
- 4. Lee EY, Yoon KH: Epidemic obesity in children and adolescents: risk factors and prevention. *Front Med* 2018, **12**(6):658-666.
- 5. Koletzko B, Girardet JP, Klish W, Tabacco O: Obesity in children and adolescents worldwide: current views and future directions--Working Group Report of the First World Congress of Pediatric Gastroenterology, Hepatology, and Nutrition. Journal of pediatric gastroenterology and nutrition 2002, 35 Suppl 2:S205-212.
- McMillen IC, Muhlhausler BS, Duffield JA, Yuen BS: Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. *The Proceedings of the Nutrition Society* 2004, 63(3):405-412.
- Oldroyd J, Renzaho A, Skouteris H: Low and high birth weight as risk factors for obesity among 4 to 5-year-old Australian children: does gender matter? *Eur J Pediatr* 2011, 170(7):899-906.
- Zhang X, Liu E, Tian Z, Wang W, Ye T, Liu G, Li Y, Wang P, Yang X, Yu Z et al: High birth weight and overweight or obesity among Chinese children 3-6 years old. *Preventive medicine* 2009, 49(2-3):172-178.
- 9. Chen YL, Han LL, Shi XL, Su WJ, Liu W, Wang LY, Huang PY, Lin MZ, Song
 HQ, Li XJ: Adverse pregnancy outcomes on the risk of overweight offspring:

 a population-based retrospective study in Xiamen, China. *Scientific reports* 2020, **10**(1):1549.

- Kaul P, Bowker SL, Savu A, Yeung RO, Donovan LE, Ryan EA: Association between maternal diabetes, being large for gestational age and breastfeeding on being overweight or obese in childhood. *Diabetologia* 2019, 62(2):249-258.
- Leng J, Shao P, Zhang C, Tian H, Zhang F, Zhang S, Dong L, Li L, Yu Z, Chan JC *et al*: Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, China. *PloS one* 2015, 10(3):e0121029.
- Yang X, Hsu-Hage B, Zhang H, Yu L, Dong L, Li J, Shao P, Zhang C: Gestational diabetes mellitus in women of single gravidity in Tianjin City, China. *Diabetes care* 2002, 25(5):847-851.
- 13. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, Hod M, Kitzmiler JL *et al*: International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. *Diabetes care* 2010, 33(3):676-682.
- 14. Yang X, Tian H, Zhang F, Zhang C, Li Y, Leng J, Wang L, Liu G, Dong L, Yu Z et al: A randomised translational trial of lifestyle intervention using a 3-tier shared care approach on pregnancy outcomes in Chinese women with gestational diabetes mellitus but without diabetes. Journal of translational medicine 2014, 12:290.
- Fattah C, Farah N, Barry SC, O'Connor N, Stuart B, Turner MJ: Maternal weight and body composition in the first trimester of pregnancy. Acta Obstet Gynecol Scand 2010, 89(7):952-955.
- Zong XN, Li H, Zhang YQ, Wu HH: [Reference values and growth curves of weight/length, body mass index, and ponderal index of Chinese newborns of different gestational ages]. *Zhonghua Er Ke Za Zhi* 2021, 59(3):181-188.

17.	ACOG Committee Opinion No 579: Definition of term pregnancy.
	<i>Obstetrics and gynecology</i> 2013, 122 (5):1139-1140.
18.	WHO: recommended definitions, terminology and format for statistical
	tables related to the perinatal period and use of a new certificate for cause
	of perinatal deaths. Modifications recommended by FIGO as amended
	October 14, 1976 . Acta Obstet Gynecol Scand 1977, 56 (3):247-253.
	Moreira AIM, Sousa PRM, Sarno F: Low birth weight and its associated
	factors. Einstein (Sao Paulo) 2018, 16(4):eAO4251.
).	Zhu L, Zhang R, Zhang S, Shi W, Yan W, Wang X, Lyu Q, Liu L, Zhou Q, Qiu
	Q et al: [Chinese neonatal birth weight curve for different gestational age].
	Zhonghua Er Ke Za Zhi 2015, 53 (2):97-103.
•	World Health Organization. WHO child growth standards: training course
	on child growth assessment, 2008. Accessed 23 May 2023. Available from
	https://www.who.int/publications/i/item/9789241595070.
	World Health Organization. Growth reference data for 5-19 years, 2007.
	Accessed 23 May 2023. Available from https://www.who.int/tools/growth-
	reference-data-for-5to19-years/indicators/bmi-for-age.
3.	von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke
	JP: The Strengthening the Reporting of Observational Studies in
	Epidemiology (STROBE) statement: guidelines for reporting
	observational studies. Journal of clinical epidemiology 2008, 61(4):344-349.
4.	Moschonis G, Grammatikaki E, Manios Y: Perinatal predictors of overweight
	at infancy and preschool childhood: the GENESIS study. International
	<i>journal of obesity (2005)</i> 2008, 32 (1):39-47.
5.	Yau KI, Chang MH: Weight to length ratioa good parameter for
	determining nutritional status in preterm and full-term newborns. Acta
	Paediatr 1993, 82(5):427-429.
6.	Fok TF, Hon KL, Ng PC, Wong E, So HK, Lau J, Chow CB, Lee WH, Wo

 Normative Data from 10,226 Chinese Neonates. *Neonatology* 2009, 95(1):23-32.

- 27. Villar J, Puglia FA, Fenton TR, Cheikh Ismail L, Staines-Urias E, Giuliani F, Ohuma EO, Victora CG, Sullivan P, Barros FC *et al*: Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21(st) project. *Pediatric research* 2017, 82(2):305-316.
- Bowers K, Laughon SK, Kiely M, Brite J, Chen Z, Zhang C: Gestational diabetes, pre-pregnancy obesity and pregnancy weight gain in relation to excess fetal growth: variations by race/ethnicity. *Diabetologia* 2013, 56(6):1263-1271.
- 29. Kc K, Shakya S, Zhang H: Gestational diabetes mellitus and macrosomia: a literature review. Annals of nutrition & metabolism 2015, 66 Suppl 2:14-20.
- 30. Catalano PM, Shankar K: **Obesity and pregnancy: mechanisms of short term** and long term adverse consequences for mother and child. *BMJ (Clinical research ed)* 2017, **356**:j1.
- Heerwagen MJ, Miller MR, Barbour LA, Friedman JE: Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. American journal of physiology Regulatory, integrative and comparative physiology 2010, 299(3):R711-722.
- 32. Catalano PM, Hauguel-De Mouzon S: Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? *American journal of obstetrics and gynecology* 2011, **204**(6):479-487.
- 33. Oken E, Gillman MW: Fetal origins of obesity. Obesity research 2003, 11(4):496-506.
- 34. Bouret SG: Early life origins of obesity: role of hypothalamic programming. Journal of pediatric gastroenterology and nutrition 2009, **48 Suppl 1**:S31-38.
- 35. Ertl T, Funke S, Sárkány I, Szabó I, Rascher W, Blum WF, Sulyok E: Postnatal changes of leptin levels in full-term and preterm neonates: their relation to

intrauterine growth, gender and testosterone. *Biology of the neonate* 1999, **75**(3):167-176.

- 36. Schubring C, Kiess W, Englaro P, Rascher W, Dötsch J, Hanitsch S, Attanasio A, Blum WF: Levels of leptin in maternal serum, amniotic fluid, and arterial and venous cord blood: relation to neonatal and placental weight. The Journal of clinical endocrinology and metabolism 1997, 82(5):1480-1483.
- 37. Gao M, Cao S, Li N, Liu J, Lyu Y, Li J, Yang X: Risks of overweight in the offspring of women with gestational diabetes at different developmental stages: A meta-analysis with more than half a million offspring. Obesity reviews : an official journal of the International Association for the Study of Obesity 2022, 23(3):e13395.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2		
3 4	361	Figure 1
5	362	Title: Flow diagram of participants included in the analysis
6	002	
7		
9		
10		
11		
12		
14		
15		
16 17		
17		
19		
20		
21 22		
23		
24		
25 26		
20		
28		
29		
30 31		
32		
33		
34 35		
36		
37		
38		
39 40		
41		
42		
43 44		
45		
46		
47 48		
49		
50		
51 52		
52 53		
55		
55		
56 57		
57		
59		
60		22
		23

Characteristics	Normal	Overweight	P valu
At 3-5 years of age (1502/179)			
Age (years, means±SD)	28.9±3.0	28.7±2.9	0.355
Height (cm, means±SD)	163.0±4.9	162.5±5.4	0.328
Pre-pregnancy BMI			
(kg/m ² , means±SD)	22.8±3.3	25.4±4.4	<0.001
SBP (mmHg, means±SD)	106.0±10.7	108.4±10.5	0.005
DBP (mmHg, means±SD)	68.8±7.6	70.8±7.9	0.001
Education >12 years (%)	1255(83.6)	139(77.7)	0.047 ^t
Parity ≥1 (%)	62(4.1)	5(2.8)	0.388 ^t
Family history of diabetes in			
first-degree relatives (%)	137(9.1)	28(15.6)	0.006 ^t
Smoking during pregnancy (%)	14(0.9)	1(0.6)	0 935
Drinking during programsy (%)	8(0.5)	1(0.6)	1 000
	719(47.9)	102(57.5)	0.014
	7 18(47.8)	103(57.5)	0.014
IC status during pregnancy (%)	322(21.4)	42(23.5)	0.534
Unintentional intervention (%)	172(11.5)	22(12.3)	0.740 ^r
At 6-8 years of age (1213/468)			
Age (years, means+SD)	28.9±2.9	28.9±3.2	0.983
Height (cm, means+SD)	162 9+4 8	162 8+5 3	0.615
height (chi, healistob)	102.011.0	102.010.0	0.010
Pre-pregnancy BMI			
$(ka/m^2 m constSD)$	22.5±3.2	24.5±3.9	<0.001
(kg/III ⁻ , IIIealist3D)			
	105 7, 10 9	107 6110 4	0.000
SBP (mmHg, means±SD)	105.7±10.6	107.0±10.4	0.002
DBP (mmHg, means±SD)	68.6±7.7	70.2±7.7	<0.001
Education >12 years (%)	1030(84.9)	364(77.8)	0.001
Parity ≥1 (%)	45(3.7)	22(4.7)	0.352
Eamily history of diabetes in first-		()	0.002
degree relatives (%)	113(9.3)	52(11.1)	0.268
Smoking during programsy (9/)	8(0.7)	7(1 5)	0 170
Drinking during pregnancy (%)	o(U.7)	7 (1.5) 2(0.4)	0.179
Drinking during pregnancy (%)	7 (U.6)	2(U.4)	1.000
Gestational diabetes mellitus (%)	543(44.8)	278(59.4)	<0.001

	IC status during pregnancy (%)	240(19.8)	124(26.5)	0.003 ^b
005	Unintentional intervention (%)	135(11.1)	59(12.6)	0.400 ^b
365 366 367 368	Abbreviations: BMI, body mass index intensive care; SD, standard deviatio ^a Derived from <i>t</i> -test. ^b Derived from Chi-square Test or Fis	x; SBP, systolic blo n. her's exact test.	oa pressure; DBP, dias	stolic blood pressure;

	<u>.</u>	Normal	Overweight	P valu
	At 3-5 years of age (1502/179)		~	
	Gestational age at delivery (weeks, median (IQR))	39.0±1.5	39.0±1.5	0.946
	Birthweight (kg, means±SD)	3.4±0.5	3.6±0.5	<0.00
	Infant male sex (%)	796(53.0)	115(64.3)	0.004
	Caesarean delivery (%)	971(64.7)	140(78.2)	< 0.00
	Gestational week at delivery (%)	()	()	0.630
	Preterm birth	66(4.4)	7(3.9)	
	Postterm pregnancy	27(1.8)	5(2.8)	
	$M_{cight at hirth}$ (%)	(-)	- (-)	~0.00
		455(40.0)	40(00 F)	<0.00
	Macrosomia	155(10.3)	42(23.5)	
	Low birth weight	45(3.0)	3(1.7)	~0.00
	Large for gestational age	207/12 0)	E1(20 E)	<0.00
	Small for gostational age	207(13.0)	31(20.3)	
	Moight/length ratio at hirth (9/)	103(0.9)	4(2.2)	<0.001
	Veighviength ratio at birth	225(22.2)	60/29 6)	<0.00
	Low weight/length ratio at birth	120(8.0)	7(3.9)	
	Breastfeeding status (%)	120(0.0)	7(0.0)	0 393
	Exclusive breastfeeding	242(16.1)	23(12.9)	0.000
	Mixed breastfeeding	328(21.8)	45(25.1)	
	Artificial feeding	932(62.1)	111(62.0)	
	At 6-8 years of age (1213/468)			
	Gestational age at delivery (weeks,	39 1+1 5	39 0+1 4	0 173
	median (IQR))	00.111.0	00.01111	0.170
	Birthweight (kg, means±SD)	3.4±0.5	3.6±0.5	<0.001
	Infant male sex (%)	612(50.5)	299(63.9)	<0.001
	Caesarean delivery (%)	764(63.0)	347(74.2)	<0.001
	Gestational week at delivery (%)			0.923
	Preterm birth	52(4.3)	21(4.5)	
	Postterm pregnancy	24(2.0)	8(1.7)	
	Weight at birth (%)			<0.001
	Macrosomia	104(8.6)	93(19.9)	
	Low birth weight	42(3.5)	6(1.3)	
	Gestational age specific weight at birth (%)			<0.001
	Large for gestational age	141(11.6)	117(25.0)	
	Weight/length ratio at birth (%)	92(1.0)	15(3.2)	<0.001
	High woight/longth ratio at birth	226/10 5)	169(25.0)	~0.00
		230(19.3)	17(2.0)	
	Low weight/iength ratio at birth	110(9.1)	17(3.6)	0 000
	Exclusive breastfeeding	200(16.5)	65(13.9)	0.232
	Mixed breastfeeding	275(22.7)	98(20.9)	
		738(60.8)	305(65.2)	
274	Abbroviational CD atordard deviations IOD inte		303(03.2)	
372	aDerived from t-test	rquartile range.		
072	bonveu norm cleat.	test		

Table 3. Odds ratios of adverse birth outcomes for offspring overweight status from 3 to 8

vears of age

	Overweight at 3	-5 years	Overweight at 6-	8 years
	of age (N=2	179)	age (N=46	58)
N	OR (95 %CI)	P value	OR (95 %CI)	P valu
Model 1	1 00(1 00 0 04)	-0.001	4 00(4 00 0 44)	-0.00
Caesarean delivery	1.96(1.36-2.84)	<0.001	1.69(1.33-2.14)	<0.00
Distantional week at delivery	0.00/0.40.4.00	0 704		0.00
	0.90(0.40-1.98)	0.784	1.05(0.62-1.76)	0.86
		0.000		0.70
Positerm pregnancy	1.56(0.59-4.11)	0.300	0.86(0.39-1.94)	0.72
	0 00/4 70 0 07)	-0.001	0 50(4 04 0 50)	-0.0
Macrosomia	2.03(1.79-3.87)	<0.001	2.59(1.91-3.50)	<0.00
Normal weight		0 470	Reference	0.04
Low birth weight	0.65(0.20-2.11)	0.472	0.41(0.17-0.98)	0.04
Gestational age specific weight at birth	0.07(4.00.0.00)	10.004	0 40/4 04 0 40	-0.0
Large for gestational age	2.37(1.66-3.39)	<0.001	2.42(1.84-3.19)	<0.00
Appropriate for gestational age	Reference		Reference	
Small for gestational age	0.37(0.14-1.03)	0.057	0.48(0.27-0.83)	0.00
vveight/length ratio at birth	0.00/4.54.0.01	-0.004	0 40/4 70 0 77	
High weight/length ratio at birth	2.09(1.51-2.91)	<0.001	2.18(1.72-2.77)	<0.00
Normal weight/length ratio at birth	Reference		Reference	
Low weight/length ratio at birth	0.59(0.27-1.31)	0.194	0.47(0.28-0.80)	0.00
Model 2			4 00 (0 00 4 50)	
Caesarean delivery	1.36(0.91-2.01)	0.131	1.20(0.93-1.56)	0.16
Gestational week at delivery				
Preterm birth	0.90(0.40-2.03)	0.800	1.01(0.59-1.74)	0.97
lerm birth				
Postterm pregnancy	1.41(0.50-3.95)	0.518	0.83(0.35-1.94)	0.66
Weight at birth		•		
Macrosomia	1.89(1.25-2.85)	0.002	1.92(1.39-2.65)	<0.0
Normal weight	Reference		Reference	
Low birth weight	0.68(0.20-2.26)	0.528	0.41(0.17-0.98)	0.04
Gestational age specific weight at birth		7		
Large for gestational age	1.86(1.27-2.72)	0.002	1.99(1.49-2.67)	<0.0
Appropriate for gestational age	Reference		Reference	
Small for gestational age	0.45(0.16-1.26)	0.128	0.53(0.30-0.95)	0.03
vveight/length ratio at birth		0.004		
High weight/length ratio at birth	1.67(1.18-2.37)	0.004	1.82(1.41-2.34)	<0.00
Normal weight/length ratio at birth	Reference		Reference	
Low weight/length ratio at birth	0.67(0.30-1.50)	0.329	0.52(0.30-0.90)	0.01
Model 3				
weight at birth				
Macrosomia	-	-	-	-
Normal weight				
Low birth weight	-	-	-	-
Gestational age specific weight at birth				
Large for gestational age	1.86(1.27-2.72)	0.002	-	-
Appropriate for gestational age	Reference			
Small for gestational age	0.45(0.16-1.26)	0.128	-	-
Weight/length ratio at birth				
High weight/length ratio at birth	-	-	1.82(1.41-2.34)	<0.00
Normal weight/length ratio at birth			Reference	
Low weight/length ratio at birth	-	-	0.52(0.30-0.90)	0.01

Model 1: Univariable analysis.

377 378 Model 2: Multivariable analysis, adjusted for pre-pregnancy body mass index, systolic blood pressure,

1 2 3	379	education attainment, family history of diabetes in first-degree relatives, gestational diabetes mellitus,
4 5 6 7	380 381 382 383	Intensive care status during pregnancy, unintentional intervention, child gender, breastfeeding status and birthweight (for caesarean delivery only). Model 3: Adjusted for the variables listed in model 2 and backward stepwise approach was used to select pregnancy outcomes ($P = 0.05$ for exit).
, 8 9		
10 11		
12 13		
14 15		
16 17		
18 19 20		
20 21 22		
23 24		
25 26		
27 28		
29 30 31		
32 33		
34 35		
36 37		
38 39		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52 53		
53 54		

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Protected by copyright, including for uses related to te Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract) 1 9
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	5 5 9 10 10 10 10 10 10 10 10 10 10 10 10 10
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	6-7
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6-7

BMJ Open	
----------	--

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	(
6 7 8	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	
9 10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
15 16 17 18 19 20	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	
21 22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	9.
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	(
26 27 28 29 30 31 32 33	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9-
	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
34 35	9-10			
36 37 38 39	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	1
40 41 42 43	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	1
44 45 46	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	1
47 48 49 50	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
52 53	n/a			
54 55	Results			
56 57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 33 of 33			BMJ Open
1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.
5 6 7	Participants	<u>#13b</u>	Give reasons for non-participation at each stage
7 8 9 10	Participants n/a	<u>#13c</u>	Consider use of a flow diagram
11 12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.
19 20 21 22 23	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest
24 25	n/a		
26 27	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)
28 29	7		
30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.
35 36	10		
37 38 39 40 41 42 43	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
52 53	n/a		
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
58 59 60	Discussion	For p	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Key results	<u>#18</u>	Summarise key results with reference to study objectives		1
Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14	-1
Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	12	-1
Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results		1
Other Information				
Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based		1
This checklist was EQUATOR Netwo	s comple <u>ork</u> in co	ted on 06. June 2023 using <u>https://www.goodreports.org/</u> , a tool made by the ollaboration with <u>Penelope.ai</u>		
This checklist was EQUATOR Netwo	s comple ork in co	ted on 06. June 2023 using https://www.goodreports.org/, a tool made by the ollaboration with Penelope.ai		

BMJ Open

Adverse birth outcomes and childhood overweight at age of 3 to 8 years in a prospective cohort study in Tianjin, China

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-076438.R2
Article Type:	Original research
Date Submitted by the Author:	21-Feb-2024
Complete List of Authors:	Zhang, Rui; Tianjin Medical University, Department of Epidemiology and Biostatistics Gao, Ming; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Weiqin; Tianjin Women and Children's Health Center Liu, Hongyan; Tianjin Women and Children's Health Center Wang, Shuting; Tianjin Women and Children's Health Center Wang, Hui; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Ninghua; Tianjin Medical University, Department of Epidemiology and Biostatistics Li, Jing; Tianjin Medical University, Epidemiology and Biostatistics Li, Jing; Tianjin Medical University, Epidemiology and Biostatistics, School of Public Health Yu, Zhijie; Dalhousie University Hu, Gang; Pennington Biomedical Research Center Leng, Junhong; Tianjin Medical University, Department of Epidemiology and Biostatistics
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Paediatrics, Public health, Epidemiology
Keywords:	EPIDEMIOLOGIC STUDIES, PAEDIATRICS, Obesity
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1	
2	
3	
4 5	
5	
7	
, 8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28	
30	
31	
32	
33	
34	
35	
30 37	
38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49	
50 51	
52	
53	
54	
55	
56	
5/ 50	
59	
60	

1	Adverse birth outcomes and childhood overweight at age of 3 to
2	8 years in a prospective cohort study in Tianjin, China
3	
4	Rui Zhang ^{1,*} , Ming Gao ^{1,*} , Weiqin Li ² , Hongyan Liu ² , Shuting Wang ² , Hui Wang ¹ ,
5	Ninghua Li ¹ , Jing Li ^{1,3,4} Zhijie Yu ⁵ , Gang Hu ⁶ , Junhong Leng ^{2,**} , Xilin Yang ^{1,3,4,**}
6	*Equal contribution to the manuscript
7	Affiliations
8	¹ Department of Epidemiology and Biostatistics, School of Public Health, Tianjin
9	Medical University, Tianjin 300070, China;
10	² Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China;
11	Medical University, Tianjin 300070, China;
12	³ Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin
13	300070, China;
14	⁴ Tianjin Center for International Collaborative Research on Environment, Nutrition
15	and Public Health, Tianjin 300070, China;
16	⁵ Population Cancer Research Program and Department of Pediatrics, Dalhousie
17	University 15000, Halifax, Canada;
18	⁶ Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center,
19	Baton Rouge, Louisiana 70808, USA;
20	Correspondence and reprints addressed to
21	Prof. Xilin Yang, P.O. Box 154, School of Public Health, Tianjin Medical University,
22	22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tel: +86 22 83336617;
23	Fax: +86 22 83336608; Email: yxl@hotmail.com or yangxilin@tmu.edu.cn;

1		
2		
3 4	24	or
5		
6 7	25	Dr. Junhong Leng, Department of Project Office, Tianjin Women and Children's
8 9	26	Health Centre, Tianjin 300070, China; Tel: +86 22 5829 7792; Email:
10	07	liblealibles@162.com
11	21	ıjnizqijnizq@165.com
12		
14		
15	28	
16		
17	00	Winnel another
18 10	29	word counts
20	20	Abstract: 276
21	30	Abstract. 276
22	21	Main taxt: 2068
23	31	Main text. 5008
24	30	Number of tables: 3: Number of figures: 1
23 26	52	Number of tables. 5, Number of figures. 1
27	33	Number of references: 37
28	00	
29		
30 21		
37		
33		
34		
35		
36 27		
38		
39		
40		
41		
42		
43		
45		
46		
47		
48 40		
4 9 50		
51		
52		
53		
54 55		
56		
57		
58		
59		
60		2
BMJ Open

34 Abstract

35 Objectives: To explore associations between adverse birth outcomes and childhood
36 overweight at 3-8 years of age.

Design: A prospective cohort study.

Setting: Six central urban districts of Tianjin, China.

Participants: 1681 woman-child pairs.

Methods: 1681 woman-child pairs were followed up for 8 years in Tianjin, China. Demographic and clinical information including birth outcomes was collected longitudinally, commencing from first antenatal care visit till postpartum period. Offspring height and weight were measured at 3-8 years of age. High and low weight/length ratios (WLR) at birth were respectively defined as $\geq 90^{\text{th}}$ and $\leq 10^{\text{th}}$ gestational week and sex-specific percentiles. Overweight for children at 3-5 and 6-8 years of age were respectively defined as body mass index (BMI)-for-age and -sex above the 2 z-score and 1 z-score curves of the World Health Organization's child growth standards. Binary logistic regression analysis was used to obtain odds ratios (ORs) and 95% confidence interval (CI) with a stepwise backward selection method to select independent predictors.

Primary Outcomes Measures: Childhood overweight.

52 Results: Of 1681 children, 10.7% (n=179) and 27.8% (n=468) developed overweight 53 at 3-5 and 6-8 years of age, respectively. Large for gestational age (LGA) was 54 associated with increased risk of overweight at 3-5 years of age (aOR: 1.86, 95%CI: 55 1.27-2.72) while high WLR at birth was associated with increased risk of overweight Page 5 of 33

BMJ Open

at	6-8 years of age (1.82, 1.41-2.34). Low WLR at birth was associated with	
dec	creased risk of overweight at 6-8 years of age (0.52, 0.30-0.90).	
Co	onclusions: LGA and high WLR at birth predicted childhood overweight at 3-5 and	
6-8	8 years of age, respectively. Low WLR at birth was associated with decreased risk	
of	childhood overweight at 6-8 years of age.	Prot
Ke	ey Words: Large for gestational age; Weight/length ratio; Childhood; Overweight	ected by c
Sti	rengths and limitations of this study	opyrigt
•	This study was conducted in the 3-tier antenatal care system in urban Tianjin,	ıt, inclu
	China and the representativeness of the study population is good.	uding for u
•	This study had documented detailed demographic and clinical information of	ses rel
	pregnant women from their first antenatal care visit till postpartum period, thus	ated to
	available for analysis.	t Superieu text and c
•	This study did not record lifestyle factors of children such as physical activities,	r (ABE lata mi
	sleep time and dietary habits, which may exist residual confounding.	sj . ning, Al tr
•	Most of women with gestational diabetes mellitus (GDM) in our study were from	aining,
	a randomized controlled trial and half of them received intensive care (IC).	and s
	Although we had carefully adjusted for IC and its confounding effect may have	imilar t
	not been removed completely.	lechno
		logies.
		-

57	decreased risk of overweight at 6-8 years of age (0.52, 0.30-0.90).
58	Conclusions: LGA and high WLR at birth predicted childhood overweight at 3-5 and
59	6-8 years of age, respectively. Low WLR at birth was associated with decreased risk
60	of childhood overweight at 6-8 years of age.
61	Key Words: Large for gestational age; Weight/length ratio; Childhood; Overweight
62	Strengths and limitations of this study
63	• This study was conducted in the 3-tier antenatal care system in urban Tianjin,
64	China and the representativeness of the study population is good.
65	• This study had documented detailed demographic and clinical information of
66	pregnant women from their first antenatal care visit till postpartum period, thus
67	available for analysis.
68	• This study did not record lifestyle factors of children such as physical activities,
69	sleep time and dietary habits, which may exist residual confounding.
70	• Most of women with gestational diabetes mellitus (GDM) in our study were from
71	a randomized controlled trial and half of them received intensive care (IC).
72	Although we had carefully adjusted for IC and its confounding effect may have
73	not been removed completely.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

74 1. Introduction

Alongside adulthood overweight, childhood overweight has emerged as a serious public health issue worldwide. In 2019, World Health Organization (WHO) estimated that 38.2 million or 5.6% of children under 5 years of age were overweight globally. Furthermore, the prevalence of overweight among children and adolescents aged 5-19 years had risen dramatically from just 4% in 1975 to over 18% in 2016[1]. As we all know, overweight during childhood is likely to continue into adulthood and is associated with increased risk of many short-term and long-term adverse health outcomes, including psychosocial comorbidity, cardiovascular diseases (CVD), type 2 diabetes (T2DM) as well as premature mortality[2]. Consequently, it is of utmost importance to identify early risk factors for effective intervention and prevention of childhood overweight.

Childhood overweight is a complex, multifactorial condition stemming from interactions between genetic and non-genetic factors, including unhealthy dietary patterns, inadequate physical activities, shortened sleep duration, increased sedentary time and excessive psychological stress[3, 4]. It has also been reported that the intrauterine and early postnatal conditions can have a significant impact on increased risk of developing overweight in later life[5, 6]. Therefore, the exploration for risk factors of childhood overweight could be extended to infant adverse birth outcomes.

93 Currently, only a few studies have explored the risk association between adverse 94 birth outcomes and childhood overweight with inconsistent findings. For example, a 95 cross-sectional analysis from Australia found that low birth weight was associated 96 with decreased risk of overweight among girls at 4-5 years of age[7]. However, a 97 retrospective study in Tianjin, China observed that low birth weight was not

BMJ Open

associated with overweight among children aged 3-6 years[8]. On the other hand, a retrospective study in Xiamen, China failed to find a significant association between infants with LGA of women with GDM and later overweight at 1-6 years of age[9]. However, a large cohort study from Canada found that children born with LGA of mothers with GDM were 2.79 times more likely to be overweight at 4-6 years of age compared to children born with appropriate for gestational age (AGA) of mothers without diabetes[10]. Therefore, it deserves further investigation of the risk association between adverse birth outcomes and childhood overweight.

Using the long-term follow-up data of children born to women enrolled in a population-based prospective cohort in Tianjin, China, we aimed to explore the risk associations between adverse birth outcomes and childhood overweight at 3-8 years of age.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2. Subjects, Materials and Methods

2.1 Study settings and population

The study settings and population has been published previously[11]. Briefly, we established a universal screening and management system for GDM in six central urban districts of Tianjin, China in 1998[12]. The antenatal care was delivered by a 3-tier antenatal care system, consisting of 65 primary hospitals, 6 district-level Women and Children's Health Centers (WCHC) and other secondary obstetric hospitals, and a city-level WCHC, i.e., Tianjin WCHC (TWCHC) and other tertiary obstetric hospitals. On the basis of the GDM screening and management system and the 3-tier antenatal care network, we set up a cohort of pregnant women and their offspring.

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
16
17
18
10
קו 20
20 21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
40
49 50
50
51
52
53
54
55
56
57
52
20
27

60

1

121 From 2010 to 2012, a total of 22,302 pregnant women were registered at the primary care hospital near their residence. They were offered a 50-gram 1-hour 122 glucose challenge test (GCT) at 24-28th gestational weeks. Women with plasma 123 glucose (PG) \geq 7.8 mmol/L were referred to the TWCHC GDM Clinic to undergo a 124 75-gram 2-hour oral glucose tolerance test (OGTT) after an overnight fasting of at 125 least 8 hours. GDM was diagnosed according to the International Association of 126 127 Diabetes and Pregnancy Study Group (IADPSG)'s cut-points: fasting PG ≥ 5.1 mmol/L or 1-hour PG \geq 10.0 mmol/L or 2-hour PG \geq 8.5 mmol/L[13]. Of them, 1251 128 129 women without a GCT result and 891 women with a positive GCT but without a standard OGTT result were excluded. Among the remaining 20,160 participants, 130 1,535 women were diagnosed with GDM and 1,040 of them were invited to 131 132 participate in the study. Among the 18,625 women without GDM, 1,100 women were 133 randomly selected into this study as the controls. In the 1,040 women with GDM, 948 of them participated in a randomized controlled trial (RCT) to test the effectiveness of 134 intensive care (IC) of GDM during pregnancy on adverse pregnancy outcomes. The 135 details of the RCT and IC have been published previously[14]. After further 136 excluding 42 women who had stillbirth, neonatal death or non-singleton pregnancy, a 137 total of 2,098 woman-child pairs were included in the long-term follow-up study. 138

At postpartum, 2,098 children born to the included women were invited to participate in the follow-up study and measured their body height and weight each year from 1 to 8 years of age. Finally, a total of 1,681 children underwent at least one postpartum follow-up visit and completed body height and weight measurements at 1 to 8 years of age (Figure 1).

2.2 Ethics

Ethical approval was obtained from the Ethics Committee for Clinical Research of
Tianjin Women and Children's Health Centre (Approval code: 2009-02). Written
informed consent was obtained from all participants before data collection.

148 2.3 Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting ordissemination plans of this research.

151 2.4 Data collection and clinical measurement

Before the study, all researchers received uniform training to standardize the anthropometric and clinical measurements. Data were collected longitudinally from a series of questionnaires or extracted from the database of Maternal and Child Health Information System. At registration for pregnancy, we collected information on maternal height, weight, age, systolic blood pressure (SBP), diastolic blood pressure (DBP), education attainment, parity, family history of diabetes in first-degree relatives, smoking and drinking during pregnancy. Maternal height and weight were measured with light clothing and without shoes. Body weight at the first antenatal visit was regarded as the pre-pregnancy weight as the maternal weight was relatively stable during the first trimester of pregnancy[15]. Blood pressure was measured in a sitting position after at least 10 minutes of rest. Children's information including birthday, sex, body length and weight at birth and breastfeeding status were also obtained through questionnaires from their mothers. Body height and weight of offspring were measured at each of postpartum follow-up visits from 1 to 8 years of age. BMI was calculated as weight in kilograms divided by the square of height in

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

167 meters. Weight/length ratio (WLR) at birth was calculated as weight in kilograms168 divided by body length in meters[16].

2.5 Definition of adverse birth outcomes

Preterm birth and postterm pregnancy were defined as delivery at <37 and ≥ 42 weeks of gestation[17, 18], respectively. Macrosomia and low birth weight were respectively defined as birthweight \geq 4000 g and \leq 2500g[14, 19]. LGA and small for gestational age (SGA) were respectively defined as birthweight $\geq 90^{\text{th}}$ gestational week and sex-specific percentiles and birthweight $\leq 10^{\text{th}}$ gestational week and sex-specific percentiles of Chinese standards[20]. High and low WLR at birth were respectively defined as WLR at birth \geq 90th and \leq 10th gestational week and sex-specific percentiles of Chinese standards[16].

2.6 Definition of childhood overweight

According to the WHO's child growth standards, overweight for children at 3-5 and 6-8 years of age were defined as BMI-for-age and -sex above the 2 z-score and 1 z-score curves, respectively[21, 22]. In this study, childhood overweight at 3-5 years of age was defined as overweight at either of 3, 4 or 5 years of age and childhood overweight at 6-8 years of age was defined as either overweight at 6, 7 or 8 years of age.

2.7 Statistical analysis

All statistical analyses were conducted using the Statistical Analysis System (Release
9.4, SAS Institute Inc., Cary, NC). Continuous variables were described as mean ±
standard deviation (SD) or median (interquartile range, IQR). Categorical variables
were expressed as number (percentage). The differences of continuous variables

Page 11 of 33

BMJ Open

between two groups were compared by Student's *t*-test or Mann-Whitney U test where appropriate. The differences of categorical variables between two groups were compared by Chi-square test or Fisher's exact test. We used binary logistic regression to obtain the odds ratios (ORs) and 95% confidence interval (CI) of adverse birth outcomes for overweight in children at 3-5 years of age and 6-8 years of age. First, we calculated unadjusted ORs in univariable analysis. Second, we performed multivariable analysis to control for confounders. The variables adjusted in the multivariable model included maternal pre-pregnancy BMI, SBP, education attainment, family history of diabetes in first-degree relatives, GDM, IC status during pregnancy, unintentional intervention, child's sex, breastfeeding status and birthweight (for caesarean delivery only). At last, backward stepwise selection approach in the multivariable logistic regression (P = 0.05 for exit) was used to identify adverse birth outcomes that have independent predictive values for childhood overweight. All the tests were two-tailed and P values <0.05 were considered to be statistically significant.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

205 2.8 Reporting Guidelines

206 We used the STROBE cohort checklist when writing our report[23].

3. Results

3.1. Characteristics of study participants

A total of 1681 children turned up at least one follow-up visit after delivery, with an overall response rate of 80.1%. Of them, 10.7% (n=179) and 27.8% (n=468) developed overweight at 3-5 and 6-8 years of age, respectively. At the first antenatal care visit, the mean age and BMI of their mothers were 28.9 (SD: 3.0) years and 23.1

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

> (SD: 3.5) kg/m². Compared to children with normal weight, mothers of children who developed overweight at 3-5 years of age had higher pre-pregnancy BMI, SBP/DBP, were less likely to have education >12 years, and were more likely to have family history of diabetes in first-degree relatives and to have GDM; mothers of children who developed overweight at 6-8 years of age had higher pre-pregnancy BMI and higher SBP/DBP and were more likely to have GDM and to receive IC during pregnancy but less likely to have education >12 years. Other characteristics including parity, smoking and drinking during pregnancy, and unintentional intervention were not significantly different between the two groups (Table 1).

3.2. Associations of adverse birth outcomes with offspring overweight at 3-5 years of age

Children who developed overweight at 3-5 years of age had a higher birthweight, higher rates of male sex, caesarean delivery, macrosomia, LGA and high WLR at birth than children with normal weight (Table 2). In univariable analysis, caesarean delivery, macrosomia, LGA and high WLR at birth were associated with markedly increased risk of offspring overweight (OR: 1.96, 95%CI: 1.36-2.84 & 2.63, 1.79-3.87 & 2.37, 1.66-3.39 & 2.09, 1.51-2.91, respectively). After adjusting for confounding factors, the associations of macrosomia, LGA and high WLR at birth with offspring overweight at 3-5 years of age were slightly attenuated but still significant (aOR: 1.89, 1.25-2.85 & 1.86, 1.27-2.72 & 1.67, 1.18-2.37, respectively). The multivariable backward stepwise logistic regression analysis revealed that LGA was independently associated with increased risk of offspring overweight at 3-5 years of age (aOR: 1.86, 1.27-2.72) (Table 3).

BMJ Open

3.3. Associations of adverse birth outcomes with offspring overweight at 6-8
years of age

Children who developed overweight at 6-8 years of age had a higher birthweight, higher rates of male sex, caesarean delivery, macrosomia, LGA and high WLR at birth, and lower rates of low birth weight, SGA and low WLR at birth than children with normal weight (Table 2). In univariable analysis, caesarean delivery, macrosomia, LGA and high WLR at birth were associated with markedly increased risk of offspring overweight (OR: 1.69, 95%CI: 1.33-2.14 & 2.59, 1.91-3.50 & 2.42, 1.84-3.19 & 2.18, 1.72-2.77, respectively). Conversely, low birth weight, SGA and low WLR at birth were associated with decreased risk of offspring overweight (OR: 0.41, 0.17-0.98 & 0.48, 0.27-0.83 & 0.47, 0.28-0.80, respectively). In multivariable analysis, the associations of macrosomia, LGA and high WLR at birth with offspring overweight were slightly attenuated but still significant (aOR: 1.92, 1.39-2.65 & 1.99, 1.49-2.67 & 1.82, 1.41-2.34, respectively). On the other hand, low birth weight, SGA and low WLR at birth were still associated with decreased risk of offspring overweight (aOR: 0.41, 0.17-0.98 & 0.53, 0.30-0.95 & 0.52, 0.30-0.90, respectively). The backward stepwise logistic regression in the multivariable analysis revealed that high WLR at birth was independently associated with increased risk of offspring overweight at 6-8 years of age (aOR: 1.82, 1.41-2.34), whereas low WLR at birth was associated with decreased risk of offspring overweight at 6-8 years of age (aOR: 0.52, 0.30-0.90) (Table 3).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

257 4. Discussion

In the present study, we found that (1) LGA predicted offspring overweight at 3-5 years of age; (2) high WLR at birth predicted offspring overweight at 6-8 years of

age; (3) low WLR at birth was associated with decreased risk of offspring overweightat 6-8 years of age.

Several studies have investigated the association between LGA and offspring overweight but have inconsistent conclusions. A retrospective study in Xiamen, China (n=33,157) did not observe a significant association between LGA and childhood overweight among women with GDM at 1 to 6 years of age[9]. A cohort study in Greece (n=1667) also did not find any significant association between LGA and childhood overweight from 3 to 5 years of age[24]. However, a large cohort study in Alberta, Canada (n=81,226) found that infants with LGA of women with GDM had a 179% higher risk of being overweight at 4-6 years of age than infants with AGA of mothers without GDM. However, that study did not adjust for maternal pre-pregnancy BMI[10]. To our knowledge, our study is the first to evaluate the association between WLR at birth and long-term risk of childhood overweight. WLR at birth was found to correlate strongly with skinfold thickness and body fat store in newborn infants[25, 26]. Moreover, the INTERGROWTH-21st Project demonstrated that WLR at birth was more closely associated with fat mass, fat-free mass, and body fat percentage than BMI or ponderal index in neonates[27]. Therefore, the WLR at birth is a good parameter for evaluating the nutritional status of intrauterine growth and predicting metabolic complications in newborns with abnormal intrauterine growth[25, 26]. In this connection, we observed that high WLR at birth was positively associated with overweight in children at 6-8 years of age while low WLR at birth was negatively associated with childhood overweight at 6-8 years of age.

282 The mechanisms by which LGA increases the risk of childhood overweight are283 not yet fully understood. However, it is becoming increasingly clear that GDM,

Page 15 of 33

BMJ Open

maternal pre-pregnancy overweight and excessive pregnancy weight gain all predispose women to an elevated risk of LGA[28]. These risk factors are accompanied with insulin resistance and hyperglycemia during pregnancy[29, 30], which can cause fetal hyperinsulinemia and maternal hypertriglyceridemia, and then lead to fetal overnutrition and high risk of LGA[31, 32]. Intrauterine overnutrition may affect fat metabolism, insulin and leptin secretion by altering the development of the appetite control center in the fetal hypothalamus, thus leading to an imbalance of the fetal energy system and increasing the risk of childhood overweight[33, 34]. Furthermore, a longitudinal study in Hungary found a positive correlation between cord serum leptin levels and WLR at birth[35]. Cord blood leptin levels were found to be closely related to fetal fat store and may serve as an important regulator of fetal growth and development, energy intake, storage and expenditure, thus contributing to long-term childhood overweight[35, 36].

Our findings have strong public health and clinical implications. It is well established that childhood overweight can persist into adulthood and has been implicated in many chronic diseases. Hence, there is a strong need for taking measures to prevent childhood overweight to reduce the burden of overweight-related diseases in adulthood. This long-term follow-up study supports that LGA and high WLR at birth need to be recognized as risk factors for childhood overweight. On the one hand, our findings highlighted the importance of improving adverse birth outcomes, including LGA and high WLR at birth, for benefits of childhood overweight and possibly well-being in adulthood. Our previous RCT demonstrated that IC for pregnant women with GDM can improve adverse birth outcomes. including LGA[14]. Therefore, to reduce the incidence of adverse birth outcomes by dietary and physical activity education during pregnancy is one of the possible

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

measures to prevent childhood overweight. On the other hand, special attention should also be given to infants born with LGA and high WLR to help reduce the prevalence of childhood overweight and related chronic disease later in life. Our findings suggest that more efforts should be shifted to early lifestyle interventions for children at high risk of overweight, especially those born to be LGA and high WLR. Indeed, given to the high prevalence of childhood overweight, it is worthwhile to test the effect and cost-effectiveness of healthy lifestyle intervention for prevention of childhood overweight among high-risk children. In addition, our study also indicates that low WLR at birth had a protective effect on childhood overweight at 6-8 years of age. However, it is still unclear its benefits and possibly harms in late childhood and adulthood. Further investigations are needed to evaluate the association of WLR with long-term overweight in the future.

Our study had strengths and limitations. The strength of this study was conducted in the 3-tier antenatal care system in urban Tianjin, China and the representativeness of the study population is good. The second strength of the study was that we had documented detailed demographic and clinical information of pregnant women from their first antenatal care visit till postpartum period, thus available for analysis. Our study also has several limitations. Firstly, some variables regarding lifestyle in the children were not recorded in the study, such as detailed information of breastfeeding duration, physical activities, sleep time and dietary habits, which may exist residual confounding. Secondly, most of women with GDM in our study were from an RCT and half of them received IC. In this respect, our previous meta-analysis failed to show that IC of GDM during pregnancy had a

Page 17 of 33

1

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
72	

detectable effect on the risk of offspring overweight[37]. Although we had carefullyadjusted for IC and its confounding effect may have not removed completely.

334 **5.** Conclusion

335 In summary, in the long-term follow-up study of Chinese children, we found that LGA and high WLR at birth were predictive of overweight in children at 3-5 and 6-8 336 years of age, respectively. Special attention should be paid to children born with LGA 337 and/or high WLR for prevention of childhood overweight. It is worthwhile to test the 338 339 effectiveness and cost-effectiveness of lifestyle intervention for children at high risk of being overweight. We also observed some benefits for childhood overweight 340 associated with low WLR at birth. Its long-term benefits and possibly harms need 341 342 further investigations in the future, especially for overweight in adulthood.

343 Acknowledgements

344 The authors thank all the health professionals of Tianjin Antenatal Network for their345 involvement and contributions to the study.

346

347 Funding

This work was supported by Tianjin Key Medical Discipline (Specialty) Construction
Project (Grant No: TJYXZDXK- 075C) and National Natural Science Foundation of
China (Grant No: 82200932).

351

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

> **Competing interests statement**

The authors declared no conflict of interest.

Author Contributions Statement

X.Y. & J.Leng. conceived the idea and designed the study; R.Z. & M.G. analyzed the data and wrote the first draft; W.L., H.L., S.W. & J.Leng. collected the data; H.W., N.L., J.Li., Z.Y. & G.H. gave critical comments and edited the manuscript; All authors gave comments and contributed to the writing of the manuscript and agreed to submit and publish the manuscript. X.Y. & J.Leng took full responsibility for the work as a whole, including the study design, access to the data, and decision to e e submit.

Data availability statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References:

- 1.World Health Organization. Facts about overweight and obesity, 2021.Accessed23May2023.Availablefromhttps://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
- Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, Laxmaiah A, Kengne AP, Bentham J: The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC medicine 2019, 17(1):212.
- 3. Güngör NK: **Overweight and obesity in children and adolescents**. *Journal of clinical research in pediatric endocrinology* 2014, **6**(3):129-143.
- 4. Lee EY, Yoon KH: Epidemic obesity in children and adolescents: risk factors and prevention. *Front Med* 2018, **12**(6):658-666.
- 5. Koletzko B, Girardet JP, Klish W, Tabacco O: Obesity in children and adolescents worldwide: current views and future directions--Working Group Report of the First World Congress of Pediatric Gastroenterology, Hepatology, and Nutrition. Journal of pediatric gastroenterology and nutrition 2002, 35 Suppl 2:S205-212.
- 6. McMillen IC, Muhlhausler BS, Duffield JA, Yuen BS: Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. *The Proceedings of the Nutrition Society* 2004, **63**(3):405-412.
- Oldroyd J, Renzaho A, Skouteris H: Low and high birth weight as risk factors for obesity among 4 to 5-year-old Australian children: does gender matter? Eur J Pediatr 2011, 170(7):899-906.
- Zhang X, Liu E, Tian Z, Wang W, Ye T, Liu G, Li Y, Wang P, Yang X, Yu Z et al: High birth weight and overweight or obesity among Chinese children 3-6 years old. Preventive medicine 2009, 49(2-3):172-178.
- Chen YL, Han LL, Shi XL, Su WJ, Liu W, Wang LY, Huang PY, Lin MZ, Song HQ, Li XJ: Adverse pregnancy outcomes on the risk of overweight

 offspring: a population-based retrospective study in Xiamen, China. Scientific reports 2020, 10(1):1549.

- Kaul P, Bowker SL, Savu A, Yeung RO, Donovan LE, Ryan EA: Association between maternal diabetes, being large for gestational age and breast-feeding on being overweight or obese in childhood. *Diabetologia* 2019, 62(2):249-258.
- 11. Leng J, Shao P, Zhang C, Tian H, Zhang F, Zhang S, Dong L, Li L, Yu Z, Chan JC *et al*: Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, China. *PloS one* 2015, **10**(3):e0121029.
- Yang X, Hsu-Hage B, Zhang H, Yu L, Dong L, Li J, Shao P, Zhang C: Gestational diabetes mellitus in women of single gravidity in Tianjin City, China. *Diabetes care* 2002, 25(5):847-851.
- Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, Hod M, Kitzmiler JL *et al*: International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. *Diabetes care* 2010, 33(3):676-682.
- Yang X, Tian H, Zhang F, Zhang C, Li Y, Leng J, Wang L, Liu G, Dong L, Yu Z et al: A randomised translational trial of lifestyle intervention using a 3-tier shared care approach on pregnancy outcomes in Chinese women with gestational diabetes mellitus but without diabetes. Journal of translational medicine 2014, 12:290.
- Fattah C, Farah N, Barry SC, O'Connor N, Stuart B, Turner MJ: Maternal weight and body composition in the first trimester of pregnancy. Acta Obstet Gynecol Scand 2010, 89(7):952-955.
- 16. Zong XN, Li H, Zhang YQ, Wu HH: [Reference values and growth curves of weight/length, body mass index, and ponderal index of Chinese newborns of different gestational ages]. Zhonghua Er Ke Za Zhi 2021,

(3):181-188.

- 17. ACOG Committee Opinion No 579: Definition of term pregnancy. *Obstetrics and gynecology* 2013, **122**(5):1139-1140.
- 18. WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet Gynecol Scand 1977, 56(3):247-253.
- 19. Moreira AIM, Sousa PRM, Sarno F: Low birth weight and its associated factors. *Einstein (Sao Paulo)* 2018, 16(4):eAO4251.
- Zhu L, Zhang R, Zhang S, Shi W, Yan W, Wang X, Lyu Q, Liu L, Zhou Q, Qiu Q et al: [Chinese neonatal birth weight curve for different gestational age]. Zhonghua Er Ke Za Zhi 2015, 53(2):97-103.
- 21. World Health Organization. WHO child growth standards: training course on child growth assessment, 2008. Accessed 23 May 2023. Available from https://www.who.int/publications/i/item/9789241595070.
- World Health Organization. Growth reference data for 5-19 years, 2007.
 Accessed 23 May 2023. Available from https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/b mi-for-age.
- 23. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Journal of clinical epidemiology* 2008, 61(4):344-349.
- 24. Moschonis G, Grammatikaki E, Manios Y: Perinatal predictors of overweight at infancy and preschool childhood: the GENESIS study. International journal of obesity (2005) 2008, 32(1):39-47.
- Yau KI, Chang MH: Weight to length ratio--a good parameter for determining nutritional status in preterm and full-term newborns. Acta Paediatr 1993, 82(5):427-429.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

26. Fok TF, Hon KL, Ng PC, Wong E, So HK, Lau J, Chow CB, Lee WH, Wo HKNM: Use of Anthropometric Indices to Reveal Nutritional Status: Normative Data from 10,226 Chinese Neonates. Neonatology 2009, 95(1):23-32.

- 27. Villar J, Puglia FA, Fenton TR, Cheikh Ismail L, Staines-Urias E, Giuliani F, Ohuma EO, Victora CG, Sullivan P, Barros FC *et al*: Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21(st) project. *Pediatric research* 2017, 82(2):305-316.
- 28. Bowers K, Laughon SK, Kiely M, Brite J, Chen Z, Zhang C: Gestational diabetes, pre-pregnancy obesity and pregnancy weight gain in relation to excess fetal growth: variations by race/ethnicity. *Diabetologia* 2013, 56(6):1263-1271.
- 29. Kc K, Shakya S, Zhang H: Gestational diabetes mellitus and macrosomia: a literature review. Annals of nutrition & metabolism 2015, 66 Suppl 2:14-20.
- 30. Catalano PM, Shankar K: Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. *BMJ* (*Clinical research ed*) 2017, **356**:j1.
- Heerwagen MJ, Miller MR, Barbour LA, Friedman JE: Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. American journal of physiology Regulatory, integrative and comparative physiology 2010, 299(3):R711-722.
- 32. Catalano PM, Hauguel-De Mouzon S: Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? American journal of obstetrics and gynecology 2011, 204(6):479-487.
- Oken E, Gillman MW: Fetal origins of obesity. Obesity research 2003, 11(4):496-506.
- 34. Bouret SG: Early life origins of obesity: role of hypothalamic

BMJ Open

programming. *Journal of pediatric gastroenterology and nutrition* 2009, **48 Suppl 1**:S31-38.

- 35. Ertl T, Funke S, Sárkány I, Szabó I, Rascher W, Blum WF, Sulyok E: Postnatal changes of leptin levels in full-term and preterm neonates: their relation to intrauterine growth, gender and testosterone. *Biology of the neonate* 1999, 75(3):167-176.
- 36. Schubring C, Kiess W, Englaro P, Rascher W, Dötsch J, Hanitsch S, Attanasio A, Blum WF: Levels of leptin in maternal serum, amniotic fluid, and arterial and venous cord blood: relation to neonatal and placental weight. *The Journal of clinical endocrinology and metabolism* 1997, 82(5):1480-1483.
- 37. Gao M, Cao S, Li N, Liu J, Lyu Y, Li J, Yang X: Risks of overweight in the offspring of women with gestational diabetes at different developmental stages: A meta-analysis with more than half a million offspring. Obesity reviews : an official journal of the International Association for the Study of Obesity 2022, 23(3):e13395.

2		
3 4	366	Figure 1
5	367	Title: Flow diagram of participants included in the analysis
6	007	The. The diagram of participants included in the analysis
7		
9		
10		
11		
12		
14		
15		
16 17		
18		
19		
20		
∠ı 22		
23		
24		
25 26		
27		
28		
29 30		
31		
32		
33 34		
35		
36		
37 38		
39		
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
วบ 51		
52		
53		
54 55		
55 56		
57		
58 50		
59 60		
00		23

369	years of age			
	Characteristics	Normal	Overweight	<i>P</i> valu
	At 3-5 years of age (1502/179)			
	Age (years, means±SD)	28.9±3.0	28.7±2.9	0.355
	Height (cm, means±SD)	163.0±4.9	162.5±5.4	0.328
	Pre-pregnancy BMI			
	(kg/m², means±SD)	22.8±3.3	25.4±4.4	<0.00
	SBP (mmHg, means±SD)	106.0±10.7	108.4±10.5	0.005
	DBP (mmHg, means±SD)	68.8±7.6	70.8±7.9	0.001
	Education >12 years (%)	1255(83.6)	139(77.7)	0.047
	Parity ≥1 (%)	62(4.1)	5(2.8)	0.388
	Family history of diabetes in first-degree relatives (%)	137(9.1)	28(15.6)	0.006
	Smoking during pregnancy (%)	14(0.9)	1(0.6)	0.935
	Drinking during pregnancy (%)	8(0.5)	1(0.6)	1.000
	Gestational diabetes mellitus (%)	718(47.8)	103(57.5)	0 014
	IC status during pregnancy (%)	322(21.4)	42(23 5)	0 534
	Initentional intervention (%)	172(11.5)	22(12 3)	0.001
		172(11.0)	22(12.0)	0.740
	At 0-0 years of age (1210/400)			
	Age (years, means±SD)	28.9±2.9	28.9±3.2	0.983
	Height (cm, means±SD)	162.9±4.8	162.8±5.3	0.615
	Pre pregnancy BMI			
		22 5+3 2	24 5+2 0	~0.001
	(kg/m², means±SD)	22.JIJ.Z	24.313.9	\0.00
	SBP (mmHg, means±SD)	105.7±10.8	107.6±10.4	0.002
	DBP (mmHg, means±SD)	68.6±7.7	70.2±7.7	<0.001
	Education >12 years (%)	1030(84.9)	364(77.8)	0.001
	Parity ≥1 (%)	45(3.7)	22(4.7)	0.352
	Family history of diabetes in	113(9.3)	52(11.1)	0.268
	first-degree relatives (%)		()	0.200
	Smoking during pregnancy (%)	8(0.7)	7(1.5)	0.179
	Drinking during pregnancy (%)	7(0.6)	2(0.4)	1.000
	Gestational diabetes mellitus (%)	543(44.8)	278(59.4)	<0.001

	IC status during pregnancy (%)	240(19.8)	124(26.5)	0.003 ^b
	Unintentional intervention (%)	135(11.1)	59(12.6)	0.400 ^b
371 372 373	abbreviations: DM, body mass inde intensive care; SD, standard deviatio ^a Derived from <i>t</i> -test. ^b Derived from Chi-square Test or Fis	sher's exact test.	ou pressure, DDr , diasi	

		Normal	Overweight	P valu
	At 3-5 years of age (1502/179)		Ŭ	
	Gestational age at delivery (weeks, median (IQR))	39.0 (38.0, 40.0)	39.0 (38.0, 40.0)	0.867
	Birthweight (kg, means±SD)	3.4±0.5	3.6±0.5	<0.001
	Infant male sex (%)	796(53.0)	115(64.3)	0.004
	Caesarean delivery (%)	971(64.7)	140(78.2)	<0.001
	Gestational week at delivery (%)	· · /	· · ·	0.630
	Preterm birth	66(4.4)	7(3.9)	
	Postterm pregnancy	27(1.8)	5(2.8)	
	Weight at hirth (%)			<0.002
	Macrosomia	155(10.3)	42(23.5)	-0.00
	Low birth weight	45(3.0)	$\frac{42(23.3)}{3(1.7)}$	
	Gestational age specific weight at birth (%)	10(0.0)	0(1.1)	<0.00
	Large for gestational age	207(13.8)	51(28.5)	0.00
	Small for gestational age	103(6.9)	4(2.2)	
	Weight/length ratio at birth (%)	(<i>'</i> /		< 0.00
	High weight/length ratio at birth	335(22.3)	69(38.6)	
	Low weight/length ratio at birth	120(8.0)	7(3.9)	
	Breastfeeding status (%)			0.393
	Exclusive breastfeeding	242(16.1)	23(12.9)	
	Mixed breastfeeding	328(21.8)	45(25.1)	
	At 6-8 years of age (1213/468)	932(02.1)	111(02.0)	
	Gestational age at delivery (weeks			
	median (IQR))	39.0 (38.0, 40.0)	39.0 (38.0, 40.0)	0.036
	Birthweight (ka means+SD)	3 4+0 5	3 6+0 5	<0.00
	lnfant male sex (%)	612(50.5)	200(63.0)	
		012(50.5)	299(03.9)	<0.00
	Caesarean delivery (%)	764(63.0)	347(74.2)	<0.00
	Gestational week at delivery (%)	52(4.2)	21(4 5)	0.923
	Preterm pregnancy	$\frac{52(4.5)}{24(2.0)}$	21(4.3) 8(1.7)	
	Weight at hirth (%)	24(2.0)	0(1.7)	<0.00
	Macrosomia	104(8.6)	93(19.9)	-0.00
	Low birth weight	42(3.5)	6(1.3)	
	Gestational age specific weight at birth (%)	(),		<0.00
	Large for gestational age	141(11.6)	117(25.0)	
	Small for gestational age	92(7.6)	15(3.2)	.0.00
	weight/length ratio at birth (%)			<0.00
	High weight/length ratio at birth	236(19.5)	168(35.9)	
	Low weight/length ratio at birth	110(9.1)	17(3.6)	0.000
	Breastieeding status (%)	200(16 5)	65(12.0)	0.232
	Mixed breastfeeding	200(10.5) 275(22.7)	98(20 9)	
		738(60 8)	305(20.3)	
070		100(00.0)	303(03.2)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 3. Odds ratios of adverse birth outcomes for offspring overweight status from 3 to 8

years of age

	Overweight at 3	3-5 years	Overweight at 6-8	B years
		Dvoluo		
Model 1	UR (95 %CI)	Pvalue	OR (95 %CI)	P vai
	1 06(1 26 2 94)	<0.001	1 60/1 22 2 14)	~0.0
Caesarean delivery	1.90(1.30-2.84)	<0.001	1.69(1.33-2.14)	<0.0
Gestational week at delivery	0.00/0.40.4.00	0 704	4 05(0 00 4 70)	0.00
	0.90(0.40-1.98)	0.784	1.05(0.62-1.76)	0.86
	Reference		Reference	
Postterm pregnancy	1.56(0.59-4.11)	0.366	0.86(0.39-1.94)	0.72
Weight at birth				
Macrosomia	2.63(1.79-3.87)	<0.001	2.59(1.91-3.50)	<0.0
Normal weight	Reference		Reference	
Low birth weight	0.65(0.20-2.11)	0.472	0.41(0.17-0.98)	0.04
Gestational age specific weight at birth				
Large for gestational age	2.37(1.66-3.39)	<0.001	2.42(1.84-3.19)	<0.0
Appropriate for gestational age	Reference		Reference	
Small for gestational age	0.37(0.14-1.03)	0.057	0.48(0.27-0.83)	0.00
Weight/length ratio at birth				
High weight/length ratio at birth	2.09(1.51-2.91)	<0.001	2.18(1.72-2.77)	<0.0
Normal weight/length ratio at birth	Reference		Reference	
Low weight/length ratio at birth	0.59(0.27-1.31)	0.194	0.47(0.28-0.80)	0.0
Model 2			,	
Caesarean delivery	1.36(0.91-2.01)	0.131	1.20(0.93-1.56)	0.10
Gestational week at delivery				
Preterm birth	0.90(0.40-2.03)	0.800	1.01(0.59-1.74)	0.9
Term birth		0.000		0.0
Postterm pregnancy	1 41(0 50-3 95)	0 518	0 83(0 35-1 94)	0.6
Weight at birth	(0.00 0.00)	0.010	0.00(0.00 1.01)	0.0
Macrosomia	1 89(1 25-2 85)	0.002	1 92(1 39-2 65)	<0 (
Normal weight	Reference	0.002	Reference	-0.0
Low birth weight		0 528	0.41(0.17-0.08)	0.0
Costational ago spocific woight at hirth	0.00(0.20-2.20)	0.520	0.41(0.17-0.30)	0.0
Lorge for gestational age	1 96(1 97 9 79)	0.002	1 00/1 40 2 67)	~0.0
Large for gestational age	1.00(1.27-2.72)	0.002	1.99(1.49-2.07)	<0.0
Appropriate for gestational age		0.400		0.0
Small for gestational age	0.45(0.16-1.26)	0.128	0.53(0.30-0.95)	0.0
vveignt/length ratio at birth	4 07(4 40 0 07)	0.004		.0.0
High weight/length ratio at birth	1.67(1.18-2.37)	0.004	1.82(1.41-2.34)	<0.0
Normal weight/length ratio at birth	Reference		Reference	
Low weight/length ratio at birth	0.67(0.30-1.50)	0.329	0.52(0.30-0.90)	0.0
Model 3				
Weight at birth				
Macrosomia	-	-	-	-
Normal weight				
Low birth weight	-	-	-	-
Gestational age specific weight at birth				
Large for gestational age	1.86(1.27-2.72)	0.002	-	-
Appropriate for gestational age	Reference			
Small for gestational age	0.45(0.16-1.26)	0.128	-	-
Weight/length ratio at birth				
High weight/length ratio at birth	-	-	1.82(1.41-2.34)	<0.0
Normal weight/length ratio at birth			Reference	

Model 1: Univariable analysis.

Model 2: Multivariable analysis, adjusted for pre-pregnancy body mass index, systolic blood pressure,

1 2		
2 3 4 5 6	384 385 386 387 388	education attainment, family history of diabetes in first-degree relatives, gestational diabetes mellitus, intensive care status during pregnancy, unintentional intervention, child gender, breastfeeding status and birthweight (for caesarean delivery only). Model 3: Adjusted for the variables listed in model 2 and backward stepwise approach was used to select pregnancy outcomes ($P = 0.05$ for exit)
7 8	000	
9		
10 11		
12		
13		
14 15		
15		
17		
18 19		
20		
21		
22		
24		
25		
26 27		
28		
29 30		
30 31		
32		
33 34		
35		
36		
37 38		
39		
40		
41 42		
43		
44 45		
45 46		
47		
48 40		
49 50		
51		
52 53		
<u> </u>		

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Protected by copyright, including for uses related to te Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1 1 9
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	3 3 3
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	5 5 10 10 10 10 10 10 10 10 10 10 10 10 10
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	6-7
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6-7

BMJ Open

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	(
6 7 8	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	
9 10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	
22 22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	9.
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	(
26 27 28 29	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9-
30 31 32 33	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
34 35	9-10			
36 37 38 39	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	
40 41 42	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	
44 45 46	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	:
47 48 49 50	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
51 52 53	n/a			
54 55	Results			
56 57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 33 of 33			BMJ Open		
1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.		
5 6 7	Participants	<u>#13b</u>	Give reasons for non-participation at each stage		
7 8 9 10	Participants n/a	<u>#13c</u>	Consider use of a flow diagram		
11 12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.		
19 20 21 22 23	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest		
24 25	n/a				
26 27	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)		
28 29	7				
30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.		
35 36	10				
 37 38 39 40 41 42 43 	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included		
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized		
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		
52 53	n/a				
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses		
58 59 60	Discussion	For p	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

BMJ Open

Key results	<u>#18</u>	Summarise key results with reference to study objectives		1
Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14-	·1
Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	12-	·1
Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results		1
Other Information				
Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based		1
This checklist was EQUATOR Netwo	s comple <u>ork</u> in co	ted on 06. June 2023 using <u>https://www.goodreports.org/</u> , a tool made by the ollaboration with <u>Penelope.ai</u>		
This checklist was EQUATOR Netwo	s comple ork in co	ted on 06. June 2023 using https://www.goodreports.org/, a tool made by the ollaboration with Penelope.ai		