

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Diagnostic Performance Evaluation of Urine HIV-1 Antibody Rapid Test Kits in Screening Diverse Populations: A Real-World Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-078694
Article Type:	Original research
Date Submitted by the Author:	10-Aug-2023
Complete List of Authors:	Lu, Huaxiang; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Chen, Huanhuan; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Liang, Shujia; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Zhu, Qiuying; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Tan, Guangjie; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Pang, Xianwu; Guangxi Medical University; Guangxi Zhuang Autonomo Region Center for Disease Control and Prevention Ruan, Yuhua; State Key Laboratory for Infectious Disease Prevention a Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Disease Control and Prevention, Collaborative Innovation Center for Disease Control and Prevention, Collaborative Innovation Center for Disease Control and Prevention, Center for Disease Control and Prevention Ge, Xianmir; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Huang, Yunxian; Guigang Center for disease control and prevention Chen, Zhenqiang; Luzhai county Center for Diseases Control and Prevention Zhang, Shizhen; Binyang County Center for Diseases Control and Prevention Cai, Wenlong; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Zhuang Autonomous Region Center for Disease Control and Prevention Lin, Mei; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention
Keywords:	HIV & AIDS < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Sensitivity and Specificity

$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ \end{array} $	<section-header></section-header>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Diagnostic Performance Evaluation of Urine HIV-1 Antibody Rapid Test Kits in Screening Diverse
 Populations: A Real-World Study

Abstract

Objective: To evaluate the diagnostic performance of urine human immunodeficiency virus (HIV) antibody rapid test kits in screening diverse populations and to analyse subjects' willingness regarding reagent types, purchase channels, acceptable prices, and self-testing.

Design: Screening study

9 Participants: A total of 2606 valid and eligible samples were collected in the study, including samples from 10 female sex workers (FSWs), persons with injection drug use (IDU), pregnant women (PW), subjects 11 undergoing voluntary HIV counselling and testing (VCT), and students in higher education (STUs). The 12 receiver operator characteristic (ROC) curve was drawn to evaluate the diagnostic performance of urine 13 HIV-1 antibody rapid test kits in on-site screening, and the cluster analysis model was applied to analyse 14 the subjects' intentionality regarding HIV antibody testing options.

Results: The sensitivity, specificity, and area under the curve (AUC) of the urine HIV-1 antibody rapid test kits were 92.16%, 99.92%, and 0.960 (95% confidence interval (CI): 0.952-0.968, p<0.001), respectively, among 2606 samples collected during on-site screenings. The kits showed good diagnostic performance in persons with IDU (AUC: 1.000, 95% CI: 1.000-1.000, p<0.001), PW (AUC: 0.999, 95% CI: 0.999-1.000, p < 0.001), and FSWs (AUC: 1.000, 95% CI: 1.000-1.000, p < 0.001). The AUC of the urine reagent kits in subjects undergoing VCT was 0.941 (95% CI: 0.876-0.978, p<0.001). The "acceptable price" had the greatest influence on STUs (Predictor importance, Pi=1.000) and PW (Pi=1.000), the "purchase channel" had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000), and the "reagent types" had the greatest influence on FSWs (Pi=1.000).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Conclusions: The urine HIV-1 rapid test kit has reliable diagnostic performance in screening the general population and high-risk populations for HIV, and its use can be further promoted to generate sufficient data and experience. Physicians of subjects undergoing VCT should prudently select HIV antibody testing reagents based on the subjects' actual conditions.

- Ethics statement: This study was approved by the Ethics Committee of the Guangxi Zhuang Autonomous
 Region Center for Disease Control and Prevention (approval number GXIRB2019-0047).
- 30 Keywords: HIV, urine, rapid test kits, ROC
 - 31 Strengths and limitations of this study:
 - Few studies have evaluated the diagnostic performance of urine HIV-1 rapid test kits in screening both
 the general population and high-risk populations.
 - 2. This manuscript provides a preliminary evaluation of the acceptability of urine HIV-1 rapid test kits in high-risk HIV populations and the general population.
 - 3. No positive samples were found among the students, and therefore, ROC curves could not be plotted
 37 for this subgroup.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

The prevalence of HIV/AIDS varies widely across China[1, 2]. Guangxi Zhuang Autonomous Region, the only minority region in southern China, is a serious HIV/AIDS hotspot; in the past decade, this region had a much higher HIV/AIDS prevalence than any other Chinese coastal or inland province[3, 4]. Therefore, the public health administration in Guangxi is attempting to expand the scale of HIV screening to diagnose HIV-infected patients at an early stage and provide highly active antiretroviral therapy (HAART) in a timely manner to reduce HIV/AIDS mortality and transmission[5, 6], especially in high-risk populations[7].

In recent years, extensive HIV/AIDS publicity and education have increased the Chinese population's awareness and willingness to get tested[8]. With the reduction in cost, urine HIV antibody testing is gradually gaining attention and acceptance by public health institutions and the general public due to its advantages of being convenient, noninvasive and safe[9, 10]. The satisfactory sensitivity and specificity of the urine reagent kits have been described in many previous studies and have shown good performance under controlled laboratory conditions[11-13].

Their noninvasiveness has made urine reagent strips for HIV antibody testing more popular among target populations and has led to public health policymakers being willing to choose urine reagent strips for population screening in areas with HIV epidemics, such as Guangxi[14], increasing acceptance among target populations, especially with the availability of urine rapid test kits that can be used for direct on-site screening. In contrast, previous urine HIV antibody reagents required that urine samples be transported to the laboratory for centralized testing because of methodological limitations.

It is worth noting that although some studies have evaluated the diagnostic performance of urine HIV-1 antibody rapid test kits using standard samples under controlled laboratory conditions, no studies have yet reported on their diagnostic performance in practical screening applications in different populations; therefore, an adequate scientific basis for the application of urine rapid test kits for HIV screening has not been provided for public health authorities in high-prevalence areas.

This study, based on a special study of the Chinese National Science and Technology Major Project (NSTMP) for infectious diseases, aimed to evaluate the diagnostic performance of urine HIV-1 antibody rapid test kits in a practical screening setting and to preliminarily analyse the willingness of subjects regarding the types of reagents, purchase channels, and acceptable prices to provide a valuable scientific basis for the application of urine HIV antibody rapid test reagents for screening.

68 2. Materials and methods

69 2.1 Samples and Sources

Subjects were recruited from the most commonly screened populations for HIV antibodies in the real world,
including high-risk populations, individuals identified through sentinel surveillance, and the general
population, and divided into the following five categories: Female sex workers (FSWs), persons with
injection drug use (IDU), pregnant women (PW), subjects undergoing voluntary HIV counselling and
testing (VCT), and students at colleges and universities (STUs).

FSWs and persons with IDU are high-risk populations for HIV infection, and both groups were recruited by sentinel surveillance in this study. PW are routinely screened for HIV, and women receiving care during pregnancy were recruited from women and children's hospitals. Subjects undergoing VCT were consulted or referred to provincial CDC VCT clinics. The STUs were enrolled in higher education schools or colleges. This study was conducted from August 1, 2020, to September 31, 2020.

80 To improve the external validity and to match the characteristics of the real-world HIV screening 81 population, no strict inclusion or exclusion criteria were set for this study. Researchers informed subjects of 82 the purpose, methods, potential harms, and personal privacy issues of this study in detail before informed 83 consent forms were signed.

84 2.2 Urine and blood sample testing methods

Three HIV antibody test reagents were used in the study: (1) Reagent A, named the Urine HIV-1 Antibody
Rapid Test Kit (colloidal gold), was packaged as a rapid test kit and manufactured by Wantai (20193400550);
(2) Reagent B, named DetermineTM HIV1/2 (colloidal selenium), was packaged as a rapid test kit and
manufactured by Abbott (20163400427); and (3) Reagent C, named GENscreenTM ULTRA HIV Ag-Ab
(Enzyme-Linked Immunosorbent Assay, ELISA), which was manufactured by Bio-Rad (72388C).

90 HIV antibody tests were divided into on-site tests (for Reagents A and B) and laboratory tests (for Reagent 91 C only). Reagents A and B were used to test for HIV-1 antibodies in urine samples and peripheral blood 92 samples taken from fingertips, respectively. Reagent B is the most common testing method for HIV-1 93 antibodies in VCT clinics. Urine and venous blood samples were collected from the study subjects using a 94 100 ml urine cup and a 4 ml EDTA vacuum blood collection tube for Reagents A and C, respectively.

95 Reagent A and B results were simultaneously identified and recorded by two trained practitioners, and

96 the results were classified as negative, positive, or invalid according to the reagent instructions. If the two 3/16

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

97 practitioners disagreed on the identification of the same reagent, they uploaded an electronic photo of the 98 reagent, and the result was judged by the quality control team. The anticoagulated blood samples were 99 transferred to the local CDC HIV confirmation laboratory and tested for HIV-1 antibodies under controlled 100 conditions by Reagent C, which was used as the reference method in the study.

All reagents were used in strict accordance with the manufacturer's instructions, and samples with positive results were tested again in the HIV confirmation laboratory and confirmed by both ELISA and Western blotting.

104 2.3 1

2.3 Data management and statistical analysis

105 The subjects' information, including basic information such as their name, sex, date of birth, occupation 106 type, education level, and ethnicity, as well as their willingness regarding HIV-1 antibody testing methods, 107 purchase channels, acceptable prices, and self-tests, was collected through questionnaires.

The main data management and statistical software used in this study included EPIDATA v3.1, Microsoft Excel 2019, R v4.1.0, RStudio v1.4. 1103, and IBM SPSS v26.0. The sensitivity, specificity, receiver operator characteristic (ROC) curve, and area under the curve (AUC) were used to assess the diagnostic performance of the urine HIV-1 antibody reagents in the on-site screening of different populations. The two-step cluster analysis method was used to evaluate the intentionality and user characteristics of the study subjects regarding HIV antibody reagent types, acceptable prices, purchase channels, and self-tests. The level of statistical significance was set at α =0.05.

The information recorded in the paper questionnaire was entered in pairs using EPI DATE V3.1 and compared for consistency, with key information (age, sex, population category, education level, willingness to use reagents, etc.), HIV antibody test results, and other auxiliary information, with consistency levels of 100%, 100%, and 99.5%, respectively.

3. Results

3.1 Basic information of the subjects

A total of 2606 valid and eligible samples were collected from the FSWs, persons with IDU, PW, STUs, and subjects undergoing VCT included in this study, with 202 (7.7%), 304 (11.7%), 1000 (38.4%), 1000 (38.4%), and 100 (3.8%) collected samples, respectively. The basic information of each population subgroup is shown in **Table 1**.

3.2 Consistency of the results of the 3 reagents

127 Reagents A and B both showed quality control bands in the 2606 samples tested, and no reagent 128 invalidation occurred. The results of the three reagents are shown in **Supplemental Table S1**.

The number of probable HIV-positive individuals detected by Reagents A, B, and C was 49, 51, and 51, respectively. Of these, 51 individuals with HIV-positive samples detected by Reagents B and C were confirmed to show HIV positivity by both ELISA and WB tests. Of the 49 HIV-positive samples detected by Reagent A, 47 were eventually confirmed to show HIV positivity. Of the 3 PW diagnosed with HIV by Reagent A, 2 were misdiagnosed.

The results of Reagent A were fully consistent with those of the reference method for the FSWs (Kappa=1.000, p<0.001) and persons with IDU (Kappa=1.000, p<0.001), with kappa values of 0.499 (p<0.001) and 0.908 (p<0.001) in the PW and subjects undergoing VCT, respectively. The results of Reagent B were fully consistent with those of the reference method, and there were no missed or misdiagnosed cases, as shown in **Supplemental Table S2**.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3.3 Diagnostic performance

The overall sensitivity of Reagent A was 92.16%, the specificity was 99.92%, and the AUC was 0.960 (95% CI: 0.952-0.968, p < 0.001) for the 2606 on-site tests. Reagent B showed identical results to the reference method in the 2606 on-site assays (*AUC*: 1.000, 95% CI: 0.999-1.000, p < 0.001), and the overall performance of Reagent A was slightly lower than that of Reagent B (z=2.083, p < 0.05), as presented in **Table 2**. The ROC curves of the 2 reagents are shown in **Figure 1**.

Reagent A showed good performance in the on-site application for persons with IDU (*AUC*: 1.000, 95% *CI*: 1.000-1.000, p<0.001), FSWs (*AUC*: 1.000, 95% *CI*: 1.000-1.000, p<0.001), and PW (*AUC*: 0.999, 95% *CI*: 0.997-1.000, p<0.001), but the performance differences in in each application setting were significant

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

148 (z=2.908, p<0.005), as shown in **Supplemental Table S3**. The ROC curves of the different application 149 settings are shown in **Supplemental Figure 1**. In this study, the false negative rate (FNR) of Reagent A in 150 the subjects undergoing VCT was 6.25% (2/32), and the false positive rate (FPR) in the PW was 0.20% 151 (2/999).

The AUC of Reagent A in the on-site application for subjects undergoing VCT was 0.941 (95% CI: 0.876-0.978, p<0.001). We further dissected and reviewed the causes of this problem: Of the four subjects undergoing VCT with inconsistent results between Reagent A and the reference method, two were men who have sex with men (MSM) who are regularly tested at Non-governmental organizations and were recently determined to have HIV-1 antibody positivity, which we speculate may have been due to recent infection. The other two subjects were HIV-infected individuals receiving HAART who requested recertification reports from the VCT for referral to hospitals in other provinces for treatment.

3.4 Willingness regarding and cluster analysis of HIV-1 antibody reagents, prices, and channels among
different populations

161 The willingness regarding HIV-1 antibody test reagent types (χ^2 =430.498, p<0.001), purchase channels 162 (χ^2 =494.970, p<0.001), acceptable prices (χ^2 =152.710, p<0.001), and self-tests (χ^2 =245.966, p<0.001) were 163 significant among the different subgroups, as presented in **Table 3**.

The two-step cluster analysis models showed that the "acceptable price" had the greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the "purchase channel" had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000), and the "reagent types" had the greatest influence on FSWs (Pi=1.000), as presented in **Supplemental Table S4**.

The user profiles of STUs, PW, subjects undergoing VCT, persons with IDU, and FSWs were classified into 7, 8, 5, 3, and 3 patterns, respectively. The main patterns of the five populations were as follows and are presented in Figure 2: "priced less than \$4.35, purchased at a pharmacy, blood reagents, and willing to self-test" for STUs; "priced below \$4.35, purchased at a medical institution, urine reagents, and nonself-testing" for PW; "purchased at a medical institution, willing to self-test, priced between \$4.35 and \$8.69 or more than \$17.40, and blood reagents" for subjects undergoing VCT; "purchased at a medical institution, willing to self-test, and blood reagents" for persons with IDU; and "blood reagents, priced at \$4.35-\$8.69, willing to self-test, and purchased at medical facilities" for FSWs.

4. Discussion

Due to obvious advantages such as noninvasiveness and convenience[15], urine testing for HIV antibodies began in the 1990s, and their diagnostic performance has been confirmed in many studies [16-18]. Urine HIV antibody tests have been used in practice for more than a decade [19], and their convenience has been further promoted in recent years with the advent of colloidal gold rapid test kits[12, 20]. These rapid test kits further enhance the convenience of HIV antibody testing by eliminating the requirement for centralized testing in specialized infectious disease laboratories. However, few studies have reported on the diagnostic performance of rapid urine HIV antibody test kits for practical application in large, complex populations in the real world.

The NSTMP is considered to be the most important scientific and research project in China. Its infectious disease prevention and control projects have been carried out in Guangxi for decades to assess the key issues in the HIV epidemic[21, 22], including the low willingness of the population to be screened and the high mortality rate in rural areas due to late HIV detection and diagnosis[23, 24]. To explore solutions to these problems, we conducted a special study to estimate the diagnostic performance and acceptance of a rapid urine HIV antibody test kit in different populations.

In this study, based on real-world samples, we found that urine HIV antibody rapid test kits showed satisfactory sensitivity, specificity, and ROC curves, especially in high-risk populations such as persons with IDU and FSWs. Commercial heterosexual infections are the main transmission route of HIV in Guangxi, and as a high-risk population, FSWs are a key node in this transmission route [25, 26]. Both persons with IDU and FSWs are high-risk groups for HIV, and currently, sentinel surveillance and special investigations are the primary public health strategies for identifying HIV-positive patients in high-risk populations. ELISA is the major approach to test for the HIV antibody, which requires the collection of venous whole blood samples from study subjects and transportation to a dedicated HIV laboratory at the CDC for cryopreservation and testing.

In contrast, urine testing offers greater advantages in terms of convenience, acceptability, and timeliness. The administration of injection drugs requires regular urine sample collection for recent opioid, methamphetamine, and ketamine abuse, and efficiency and subject acceptance can be improved if urine HIV antibody testing is also conducted instead of blood testing. However, the sentinel surveillance and special investigation of some high-risk groups for HIV infection also require testing for HCV and syphilis[27, 28], and the single function of the current urine HIV rapid reagent test limits its applicability. 7/16

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

In areas with high HIV prevalence, maternal HIV screening helps to identify HIV-infected PW at an early stage and provide timely drug interventions to interrupt mother-to-child transmission[29], which has a positive effect on reducing vertical transmission[30, 31]. Urine reagent strips showed satisfactory ROC curves in maternal HIV-1 antibody screening, but there were two false positive tests out of 1000 tests. The reasons for occasional false-positive HIV antibody tests in PW need to be further investigated, and similar occasional occurrences have previously been reported in ELISA screening tests[32].

In practice, physicians treating subjects undergoing VCT are dealing with a very complex population, which is even more complex than the high-risk population. In this study, we routinely tested subjects for blood HIV antibodies and additionally used urine reagent strips to evaluate their performance under complex practice conditions. The urine rapid test kit showed four false-negative cases among 100 subjects undergoing VCT; 2 were MSM with new infections detected by regular testing at NGOs, and two were patients receiving in-treatment HAART. In the present study, the ROC curve of the urine rapid test kit could have been affected by these false negative cases if the routine VCT consultation procedure had been followed, and similar false-negative results have been found in some previous studies [14, 33]. It should be added that the urine reagent's instructions stated that samples from HIV-infected individuals in the window period or those receiving treatment may yield false-negative results. However, if the instructions were followed, these four subjects would not have been able to use the urine rapid test kits to complete the VCT subsequent and confirmation procedures.

225 Considering the complexities and psychologically protective behaviours of some subjects undergoing 226 VCT, it may be more appropriate to choose an antigen-antibody combined reagent with higher sensitivity 227 and specificity to reduce the possibility of false negatives in some cases where it is difficult for physicians 228 treating these subjects to obtain true and accurate information[34, 35]. Some subjects with significant 229 psychological fear of HIV but no high-risk exposure may consider using noninvasive urine reagent strips to 230 reduce trauma and receive psychological counselling.

Despite some limitations, urine rapid test kits can be offered as an option for HIV self-testing in high-risk
populations such as MSM, FSWs, and persons with IDU who require regular testing due to their operability,
noninvasiveness, and safety; these test kits can have a positive effect on increasing subjects' willingness to
accept and participate in screening[13, 36].

Previous studies have evaluated urine HIV antibody reagents for general population screening, but this
 approach required centralized testing by qualified laboratories[20, 37]. Combined with the internet platform 8/16

BMJ Open

and logistics industry, rapid test kits with urine reagent strips can improve operability through anonymoustesting, which may be able to further expand the coverage of general population screening.

This study initially assessed the willingness of different populations regarding the type of HIV reagents, purchase channels, acceptable prices, and self-tests and further classified and analysed the different user profiles of each subgroup. We found that STUs and PW preferred reagent prices below \$4.35, which may be related to the lack of financial income for STUs and the higher cost of childbirth, resulting in price sensitivity for these two groups. We also observed a higher willingness to self-test among the student population, which may be related to the extensive HIV propaganda work carried out in colleges and universities in the past decade[38, 39].

The low willingness to self-test among persons with IDU and FSWs may be related to the fact that local CDCs conduct free HIV, HCV, and syphilis testing for such high-risk populations several times per year. At the same time, persons with IDU and FSWs enrolled in long-term health interventions develop trusting relationships with the CDC, so they are more inclined to choose the medical institution channel and blood reagents. In this study, FSWs preferred urine HIV reagents, which may be related to the noninvasive operation of the rapid test kits. Although the diagnostic performance has been proven in some studies [40], a low percentage of subjects in this study chose the oral secretion HIV antibody test kit, probably due to its expensive price and complicated operation.

People undergoing VCT were more likely to have their HIV antibodies tested in medical institutions, had the highest willingness to undergo self-testing and were also willing to accept more expensive reagents. However, for subjects undergoing VCT, we speculated that their acceptance of HIV-1 antibody testing options, particularly regarding price, may be influenced by factors such as the reason for seeking medical services and psychological status, as all HIV antibody tests conducted in the VCT centres were free of charge.

There were limitations in this study. First, no positive samples were identified in the STUs, and therefore, ROC curves could not be drawn for this subgroup. Second, patients receiving HAART treatment and MSM in the window period were included in the VCT subgroups, which is not consistent with the recommended suggestions for the use of urine HIV reagents; however, this is a complexity that doctors treating subjects undergoing VCT face every day. Despite these limitations, this study evaluated the diagnostic performance of HIV urine rapid test kits in a complex real-world setting and provided a valuable scientific basis for the practical application of urine reagent strips.

5. Conclusions

The urine rapid test kits showed good diagnostic performance in the practical application of screening tests in different populations. However, physicians treating subjects undergoing VCTs should carefully select HIV-1 antibody testing reagents based on each subject's situation.

6. Author contributions

HX Lu, HH Chen, SJ Liang, YH Ruan, QY Zhu, GH Lan, and M Lin contributed to conception and design
of the study. HX Lu, GJ Tan, WL Cai, and YJ Zhou organized the database. HX Lu and YH Ruan performed
the statistical analysis. HX Lu, HH Chen, and SJ Liang wrote the first draft of the manuscript. XW Pang, JJ
Li, XM Ge, wrote sections of the manuscript. HX Lu, HH Chen, and SJ Liang contributed equally to the
current work. All authors contributed to manuscript revision and read and approved the submitted version.

277 7. Data sharing statement

The original database for this study contains private information about the study participants. For noncommercial use and reasonable purposes, anonymised data of the current work can be obtained from the corresponding author.

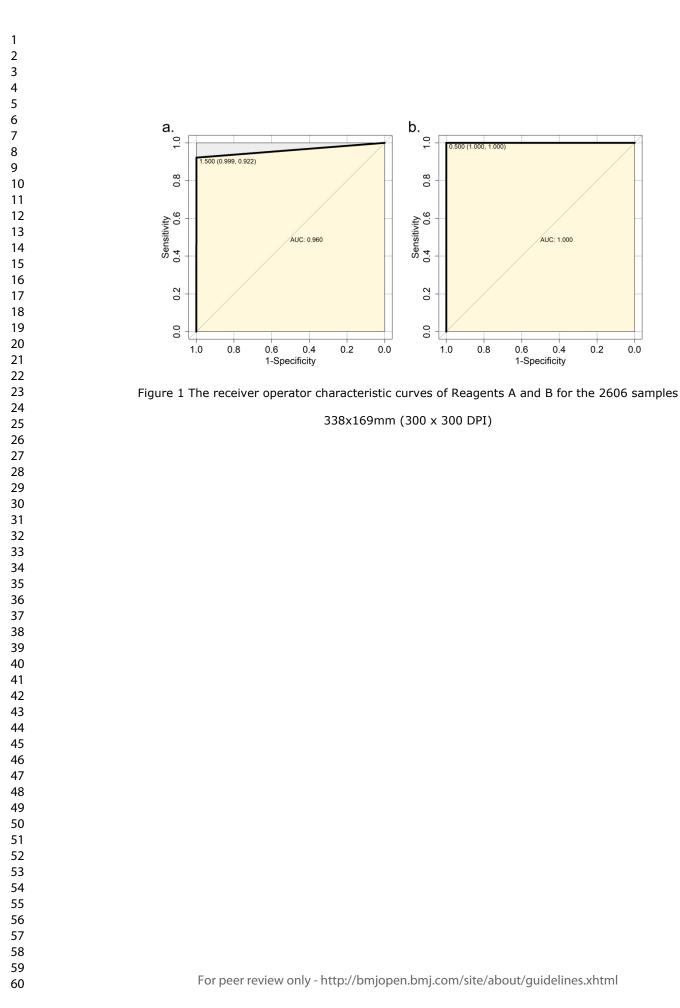
8. Findings

This work was supported by the National Natural Science Foundation of China (82160636 and 82260670),
Guangxi Natural Science Foundation Project (2020GXNSFAA159020), Guangxi Key Laboratory of AIDS
Prevention Control and Translation (ZZH2020010), Guangxi Key Research and Development Project
(AB19245044), Guangxi Bagui Honor Scholarship, Ministry of Science and Technology of China
(2022YFC2305200 and 2018ZX10715008), and Guangxi Medical and Health Key Discipline Construction
Project.

Page 13 of 23				BN	1J Open			njopen-2 1 by cop	
1 2 3		information of the 2606 FSWs, person						njopen-2023-078694 o d by copyright, inclugi	
4 5	Table 1 The basic	information of the 2606 FSWs, person	s with IDU,	PW, STUs, a	nd subjects ur	ndergoing V	CT in the samp		
б			The sample	e sizes of each	n population §	groups [n (%)]	24 F g fo	- -
7 8	Variables	Subgroups	FSWs	Persons with IDU	PW	STUs)] Subjects undergoing V	ebruar Enser ruses	Total
9 10	Sex	Male	0(0)	256(84.2)	0(0)	255(25.5)	48(48.0)	y 20 Pign rela	559
11		Female	202(100)	48(15.8)	1000(100)	745(74.5)	52(52.0)	eme	2047
12	Age	<20	1(0.5)	2(0.7)	38(3.8)	846(84.6)	2(2.0)	to to	889
3 4		20-29	12(5.9)	16(5.3)	524(52.4)	113(11.3)	57(57.0)	ry 2024. Downloaded from http://bmjopen.bmj.com/ on . eignement Superieur (ABES) . related to text and data mining, Al training, and similar	722
4 5		30-39	68(33.7)	126(41.4)	417(41.7)	41(4.1)	18(18.0)	erie and	670
6		≥ 40	121(59.9)	160(52.6)	21(2.1)	0(0)	23(23.0)	ed fi data	325
7	Ethnicity	Han	120(59.4)	279(91.8)	692(69.2)	526(52.6)	56(56.0)	ABE m	1673
8 9		Zhuang	58(28.7)	20(6.6)	281(28.1)	402(40.2)	40(40.0)	inin Sinin	801
0		Other	24(11.9)	5(1.6)	27(2.7)	72(7.2)	4(4.0)	g, A	132
1	Education level	Illiterate	33(16.3)	5(1.6)	1(0.1)	0(0)	1(1.0)	ul tra	40
2		Primary school	94(46.5)	54(17.8)	40(4)	0(0)	8(8.0)	aini pe	196
3 4		Junior middle school	69(34.2)	217(71.4)	471(47.1)	0(0)	18(18.0)	ng, a	775
5		Senior high school	6(3)	28(9.2)	193(19.3)	472(47.2)	19(19.0)	and	718
		Junior college	0(0)	0(0)	292(29.2)	527(52.7)	54(54.0)	sim	873
7 3		Bachelor's degree or above	0(0)	0(0)	3(0.3)	1(0.1)	0(0)	nilar	4
)	Total		202	304	1000	1000	100	Jun r tecl	2606
0 ₂₈₉									
1 2								e 13, 2025 nnologies.	
2 3									
4								at A	
5								lgei	
5 7								nce	
3								Bib	
9								liog	1
0	11/17							Agence Bibliographique de	
1 12	11/16							hiq	
42 43		_						ue c	
44		For peer re	eview only -	nttp://bmjop	en.bmj.com/	site/about/g	juidelines.xhtn	ni e	
45									
6									

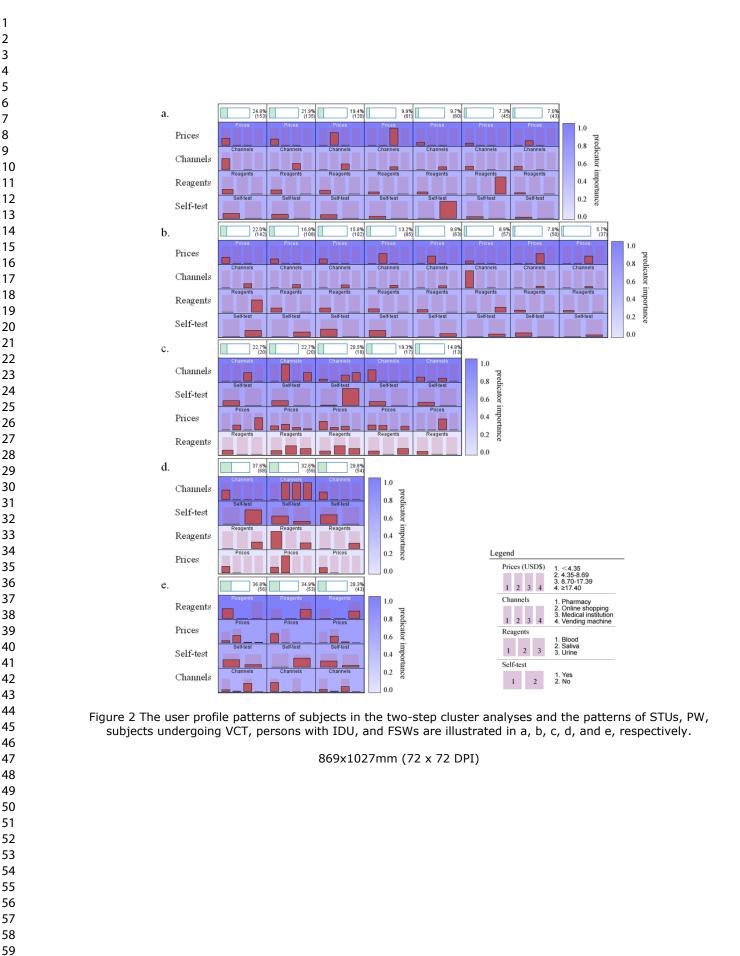
							Div	IJ Open		
Table 2 Th	he receive			aracteris	tic curves for I	-				
Reagents	Results	Rest					neters of ROC			
		-	+	AUC	95% CI	Sensitivity	Specificity	Youden index	<i>p</i>	
А	-	2553	2	0.960	0.952-0.968	92.16	99.92	0.921	< 0.001	
	+	4	47							
В	-	2555	0	1.000	0.999-1.000	100.00	100.00	1.000	< 0.001	
	+	0	51							
12/16								erie		

Table 3 Acceptance of HI	V-1 antibody testing m	ethods, acce					
Questions	Classification	STUs	PW	opulation [n (% Subjects undergoing VCT	Persons with IDU	FSWs	χ^2
Reagent types	Blood	781(78.1)	599(59.9)	85(85.0)	74(24.3)	88(43.6)	430.49
	Saliva	72(7.2)	45(4.5)	6(6.0)	13(4.3)	6(3.0)	
	Urine	147(14.7)	356(35.6)	9(9.0)	217(71.4)	108(53.5)	
Purchase channels	Pharmacy	382(38.2)	202(20.2)	26(26.0)	176(57.9)	107(53)	494.97
	Online shopping	38(3.8)	42(4.2)	24(24.0)	66(21.7)	9(4.5)	
	Medical institution	565(56.5)	725(72.5)	45(45.0)	39(12.8)	85(42.1)	
	Vending machine	15(1.5)	31(3.1)	5(5.0)	23(7.6)	1(0.5)	
Acceptable price (USD\$)	<4.35	537(53.7)	575(57.5)	20(20.0)	222(73.0)	99(49.0)	152.71
	4.35-8.69	285(28.5)	252(25.2)	39(39.0)	63(20.7)	86(42.6)	
	8.70-17.39	117(11.7)	128(12.8)	23(23.0)	17(5.6)	16(7.9)	
	≥17.40	61(6.1)	45(4.5)	18(18.0)	2(0.7)	1(0.5)	
Willingness to self-test	Yes	762(76.2)	451(45.1)	83(83.0)	143(47.0)	106(52.5)	245.96
	No	238(23.8)	549(54.9)	17(17.0)	161(53.0)	96(47.5)	


3	292	Referei	1005
4 5	293	1.	Xing J, Li YG, Tang W, et al. HIV/AIDS epidemic among older adults in China during 2005-2012:
6	294		results from trend and spatial analysis. Clinical infectious diseases : an official publication of the
7	295		Infectious Diseases Society of America 2014; 59:e53-60.doi: 10.1093/cid/ciu214
8 9	296		pmid:PMC4990827
9 10	297	2.	Wang Y, Zhao C, Liu Z, et al. Spatiotemporal Analysis of AIDS Incidence and Its Influencing
11	298		Factors on the Chinese Mainland, 2005-2017. International journal of environmental research and
12	299		public health 2021; 18.doi: 10.3390/ijerph18031043 pmid:PMC7908178
13 14	300	3.	Wu Z, Liang W, Chen W, et al. Spatial-temporal characteristics of AIDS incidences in Mainland
15	301		China. Immunity, inflammation and disease 2020; 8:325-332.doi: 10.1002/iid3.313
16	302		pmid:PMC7416023
17 18	303	4.	Xu N, Jiang Z, Liu H, et al. Prevalence and genetic characteristics of Blastocystis hominis and
19	304		Cystoisospora belli in HIV/AIDS patients in Guangxi Zhuang Autonomous Region, China.
20	305		Scientific reports 2021; 11:15904.doi: 10.1038/s41598-021-94962-3 pmid:PMC8342556
21	306	5.	Adam Trickey, Margaret T May, Jorg-Janne Vehreschild, et al. Survival of HIV-positive patients
22 23	307		starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies.
24	308		<i>The lancet HIV</i> 2017; 4 :e349-e356.doi: 10.1016/s2352-3018(17)30066-8 pmid:PMC5555438
25	309	6.	Smiley CL, Rebeiro PF, Cesar C, et al. Estimated life expectancy gains with antiretroviral therapy
26 27	310		among adults with HIV in Latin America and the Caribbean: a multisite retrospective cohort study.
28	311		<i>The lancet HIV</i> 2021; 8 :e266-e273.doi: 10.1016/s2352-3018(20)30358-1 pmid:PMC8171816
29	312	7.	Tao L, Liu M, Li S, et al. Condom use in combination with ART can reduce HIV incidence and
30	313		mortality of PLWHA among MSM: a study from Beijing, China. BMC infectious diseases 2018;
31 32	314		18 :124.doi: 10.1186/s12879-018-3026-8 pmid:PMC5851291
33	315	8.	Wilson KS, Mugo C, Katz DA, et al. High Acceptance and Completion of HIV Self-testing Among
34	316		Diverse Populations of Young People in Kenya Using a Community-Based Distribution Strategy.
35 36	317		<i>AIDS and behavior</i> 2022; 26 :964-974.doi: 10.1007/s10461-021-03451-1 pmid:PMC8409270
37	318	9.	Luo G, Su L, Feng A, <i>et al.</i> Spatiotemporal Distribution of HIV Self-testing Kits Purchased on the
38	319		Web and Implications for HIV Prevention in China: Population-Based Study. <i>JMIR public health</i>
39 40	320		and surveillance 2022; 8 :e35272.doi: 10.2196/35272
40 41	321	10.	Lv Y, Zhu Q, Xu C, <i>et al.</i> Spatiotemporal Analysis of Online Purchase of HIV Self-testing Kits in
42	322		China, 2015-2017: Longitudinal Observational Study. <i>JMIR public health and surveillance</i> 2022;
43	323		8:e37922.doi: 10.2196/37922 pmid:PMC9555321
44 45	324	11.	Magno L, Pereira M, de Castro CT, <i>et al.</i> HIV Testing Strategies, Types of Tests, and Uptake by
46	325		Men Who have Sex with Men and Transgender Women: A Systematic Review and Meta-analysis.
47	326		<i>AIDS and behavior</i> 2022.doi: 10.1007/s10461-022-03803-5
48 49	327	12.	Lv Y, Li G, Hu M, et al. Anonymous Linkage Between College Students and Human
50	328		Immunodeficiency Virus (HIV) Facilities: Systematic Evaluation of Urine Self-Collection for HIV
51	329		Testing Initiative in China. <i>Clinical infectious diseases : an official publication of the Infectious</i>
52	330		Diseases Society of America 2021; 73:e1108-e1115.doi: 10.1093/cid/ciaa1816
53 54	331	13.	Xia D, Feng X, He X, <i>et al.</i> Feasibility of an internet-based HIV testing service: anonymous urine
55	332	12.	collection from men who have sex with men. <i>AIDS care</i> 2018; 30 :1228-1230.doi:
56 57	333		10.1080/09540121.2018.1488033
57 58	334	14.	Wang Y, Chen H, Wang J, <i>et al.</i> Performance evaluation of urine HIV antibody colloidal gold
59	335		assay(in Chinese). <i>Chin J AIDS STD</i> 2019; 25 :668-670,686.doi: 10.13419/j.cnki.aids.2019.07.04
60	200		
		1 4 / 1 6	

BMJ Open

2			
3	336	15.	Urnovitz HB, Murphy WH, Gottfried TD, et al. Urine-based diagnostic technologies. Trends in
4 5	337		biotechnology 1996; 14:361-364.doi: 10.1016/0167-7799(96)10048-2
6	338	16.	Cao YZ, Hosein B, Borkowsky W, et al. Antibodies to human immunodeficiency virus type 1 in
7 8	339		the urine specimens of HIV-1-seropositive individuals. AIDS research and human retroviruses
8 9	340		1989; 5 :311-319.doi: 10.1089/aid.1989.5.311
10	341	17.	Oelemann WM, Lowndes CM, Veríssimo Da Costa GC, et al. Diagnostic detection of human
11	342		immunodeficiency virus type 1 antibodies in urine: a brazilian study. Journal of clinical
12 13	343		microbiology 2002; 40:881-885.doi: 10.1128/jcm.40.3.881-885.2002 pmid:PMC120244
14	344	18.	Meehan MP, Sewankambo NK, Wawer MJ, et al. Sensitivity and specificity of HIV-1 testing of
15	345		urine compared with serum specimens: Rakai, Uganda. The Rakai Project Team. Sexually
16 17	346		transmitted diseases 1999; 26:590-592.doi: 10.1097/00007435-199911000-00009
17	347	19.	Hilton C, Sabundayo BP, Langan SJ, et al. Screening for HIV infection in high-risk communities
19	348		by urine antibody testing. Journal of acquired immune deficiency syndromes (1999) 2002; 31:416-
20	349		421.doi: 10.1097/00126334-200212010-00008
21 22	350	20.	He X, Feng X, Liu P, et al. An innovative vending machine-based HIV testing and intervention
23	351		service in China: anonymous urine collection kits distributed at universities. AIDS care 2019;
24	352		31 :1319-1322.doi: 10.1080/09540121.2019.1612012
25	353	21.	Chen H, Wu X, Chen L, et al. Rapidly Spreading Human Immunodeficiency Virus Epidemic
26 27	354		Among Older Males and Associated Factors: A Large-scale Prospective Cohort Study in Rural
28	355		Southwest China. Sexually transmitted diseases 2019; 46:234-239.doi:
29	356		10.1097/olq.00000000000957 pmid:PMC6426354
30 31	357	22.	Chen L, His JH, Wu X, et al. Disparities in HIV and syphilis prevalence and risk factors between
32	358		older male clients with and without steady sex partners in southwestern rural China. BMC
33	359		infectious diseases 2017; 17:269.doi: 10.1186/s12879-017-2367-z pmid:PMC5389008
34 35	360	23.	Sun X, Yang W, Tang S, et al. Declining trend in HIV new infections in Guangxi, China: insights
36	361		from linking reported HIV/AIDS cases with CD4-at-diagnosis data. BMC public health 2020;
37	362		20 :919.doi: 10.1186/s12889-020-09021-9 pmid:PMC7290136
38	363	24.	Chu Q, Zhang X, Lan J, et al. Prevalence and Factors Associated with Late Diagnosis among Older
39 40	364		Adults Living with HIV in Liuzhou, China: 2010-2020. Journal of medical virology 2022.doi:
41	365		10.1002/jmv.28288
42	366	25.	Lai J, Qin C, Nehl EJ, et al. HIV prevalence among female sex workers in Guigang City, Guangxi,
43 44	367		China: an 8-year consecutive cross-sectional study. BMC public health 2018; 18:450.doi:
45	368		10.1186/s12889-018-5380-2 pmid:PMC5885366
46	369	26.	Liang B, Huang Q, Ou Y, et al. Trends and associated factors in the uptake of HIV testing among
47	370		female sex workers in Sino-Vietnam border areas in Guangxi, China: a cross-sectional study. BMC
48 49	371		infectious diseases 2022; 22:479.doi: 10.1186/s12879-022-07459-3 pmid:PMC9118634
50	372	27.	Ruan Y, Liang S, Zhu J, et al. Evaluation of harm reduction programs on seroincidence of HIV,
51	373		hepatitis B and C, and syphilis among intravenous drug users in southwest China. Sexually
52 53	374		transmitted diseases 2013; 40:323-328.doi: 10.1097/OLQ.0b013e31827fd4d4
54	375	28.	Liu CR, Li X, Chan PL, et al. Prevalence of hepatitis C virus infection among key populations in
55	376		China: A systematic review. International journal of infectious diseases : IJID : official publication
56 57	377		of the International Society for Infectious Diseases 2019; 80 :16-27.doi: 10.1016/j.ijid.2018.11.006
57 58	378	29.	Read PJ, Mandalia S, Khan P, <i>et al.</i> When should HAART be initiated in pregnancy to achieve an
59	379		undetectable HIV viral load by delivery? <i>AIDS (London, England)</i> 2012; 26 :1095-1103.doi:
60	2.7		2012, 2010, 2012, 2010, 1100.001.


Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

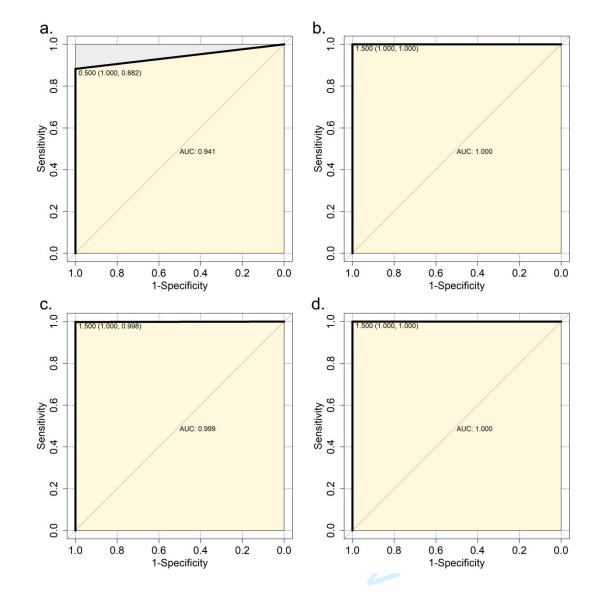
1 2			
3	380		10.1097/QAD.0b013e3283536a6c
4	381	30.	Zhong S, Ou Y, Zhang F, <i>et al.</i> Prevalence trends and risk factors associated with HIV, syphilis,
5 6	382		and hepatitis C virus among pregnant women in Southwest China, 2009-2018. <i>AIDS research and</i>
7	383		<i>therapy</i> 2022; 19 :31.doi: 10.1186/s12981-022-00450-7 pmid:PMC9238009
8	384	31.	Olakunde BO, Adeyinka DA, Olawepo JO, <i>et al.</i> Towards the elimination of mother-to-child
9	385	51.	transmission of HIV in Nigeria: a health system perspective of the achievements and challenges.
10 11			
12	386	22	International health 2019; 11:240-249.doi: 10.1093/inthealth/ihz018
13	387	32.	Wesolowski LG, Delaney KP, Lampe MA, et al. False-positive human immunodeficiency virus
14	388		enzyme immunoassay results in pregnant women. <i>PloS one</i> 2011; 6:e16538.doi:
15 16	389		10.1371/journal.pone.0016538 pmid:PMC3029371
10	390	33.	Li J, Xin R, Sun W, et al. Performance of rapid tests for HIV-1 antibody detection in paired serum
18	391		and urine specimens of men who have sex with men(in Chinese). Chin J Microbiol Immunol 2020;
19	392		40 :753-756.doi: 10.3760/cma.j.cn112309-20200628-00333
20 21	393	34.	Curtis KA, Rudolph DL, Pan Y, et al. Evaluation of the Abbott ARCHITECT HIV Ag/Ab combo
22	394		assay for determining recent HIV-1 infection. PloS one 2021; 16:e0242641.doi:
23	395		10.1371/journal.pone.0242641 pmid:PMC8248699
24	396	35.	Wratil PR, Rabenau HF, Eberle J, et al. Comparative multi-assay evaluation of Determine [™] HIV-
25 26	397		1/2 Ag/Ab Combo rapid diagnostic tests in acute and chronic HIV infection. Medical microbiology
20	398		and immunology 2020; 209:139-150.doi: 10.1007/s00430-019-00655-0 pmid:PMC7125248
28	399	36.	Almeda J, Casabona J, Matas L, et al. Evaluation of a commercial enzyme immunoassay for HIV
29	400		screening in urine. European journal of clinical microbiology & infectious diseases : official
30 31	401		publication of the European Society of Clinical Microbiology 2004; 23:831-835.doi:
32	402		10.1007/s10096-004-1221-6
33	403	37.	He X, Liu G, Xia D, et al. An innovative HIV testing service using the internet: Anonymous urine
34	404		delivery testing service at drugstores in Beijing, China. PloS one 2018; 13:e0192255.doi:
35 36	405		10.1371/journal.pone.0192255 pmid:PMC5823371
37	406	38.	Zheng Y, Zhang X, Sun X, <i>et al.</i> Evaluation of the college-based HIV/AIDS education policy in
38	407	50.	Beijing, China: a mixed method approach. <i>Environmental health and preventive medicine</i> 2020;
39	408		25 :50.doi: 10.1186/s12199-020-00890-5 pmid:PMC7488098
40 41	409	39.	Tu F, Yang R, Li R, <i>et al.</i> Structural Equation Model Analysis of HIV/AIDS Knowledge, Attitude,
42	410	57.	and Sex Education Among Freshmen in Jiangsu, China. Frontiers in public health 2022;
43	411		10 :892422.doi: 10.3389/fpubh.2022.892422 pmid:PMC9159914
44		40	
45 46	412	40.	González V, López N, Grifols J, <i>et al.</i> Validation study of an automated chemiluminiscence assay
47	413		to detect HIV antibodies in oral fluid specimens. <i>European journal of clinical microbiology</i> &
48	414		infectious diseases : official publication of the European Society of Clinical Microbiology 2022;
49 50	415		41 :907-911.doi: 10.1007/s10096-022-04450-3 pmid:PMC9078087
50 51	416		
52			
53			
54 55			
55 56			
57			
58			
59 60			
00		1010	

0.0

BMJ Open: first published as 10.1136/bmjopen-2023-078694 on 24 February 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

				BMJ	Open		
							;
Supplemental Table S1 Th				-		/ 2	
Groups	Reagent A		Reager		Reagen		total
	-	+	-	+	-	+	
FSWs	201(99.5)	1(0.5)	201(99.5)	1(0.5)	201(99.5)	1(0.5)	202
Persons with IDU		15(4.9)	289(95.1)	15(4.9)	289(95.1)	15(4.9)	304
PW	997(99.7)	3(0.3)	999(99.9)	1(0.1)	999(99.9)	1(0.1)	1000
STUs	1000(100.0)	0(0)	1000(100.0)	0(0)	1000(100.0)	0(0)	1000
Subjects undergoing VCT		0(30.0)	66(66.0)	34(34.0)	66(66.0)	34(34.0)	100
Total	2557(98.1) 4	49(1.9)	2555(98.0)	51(2.0)	2555(98.0)	51(2.0)	2606
							2606
	For	peer rev	view only - http	o://bmjope	n.bmj.com/site	e/about/guic	lelines.xhtml

6/bmjopen-2023-078694 on 24 February 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . cted by copyright, including for uses related to text and data mining, Al training, and similar technologies.


Page 21 of 23

<i>p</i> .001 .001 .001	.001	.001	.001	.001	<i>p</i> .001			
pining, and similar technologies.	ning, Al ti	nd data min	d to text a	es related	gforuse	including	copyright,	cted by
		Enseignement Superieur (ABES)	nent Supe	າseignen	Ū			
6/bmjopen-2023-078694 on 24 February 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I	http://bm	aded from h	4. Downlo	Jary 2024	24 Febru	8694 on :	en-2023-07	6/bmjop

				R	eagent A			Re	eagent B	
Group	Reference	Result	-	+	kappa	р	-	+	kappa	<i>p</i> <0.00 <0.00 <0.00
FSWs	Reagent C	-	201	0	1.000	< 0.001	201	0	1.000	< 0.00
		+	0	1			0	1		
IDU	Reagent C	-	289	0	1.000	< 0.001	289	0	1.000	<0.00
		+	0	15	0.400	-0.001	0	15	1 000	-0.0(
PW	Reagent C		997	2	0.499	< 0.001	999 0	0	1.000	<0.00
STUs	Reagent C	+	0 1000	1 0	_	_	1000	1 0	_	
5105	Reagent C	+	0	0			0	0		
Subjects undergoing VCT	Reagent C	-	66	0	0.908	< 0.001	66	0	1.000	<0.00
		+	4	30			0	34		
Total	Reagent C	-	2553	2	0.939	< 0.001	2555	0	1.000	<0.00
		+	4	47			0	51		

Preceiver operator characteristic curves for Reagent A in each group Reference Reagent A Statistical parameters of ROC curves - 66 0 0.941 0.876-0.978 88.24 100.00 0.882 + 4 30 - - - 66 0 0.941 0.876-0.978 88.24 100.00 0.882 + 4 30 -
Reagent A Statistical parameters of ROC of the statistica
Reagent A Statistical parame Reference Reagent A Statistical parame - 4 AUC 95% CI Sensitivity - 66 0 0.941 $0.876-0.978$ 88.24 + 4 30 - - - 289 0 1.000 $0.999-1.000$ 100.00 + 0 15 - - - 997 2 0.999 $0.997-1.000$ 99.80 + 0 1 - - - - 201 0 1.000 $0.999-1.000$ 1.000 + 0 1 - - - - 10000 0 - - -
Reference Reagent A Stat - + AUC 95% CI - 66 0 0.941 0.876-0.978 + 4 30 - - - 289 0 1.000 0.999-1.000 + 0 15 - - - 997 2 0.999 0.997-1.000 + 0 1 - - - 201 0 1.000 0.999-1.000 + 0 1 - - - 1000 0 - -
$\begin{array}{c c c c c c c } \hline Reagent A \\ \hline - & + & AUC \\ \hline - & 66 & 0 & 0.941 \\ + & 4 & 30 \\ - & 289 & 0 & 1.000 \\ + & 0 & 15 \\ - & 997 & 2 & 0.999 \\ + & 0 & 1 \\ - & 201 & 0 & 1.000 \\ + & 0 & 1 \\ - & 1000 & 0 & - \end{array}$
$\begin{tabular}{ c c c c } \hline Reagent A \\ \hline Reference & \hline - & + \\ \hline - & 66 & 0 \\ + & 4 & 30 \\ - & 289 & 0 \\ + & 0 & 15 \\ - & 997 & 2 \\ + & 0 & 1 \\ - & 201 & 0 \\ + & 0 & 1 \\ - & 1000 & 0 \\ \hline \end{tabular}$
Reference R - + - + - + - + - - - - - - - - - - -

FSWs 3 0.70 54.00 1.00 0.53 0.69 0.99 a: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥ 0.51 is excellent a a a a a b b a a a a b a a a a a a a a b a	Supplemental Table S4 T	The user pro	files of different	t populations	logarang m v i		.8	
clustersFit quality aAICreagent typeschannelspricesself &STUs71.00126.000.500.501.000.30PW81.00144.000.500.501.000.36Subjects undergoing VCT50.50197.88<0.011.000.540.66Persons with IDU30.8054.000.031.000.010.36FSWs30.7054.001.000.530.690.37At Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent0.510.500.50b: Variable importance scores ranged from 0 to 1, with 0 being the lowest and 1 being the highest0.510.500.50At training Fit quality ranged from 0 to 1, with 0 being the lowest and 1 being the highest0.510.500.50		Clustering model parameters		Predictor importance (Pi) ^b			TOP	
PW 8 1.00 144.00 0.50 0.50 1.00 0.50 Subjects undergoing VCT 5 0.50 197.88 <0.01 1.00 0.54 0.69 Persons with IDU 3 0.80 54.00 0.03 1.00 0.01 0.56 FSWs 3 0.70 54.00 1.00 0.53 0.69 0.37 at: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥ 0.51 is excellent	ropulation	clusters	Fit quality ^a	AIC	reagent types	channels	prices	self-
Subjects undergoing VCT 5 0.50 197.88 <0.01 1.00 0.54 0.00 Persons with IDU 3 0.80 54.00 0.03 1.00 0.01 0.00 PSWs 3 0.70 54.00 1.00 0.53 0.69 0.00 the Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent to: Variable importance scores ranged from 0 to 1, with 0 being the lowest and 1 being the highest of the transformer of the lowest and 1 being the highest of the highest of the lowest and 1 being the highest of t	STUs	7	1.00	126.00	0.50	0.50	1.00	0.5
Persons with IDU 3 0.80 54.00 0.03 1.00 0.01 0.05 FSWs 3 0.70 54.00 1.00 0.53 0.69 0.05 a: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent b: Variable importance scores ranged from 0 to 1, with 0 being the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest and 1 being the highest 0.50 million of the lowest 0.50 millio	PW	8	1.00	144.00	0.50	0.50	1.00	0.5
FSWs 3 0.70 54.00 1.00 0.53 0.69 0.87 In: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent 50<	Subjects undergoing VCT	5	0.50	197.88	< 0.01	1.00	0.54	0.6
a: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent b: Variable importance scores ranged from 0 to 1, with 0 being the lowest and 1 being the highest At training, and similar technologi, and similar technologi, and similar technolo	Persons with IDU	3	0.80	54.00	0.03	1.00	0.01	0.8
b: Variable importance scores ranged from 0 to 1, with 0 being the lowest and 1 being the highest	FSWs	3	0.70	54.00	1.00	0.53	0.69	0.5
								mining, Al trainii

Supplemental Figure 1 The ROCs of urine HIV-1 antibody reagent in VCTs(a), IDUs(b), PWs(c), and FSWs(d) Groups

Diagnostic Performance Evaluation of Urine HIV-1 Antibody Rapid Test Kits in A Real-life Routine Care Setting in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-078694.R1
Article Type:	Original research
Date Submitted by the Author:	23-Dec-2023
Complete List of Authors:	Lu, Huaxiang; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Chen, Huanhuan; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Liang, Shujia; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Zhu, Qiuying; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Tan, Guangjie; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Pang, Xianwu; Guangxi Medical University; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ruan, Yuhua; State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li, Jianjun; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ge, Xianmin; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ga, Xianmin; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Giang Prevention Huang, Yunxian; Guigang Center for Disease control and prevention Chen, Zhenqiang; Luzhai county Center for Diseases Control and Prevention Zhang, Shizhen; Binyang County Center for Diseases Control and Prevention Cai, Wenlong; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lin, Mei; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention
Primary Subject Heading :	HIV/AIDS
Secondary Subject Heading:	Epidemiology, Diagnostics
Keywords:	HIV & AIDS < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Sensitivity and Specificity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez onz

Diagnostic Performance Evaluation of Urine HIV-1 Antibody Rapid Test Kits in A Real-life Routine **Care Setting in China** Abstract **Objectives:** To evaluate the diagnostic performance of urine human immunodeficiency virus (HIV) antibody rapid test kits in screening diverse populations and to analyse subjects' willingness regarding reagent types, purchase channels, acceptable prices, and self-testing. **Designs:** Diagnostic accuracy studies Participants: A total of 2606 valid and eligible samples were collected in the study, including 202 samples from female sex workers (FSWs), 304 persons with injection drug use (IDU), 1000 pregnant women (PW), 100 subjects undergoing voluntary HIV counselling and testing (VCT), and 1000 students in higher education schools or colleges (STUs). Subjects should simultaneously meet the following inclusion criteria: (1) being at least 18 years old and in full civil capacity; (2) signing an informed consent form; and (3) providing truthful identifying information to ensure the subjects and their samples are unique. Results: The sensitivity, specificity, and area under the curve (AUC) of the urine HIV-1 antibody rapid test kits were 92.16%, 99.92%, and 0.960 (95% confidence interval (CI): 0.952-0.968, p<0.001), respectively, among 2606 samples collected during on-site screenings. The kits showed good diagnostic performance in persons with IDU (AUC: 1.000, 95% CI: 1.000-1.000, p<0.001), PW (AUC: 0.999, 95% CI: 0.999-1.000, p < 0.001), and FSWs (AUC: 1.000, 95% CI: 1.000-1.000, p < 0.001). The AUC of the urine reagent kits in subjects undergoing VCT was 0.941 (95% CI: 0.876-0.978, p<0.001). The "acceptable price" had the greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the "purchase channel" had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000), and the "reagent types" had the greatest influence on FSWs (Pi=1.000). **Conclusions**: The rapid urine test kits showed a good diagnostic validity in practical applications, despite a few cases involving misdiagnosis and underdiagnosis. Keywords: HIV, urine, rapid test kits, ROC Strengths and limitations of this study: This study has evaluated the diagnostic validity of urine HIV-1 rapid test kits in screening both the 1. general population and high-risk populations. 2. Cluster analysis provides a clear profile of the main concerns and selection preferences of the different populations when they choose HIV test reagents. No positive samples were found among the students, and therefore, ROC curves could not be plotted 3. for this subgroup. 1/21

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

34 1. Introduction

The prevalence of HIV/AIDS varies widely across China[1, 2]. Guangxi Zhuang Autonomous Region, the only minority region in southern China, is a serious HIV/AIDS hotspot; in the past decade, this region had a much higher HIV/AIDS prevalence than any other Chinese coastal or inland province[3, 4]. Therefore, the public health administration in Guangxi is attempting to expand the scale of HIV screening to diagnose HIV-infected patients at an early stage and provide highly active antiretroviral therapy (HAART) promptly to reduce HIV/AIDS mortality and transmission[5, 6], especially in high-risk populations[7].

With the cost reduction, urine HIV antibody testing is gradually gaining attention and acceptance by public health policymakers, health institutions, and the general public due to its advantages of being convenient, noninvasive, safe[8-10], and reliable [11-14]. However, these urine HIV antibody reagents required that urine samples be transported to the laboratory for centralized testing because of methodological limitations, which limits their convenience of application.

A urine HIV-1 antibody rapid test reagent with colloidal gold method has been granted marketing approval by the China Food and Drug Administration in 2019. This reagent can present the results within 15 minutes, and all operations can be completed on-site. Due to the advantages of noninvasive, convenient, and rapid, the Guangxi health department is very interested in this reagent and believes that adopting it may help to further increase the acceptance of the population to HIV screening. It is worth noting that although some studies have evaluated the diagnostic performance of urine HIV-1 antibody rapid test kits using standard samples under controlled laboratory conditions, no studies have yet reported on their diagnostic performance in practical applications and the acceptance of different populations; therefore, an adequate scientific basis for the application of urine rapid test kits for HIV screening has not been provided for public health authorities in high-prevalence areas.

This study, based on a special study of the Chinese National Science and Technology Major Project (NSTMP) for infectious diseases, aimed to evaluate the diagnostic performance of urine HIV-1 antibody rapid test reagents in a practical screening setting and to preliminarily analyse the willingness of subjects regarding the types of reagents, purchase channels, and acceptable prices to provide a valuable scientific basis for the application of urine HIV antibody rapid test reagents for screening.

2/21

62 2. Materials and methods

63 2.1 Samples and Sources

Subjects were recruited from the most commonly screened populations for HIV antibodies in the real world.
The subjects of this study were categorized into four groups based on HIV-related risk behaviours as follows:
(1) the key population, including Female sex workers (FSWs) and persons with injection drug use (IDU);
(2) the vulnerable population, in this study, were pregnant women (PW) who received regular pregnancy
check-up's; (3) general population, which in this study were students at colleges or universities (STUs); and
(4) subjects undergoing voluntary HIV counselling and testing (VCT).

FSWs and persons with IDU are high-risk populations for HIV infection, and both groups were recruited by sentinel surveillance in this study by the CDC. PW are routinely screened for HIV, and women receiving care during pregnancy were recruited from women and children's hospitals. Subjects undergoing VCT were consulted or referred to provincial CDC VCT clinics. The STUs were enrolled in higher education schools or colleges. This study was conducted from August 1, 2020, to September 31, 2020. No researcher knows whether the subjects were infected with HIV before testing because of previously reported cases that were excluded through the ID card system.

To improve the external validity and to match the characteristics of the real-world HIV screening population, no strict inclusion or exclusion criteria were set for this study, only the following requirements need to be met concurrently: (1) the subject should be at least 18 years of age and in full civil capacity; (2) the subject should have signed the informed consent form and volunteered to participate in the study as a subject; (3) the subject should provide truthful identifying information, such as a driver's license or identification card, to ensure the subject and the sample are unique, and to exclude previously reported HIV cases. Researchers informed subjects of the purpose, methods, potential harms, and personal privacy issues of this study in detail before informed consent forms were signed. Following the signing of the informed consent form, each subject was required to be taken three samples, a whole blood sample, a fingertip peripheral blood sample, and a urine sample, and to complete the questionnaire after sampling.

The urine rapid test reagent AUC area was predicted to be between 0.85 and 0.98, and the confidence level (1-alpha), confidence interval width, sample dropout rate, and screening sample size were set to 0.95, 0.10, 5%, and 2,500 cases, respectively, requiring a positive sample size of 5-34 cases as estimated by the PASS 2015 software package.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

91 2.2 Urine and blood sample testing methods

Three HIV antibody test reagents were used in the study: (1) Reagent A, named the Urine HIV-1 Antibody
Rapid Test Kit (colloidal gold), was packaged as a rapid test kit and manufactured by Wantai (20193400550);
(2) Reagent B, named DetermineTM HIV1/2 (colloidal selenium), was packaged as a rapid test kit and
manufactured by Abbott (20163400427); and (3) Reagent C, named GENscreenTM ULTRA HIV Ag-Ab
(Enzyme-Linked Immunosorbent Assay, ELISA), which was manufactured by Bio-Rad (72388C).

97 HIV antibody tests were divided into on-site tests (for Reagents A and B) and laboratory tests (for Reagent 98 C only). Reagents A and B were used to test for HIV-1 antibodies in urine samples and peripheral blood 99 samples taken from fingertips, respectively. Reagent B is the most common testing method for HIV-1 100 antibodies in VCT clinics. Urine and venous blood samples were collected from the study subjects using a 100 ml urine cup and a 4 ml EDTA vacuum blood collection tube for Reagents A and C, respectively.

Reagent A and B results were simultaneously identified and recorded by two trained practitioners, and the results were classified as negative, positive, or invalid according to the reagent instructions. If the two practitioners disagreed on the identification of the same reagent, they uploaded an electronic photo of the reagent, and the result was judged by the quality control team. The anticoagulated blood samples were transferred to the local CDC HIV confirmation laboratory and tested for HIV-1 antibodies under controlled conditions by Reagent C immediately, which was used as the reference method in the study.

All reagents were used in strict accordance with the manufacturer's instructions, and samples with positive results were tested again in the HIV confirmation laboratory and confirmed by both ELISA and Western blotting, according to the diagnostic criteria of the Chinese Guidelines for Diagnosis and Treatment of Human Immunodeficiency Virus Infection/Acquired Immunodeficiency Syndrome (2020 edition). Three laboratories with HIV-confirmation qualifications participated in the study, including the HIV-confirmation laboratories of Guangxi Provincial CDC, Guigang CDC, and Liuzhou CDC.

114 2.3 Data management and statistical analysis

The subjects' information, including basic information such as their name, sex, date of birth, occupation type, education level, and ethnicity, as well as their willingness regarding HIV-1 antibody testing methods, purchase channels, acceptable prices, and self-tests, was collected through questionnaires.

118 The main data management and statistical software used in this study included EPIDATA v3.1, Microsoft

119 Excel 2019, R v4.1.0, RStudio v1.4. 1103, and IBM SPSS v26.0. The sensitivity, specificity, receiver

BMJ Open

120 operator characteristic (ROC) curve, and area under the curve (AUC) were used to assess the diagnostic 121 validity of the urine HIV-1 antibody reagents in the on-site screening of different populations, these 122 processes are synchronized in the ROC analysis module of SPSS and the PROC package of the R language. 123 The two-step cluster analysis method in SPSS was used to evaluate the intentionality and user profiles of 124 the study subjects regarding HIV antibody reagent types, acceptable prices, purchase channels, and self-125 tests. The level of statistical significance was set at α =0.05.

The information recorded in the paper questionnaire was entered in pairs using EPI DATE V3.1 and compared for consistency, with key information (ID information, age, sex, population category, education level, willingness to use reagents, etc.), HIV antibody test results, and other auxiliary information, with consistency levels of 100%, 100%, and 99.5%, respectively.

130 2.4 Patient and Public Involvement

This study was mainly completed by Guangxi CDC, with Guigang CDC, Luzhai CDC, and Binyang CDC as the specific implementors of the study. The public and patients (mainly potential patients in this study) were not directly involved in the design and implementation of this study. However, the findings of this study may have some influence on local HIV-related public health strategies in Guangxi, such as promoting noninvasive urine testing reagents for HIV screening in the general population to increase its acceptability and adopting more sensitive and specific methods for screening high-risk populations to find HIV-infected individuals at the early stage. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3. Results

3.1 Basic information about the subjects

A total of 2606 valid and eligible samples were collected from the FSWs, persons with IDU, PW, STUs, and subjects undergoing VCT included in this study, with 202 (7.7%), 304 (11.7%), 1000 (38.4%), 1000 (38.4%), and 100 (3.8%) collected samples, respectively. No adverse events were reported. The flowchart is presented in **Figure 1**. The basic information of each population subgroup is shown in **Table 1**.

3.2 Consistency of the results of the 3 reagents

Reagents A and B both showed quality control bands in the 2606 samples tested, and no reagent invalidation occurred. The results of the three reagents are shown in **Table 2**.

147 The number of probable HIV-positive individuals detected by Reagents A, B, and C was 49, 51, and 51,

respectively. Of these, 51 individuals with HIV-positive samples detected by Reagents B and C were
confirmed to show HIV positivity by both ELISA and WB tests. Of the 49 HIV-positive samples detected
by Reagent A, 47 were eventually confirmed to show HIV positivity. Of the 3 PW diagnosed with HIV by
Reagent A, 2 were misdiagnosed.

The results of Reagent A were fully consistent with those of the reference method for the FSWs (Kappa=1.000, p<0.001) and persons with IDU (Kappa=1.000, p<0.001), with *kappa* values of 0.499 (p<0.001) and 0.908 (p<0.001) in the PW and subjects undergoing VCT, respectively. The results of Reagent B were fully consistent with those of the reference method, and there were no missed or misdiagnosed cases, as shown in **Table 3**.

3.3 Diagnostic performance

 The overall sensitivity of Reagent A was 92.16%, the specificity was 99.92%, and the AUC was 0.960 (95% CI: 0.952-0.968, p<0.001) for the 2606 on-site tests. Reagent B showed identical results to the reference method in the 2606 on-site assays (*AUC*: 1.000, 95% CI: 0.999-1.000, p<0.001), and the overall performance of Reagent A was slightly lower than that of Reagent B (z=2.083, p<0.05), as presented in **Table 4**. The ROC curves of the 2 reagents are shown in **Figure 2**.

Reagent A showed good performance in the on-site application for persons with IDU (*AUC*: 1.000, 95% *CI*: 1.000-1.000, p<0.001), FSWs (*AUC*: 1.000, 95% *CI*: 1.000-1.000, p<0.001), and PW (*AUC*: 0.999, 95% *CI*: 0.997-1.000, p<0.001), but the performance differences in in each application setting were significant (z=2.908, p<0.005), as shown in **Table 5**. The ROC curves of the different application settings are shown in **Figure 3**. In this study, the false negative rate (FNR) of Reagent A in the subjects undergoing VCT was 6.25% (2/32), and the false positive rate (FPR) in the PW was 0.20% (2/999).

The AUC of Reagent A in the on-site application for subjects undergoing VCT was 0.941 (95% CI: 0.876-0.978, *p*<0.001). We further dissected and reviewed the causes of this problem: Of the four subjects undergoing VCT with inconsistent results between Reagent A and the reference method, two were men who have sex with men (MSM) who are regularly tested at Non-governmental organizations and were recently determined to have HIV-1 antibody positivity, which we speculate may have been due to recent infection. The other two subjects were HIV-infected individuals receiving HAART who requested recertification reports from the VCT for referral to hospitals in other provinces for treatment.

3.4 Willingness regarding and cluster analysis of HIV-1 antibody reagents, prices, and channels among 6/21

BMJ Open

different populations

178 The willingness regarding HIV-1 antibody test reagent types (χ^2 =430.498, p<0.001), purchase channels 179 (χ^2 =494.970, p<0.001), acceptable prices (χ^2 =152.710, p<0.001), and self-tests (χ^2 =245.966, p<0.001) were 180 significant among the different subgroups, as presented in **Table 6**.

The two-step cluster analysis models showed that the "acceptable price" had the greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the "purchase channel" had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000), and the "reagent types" had the greatest influence on FSWs (Pi=1.000), as presented in **Table 7**.

The user profiles of STUs, PW, subjects undergoing VCT, persons with IDU, and FSWs were classified into 7, 8, 5, 3, and 3 patterns, respectively. The main patterns of the five populations were as follows and are presented in Figure 4: "priced less than \$4.35, purchased at a pharmacy, blood reagents, and willing to self-test" for STUs; "priced below \$4.35, purchased at a medical institution, urine reagents, and nonself-testing" for PW; "purchased at a medical institution, willing to self-test, priced between \$4.35 and \$8.69 or more than \$17.40, and blood reagents" for subjects undergoing VCT; "purchased at a medical institution, willing to self-test, and blood reagents" for persons with IDU; and "blood reagents, priced at \$4.35-\$8.69, willing to self-test, and purchased at medical facilities" for FSWs.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

4. Discussion

Due to obvious advantages such as noninvasiveness and convenience[15], urine testing for HIV antibodies began in the 1990s, and their diagnostic performance has been confirmed in many studies [16-18]. Urine HIV antibody tests have been used in practice for more than a decade [19], and their convenience has been further promoted in recent years with the advent of colloidal gold rapid test kits[12, 20]. These rapid test kits further enhance the convenience of HIV antibody testing by eliminating the requirement for centralized testing in specialized infectious disease laboratories. However, few studies have reported on the diagnostic performance of rapid urine HIV antibody test kits for practical application in large, complex populations in the real world.

The NSTMP is considered to be the most important scientific and research project in China. Its infectious disease prevention and control projects have been carried out in Guangxi for decades to assess the key issues in the HIV epidemic[21, 22], including the low willingness of the population to be screened and the high mortality rate in rural areas due to late HIV detection and diagnosis[23, 24]. We conducted the study to estimate the diagnostic validity and acceptance of a rapid urine HIV antibody test kit in different populations. As far as we know, such studies are rarely reported.

In this study, based on real-world samples, we found that urine HIV antibody rapid test kits showed satisfactory sensitivity, specificity, and ROC curves, especially in high-risk populations such as persons with IDU and FSWs. Commercial heterosexual infections are the main transmission route of HIV in Guangxi, and as a high-risk population, FSWs are a key node in this transmission route [25, 26]. Both persons with IDU and FSWs are high-risk groups for HIV, and currently, sentinel surveillance and special investigations are the primary public health strategies for identifying HIV-positive patients in high-risk populations. ELISA is the major approach to test for HIV antibodies, which requires the collection of venous whole blood samples from study subjects and transportation to a dedicated HIV laboratory at the CDC for cryopreservation and testing.

In contrast, urine testing offers greater advantages in terms of convenience and timeliness. The administration of injection drugs requires regular urine sample collection for recent opioid, methamphetamine, and ketamine abuse, and efficiency and subject acceptance can be improved if urine HIV antibody testing is also conducted instead of blood testing. However, the sentinel surveillance and special investigation of some high-risk groups for HIV infection also require testing for HCV and syphilis[27, 28], and the single function of the current urine HIV rapid reagent test limits its applicability. 8/21

BMJ Open

In practice, physicians treating subjects undergoing VCT are dealing with a very complex population, which is even more complex than the high-risk population. In this study, we routinely tested subjects for blood HIV antibodies and additionally used urine reagent strips to evaluate their performance under complex practice conditions. The urine rapid test kit showed four false-negative cases among 100 subjects undergoing VCT; two were MSM with new infections detected by regular testing at NGOs, and two were patients receiving in-treatment HAART. In the present study, the ROC curve of the urine rapid test kit could have been affected by these false-negative cases if the routine VCT consultation procedure had been followed, and similar false-negative results had been found in some previous studies[14, 33]. It should be added that the urine reagent's instructions stated that samples from HIV-infected individuals in the window period or those receiving treatment may yield false-negative results.

234 Considering the complexities and psychologically protective behaviours of some subjects undergoing 235 VCT, it may be more appropriate to choose an antigen-antibody combined reagent with higher sensitivity 236 and specificity to reduce the possibility of false negatives in some cases where it is difficult for physicians 237 treating these subjects to obtain true and accurate information[34, 35]. Some subjects with significant 238 psychological fear of HIV but no high-risk exposure may consider using noninvasive urine reagent strips to 239 reduce trauma and receive psychological counselling.

Despite some limitations, urine rapid test kits can be offered as an option for HIV self-testing in high-risk
populations such as MSM, FSWs, and persons with IDU who require regular testing due to their operability,
noninvasiveness, and safety; these test kits can have a positive effect on increasing subjects' willingness to
accept and participate in screening[13, 36].

Previous studies have evaluated urine HIV antibody reagents for general population screening, but this approach required centralized testing by qualified laboratories[20, 37]. Combined with the internet platform and logistics industry, rapid test kits with urine reagent strips can improve operability through anonymous testing, which may be able to further expand the coverage of general population screening.

In areas with high HIV prevalence, maternal HIV screening helps to identify HIV-infected PW at an early stage and provides timely drug interventions to interrupt mother-to-child transmission[29], which has a positive effect on reducing vertical transmission[30, 31]. Urine reagent strips showed satisfactory ROC curves in maternal HIV-1 antibody screening, but there were two false positive tests out of 1000 tests. The reasons for occasional false-positive HIV antibody tests in PW need to be further investigated, and similar occasional occurrences have previously been reported in ELISA screening tests[32]. Overall, the false 9/21

positive rate of urine rapid test reagents in the PW population is acceptable given the considerable advantages of the noninvasive operation. No positive case was found in the STUs, which we believe is related to the very low prevalence of HIV infection in this population. Thus, the validity of the urine rapid reagent in STUs requires a larger sample size in future studies.

User profiles are the behavioural characteristics of a customer group in selecting or using a product, which is one of the hot analytical approaches in e-business. The current study innovatively applied user profiles to assess the characteristics and tendencies of different population subgroups when choosing reagents for HIV testing. We found that STUs and PW preferred reagent prices below \$4.35, which may be related to the lack of financial income for STUs and the higher cost of childbirth, resulting in price sensitivity for these two groups. We also observed a higher willingness to self-test among the student population, which may be related to the extensive HIV propaganda work carried out in colleges and universities in the past decade[38, 39].

The low willingness to self-test among persons with IDU and FSWs may be related to the fact that local CDCs conduct free HIV, HCV, and syphilis testing for such high-risk populations several times per year. At the same time, persons with IDU and FSWs enrolled in long-term health interventions develop trusting relationships with the CDC, so they are more inclined to choose the medical institution channel and blood reagents. In this study, FSWs preferred urine HIV reagents, which may be related to the noninvasive operation of the rapid test kits. Although the diagnostic performance has been proven in some studies [40], a low percentage of subjects in this study chose the oral secretion HIV antibody test kit, probably due to its expensive price and complicated operation.

People undergoing VCT were more likely to have their HIV antibodies tested in medical institutions, had the highest willingness to undergo self-testing, and were also willing to accept more expensive reagents. However, for subjects undergoing VCT, we speculated that their acceptance of HIV-1 antibody testing options, particularly regarding price, may be influenced by factors such as the reason for seeking medical services and psychological status, as all HIV antibody tests conducted in the VCT centres were free of charge.

There were limitations in this study. First, no positive samples were identified in the STUs, and therefore, ROC curves could not be drawn for this subgroup. Second, patients receiving HAART treatment and MSM in the window period were included in the VCT subgroups, which is not consistent with the recommended suggestions for the use of urine HIV reagents; however, this is a complexity that doctors treating subjects

10/21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

undergoing VCT face every day. Despite these limitations, this study evaluated the diagnostic validity of
HIV urine rapid test kits in a complex real-world setting and provided some valuable scientific cues for the
practical application of urine reagent strips.

5. Conclusions

Overall, the rapid urine test kits showed a good diagnostic validity in practical applications, despite a few cases involving misdiagnosis and underdiagnosis. We recommend that physicians providing testing services to subjects undergoing VCTs should carefully select HIV testing reagents based on each subject's situation.

291 6. Author contributions

HX Lu, HH Chen, SJ Liang, YH Ruan, QY Zhu, GH Lan, and M Lin contributed to the conception and
design of the study. HX Lu, GJ Tan, WL Cai, and YJ Zhou organized the database. HX Lu and YH Ruan
performed the statistical analysis. HX Lu, HH Chen, and SJ Liang wrote the first draft of the manuscript.
XW Pang, JJ Li, XM Ge, wrote sections of the manuscript. HX Lu, HH Chen, and SJ Liang contributed
equally to the current work. All authors contributed to the manuscript revision and read and approved the
submitted version.

7. Data sharing statement

The original database for this study contains private information about the study participants. For noncommercial use and reasonable purposes, anonymised data of the current work can be obtained from the corresponding author.

302 8. Findings

This work was supported by the National Natural Science Foundation of China (82160636 and 82260670),
Guangxi Natural Science Foundation Project (2020GXNSFAA159020), Guangxi Key Laboratory of AIDS
Prevention Control and Translation (ZZH2020010), Guangxi Key Research and Development Project
(AB19245044), Guangxi Bagui Honor Scholarship, Ministry of Science and Technology of China
(2022YFC2305200 and 2018ZX10715008), and Guangxi Medical and Health Key Discipline Construction
Project.

309 9. Ethics statement

310 This study was approved by the Ethics Committee of the Guangxi Zhuang Autonomous Region Center for

311 Disease Control and Prevention (approval number GXIRB2019-0047).

11/21

	rmation of the 2606 FSWs, persons		BM	IJ Open			njopen-2023-078694 oh d by copyright, inclugir 음	
le 1 The basic info	rmation of the 2606 FSWs, persons	s with IDU, I	PW, STUs, ar	nd subjects ur	dergoing V	CT in the sa	mplogi mplogi	
		The sample	e sizes of each	population g	group [n (%)]]		-
ables	Subgroups	FSWs	Persons with IDU	PW	STUs	Subjects undergoin	24 Februar Ense J for uses V	Total
	Male	0(0)	256(84.2)	0(0)	255(25.5)	48(48.0)	rela rela	559
	Female	202(100)	48(15.8)	1000(100)	745(74.5)	52(52.0)	ry 2024. Downloaded eignement Superieur related to text and da	2047
	<20	1(0.5)	2(0.7)	38(3.8)	846(84.6)	2(2.0)	to to to	889
	20-29	12(5.9)	16(5.3)	524(52.4)	113(11.3)	57(57.0)	Downloaded from http://bmjopen.bmj.com/ on June nt Superieur (ABES) . o text and data mining, Al training, and similar tech	722
	30-39	68(33.7)	126(41.4)	417(41.7)	41(4.1)	18(18.0)	oad and	670
	≥40	121(59.9)	160(52.6)	21(2.1)	0(0)	23(23.0)	ed f dat	325
nicity	Han	120(59.4)	279(91.8)	692(69.2)	526(52.6)	56(56.0)	ed from http://bmjopen.bmj.com/ on Jun ur (ABES) . data mining, Al training, and similar tec	1673
	Zhuang	58(28.7)	20(6.6)	281(28.1)	402(40.2)	40(40.0)	inin	801
	Other	24(11.9)	5(1.6)	27(2.7)	72(7.2)	4(4.0)	ġ, A	132
cation level	Illiterate	33(16.3)	5(1.6)	1(0.1)	0(0)	1(1.0)	omjo vl tra	40
	Primary school	94(46.5)	54(17.8)	40(4)	0(0)	8(8.0)	aini	196
	Junior middle school	69(34.2)	217(71.4)	471(47.1)	0(0)	18(18.0)	ng, i	775
	Senior high school	6(3)	28(9.2)	193(19.3)	472(47.2)	19(19.0)	nj.c	718
	Junior college	0(0)	0(0)	292(29.2)	527(52.7)	54(54.0)	sim	873
	Bachelor's degree or above	0(0)	0(0)	3(0.3)	1(0.1)	0(0)	ilar	4
ıl		202	304	1000	1000	100	Jun	2606
1	For peer re	view only - I	nttp://bmjope	en.bmj.com/	site/about/g	uidelines.x	13, 2025 at Agence Bibliographique nologies.	

3 4

1 2 3 4		Table 2 The per
2 3 4 5 6 7		Groups
8		FSWs
9 10		Persons with ID
11 12		PW
13		STUs Subjects underg
14 15		Total
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	313 314	a. Reagent C wa
 37 38 39 40 41 42 43 44 45 		13/21

rformance of two HIV-1 antibody reagents in field testing [n (%)]

C	Reagen	it A	Reager	nt B	Reagen	total	
Groups	-	+	-	+	-	+	total
FSWs	201(99.5)	1(0.5)	201(99.5)	1(0.5)	201(99.5)	1(0.5)	202
Persons with IDU	289(95.1)	15(4.9)	289(95.1)	15(4.9)	289(95.1)	15(4.9)	304
PW	997(99.7)	3(0.3)	999(99.9)	1(0.1)	999(99.9)	1(0.1)	1000
STUs	1000(100.0)	0(0)	1000(100.0)	0(0)	1000(100.0)	0(0)	1000
Subjects undergoing VCT	70(70.0)	30(30.0)	66(66.0)	34(34.0)	66(66.0)	34(34.0)	100
Total	2557(98.1)	49(1.9)	2555(98.0)	51(2.0)	2555(98.0)	51(2.0)	2606

Table 3 Consistency check of two HIV-1 antib	body reagents in diverse populations ^a
--	---

Group	Reference	Reage	ent A	Reage	ent A	
Gloup	Reagent	kappa	р	kappa	р	
FSWs	С	1.000	< 0.001	1.000	< 0.001	
IDU	С	1.000	< 0.001	1.000	< 0.001	
PW	С	0.499	< 0.001	1.000	< 0.001	
STUs	С	-	-	-	-	
Subjects undergoing VCT	С	0.908	< 0.001	1.000	< 0.001	
Total	С	0.939	< 0.001	1.000	< 0.001	

14/21

' of 30					BMJ Ope	'n	
	Table 4 The 1	receiver ope	rator characteristic cu		and B in the 2606 sub	jects ^a	
	Reagents ^b	AUC	95% CI	Sensitivity	Specificity	Youden index	р
	A	0.96	0.952-0.968	92.16	99.92	0.921	< 0.00
	В	1	0.999-1.000	100	100	1	< 0.00
					ted in Table 4(detail)		
	15/21						

44 45

Table 5 The receiver	operator	characteristic	curves for	Reagent Δ	in each	oroun ^a
	operator	characteristic	cui ves 101	Reagent A	in cach	group

Table 5 The receiver operator	characteristic					
Groups	AUC	Statis 95% CI	tical parameter Sensitivity	rs of ROC curv Specificity	Ves ^b Youden index	(
Subjects undergoing VCT	0.941	0.876-0.978	88.240	100.000	0.882	
Persons with IDU	1.000	0.999-1.000	100.000	100.000	1.000	< 0.001
PW	0.999	0.997-1.000	99.800	100.000	0.998	< 0.001
FSWs	1.000	0.999-1.000	1.000	1.000	1.000	< 0.001
STUs	-	-	5	-	-	-
: The reference standard is Rea		-	resented in Tab		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•
: The reference standard is Rea		-				-

			Ро	opulation [n (%	ó)]		
Questions	Classification	STUs	PW	Subjects undergoing VCT	Persons with IDU	FSWs	χ^2
Reagent types	Blood	781(78.1)	599(59.9)	85(85.0)	74(24.3)	88(43.6)	430.49
	Saliva	72(7.2)	45(4.5)	6(6.0)	13(4.3)	6(3.0)	
	Urine	147(14.7)	356(35.6)	9(9.0)	217(71.4)	108(53.5)	
Purchase channels	Pharmacy	382(38.2)	202(20.2)	26(26.0)	176(57.9)	107(53)	494.97
	Online shopping	38(3.8)	42(4.2)	24(24.0)	66(21.7)	9(4.5)	
	Medical institution	565(56.5)	725(72.5)	45(45.0)	39(12.8)	85(42.1)	
	Vending machine	15(1.5)	31(3.1)	5(5.0)	23(7.6)	1(0.5)	
Acceptable price (USD\$)	<4.35	537(53.7)	575(57.5)	20(20.0)	222(73.0)	99(49.0)	152.71
	4.35-8.69	285(28.5)	252(25.2)	39(39.0)	63(20.7)	86(42.6)	
	8.70-17.39	117(11.7)	128(12.8)	23(23.0)	17(5.6)	16(7.9)	
	≥17.40	61(6.1)	45(4.5)	18(18.0)	2(0.7)	1(0.5)	
Willingness to self-test	Yes	762(76.2)	451(45.1)	83(83.0)	143(47.0)	106(52.5)	245.96
	No	238(23.8)	549(54.9)	17(17.0)	161(53.0)	96(47.5)	

Page

16

18

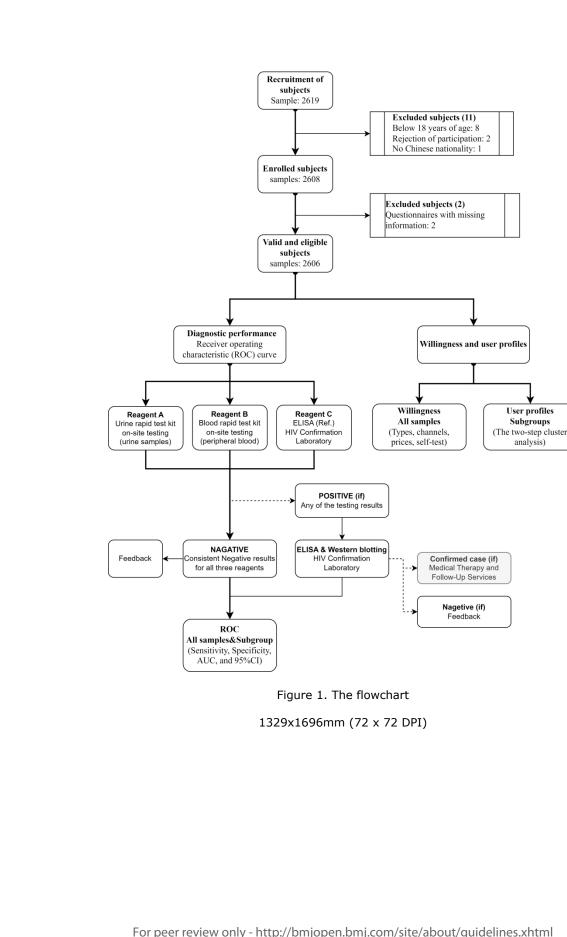
20

1	
1	
2	
3	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
5	
2	
6	
7	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
19 20 21 22 23 24 25 26 27 28	
23	
20	
24	
25	
26	
27	
28	
29 30	
30	
21	
31	
32	
31 32 33 34 35 36 27	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	

46

				BMJ Op	en		ру сор
							by copyright, includi
Table 7 The user profiles of	f different po	opulations regard	ing HIV-1 aı	ntibody testing met	hods, channels,	and prices	
Population	Clust	ering model parai	neters		Predictor impo	ortance ^b	ng fo
Topulation	clusters	Fit quality ^a	AIC	reagent types	channels	prices	sel ^t uses
STUs	7	1.00	126.00	0.50	0.50	1.00	Sel Lusës rëlatëd të të text a
PW	8	1.00	144.00	0.50	0.50	1.00	0 <mark>6</mark> a
Subjects undergoing VCT	5	0.50	197.88	< 0.01	1.00	0.54	0
Persons with IDU	3	0.80	54.00	0.03	1.00	0.01	0
FSWs	3	0.70	54.00	1.00	0.53	0.69	ext and
							nining, Al train
				a ≥0.51 is excellent owest and 1.00 be			mining, Al training, and similar technologies.

2			
3	324	Refere	nces
4 5	325	1.	Xing J, Li YG, Tang W, Guo W, Ding Z, Ding G, Wang L, Qin Q, Xu Y, Qian S et al: HIV/AIDS epidemic
6	326		among older adults in China during 2005-2012: results from trend and spatial analysis. Clinical
7	327		infectious diseases : an official publication of the Infectious Diseases Society of America 2014,
8 9	328		59 (2):e53-60.
9 10	329	2.	Wang Y, Zhao C, Liu Z, Gao D: Spatiotemporal Analysis of AIDS Incidence and Its Influencing
11	330		Factors on the Chinese Mainland, 2005-2017. International journal of environmental research
12	331		and public health 2021, 18 (3).
13 14	332	3.	Wu Z, Liang W, Chen W, Chang Y, Liu Y, Liu X, Huang H, Shang X: Spatial-temporal characteristics
15	333		of AIDS incidences in Mainland China. Immunity, inflammation and disease 2020, 8(3):325-332.
16	334	4.	Xu N, Jiang Z, Liu H, Jiang Y, Wang Z, Zhou D, Shen Y, Cao J: Prevalence and genetic characteristics
17	335		of Blastocystis hominis and Cystoisospora belli in HIV/AIDS patients in Guangxi Zhuang
18 19	336		Autonomous Region, China. Scientific reports 2021, 11 (1):15904.
20	337	5.	Adam Trickey, Margaret T May, Jorg-Janne Vehreschild, Niels Obel, M John Gill, Heidi M Crane,
21	338		Christoph Boesecke, Sophie Patterson, Sophie Grabar, Charles Cazanave <i>et al</i> : Survival of HIV -
22 23	339		positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative
24	340		analysis of cohort studies. The lancet HIV 2017, 4(8):e349-e356.
25	341	6.	Smiley CL, Rebeiro PF, Cesar C, Belaunzaran-Zamudio PF, Crabtree-Ramirez B, Padgett D, Gotuzzo
26 27	342	0.	E, Cortes CP, Pape J, Veloso VG <i>et al</i> : Estimated life expectancy gains with antiretroviral therapy
27 28	343		among adults with HIV in Latin America and the Caribbean: a multisite retrospective cohort
29	344		study. The lancet HIV 2021, 8(5):e266-e273.
30	345	7.	Tao L, Liu M, Li S, Liu J, Wang N: Condom use in combination with ART can reduce HIV incidence
31 32	346	7.	and mortality of PLWHA among MSM: a study from Beijing, China. BMC infectious diseases 2018,
33	347		18 (1):124.
34	348	8.	Wilson KS, Mugo C, Katz DA, Manyeki V, Mungwala C, Otiso L, Bukusi D, McClelland RS, Simoni
35	349	0.	JM, Driver M <i>et al</i> : High Acceptance and Completion of HIV Self-testing Among Diverse
36 37	350		Populations of Young People in Kenya Using a Community-Based Distribution Strategy. AIDS
38	351		and behavior 2022, 26 (3):964-974.
39	352	9.	Luo G, Su L, Feng A, Lin YF, Zhou Y, Yuan T, Hu Y, Fan S, Lu Y, Lai Y <i>et al</i> : Spatiotemporal
40 41	353	э.	Distribution of HIV Self-testing Kits Purchased on the Web and Implications for HIV Prevention
42	353 354		in China: Population-Based Study. JMIR public health and surveillance 2022, 8(10):e35272.
43	355	10	Lv Y, Zhu Q, Xu C, Zhang G, Jiang Y, Han M, Jin C: Spatiotemporal Analysis of Online Purchase of
44 45	355	10.	
45 46	357		HIV Self-testing Kits in China, 2015-2017: Longitudinal Observational Study. JMIR public health and surveillance 2022, 8(9):e37922.
47	358	11	Magno L, Pereira M, de Castro CT, Rossi TA, Azevedo LMG, Guimarães NS, Dourado I: HIV Testing
48		11.	
49 50	359		Strategies, Types of Tests, and Uptake by Men Who have Sex with Men and Transgender
51	360	10	Women: A Systematic Review and Meta-analysis. <i>AIDS and behavior</i> 2022.
52	361 362	12.	Lv Y, Li G, Hu M, Xu C, Lu H, Chen L, Xing Y, Liang S, Ma Y, Liang S <i>et al</i> : Anonymous Linkage
53 54	362		Between College Students and Human Immunodeficiency Virus (HIV) Facilities: Systematic
54 55	363		Evaluation of Urine Self-Collection for HIV Testing Initiative in China. <i>Clinical infectious diseases</i>
56	364	10	: an official publication of the Infectious Diseases Society of America 2021, 73 (5):e1108-e1115.
57	365	13.	Xia D, Feng X, He X, Liu G, Lyu Y, Cheng H, Jiang Y, Lu H: Feasibility of an internet-based HIV
58 59	366		testing service: anonymous urine collection from men who have sex with men. <i>AIDS care</i> 2018,
60	367		30 (10):1228-1230.
		19/21	


19/21

1		
2 3 369	0	
4		Wang Y, Chen H, Wang J, Chen K, He X, Duan X, Ye R, Duan S, Jiang Y: Performance evaluation of
5 369		urine HIV antibody colloidal gold assay(in Chinese). Chin J AIDS STD 2019, 25(7):668-670,686.
6 370	0 15.	Urnovitz HB, Murphy WH, Gottfried TD, Friedman-Kien AE: Urine-based diagnostic technologies.
7 37	'1	Trends in biotechnology 1996, 14 (10):361-364.
8 9 372	16.	Oelemann WM, Lowndes CM, Veríssimo Da Costa GC, Morgado MG, Castello-Branco LR,
10 373	3	Grinsztejn B, Alary M, Bastos FI: Diagnostic detection of human immunodeficiency virus type 1
11 374	4	antibodies in urine: a brazilian study. Journal of clinical microbiology 2002, 40(3):881-885.
12 375	5 17.	Meehan MP, Sewankambo NK, Wawer MJ, McNairn D, Quinn TC, Lutalo T, Kalibbala S, Li C,
13 14 370	6	Serwadda D, Wabwire-Mangen F et al: Sensitivity and specificity of HIV-1 testing of urine
15 37		compared with serum specimens: Rakai, Uganda. The Rakai Project Team. Sexually transmitted
16 378		diseases 1999, 26 (10):590-592.
17		Cao YZ, Hosein B, Borkowsky W, Mirabile M, Baker L, Baldwin D, Poiesz BJ, Friedman-Kien AE:
10		
20		Antibodies to human immunodeficiency virus type 1 in the urine specimens of HIV-1-
21		seropositive individuals. <i>AIDS research and human retroviruses</i> 1989, 5 (3):311-319.
22 382		Hilton C, Sabundayo BP, Langan SJ, Hilton M, Henson C, Quinn TC, Margolick JB, Nelson KE:
23 383		Screening for HIV infection in high-risk communities by urine antibody testing. Journal of
24 384 25 284		acquired immune deficiency syndromes (1999) 2002, 31 (4):416-421.
26 385	5 20.	He X, Feng X, Liu P, Lyu Y, Lu H, Ma Y, Liang S, Liu F, Jiang Y: An innovative vending machine-
27 380	6	based HIV testing and intervention service in China: anonymous urine collection kits distributed
28 387	57	at universities. AIDS care 2019, 31(10):1319-1322.
29 388	8 21.	Chen H, Wu X, Chen L, Lu H, Tang Z, Shen Z, Pan SW, Ruan Y, Shao Y: Rapidly Spreading Human
30 31 389	9	Immunodeficiency Virus Epidemic Among Older Males and Associated Factors: A Large-scale
32 390	0	Prospective Cohort Study in Rural Southwest China. Sexually transmitted diseases 2019,
33 39	1	46 (4):234-239.
34 35 392	2 22.	Chen L, His JH, Wu X, Shen Z, Lu H, Chen H, Huang H, Zhang H, Ruan Y, Shao Y et al: Disparities in
35 392 36 393		HIV and syphilis prevalence and risk factors between older male clients with and without steady
37 39 ²		sex partners in southwestern rural China. BMC infectious diseases 2017, 17 (1):269.
38 39:		Sun X, Yang W, Tang S, Shen M, Wang T, Zhu Q, Shen Z, Tang S, Chen H, Ruan Y <i>et al</i> : Declining
39		trend in HIV new infections in Guangxi, China: insights from linking reported HIV/AIDS cases
40 390 41 391		
10		with CD4-at-diagnosis data. BMC public health 2020, 20 (1):919.
43		Chu Q, Zhang X, Lan J, Zhang Q, Wei T, Fu Y, Fan Y: Prevalence and Factors Associated with Late
44 399		Diagnosis among Older Adults Living with HIV in Liuzhou, China: 2010-2020. Journal of medical
45 400		virology 2022.
46 40 47		Lai J, Qin C, Nehl EJ, Jiang J, Huang Y, Liang B, Xu Y, Huang J, Xu Z, Ning C et al: HIV prevalence
48 402	2	among female sex workers in Guigang City, Guangxi, China: an 8-year consecutive cross-
49 403	3	sectional study. BMC public health 2018, 18(1):450.
50 404	4 26.	Liang B, Huang Q, Ou Y, Zhang F, Zhang P, Nong A, Mo S, Wu Z, Xie H, Liang H et al: Trends and
51 403 52	5	associated factors in the uptake of HIV testing among female sex workers in Sino-Vietnam
52 53 400	6	border areas in Guangxi, China: a cross-sectional study. BMC infectious diseases 2022, 22(1):479.
54 407	07 27.	Ruan Y, Liang S, Zhu J, Li X, Pan SW, Liu Q, Song B, Wang Q, Xing H, Shao Y: Evaluation of harm
55 408	8	reduction programs on seroincidence of HIV, hepatitis B and C, and syphilis among intravenous
56		drug users in southwest China. Sexually transmitted diseases 2013, 40(4):323-328.
400		
57 409		-
400	0 28.	Liu CR, Li X, Chan PL, Zhuang H, Jia JD, Wang X, Lo YR, Walsh N: Prevalence of hepatitis C virus infection among key populations in China: A systematic review. International journal of

20/21

BMJ Open

2			
3	412		infectious diseases : IJID : official publication of the International Society for Infectious Diseases
4 5	413		2019, 80 :16-27.
6	414	29.	Read PJ, Mandalia S, Khan P, Harrisson U, Naftalin C, Gilleece Y, Anderson J, Hawkins DA, Taylor
7	415		GP, de Ruiter A: When should HAART be initiated in pregnancy to achieve an undetectable HIV
8 9	416		viral load by delivery? AIDS (London, England) 2012, 26 (9):1095-1103.
9 10	417	30.	Zhong S, Ou Y, Zhang F, Lin Z, Huang R, Nong A, Wu Z, Liang H, Qin C, Wei Q et al: Prevalence
11	418		trends and risk factors associated with HIV, syphilis, and hepatitis C virus among pregnant
12	419		women in Southwest China, 2009-2018. AIDS research and therapy 2022, 19(1):31.
13 14	420	31.	Olakunde BO, Adeyinka DA, Olawepo JO, Pharr JR, Ozigbu CE, Wakdok S, Oladele T, Ezeanolue EE:
15	421	-	Towards the elimination of mother-to-child transmission of HIV in Nigeria: a health system
16	422		perspective of the achievements and challenges. International health 2019, 11 (4):240-249.
17	423	32.	Wesolowski LG, Delaney KP, Lampe MA, Nesheim SR: False-positive human immunodeficiency
18 19	424	52.	virus enzyme immunoassay results in pregnant women. <i>PloS one</i> 2011, 6 (1):e16538.
20	425	33.	Li J, Xin R, Sun W, Zhang Q, He S, Li J, Lu H: Performance of rapid tests for HIV-1 antibody
21	426	55.	detection in paired serum and urine specimens of men who have sex with men(in Chinese). <i>Chin</i>
22	420		J Microbiol Immunol 2020, 40(10):753-756.
23 24	427	24	
25		34.	Curtis KA, Rudolph DL, Pan Y, Delaney K, Anastos K, DeHovitz J, Kassaye SG, Hanson CV, French
26	429		AL, Golub E et al: Evaluation of the Abbott ARCHITECT HIV Ag/Ab combo assay for determining
27	430		recent HIV-1 infection. <i>PloS one</i> 2021, 16 (7):e0242641.
28 29	431	35.	Wratil PR, Rabenau HF, Eberle J, Stern M, Münchhoff M, Friedrichs I, Stürmer M, Berger A,
30	432		Kuttner-May S, Münstermann D et al: Comparative multi-assay evaluation of Determine™ HIV-
31	433		1/2 Ag/Ab Combo rapid diagnostic tests in acute and chronic HIV infection. Medical
32	434		microbiology and immunology 2020, 209 (2):139-150.
33 34	435	36.	Almeda J, Casabona J, Matas L, González V, Muga R, Sanz B, Bolao F, Ausina V: Evaluation of a
35	436		commercial enzyme immunoassay for HIV screening in urine. European journal of clinical
36	437		microbiology & infectious diseases : official publication of the European Society of Clinical
37	438		Microbiology 2004, 23 (11):831-835.
38 39	439	37.	He X, Liu G, Xia D, Feng X, Lv Y, Cheng H, Wang Y, Lu H, Jiang Y: An innovative HIV testing service
40	440		using the internet: Anonymous urine delivery testing service at drugstores in Beijing, China.
41	441		PloS one 2018, 13 (2):e0192255.
42 43	442	38.	Zheng Y, Zhang X, Sun X, Shi Y, Chang C: Evaluation of the college-based HIV/AIDS education
43 44	443		policy in Beijing, China: a mixed method approach. Environmental health and preventive
45	444		medicine 2020, 25 (1):50.
46	445	39.	Tu F, Yang R, Li R, Du G, Liu Y, Li W, Wei P: Structural Equation Model Analysis of HIV/AIDS
47 48	446		Knowledge, Attitude, and Sex Education Among Freshmen in Jiangsu, China. Frontiers in public
40 49	447		health 2022, 10 :892422.
50	448	40.	González V, López N, Grifols J, Egea L, Rivaya B, Wang JHW, Casabona J, Cardona PJ: Validation
51	449		study of an automated chemiluminiscence assay to detect HIV antibodies in oral fluid
52 53	450		specimens. European journal of clinical microbiology & infectious diseases : official publication of
54	451		the European Society of Clinical Microbiology 2022, 41 (6):907-911.
55	452		
56 57			
57 58			
59			
60			

1.0

0.8

Sensitivity 0.4 0.6

0.4

0.2

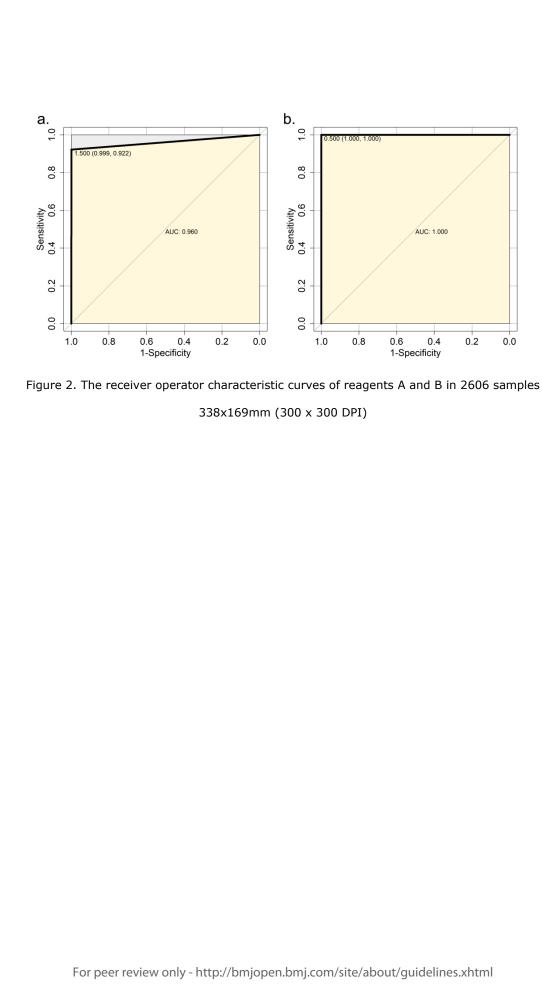
0.0

1.0

500 (1.000,

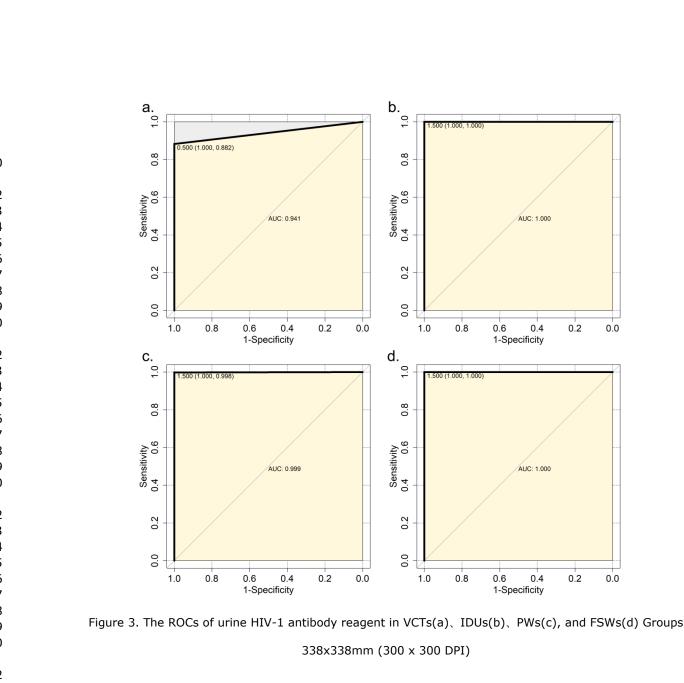
0.8

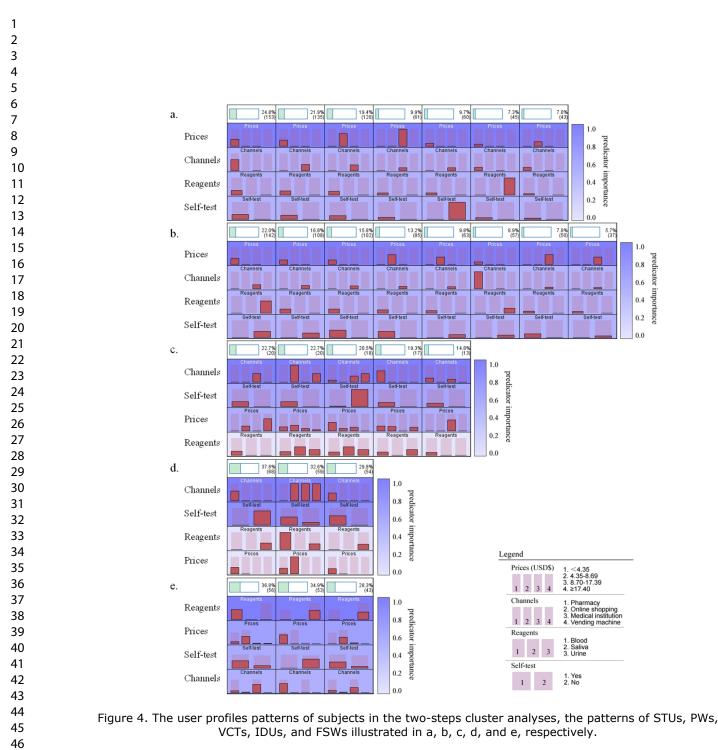
0.6


AUC: 1.000

0.4

1-Specificity


0.2


0.0

BMJ Open: first published as 10.1136/bmjopen-2023-078694 on 24 February 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

869x1027mm (72 x 72 DPI)

		ntibody reager		1	eagent A	()		Re	eagent B	by copyright, including for
Group	Reference	Result ^a	-	+	kappa	р	-	+	kappa	
FSWs	Reagent C	-	201	0	1.000	< 0.001	201	0	1.000	<i>p</i> uses <0.00
		+	0	1			0	1		late
IDU	Reagent C	~ -	289	0	1.000	< 0.001	289	0	1.000	<0.00
			0	15			0	15		<0.00
PW	Reagent C		997	2	0.499	< 0.001	999	0	1.000	<0.00 Ta nd
		+	0	1			0	1		a as
STUs	Reagent C	-	1000	0	-	-	1000 0	0	-	ata r
Subjects undergoing VCT	Reagent C	+	0 66	0 0	0.908	< 0.001	66	0 0	1.000	nin ===================================
Subjects undergoing VC1	Reagent C	+	4	30	0.900	<0.001	0	34	1.000	, 9
Total	Reagent C	-	2553	2	0.939	<0.001	2555	0	1.000	<u>₹</u> ±0.00
	0	+	4	47			0	51		<0.00#raini
a: Table 3 (detail) presents		,								ig, and similar technologies.

njopen-2023-078694 on 24 February 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . by copyright, including for uses related to text and data mining, AI training, and similar technologies.

1		
2 3 4 5 6 7		
4		
5 6		
7		
8 9		
10		
11 12		
13 14		
14 15		
16 17		
18		
19		
20 21		
20 21 22 23 24 25 26 27 28 29		
25 24		
25 26		
20		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46		

Reagents Results a - + AUC 95% CI Sensitivity Specificity Youden index p A - 2553 2 0.960 0.952-0.968 92.16 99.92 0.921 <0.001 + 4 47 - - 2555 0 1.000 0.999-1.000 100.00 100.00 1.000 <0.001 + 0 51 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Table 4 The receiver		Resu					eters of ROC		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reagents	Results "	-	+	AUC	95% CI	Sensitivity	Specificity	Youden index	р
B - 2555 0 1.000 0.999-1.000 100.00 100.00 1.000 <0.001 + 0 51	B - 2555 0 1.000 0.999-1.000 100.00 100.00 1.000 <0.001 + 0 51	A	-	2553	2	0.960	0.952-0.968	92.16	99.92	0.921	< 0.001
+ 0 51	+ 0 51		+	4	47						
		В	-	2555	0	1.000	0.999-1.000	100.00	100.00	1.000	< 0.001
			+	0	51						

urve	s for	Regrent	A in each grou	BMJ Open			njopen-2023-078694 on 24 Fi d by copyright, including for
eager		Reagen		- ` ` /	eters of ROC	curves	2‡ Fe gfor i
-	+	AUC	95% CI	Sensitivity	Specificity	Youden index	ebru En
6	0	0.941	0.876-0.978	88.24	100.00	0.882	
4	30						202, Inen late
89	0	1.000	0.999-1.000	100.00	100.00	1.000	ary, 2024Do seggnem⊛t selated &o <
0	15						ownloaded f t Sup⊛rieur (text and dat
97	2	0.999	0.997-1.000	99.80	100.00	0.998	loaded p⊛rieur ∠nd da
0	1						ded da
01	0	1.000	0.999-1.000	1.000	1.000	1.000	<0000000000000000000000000000000000000
0	1						n <mark>ht</mark> Ninir
00	0	-	-	F	-	-	, pil
0	0			10			
			eagent A in eac				/bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Al training, and similar technologies.
For	peer	r review	only - http://br	njopen.bmj.	com/site/abo	ut/guidelines.xh	tml e

Table 5 The receiver operator characteristic curves for Reagent A in each group (det	ail)
--	------

Reference

-

+

-

+

-

+

+

+

Reagent A

-

Page 31 of 30

Section & Topic	No	Item	Reported on pag
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	Lines 1-2, Page 1
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	Lines 3-34, Page
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	Lines 41-55, Page
	4	Study objectives and hypotheses	Lines 56-60, Page
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	Lines 70-74, Page
	_	were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	Lines 102-107, Pa
	7	On what basis potentially eligible participants were identified	Lines 64-69, Page
	8	(such as symptoms, results from previous tests, inclusion in registry) Where and when potentially eligible participants were identified (setting, location and dates)	Lines 70-74, Page
	8 9	Whether participants formed a consecutive, random or convenience series	Lines 70-74, Page
Test methods	9 10a	Index test, in sufficient detail to allow replication	Lines 77-78, Page
	10a 10b	Reference standard, in sufficient detail to allow replication	Lines 92-111, Pag
		Rationale for choosing the reference standard (if alternatives exist)	
	11	Definition of and rationale for test positivity cut-offs or result categories	Lines 108-113, Pa Lines 102-107, Pa
	12a	of the index test, distinguishing pre-specified from exploratory	LINES 102-107, P
	12b	Definition of and rationale for test positivity cut-offs or result categories	Lines 108-111, P
	120	of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	Lines 108-111, P
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	Lines 108-111, P
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	Lines 118-122, P
	15	How indeterminate index test or reference standard results were handled	Lines 102-105, P
	16	How missing data on the index test and reference standard were handled	Lines 126-129, Pa
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	Lines 102-107, P
	18	Intended sample size and how it was determined	Lines 87-90, Page
RESULTS			
Participants	19	Flow of participants, using a diagram	Line 143, Page 5
	20	Baseline demographic and clinical characteristics of participants	Lines 139-143, P
	21a	Distribution of severity of disease in those with the target condition	Lines 139-143, P
	21b	Distribution of alternative diagnoses in those without the target condition	Not applicable
	22	Time interval and any clinical interventions between index test and reference standard	Lines 105-107, Pa
Test results	23	Cross tabulation of the index test results (or their distribution)	Table 3, Page 15
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	Lines 167-175, Pa
	25	Any adverse events from performing the index test or the reference standard	Line 112, Page 5
DISCUSSION	~~		Lines 200, 200, 7
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	Lines 280-286, Pa 10-11
	27	Implications for practice, including the intended use and clinical role of the index test	Lines 288-290, P
OTHER			
INFORMATION			
	28	Registration number and name of registry	Lines 309-311, P
	29	Where the full study protocol can be accessed	Lines 299-301, Pa
	30	Sources of funding and other support; role of funders	Lines 303-308, Pa
	÷	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	:

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition.** This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

Diagnostic Performance Evaluation of Urine HIV-1 Antibody Rapid Test Kits in A Real-life Routine Care Setting in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-078694.R2
Article Type:	Original research
Date Submitted by the Author:	26-Jan-2024
Complete List of Authors:	Lu, Huaxiang; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Chen, Huanhuan; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Liang, Shujia; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Zhu, Qiuying; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Tan, Guangjie; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Pang, Xianwu; Guangxi Medical University; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ruan, Yuhua; State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li, Jianjun; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ge, Xianmin; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ga, Xianmin; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Ga, Xianmin; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Huang, Yunxian; Guigang Center for Diseases control and Prevention Chen, Zhenqiang; Luzhai county Center for Diseases Control and Prevention Cai, Wenlong; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention Lan, Guanghua; Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention
Primary Subject Heading :	HIV/AIDS
Secondary Subject Heading:	Epidemiology, Diagnostics
Keywords:	HIV & AIDS < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Sensitivity and Specificity

1	
2 3 4	
5 6 7	SCHOLARONE [™] Manuscripts
8 9 10	
11 12 13	
14 15	
16 17 18	
19 20 21	
22 23 24	
25 26	
27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40	
41 42 43	
44 45 46	
47 48 49	
50 51 52	
53 54	
55 56 57	
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1 2	Diagnostic Performance Evaluation of Urine HIV-1 Antibody Rapid Test Kits in A Real-life Routine Care Setting in China
2	Abstract
4	Objectives: To evaluate the diagnostic performance of urine human immunodeficiency virus (HIV)
5	antibody rapid test kits in screening diverse populations and to analyse subjects' willingness regarding
6	reagent types, purchase channels, acceptable prices, and self-testing.
7	Designs: Diagnostic accuracy studies
8	Participants: A total of 2606 valid and eligible samples were collected in the study, including 202 samples
9	from female sex workers (FSWs), 304 persons with injection drug use (IDU), 1000 pregnant women (PW),
0	100 subjects undergoing voluntary HIV counselling and testing (VCT), and 1000 students in higher
1	education schools or colleges (STUs). Subjects should simultaneously meet the following inclusion criteria:
2	(1) being at least 18 years old and in full civil capacity; (2) signing an informed consent form; and (3)
3	providing truthful identifying information to ensure the subjects and their samples are unique.
4	Results: The sensitivity, specificity, and area under the curve (AUC) of the urine HIV-1 antibody rapid test
5	kits were 92.16%, 99.92%, and 0.960 (95% confidence interval (CI): 0.952-0.968, p<0.001), respectively,
6	among 2606 samples collected during on-site screenings. The kits showed good diagnostic performance in
7	persons with IDU (AUC: 1.000, 95% CI: 1.000-1.000, p<0.001), PW (AUC: 0.999, 95% CI: 0.999-1.000,
8	p<0.001), and FSWs (AUC: 1.000, 95% CI: 1.000-1.000, p<0.001). The AUC of the urine reagent kits in
9	subjects undergoing VCT was 0.941 (95% CI: 0.876-0.978, p<0.001). The "acceptable price" had the
20	greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the "purchase channel" had the greatest
21	influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000), and the "reagent types
22	had the greatest influence on FSWs (Pi=1.000).
23	Conclusions: The rapid urine test kits showed a good diagnostic validity in practical applications, despite a
24	few cases involving misdiagnosis and underdiagnosis.
25	Keywords: HIV, urine, rapid test kits, ROC
26	Strengths and limitations of this study:
27	1. This study has evaluated the diagnostic validity of urine HIV-1 rapid test kits in screening both the
28	general population and high-risk populations.
29	2. Cluster analysis provides a clear profile of the main concerns and selection preferences of the different
30	populations when they choose HIV test reagents.
31	3. No positive samples were found among the students, and therefore, ROC curves could not be plotted
32	for this subgroup.
33	
	1/02
	1/23

2/23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1. Introduction

The prevalence of HIV/AIDS varies widely across China[1, 2]. Guangxi Zhuang Autonomous Region, the only minority region in southern China, is a serious HIV/AIDS hotspot; in the past decade, this region had a much higher HIV/AIDS prevalence than any other Chinese coastal or inland province[3, 4]. Therefore, the public health administration in Guangxi is attempting to expand the scale of HIV screening to diagnose HIV-infected patients at an early stage and provide highly active antiretroviral therapy (HAART) promptly to reduce HIV/AIDS mortality and transmission[5, 6], especially in high-risk populations[7].

With the cost reduction, urine HIV antibody testing is gradually gaining attention and acceptance by public health policymakers, health institutions, and the general public due to its advantages of being convenient, noninvasive, safe[8-10], and reliable [11-14]. However, these urine HIV antibody reagents required that urine samples be transported to the laboratory for centralized testing because of methodological limitations, which limits their convenience of application.

A urine HIV-1 antibody rapid test reagent with colloidal gold method has been granted marketing approval by the China Food and Drug Administration in 2019. This reagent can present the results within 15 minutes, and all operations can be completed on-site. Due to the advantages of noninvasive, convenient, and rapid, the Guangxi health department is very interested in this reagent and believes that adopting it may help to further increase the acceptance of the population to HIV screening. It is worth noting that although some studies have evaluated the diagnostic performance of urine HIV-1 antibody rapid test kits using standard samples under controlled laboratory conditions, no studies have yet reported on their diagnostic performance in practical applications and the acceptance of different populations; therefore, an adequate scientific basis for the application of urine rapid test kits for HIV screening has not been provided for public health authorities in high-prevalence areas.

This study, based on a special study of the Chinese National Science and Technology Major Project (NSTMP) for infectious diseases, aimed to evaluate the diagnostic performance of urine HIV-1 antibody rapid test reagents in a practical screening setting and to preliminarily analyse the willingness of subjects regarding the types of reagents, purchase channels, and acceptable prices to provide a valuable scientific basis for the application of urine HIV antibody rapid test reagents for screening.

62 2. Materials and methods

63 2.1 Samples and Sources

Subjects were recruited from the most commonly screened populations for HIV antibodies in the real world. According to the CDC HIV Sentinel Surveillance Implementation Plan, the subjects of this study were categorized into four groups based on HIV-related risk behaviours as follows: (1) The key population, including Female sex workers (FSWs) and persons with injection drug use (IDU). FSWSs, defined as women currently involved in the commercial sex trade. IDU, defined as a person who injects opioids (mainly heroin) and has had a positive urine test for morphine in the last month. FSWs and IDU were sampled and surveyed at the place of sex trade and methadone clinics, respectively. (2) The vulnerable population, in this study, were pregnant women (PW), defined as women undergoing maternal health care in preparation for childbirth, were sampled and surveyed at maternity units in general hospitals or women's and children's hospitals. (3) In this study, the general population was students enrolled in tertiary institutions (STUs) who were sampled and surveyed at the school dispensary. (4) The subjects undergoing voluntary HIV counselling and testing (VCT), were sampled and surveyed at the CDC's HIV testing clinic.

PW are routinely screened for HIV, and women receiving care during pregnancy were recruited from women and children's hospitals. Subjects undergoing VCT were consulted or referred to provincial CDC VCT clinics. This study was conducted from August 1, 2020, to September 31, 2020. No researcher knows whether the subjects were infected with HIV before testing because of previously reported cases that were excluded through the ID card system.

To improve the external validity and to match the characteristics of the real-world HIV screening population, no strict inclusion or exclusion criteria were set for this study, only the following requirements need to be met concurrently; (1) the subject should be at least 18 years of age and in full civil capacity; (2) the subject should have signed the informed consent form and volunteered to participate in the study as a subject; (3) the subject should provide truthful identifying information, such as a driver's license or identification card, to ensure the subject and the sample are unique, and to exclude previously reported HIV cases. Researchers informed subjects of the purpose, methods, potential harms, and personal privacy issues of this study in detail before informed consent forms were signed. Following the signing of the informed consent form, each subject was required to be taken three samples, a whole blood sample, a fingertip peripheral blood sample, and a urine sample, and to complete the questionnaire after sampling.

91 The urine rapid test reagent AUC area was predicted to be between 0.85 and 0.98, and the confidence
92 level (1-alpha), confidence interval width, sample dropout rate, and screening sample size were set to 0.95,
93 0.10, 5%, and 2,500 cases, respectively, requiring a positive sample size of 5-34 cases as estimated by the
94 PASS 2015 software package.

95 2.2 Urine and blood sample testing methods

Three HIV antibody test reagents were used in the study: (1) Reagent A, named the Urine HIV-1 Antibody
Rapid Test Kit (colloidal gold), was packaged as a rapid test kit and manufactured by Wantai (20193400550);
(2) Reagent B, named DetermineTM HIV1/2 (colloidal selenium), was packaged as a rapid test kit and
manufactured by Abbott (20163400427); and (3) Reagent C, named GENscreenTM ULTRA HIV Ag-Ab
(Enzyme-Linked Immunosorbent Assay, ELISA), which was manufactured by Bio-Rad (72388C).

HIV antibody tests were divided into on-site tests (for Reagents A and B) and laboratory tests (for Reagent C only). Reagents A and B were used to test for HIV-1 antibodies in urine samples and peripheral blood samples taken from fingertips, respectively. Reagent B is the most common testing method for HIV-1 antibodies in VCT clinics. Urine and venous blood samples were collected from the study subjects using a

105 100 ml urine cup and a 4 ml EDTA vacuum blood collection tube for Reagents A and C, respectively.

Reagent A and B results were simultaneously identified and recorded by two trained practitioners, and the results were classified as negative, positive, or invalid within a specified time frame, according to the reagent instructions. If the two practitioners disagreed on the identification of the same reagent, they uploaded an electronic photo of the reagent, and the result was judged by the quality control team. The anticoagulated blood samples were transferred to the local CDC HIV confirmation laboratory and tested for HIV-1 antibodies under controlled conditions by Reagent C immediately, which was used as the reference method in the study.

All reagents were used in strict accordance with the manufacturer's instructions, and any samples from the same participant was positive, the whole blood sample was tested again in the HIV confirmation laboratory and confirmed by both ELISA and Western blotting, according to the diagnostic criteria of the Chinese Guidelines for Diagnosis and Treatment of Human Immunodeficiency Virus Infection/Acquired Immunodeficiency Syndrome (2020 edition). Three laboratories with HIV-confirmation qualifications participated in the study, including the HIV-confirmation laboratories of Guangxi Provincial CDC, Guigang CDC, and Liuzhou CDC.

4/23

BMJ Open

120 2.3 Data management and statistical analysis

121 The subjects' information, including basic information such as their name, sex, date of birth, occupation 122 type, education level, and ethnicity, as well as their willingness regarding HIV-1 antibody testing methods, 123 purchase channels, acceptable prices, and self-tests, was collected through questionnaires.

The main data management and statistical software used in this study included EPIDATA v3.1, Microsoft Excel 2019, R v4.1.0, RStudio v1.4. 1103, and IBM SPSS v26.0. The sensitivity, specificity, receiver operator characteristic (ROC) curve, and area under the curve (AUC) were used to assess the diagnostic validity of the urine HIV-1 antibody reagents in the on-site screening of different populations, these processes are synchronized in the ROC analysis module of SPSS and the PROC package of the R language. The two-step cluster analysis method in SPSS was used to evaluate the intentionality and user profiles of the study subjects regarding HIV antibody reagent types, acceptable prices, purchase channels, and self-tests. The level of statistical significance was set at α =0.05.

The information recorded in the paper questionnaire was entered in pairs using EPI DATE V3.1 and compared for consistency, with key information (ID information, age, sex, population category, education level, willingness to use reagents, etc.), HIV antibody test results, and other auxiliary information, with consistency levels of 100%, 100%, and 99.5%, respectively.

136 2.4 Patient and Public Involvement

This study was mainly completed by Guangxi CDC, with Guigang CDC, Luzhai CDC, and Binyang CDC as the specific implementors of the study. The public and patients (mainly potential patients in this study) were not directly involved in the design and implementation of this study. However, the findings of this study may have some influence on local HIV-related public health strategies in Guangxi, such as promoting noninvasive urine testing reagents for HIV screening in the general population to increase its acceptability and adopting more sensitive and specific methods for screening high-risk populations to find HIV-infected individuals at the early stage.

3. Results

3.1 Basic information about the subjects

146 A total of 2606 valid and eligible samples were collected from the FSWs, persons with IDU, PW, STUs,

147 and subjects undergoing VCT included in this study, with 202 (7.7%), 304 (11.7%), 1000 (38.4%), 1000

148 (38.4%), and 100 (3.8%) collected samples, respectively. No adverse events were reported. The flowchart 5/23

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

is presented in **Figure 1**. The basic information of each population subgroup is shown in **Table 1**.

150 3.2 Consistency of the results of the 3 reagents

Reagents A and B both showed quality control bands in the 2606 samples tested, and no reagent invalidation occurred. The results of the three reagents are shown in **Table 2**.

153 The number of probable HIV-positive individuals detected by Reagents A, B, and C was 49, 51, and 51,

respectively. Of these, 51 individuals with HIV-positive samples detected by Reagents B and C were confirmed to show HIV positivity by both ELISA and WB tests. Of the 49 HIV-positive samples detected by Reagent A, 47 were eventually confirmed to show HIV positivity. Of the 3 PW diagnosed with HIV by Reagent A, 2 were misdiagnosed.

The results of Reagent A were fully consistent with those of the reference method for the FSWs (Kappa=1.000, p<0.001) and persons with IDU (Kappa=1.000, p<0.001), with kappa values of 0.499 (p<0.001) and 0.908 (p<0.001) in the PW and subjects undergoing VCT, respectively. The results of Reagent B were fully consistent with those of the reference method, and there were no missed or misdiagnosed cases, as shown in **Table 3** and **supplementary Table 1**.

3.3 Diagnostic performance

The overall sensitivity of Reagent A was 92.16%, the specificity was 99.92%, and the AUC was 0.960 (95% CI: 0.952-0.968, p<0.001) for the 2606 on-site tests. Reagent B showed identical results to the reference method in the 2606 on-site assays (*AUC*: 1.000, 95% CI: 0.999-1.000, p<0.001), and the overall performance of Reagent A was slightly lower than that of Reagent B (z=2.083, p<0.05), as presented in **Table 4** and **supplementary Table 2**. The ROC curves of the 2 reagents are shown in Figure 2.

Reagent A showed good performance in the on-site application for persons with IDU (AUC: 1.000, 95% CI: 1.000-1.000, p<0.001), FSWs (AUC: 1.000, 95% CI: 1.000-1.000, p<0.001), and PW (AUC: 0.999, 95% CI: 0.997-1.000, p < 0.001), but the performance differences in in each application setting were significant (z=2.908, p<0.005), as shown in **Table 5** and **supplementary Table 3**. The ROC curves of the different application settings are shown in Figure 3. In this study, the false negative rate (FNR) of Reagent A in the subjects undergoing VCT was 6.25% (2/32), and the false positive rate (FPR) in the PW was 0.20% (2/999). The AUC of Reagent A in the on-site application for subjects undergoing VCT was 0.941 (95% CI: 0.876-0.978, p < 0.001). We further dissected and reviewed the causes of this problem: Of the four subjects undergoing VCT with inconsistent results between Reagent A and the reference method, two were men who

6/23

BMJ Open

have sex with men (MSM) who are regularly tested at Non-governmental organizations and were recently determined to have HIV-1 antibody positivity, which we speculate may have been due to recent infection. The other two subjects were HIV-infected individuals receiving HAART who requested recertification reports from the VCT for referral to hospitals in other provinces for treatment.

3.4 Willingness regarding and cluster analysis of HIV-1 antibody reagents, prices, and channels among
 different populations

The willingness regarding HIV-1 antibody test reagent types (χ^2 =430.498, p<0.001), purchase channels (χ^2 =494.970, p<0.001), acceptable prices (χ^2 =152.710, p<0.001), and self-tests (χ^2 =245.966, p<0.001) were significant among the different subgroups, as presented in **Table 6**.

The two-step cluster analysis models showed that the "acceptable price" had the greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the "purchase channel" had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000), and the "reagent types" had the greatest influence on FSWs (Pi=1.000), as presented in **Table 7**.

The user profiles of STUs, PW, subjects undergoing VCT, persons with IDU, and FSWs were classified into 7, 8, 5, 3, and 3 patterns, respectively. The main patterns of the five populations were as follows and are presented in Figure 4: "priced less than \$4.35, purchased at a pharmacy, blood reagents, and willing to self-test" for STUs; "priced below \$4.35, purchased at a medical institution, urine reagents, and nonselftesting" for PW; "purchased at a medical institution, willing to self-test, priced between \$4.35 and \$8.69 or more than \$17.40, and blood reagents" for subjects undergoing VCT; "purchased at a medical institution, willing to self-test, and blood reagents" for persons with IDU; and "blood reagents, priced at \$4.35-\$8.69, willing to self-test, and purchased at medical facilities" for FSWs.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

7/23

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

4. Discussion

Due to obvious advantages such as noninvasiveness and convenience [15], urine testing for HIV antibodies began in the 1990s, and their diagnostic performance has been confirmed in many studies [16-18]. Urine HIV antibody tests have been used in practice for more than a decade [19], and their convenience has been further promoted in recent years with the advent of colloidal gold rapid test kits[12, 20]. These rapid test kits further enhance the convenience of HIV antibody testing by eliminating the requirement for centralized testing in specialized infectious disease laboratories. However, few studies have reported on the diagnostic performance of rapid urine HIV antibody test kits for practical application in large, complex populations in the real world.

The NSTMP is considered to be the most important scientific and research project in China. Its infectious disease prevention and control projects have been carried out in Guangxi for decades to assess the key issues in the HIV epidemic[21, 22], including the low willingness of the population to be screened and the high mortality rate in rural areas due to late HIV detection and diagnosis[23, 24]. We conducted the study to estimate the diagnostic validity and acceptance of a rapid urine HIV antibody test kit in different populations. As far as we know, such studies are rarely reported.

In this study, based on real-world samples, we found that urine HIV antibody rapid test kits showed satisfactory sensitivity, specificity, and ROC curves, especially in high-risk populations such as persons with IDU and FSWs. Commercial heterosexual infections are the main transmission route of HIV in Guangxi, and as a high-risk population, FSWs are a key node in this transmission route [25, 26]. Both persons with IDU and FSWs are high-risk groups for HIV, and currently, sentinel surveillance and special investigations are the primary public health strategies for identifying HIV-positive patients in high-risk populations. ELISA is the major approach to test for HIV antibodies, which requires the collection of venous whole blood samples from study subjects and transportation to a dedicated HIV laboratory at the CDC for cryopreservation and testing.

In contrast, urine testing offers greater advantages in terms of convenience and timeliness. The administration of injection drugs requires regular urine sample collection for recent opioid, methamphetamine, and ketamine abuse, and efficiency and subject acceptance can be improved if urine HIV antibody testing is also conducted instead of blood testing. However, the sentinel surveillance and special investigation of some high-risk groups for HIV infection also require testing for HCV and syphilis[27, 28], and the single function of the current urine HIV rapid reagent test limits its applicability. 8/23

BMJ Open

In practice, physicians treating subjects undergoing VCT are dealing with a very complex population, which is even more complex than the high-risk population. In this study, we routinely tested subjects for blood HIV antibodies and additionally used urine reagent strips to evaluate their performance under complex practice conditions. The urine rapid test kit showed four false-negative cases among 100 subjects undergoing VCT; two were MSM with new infections detected by regular testing at NGOs, and two were patients receiving in-treatment HAART. In the present study, the ROC curve of the urine rapid test kit could have been affected by these false-negative cases if the routine VCT consultation procedure had been followed, and similar false-negative results had been found in some previous studies[14, 29]. It should be added that the urine reagent's instructions stated that samples from HIV-infected individuals in the window period or those receiving treatment may yield false-negative results.

240 Considering the complexities and psychologically protective behaviours of some subjects undergoing 241 VCT, it may be more appropriate to choose an antigen-antibody combined reagent with higher sensitivity 242 and specificity to reduce the possibility of false negatives in some cases where it is difficult for physicians 243 treating these subjects to obtain true and accurate information[30, 31]. Some subjects with significant 244 psychological fear of HIV but no high-risk exposure may consider using noninvasive urine reagent strips to 245 reduce trauma and receive psychological counselling.

Despite some limitations, urine rapid test kits can be offered as an option for HIV self-testing in high-risk
populations such as MSM, FSWs, and persons with IDU who require regular testing due to their operability,
noninvasiveness, and safety; these test kits can have a positive effect on increasing subjects' willingness to
accept and participate in screening[13, 32].

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Previous studies have evaluated urine HIV antibody reagents for general population screening, but this approach required centralized testing by qualified laboratories[20, 33]. Combined with the internet platform and logistics industry, rapid test kits with urine reagent strips can improve operability through anonymous testing, which may be able to further expand the coverage of general population screening.

In areas with high HIV prevalence, maternal HIV screening helps to identify HIV-infected PW at an early stage and provides timely drug interventions to interrupt mother-to-child transmission[34], which has a positive effect on reducing vertical transmission[35, 36]. Urine reagent strips showed satisfactory ROC curves in maternal HIV-1 antibody screening, but there were two false positive tests out of 1000 tests. The reasons for occasional false-positive HIV antibody tests in PW need to be further investigated, and similar occasional occurrences have previously been reported in ELISA screening tests[37]. Overall, the false 9/23

260 positive rate of urine rapid test reagents in the PW population is acceptable given the considerable 261 advantages of the noninvasive operation. No positive case was found in the STUs, which we believe is 262 related to the very low prevalence of HIV infection in this population. Thus, the validity of the urine rapid 263 reagent in STUs requires a larger sample size in future studies.

10/23

User profiles are the behavioural characteristics of a customer group in selecting or using a product, which is one of the hot analytical approaches in e-business. The current study innovatively applied user profiles to assess the characteristics and tendencies of different population subgroups when choosing reagents for HIV testing. We found that STUs and PW preferred reagent prices below \$4.35, which may be related to the lack of financial income for STUs and the higher cost of childbirth, resulting in price sensitivity for these two groups. We also observed a higher willingness to self-test among the student population, which may be related to the extensive HIV propaganda work carried out in colleges and universities in the past decade[38, 39].

The low willingness to self-test among persons with IDU and FSWs may be related to the fact that local CDCs conduct free HIV, HCV, and syphilis testing for such high-risk populations several times per year. At the same time, persons with IDU and FSWs enrolled in long-term health interventions develop trusting relationships with the CDC, so they are more inclined to choose the medical institution channel and blood reagents. In this study, FSWs preferred urine HIV reagents, which may be related to the noninvasive operation of the rapid test kits. Although the diagnostic performance has been proven in some studies [40], a low percentage of subjects in this study chose the oral secretion HIV antibody test kit, probably due to its expensive price and complicated operation.

People undergoing VCT were more likely to have their HIV antibodies tested in medical institutions, had the highest willingness to undergo self-testing, and were also willing to accept more expensive reagents. However, for subjects undergoing VCT, we speculated that their acceptance of HIV-1 antibody testing options, particularly regarding price, may be influenced by factors such as the reason for seeking medical services and psychological status, as all HIV antibody tests conducted in the VCT centres were free of charge.

There were limitations in this study. First, no positive samples were identified in the STUs, and therefore, ROC curves could not be drawn for this subgroup. Second, patients receiving HAART treatment and MSM in the window period were included in the VCT subgroups, which is not consistent with the recommended suggestions for the use of urine HIV reagents; however, this is a complexity that doctors treating subjects

BMJ Open

3	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
12 13 14	
15	
16	
16 17 18	
17 10	
19	
19	
20 21	
21	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
~ 7	
37 38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
50 59	
60	

undergoing VCT face every day. Despite these limitations, this study evaluated the diagnostic validity of
HIV urine rapid test kits in a complex real-world setting and provided some valuable scientific cues for the
practical application of urine reagent strips.

5. Conclusions

Overall, the rapid urine test kits showed a good diagnostic validity in practical applications, despite a few
 cases involving misdiagnosis and underdiagnosis. We recommend that physicians providing testing services
 to subjects undergoing VCTs should carefully select HIV testing reagents based on each subject's situation.

297 **6. Author contributions**

HX Lu, HH Chen, SJ Liang, YH Ruan, QY Zhu, GH Lan, and M Lin contributed to the conception and
design of the study. HX Lu, GJ Tan, WL Cai, and YJ Zhou organized the database. HX Lu and YH Ruan
performed the statistical analysis. HX Lu, HH Chen, and SJ Liang wrote the first draft of the manuscript.
XW Pang, JJ Li, XM Ge, wrote sections of the manuscript. HX Lu, HH Chen, and SJ Liang contributed
equally to the current work. All authors contributed to the manuscript revision and read and approved the
submitted version.

304 7. Data sharing statement

The original database for this study contains private information about the study participants. For noncommercial use and reasonable purposes, anonymised data of the current work can be obtained from the corresponding author.

308 **8. Findings**

This work was supported by the National Natural Science Foundation of China (82160636 and 82260670),
Guangxi Natural Science Foundation Project (2020GXNSFAA159020), Guangxi Key Laboratory of AIDS
Prevention Control and Translation (ZZH2020010), Guangxi Key Research and Development Project
(AB19245044), Guangxi Bagui Honor Scholarship, Ministry of Science and Technology of China
(2022YFC2305200 and 2018ZX10715008), and Guangxi Medical and Health Key Discipline Construction
Project.

315 **9. Ethics statement**

This study was approved by the Ethics Committee of the Guangxi Zhuang Autonomous Region Center for
Disease Control and Prevention (approval number GXIRB2019-0047).

318 **10. Competing Interest statement**

9 319 No competing interest

11/23

	information of the 2606 FSWs, pers		BN	/J Open			njopen-2023-078694 on d by copyright, inclugi 글	
Table 1 The basic	information of the 2606 FSWs, pers						incluging	
Variables	Subgroups	The sample FSWs	Persons with IDU	h population g	group [n (%)] STUs	Subjects undergoin	h 24 Februa Ensi ng for uses	To
Sex	Male	0(0)	256(84.2)	0(0)	255(25.5)	48(48.0)	ary 2 seigi srel;	55
	Female	202(100)	48(15.8)	1000(100)	745(74.5)	52(52.0)	ry 2024 eignem related	20
Age	<20	1(0.5)	2(0.7)	38(3.8)	846(84.6)	2(2.0)	се.	88
e	20-29	12(5.9)	16(5.3)	524(52.4)	113(11.3)	57(57.0)	Downloaded t int Superieur (to text and dated	72
	30-39	68(33.7)	126(41.4)	417(41.7)	41(4.1)	18(18.0)	loac and	67
	≥40	121(59.9)	160(52.6)	21(2.1)	0(0)	23(23.0)	d da	32
Ethnicity	Han	120(59.4)	279(91.8)	692(69.2)	526(52.6)	56(56.0)	from (ABE: ata mii	16
5	Zhuang	58(28.7)	20(6.6)	281(28.1)	402(40.2)	40(40.0)	from http://bmjopen.bmj.com/ (ABES) . ta mining, Al training, and sim	80
	Other	24(11.9)	5(1.6)	27(2.7)	72(7.2)	4(4.0)	ng, .	13
Education level	Illiterate	33(16.3)	5(1.6)	1(0.1)	0(0)	1(1.0)	Al tr	40
	Primary school	94(46.5)	54(17.8)	40(4)	0(0)	8(8.0)	aini'	19
	Junior middle school	69(34.2)	217(71.4)	471(47.1)	0(0)	18(18.0)	ing,	77
	Senior high school	6(3)	28(9.2)	193(19.3)	472(47.2)	19(19.0)	anc mj.o	71
	Junior college	0(0)	0(0)	292(29.2)	527(52.7)	54(54.0)	i sir	87
	Bachelor's degree or above	0(0)	0(0)	3(0.3)	1(0.1)	0(0)	ed from http://bmjopen.bmj.com/ on Jun ur (ABES) . data mining, Al training, and similar tec	4
Total	5	202	304	1000	1000	100	Jun r tec	26
12/23							e 13, 2025 at Agence Bibliographique de l nnologies.	

3 4

1 2 3 4 5 6 7		Table 2 Th
5 6 7		Groups
8		FSWs
9 10		Persons wi
11		PW
12		STUs
13 14		Subjects un
15		Total
16 17	321	a. Reagent
18	322	
19		
20 21		
22		
23		
24 25		
26		
27		
28 29		
30		
31 32		
32 33		
34		
35 26		
36 37		
38		
39 40		
40 41		13/23
42		
43 44		
44 45		

7	Reager	nt A	Reagen	nt B	Reagen	it C ^a	40401
Groups	-	+	-	+	-	+	total
FSWs	201(99.5)	1(0.5)	201(99.5)	1(0.5)	201(99.5)	1(0.5)	202
Persons with IDU	289(95.1)	15(4.9)	289(95.1)	15(4.9)	289(95.1)	15(4.9)	304
PW	997(99.7)	3(0.3)	999(99.9)	1(0.1)	999(99.9)	1(0.1)	1000
STUs	1000(100.0)	0(0)	1000(100.0)	0(0)	1000(100.0)	0(0)	1000
Subjects undergoing VCT	70(70.0)	30(30.0)	66(66.0)	34(34.0)	66(66.0)	34(34.0)	100
Total	2557(98.1)	49(1.9)	2555(98.0)	51(2.0)	2555(98.0)	51(2.0)	2606

Table 3 Consistency check of two HIV-1 a	antibody reagents in diverse subgroups ^a
--	---

Group	Reference	Reage	ent A	Reage	ent A	
Joup	Reagent	kappa	р	kappa	р	
FSWs	С	1.000	< 0.001	1.000	< 0.001	
IDU	С	1.000	< 0.001	1.000	< 0.001	
PW	С	0.499	< 0.001	1.000	< 0.001	
STUs	С	-	-	-	-	
Subjects undergoing VCT	С	0.908	< 0.001	1.000	< 0.001	
Total	С	0.939	< 0.001	1.000	< 0.001	

17 of 32					BMJ Ope	en	
	Table 4 The 1	receiver ope	rator characteristic co	urves for Reagents A	and B in the 2606 sub	ojects ^a	p
				Statistical param	eters of ROC curves		
	Reagents ^b	AUC	95% CI	Sensitivity	Specificity	Youden index	р
	А	0.96	0.952-0.968	92.16	99.92	0.921	<0.001
	В	1	0.999-1.000	100	100	1	< 0.001
	a: Table 4 is a	a summary t	table and detailed res	ults have been presen	ted in supplementary	y Table 2.	
	b: The referer	nce standard	is Reagent C (ELISA	A)			
325							
	15/23						
	15/23						
	15/23			For peer review only	- http://bmiopen.bn	ni.com/site/about/gu	
	15/23			For peer review only	- http://bmjopen.bn	nj.com/site/about/gu	

Table 5 The receiver operator	characterist			-	. h	
Groups	AUC	95% CI	tical parameter Sensitivity	Specificity	Youden index	p
Subjects undergoing VCT	0.941	0.876-0.978	88.240	100.000	0.882	<0.001
Persons with IDU	1.000	0.999-1.000	100.000	100.000	1.000	< 0.001
PW	0.999	0.997-1.000	99.800	100.000	0.998	< 0.001
FSWs	1.000	0.999-1.000	1.000	1.000	1.000	< 0.001
STUs						
a: Table 5 is a summary table a b: The reference standard is Rea		-	resented in sur			<u> </u>
: Table 5 is a summary table a		-	resented in sur		- Fable 3.	0

			Po	opulation [n (%	ó)]		-
Questions	Classification	STUs	PW	Subjects undergoing VCT	Persons with IDU	FSWs	χ^2
Reagent types	Blood	781(78.1)	599(59.9)	85(85.0)	74(24.3)	88(43.6)	430.49
	Saliva	72(7.2)	45(4.5)	6(6.0)	13(4.3)	6(3.0)	
	Urine	147(14.7)	356(35.6)	9(9.0)	217(71.4)	108(53.5)	
Purchase channels	Pharmacy	382(38.2)	202(20.2)	26(26.0)	176(57.9)	107(53)	494.97
	Online shopping	38(3.8)	42(4.2)	24(24.0)	66(21.7)	9(4.5)	
	Medical institution	565(56.5)	725(72.5)	45(45.0)	39(12.8)	85(42.1)	
	Vending machine	15(1.5)	31(3.1)	5(5.0)	23(7.6)	1(0.5)	
Acceptable price (USD\$)	<4.35	537(53.7)	575(57.5)	20(20.0)	222(73.0)	99(49.0)	152.71
	4.35-8.69	285(28.5)	252(25.2)	39(39.0)	63(20.7)	86(42.6)	
	8.70-17.39	117(11.7)	128(12.8)	23(23.0)	17(5.6)	16(7.9)	
	≥17.40	61(6.1)	45(4.5)	18(18.0)	2(0.7)	1(0.5)	
Willingness to self-test	Yes	762(76.2)	451(45.1)	83(83.0)	143(47.0)	106(52.5)	245.96
	No	238(23.8)	549(54.9)	17(17.0)	161(53.0)	96(47.5)	

Page

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
5 6 7 8 9 10 11 12 13 14 15 16 17 18	
10	
10	
19 20 21 22	
20	
21	
22 23	
22 23 24 25 26 27 28	
24	
25	
26	
27	
28	
29 30	
30	
31	
32	
33	
34	
35	
36	
32 33 34 35 36 37 38	
38	
39	
40	
41	
41	
42 43	
45 44	
44 45	
45	

46

332

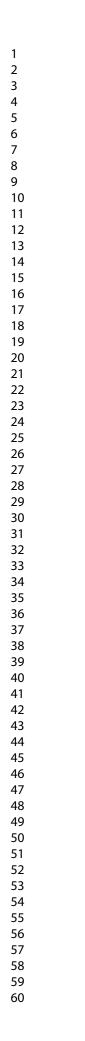
1

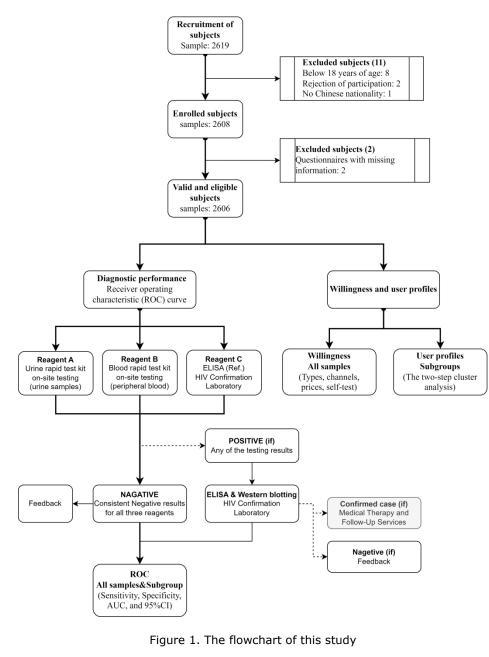
BMJ Open Table 7 The user profiles of different populations regarding HIV-1 antibody testing methods, channels, and prices Population Clustering model parameters Predictor importance ^b STUs 7 1.00 126.00 0.50 0.50 1.00 PW 8 1.00 144.00 0.50 0.50 1.00 050 Stubes undergoing VCT 5 0.50 197.88 <0.01 1.00 0.54 066 Persons with IDU 3 0.80 54.00 1.00 0.53 0.69 066 StUstering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent					BMJ Op	en		by col
Population Clustering model parameters Predictor importance b clusters Fit quality a AIC reagent types channels prices selection								pyright, i
clusters Fit quality ^a AIC reagent types channels prices selEt	Table 7 The user profiles c	of different p	opulations regard	ing HIV-1 aı	ntibody testing met	hods, channels,	and prices	ncludi
clusters Fit quality ^a AIC reagent types channels prices sel E	Population	Clust	tering model parai	meters		Predictor impo	ortance ^b	ng fi
STUs 7 1.00 126.00 0.50 0.50 1.00 00 PW 8 1.00 144.00 0.50 0.50 1.00 00 Subjects undergoing VCT 5 0.50 197.88 <0.01 1.00 0.54 00 Persons with IDU 3 0.80 54.00 0.03 1.00 0.01 00 FSWs 3 0.70 54.00 1.00 0.53 0.69 00 Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent secolent		clusters	Fit quality ^a	AIC	reagent types	channels	prices	sel
PW 8 1.00 144.00 0.50 0.50 1.00 Operation of the second standard	STUs	7	1.00	126.00	0.50	0.50	1.00	0 65
Persons with IDU3 0.80 54.00 0.03 1.00 0.01 0.08 FSWs3 0.70 54.00 1.00 0.53 0.69 0.69 Clustering Fit quality ranged from -1 to 1, where $0.5-1$ is good and ≥ 0.51 is excellent 0.53 0.69 0.69 Custoriable importance scores ranged from 0 to 1, with 0 being the lowest and 1.00 being the highest 0.69 0.69	PW	8	1.00	144.00	0.50	0.50	1.00	0ල්
Persons with IDU 3 0.80 54.00 0.03 1.00 0.01 05 FSWs 3 0.70 54.00 1.00 0.53 0.69 05 It Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent It is excellent 0.01 05 0.69 05 0.69 05 06 05 06 05 06 05 06 <t< td=""><td>Subjects undergoing VCT</td><td>5</td><td>0.50</td><td>197.88</td><td>< 0.01</td><td>1.00</td><td>0.54</td><td>0</td></t<>	Subjects undergoing VCT	5	0.50	197.88	< 0.01	1.00	0.54	0
FSWs 3 0.70 54.00 1.00 0.53 0.69 000 t: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent to the lowest and 1.00 being the highest the	Persons with IDU	3	0.80	54.00	0.03	1.00	0.01	05
t: Clustering Fit quality ranged from -1 to 1, where 0.5-1 is good and ≥0.51 is excellent b: Variable importance scores ranged from 0 to 1, with 0 being the lowest and 1.00 being the highest and similar recomposition of the store of the	FSWs	3	0.70	54.00	1.00	0.53	0.69	0
								mining, Al trainir

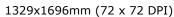
Page	21 of 32	BMJ Open C PH - 22
36 37 38 39	 333 334 335 336 337 338 339 340 341 342 343 344 	BMJ Open Portuge Propagation of this study Figure 1. The flowchart of this study Figure 2. The receiver operator characteristic curves of tragents A and B in 2606 samples Figure 2. The receiver operator characteristic curves of tragents A and B in 2606 samples Figure 2. The receiver operator characteristic curves of tragents and blood trapid test reagents Figure 2. The receiver operator characteristic curves of unine rapid test reagents and blood trapid test reagents Figure 2. The user profiles patterns of subjects in the two-steps cluster analyses, the patterns of STUS, PWs, VCT, Terper, and FWS, illustrated in a, b, c, d, and e, respectively. Figure 4. The user profiles patterns of subjects in the two-steps cluster analyses. Figure 4. The user profiles patterns of different population subgroups by two-steps cluster analyses. Figure 4. The user profiles patterns of different population subgroups by two-steps cluster analyses. Figure 4. The user profiles of different population subgroups by two-steps cluster analyses. Figure 4. The user profiles of different population subgroups by two-steps cluster analyses. Figure 4. The user profiles patterns of subjects in the two-steps cluster analyses. Figure 4. The user profiles of different population subgroups by two-steps cluster analyses. Figure 4. The user profile patterns of subjects in the two-steps cluster analyses. Figure 4. The user profile patterns of user profiles of different population subgroups. Figure 4. The user profile patterns of user patterns of user patterns of user patterns of user profiles of different population subgroups. Figure 4. The user profile patterns of user patterns of user patterns of u
40 41 42 43 44 45		19/23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

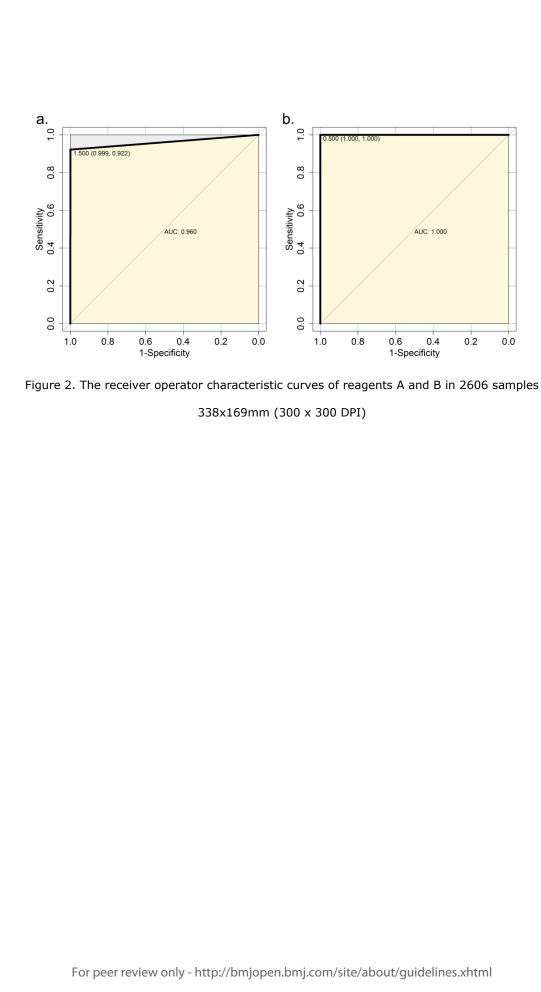
Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2			
3	345	Refere	nces
4 5	346	1.	Xing J, Li YG, Tang W, Guo W, Ding Z, Ding G, Wang L, Qin Q, Xu Y, Qian S et al: HIV/AIDS
6	347		epidemic among older adults in China during 2005-2012: results from trend and spatial
7	348		analysis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of
8 9	349		America 2014, 59 (2):e53-60.
9 10	350	2.	Wang Y, Zhao C, Liu Z, Gao D: Spatiotemporal Analysis of AIDS Incidence and Its
11	351		Influencing Factors on the Chinese Mainland, 2005-2017. International journal of
12 13	352		environmental research and public health 2021, 18(3).
14	353	3.	Wu Z, Liang W, Chen W, Chang Y, Liu Y, Liu X, Huang H, Shang X: Spatial-temporal
15	354		characteristics of AIDS incidences in Mainland China. Immunity, inflammation and disease
16	355		2020, 8 (3):325-332.
17 18	356	4.	Xu N, Jiang Z, Liu H, Jiang Y, Wang Z, Zhou D, Shen Y, Cao J: Prevalence and genetic
19	357		characteristics of Blastocystis hominis and Cystoisospora belli in HIV/AIDS patients in
20	358		Guangxi Zhuang Autonomous Region, China. Scientific reports 2021, 11(1):15904.
21	359	5.	Adam Trickey, Margaret T May, Jorg-Janne Vehreschild, Niels Obel, M John Gill, Heidi M Crane,
22 23	360		Christoph Boesecke, Sophie Patterson, Sophie Grabar, Charles Cazanave <i>et al</i> : Survival of HIV-
24	361		positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative
25	362		analysis of cohort studies. The lancet HIV 2017, 4(8):e349-e356.
26 27	363	6.	Smiley CL, Rebeiro PF, Cesar C, Belaunzaran-Zamudio PF, Crabtree-Ramirez B, Padgett D,
28	364	0.	Gotuzzo E, Cortes CP, Pape J, Veloso VG <i>et al</i> : Estimated life expectancy gains with
29	365		antiretroviral therapy among adults with HIV in Latin America and the Caribbean: a
30	366		multisite retrospective cohort study. <i>The lancet HIV</i> 2021, 8 (5):e266-e273.
31 32	367	7.	Tao L, Liu M, Li S, Liu J, Wang N: Condom use in combination with ART can reduce HIV
33	368	/.	incidence and mortality of PLWHA among MSM: a study from Beijing, China. BMC
34	369		infectious diseases 2018, 18 (1):124.
35 36	370	8.	Luo G, Su L, Feng A, Lin YF, Zhou Y, Yuan T, Hu Y, Fan S, Lu Y, Lai Y <i>et al</i> : Spatiotemporal
37	371	0.	Distribution of HIV Self-testing Kits Purchased on the Web and Implications for HIV
38	372		Prevention in China: Population-Based Study. JMIR public health and surveillance 2022,
39	373		8 (10):e35272.
40 41	374	9.	Lv Y, Zhu Q, Xu C, Zhang G, Jiang Y, Han M, Jin C: Spatiotemporal Analysis of Online
42	375).	Purchase of HIV Self-testing Kits in China, 2015-2017: Longitudinal Observational Study.
43	376		<i>JMIR public health and surveillance</i> 2022, 8 (9):e37922.
44 45	377	10.	Wilson KS, Mugo C, Katz DA, Manyeki V, Mungwala C, Otiso L, Bukusi D, McClelland RS,
45	378	10.	Simoni JM, Driver M <i>et al</i> : High Acceptance and Completion of HIV Self-testing Among
47	379		Diverse Populations of Young People in Kenya Using a Community-Based Distribution
48	380		Strategy. AIDS and behavior 2022, 26(3):964-974.
49 50	381	11.	Magno L, Pereira M, de Castro CT, Rossi TA, Azevedo LMG, Guimarães NS, Dourado I: HIV
51	382	11.	Testing Strategies, Types of Tests, and Uptake by Men Who have Sex with Men and
52	383		Transgender Women: A Systematic Review and Meta-analysis. <i>AIDS and behavior</i> 2022.
53 54	384	12.	
55	384 385	12.	Lv Y, Li G, Hu M, Xu C, Lu H, Chen L, Xing Y, Liang S, Ma Y, Liang S <i>et al</i> : Anonymous Linkage Between College Students and Human Immunodeficiency Virus (HIV) Facilities:
56			Linkage Between College Students and Human Immunodeficiency Virus (HIV) Facilities: Systematic Evaluation of Uring Solf Collection for HIV Testing Initiative in China Clinical
57	386 387		Systematic Evaluation of Urine Self-Collection for HIV Testing Initiative in China. <i>Clinical</i>
58 59	387		infectious diseases : an official publication of the Infectious Diseases Society of America 2021, 72(5):e1108 e1115
60	388		73 (5):e1108-e1115.

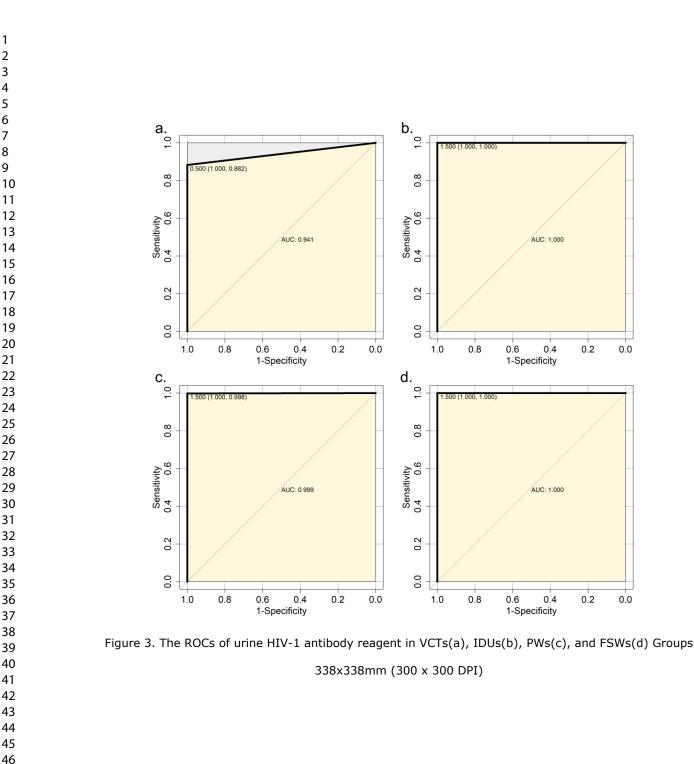

20/23


1			
2 3	200	10	
4	389	13.	Xia D, Feng X, He X, Liu G, Lyu Y, Cheng H, Jiang Y, Lu H: Feasibility of an internet-based
5	390		HIV testing service: anonymous urine collection from men who have sex with men. <i>AIDS care</i>
6 7	391		2018, 30 (10):1228-1230.
8	392	14.	Wang Y, Chen H, Wang J, Chen K, He X, Duan X, Ye R, Duan S, Jiang Y: Performance
9	393		evaluation of urine HIV antibody colloidal gold assay(in Chinese). Chin J AIDS STD 2019,
10	394		25 (7):668-670,686.
11 12	395	15.	Urnovitz HB, Murphy WH, Gottfried TD, Friedman-Kien AE: Urine-based diagnostic
12 13	396		technologies. Trends in biotechnology 1996, 14(10):361-364.
14	397	16.	Oelemann WM, Lowndes CM, Veríssimo Da Costa GC, Morgado MG, Castello-Branco LR,
15	398		Grinsztejn B, Alary M, Bastos FI: Diagnostic detection of human immunodeficiency virus type
16 17	399		1 antibodies in urine: a brazilian study. Journal of clinical microbiology 2002, 40(3):881-885.
17	400	17.	Meehan MP, Sewankambo NK, Wawer MJ, McNairn D, Quinn TC, Lutalo T, Kalibbala S, Li C,
19	401		Serwadda D, Wabwire-Mangen F et al: Sensitivity and specificity of HIV-1 testing of urine
20	402		compared with serum specimens: Rakai, Uganda. The Rakai Project Team. Sexually
21 22	403		transmitted diseases 1999, 26 (10):590-592.
23	404	18.	Cao YZ, Hosein B, Borkowsky W, Mirabile M, Baker L, Baldwin D, Poiesz BJ, Friedman-Kien
24	405		AE: Antibodies to human immunodeficiency virus type 1 in the urine specimens of HIV-1-
25	406		seropositive individuals. AIDS research and human retroviruses 1989, 5(3):311-319.
26 27	407	19.	Hilton C, Sabundayo BP, Langan SJ, Hilton M, Henson C, Quinn TC, Margolick JB, Nelson KE:
28	408		Screening for HIV infection in high-risk communities by urine antibody testing. Journal of
29	409		acquired immune deficiency syndromes (1999) 2002, 31 (4):416-421.
30	410	20.	He X, Feng X, Liu P, Lyu Y, Lu H, Ma Y, Liang S, Liu F, Jiang Y: An innovative vending
31 32	411		machine-based HIV testing and intervention service in China: anonymous urine collection
33	412		kits distributed at universities. <i>AIDS care</i> 2019, 31 (10):1319-1322.
34	413	21.	Chen H, Wu X, Chen L, Lu H, Tang Z, Shen Z, Pan SW, Ruan Y, Shao Y: Rapidly Spreading
35 36	414		Human Immunodeficiency Virus Epidemic Among Older Males and Associated Factors: A
37	415		Large-scale Prospective Cohort Study in Rural Southwest China. Sexually transmitted
38	416		diseases 2019, 46(4):234-239.
39	417	22.	Chen L, His JH, Wu X, Shen Z, Lu H, Chen H, Huang H, Zhang H, Ruan Y, Shao Y <i>et al</i> :
40 41	418	22.	Disparities in HIV and syphilis prevalence and risk factors between older male clients with
42	419		and without steady sex partners in southwestern rural China. BMC infectious diseases 2017,
43	419		17(1):269.
44 45	420 421	23.	Sun X, Yang W, Tang S, Shen M, Wang T, Zhu Q, Shen Z, Tang S, Chen H, Ruan Y <i>et al</i> :
45 46		23.	
47	422		Declining trend in HIV new infections in Guangxi, China: insights from linking reported
48	423	24	HIV/AIDS cases with CD4-at-diagnosis data. BMC public health 2020, 20 (1):919.
49 50	424	24.	Chu Q, Zhang X, Lan J, Zhang Q, Wei T, Fu Y, Fan Y: Prevalence and Factors Associated with
50 51	425		Late Diagnosis among Older Adults Living with HIV in Liuzhou, China: 2010-2020. Journal
52	426	25	of medical virology 2022.
53	427	25.	Lai J, Qin C, Nehl EJ, Jiang J, Huang Y, Liang B, Xu Y, Huang J, Xu Z, Ning C et al: HIV
54 55	428		prevalence among female sex workers in Guigang City, Guangxi, China: an 8-year
55 56	429		consecutive cross-sectional study. BMC public health 2018, 18(1):450.
57	430	26.	Liang B, Huang Q, Ou Y, Zhang F, Zhang P, Nong A, Mo S, Wu Z, Xie H, Liang H et al: Trends
58	431		and associated factors in the uptake of HIV testing among female sex workers in Sino-
59 60	432		Vietnam border areas in Guangxi, China: a cross-sectional study. BMC infectious diseases
00			

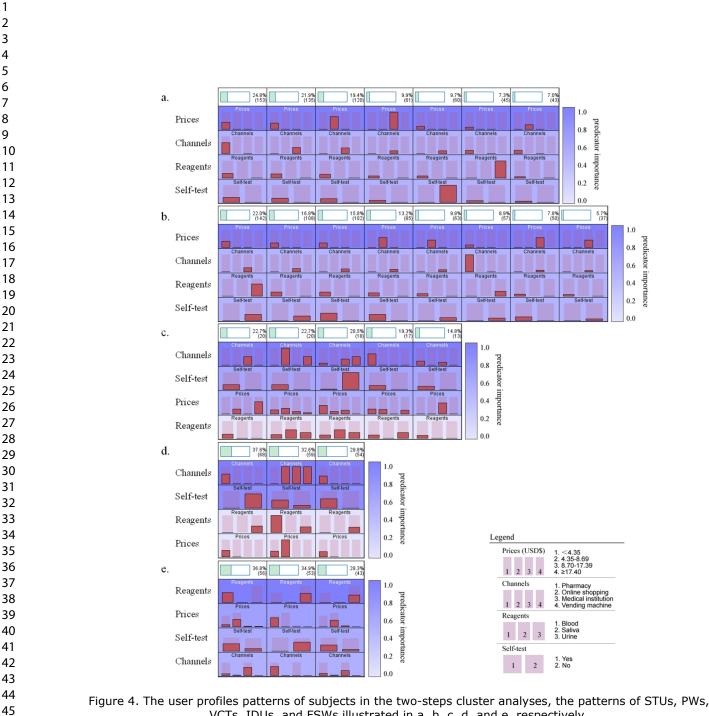

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.


3	433		2022, 22 (1):479.
4	434	27.	Ruan Y, Liang S, Zhu J, Li X, Pan SW, Liu Q, Song B, Wang Q, Xing H, Shao Y: Evaluation of
5		27.	
6 7	435		harm reduction programs on seroincidence of HIV, hepatitis B and C, and syphilis among introvenous drug users in southwest China. Servelly, transmitted disasters 2012, 40(4):222, 228
8	436	20	intravenous drug users in southwest China. Sexually transmitted diseases 2013, 40 (4):323-328.
9	437	28.	Liu CR, Li X, Chan PL, Zhuang H, Jia JD, Wang X, Lo YR, Walsh N: Prevalence of hepatitis C
10 11	438		virus infection among key populations in China: A systematic review. International journal of
12	439		infectious diseases : IJID : official publication of the International Society for Infectious Diseases
13	440		2019, 80 :16-27.
14	441	29.	Li J, Xin R, Sun W, Zhang Q, He S, Li J, Lu H: Performance of rapid tests for HIV-1 antibody
15 16	442		detection in paired serum and urine specimens of men who have sex with men(in Chinese).
10	443		<i>Chin J Microbiol Immunol</i> 2020, 40 (10):753-756.
18	444	30.	Curtis KA, Rudolph DL, Pan Y, Delaney K, Anastos K, DeHovitz J, Kassaye SG, Hanson CV,
19	445		French AL, Golub E et al: Evaluation of the Abbott ARCHITECT HIV Ag/Ab combo assay
20 21	446		for determining recent HIV-1 infection. PloS one 2021, 16(7):e0242641.
22	447	31.	Wratil PR, Rabenau HF, Eberle J, Stern M, Münchhoff M, Friedrichs I, Stürmer M, Berger A,
23	448		Kuttner-May S, Münstermann D <i>et al</i> : Comparative multi-assay evaluation of Determine™
24	449		HIV-1/2 Ag/Ab Combo rapid diagnostic tests in acute and chronic HIV infection. Medical
25 26	450		microbiology and immunology 2020, 209 (2):139-150.
27	451	32.	Almeda J, Casabona J, Matas L, González V, Muga R, Sanz B, Bolao F, Ausina V: Evaluation of
28	452		a commercial enzyme immunoassay for HIV screening in urine. European journal of clinical
29	453		microbiology & infectious diseases : official publication of the European Society of Clinical
30 31	454		Microbiology 2004, 23 (11):831-835.
32	455	33.	He X, Liu G, Xia D, Feng X, Lv Y, Cheng H, Wang Y, Lu H, Jiang Y: An innovative HIV testing
33	456		service using the internet: Anonymous urine delivery testing service at drugstores in Beijing,
34 35	457		China. PloS one 2018, 13(2):e0192255.
36	458	34.	Read PJ, Mandalia S, Khan P, Harrisson U, Naftalin C, Gilleece Y, Anderson J, Hawkins DA,
37	459		Taylor GP, de Ruiter A: When should HAART be initiated in pregnancy to achieve an
38	460		undetectable HIV viral load by delivery? AIDS (London, England) 2012, 26(9):1095-1103.
39 40	461	35.	Zhong S, Ou Y, Zhang F, Lin Z, Huang R, Nong A, Wu Z, Liang H, Qin C, Wei Q et al: Prevalence
41	462		trends and risk factors associated with HIV, syphilis, and hepatitis C virus among pregnant
42	463		women in Southwest China, 2009-2018. AIDS research and therapy 2022, 19(1):31.
43 44	464	36.	Olakunde BO, Adeyinka DA, Olawepo JO, Pharr JR, Ozigbu CE, Wakdok S, Oladele T, Ezeanolue
44	465		EE: Towards the elimination of mother-to-child transmission of HIV in Nigeria: a health
46	466		system perspective of the achievements and challenges. International health 2019, 11(4):240-
47	467		249.
48 49	468	37.	Wesolowski LG, Delaney KP, Lampe MA, Nesheim SR: False-positive human
50	469	- / -	immunodeficiency virus enzyme immunoassay results in pregnant women. <i>PloS one</i> 2011,
51	470		6(1):e16538.
52	471	38.	Zheng Y, Zhang X, Sun X, Shi Y, Chang C: Evaluation of the college-based HIV/AIDS
53 54	472	20.	education policy in Beijing, China: a mixed method approach. Environmental health and
55	473		preventive medicine 2020, 25 (1):50.
56	474	39.	Tu F, Yang R, Li R, Du G, Liu Y, Li W, Wei P: Structural Equation Model Analysis of
57 58	474	59.	HIV/AIDS Knowledge, Attitude, and Sex Education Among Freshmen in Jiangsu, China.
58 59	475		Frontiers in public health 2022, 10:892422.
60	4/0		110muers in public neurin 2022, 10 .092422.
		22/23	

1 2			
3 4 5 6 7 8 9 10 11	477 478 479 480 481	40.	González V, López N, Grifols J, Egea L, Rivaya B, Wang JHW, Casabona J, Cardona PJ: Validation study of an automated chemiluminiscence assay to detect HIV antibodies in oral fluid specimens. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 2022, 41(6):907-911.
12 13 14 15 16 17 18 19			
20 21 22 23 24 25 26			
27 28 29 30 31 32 33 34			
35 36 37 38 39 40 41			
42 43 44 45 46 47 48 49			
50 51 52 53 54 55 56			
57 58 59 60			



0.2


0.4

0.0

BN

VCTs, IDUs, and FSWs illustrated in a, b, c, d, and e, respectively.

869x1027mm (72 x 72 DPI)

supplementary Table 1 Cons	sistency check of	of two HIV-1 a	antibody 1	reagen	ts in dive	rse subgrou	ps			by copyright, including
Group	Reference	Result ^a			eagent A				eagent B	tor u
_	Descent C		- 201	+ 0	<i>kappa</i>	<i>p</i>	- 201	+ 0	<i>kappa</i>	<i>p s</i> <0.00
FSWs	Reagent C	-	201	1	1.000	< 0.001	201	1	1.000	<0.00 1
DU	Reagent C		289	0	1.000	< 0.001	289	0	1.000	<0.00
		+	0	15			0	15		io te
PW	Reagent C	Qr	997	2	0.499	< 0.001	999	0	1.000	<0.00
		+	0	1			0	1		na a
STUs	Reagent C	-	1000	0	-	-	1000	0	-	Jata
		+	0	0			0	0		
Subjects undergoing VCT	Reagent C	-	66	0	0.908	< 0.001	66	0	1.000	<0.00
	D	+	4	30	0.020		0	34	1 000	, A
Fotal	Reagent C	- +	2553 4	2 47	0.939	< 0.001	2555 0	0 51	1.000	<0.004
a: supplementary Table 1 pr	esents the detai	led diagnostic	results fo	r Tabi	e 3.					ig, and similar technologies.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
18	
19	
20	
20 21 22 23	
22	
23	
24 25	
25 26	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

supplementary Table 2	The receiver operator characte	eristic curves for Reagents A and B i	in the 2606 subjects
	· · · · · · · · · · · · · · · · · · ·		j

Descents	Descrites a	Resu	ılts		Sta	tistical param	eters of ROC	curves	
Reagents	Results ^a	-	+	AUC	95% CI	Sensitivity	Specificity	Youden index	р
А	-	2553	2	0.960	0.952-0.968	92.16	99.92	0.921	< 0.001
	+	4	47						
В	-	2555	0	1.000	0.999-1.000	100.00	100.00	1.000	< 0.001
	+	0	51			Do)		

a: **supplementary Table 2** presents the detailed diagnostic results for Table 4. reviewon

						BMJ Open			d by co
									by copyright, including for
									rt, inclu
supplementary Table 3 The	receiver oper	ator cha	ractei	ristic cur	ves for Reagen	t A in each gı	oup		uding
Groups	Reference	Reage	nt A		Star	tistical param	eters of ROC	curves	
-		-	+	AUC	95% CI	Sensitivity	Specificity	Youden index	ses
Subjects undergoing VCT	-	66	0	0.941	0.876-0.978	88.24	100.00	0.882	< 8
	+	4	30						lated
Persons with IDU	-	289	0	1.000	0.999-1.000	100.00	100.00	1.000	< 6
	+	0	15	6					text
PW	-	997	2	0.999	0.997-1.000	99.80	100.00	0.998	< ଥି ପ
	+	0	1				,		dat
FSWs	-	201	0	1.000	0.999-1.000	1.000	1.000	1.000	<0). (0)> (0)>
	+	0	1						mining
STUs	-	1000	0	-	-	1-	-	-	ġ, A
	+	0	0						2 #
a: supplementary Table 3 pro									$\overleftarrow{\psi}$ text $\overleftarrow{\psi}$ rd dat $\overleftarrow{\psi}$ mining, Al training, and similar technologies.
		Fo	r pee	r review	only - http://bi	mjopen.bmj.	com/site/abc	out/guidelines.xh	ıtml

3 4

Page 33 of 32

Section & Topic	No	Item	Reported on pag
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	Lines 1-2, Page 1
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	Lines 3-34, Page
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	Lines 41-55, Page
	4	Study objectives and hypotheses	Lines 56-60, Page
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	Lines 70-74, Page
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	Lines 102-107, Pa
	7	On what basis potentially eligible participants were identified	Lines 64-69, Page
	-	(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	Lines 70-74, Page
	9	Whether participants formed a consecutive, random or convenience series	Lines 77-78, Page
Test methods	10a	Index test, in sufficient detail to allow replication	Lines 62-129, Pag
	10b	Reference standard, in sufficient detail to allow replication	Lines 92-111, Pag
	11	Rationale for choosing the reference standard (if alternatives exist)	Lines 108-113, Pa
	12a	Definition of and rationale for test positivity cut-offs or result categories	Lines 102-107, Pa
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	Lines 108-111, Pa
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	Lines 108-111, Pa
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	Lines 108-111, Pa
A		to the assessors of the reference standard	L'12
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	Lines 118-122, Pa
	15	How indeterminate index test or reference standard results were handled	Lines 102-105, Pa
	16	How missing data on the index test and reference standard were handled Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	Lines 126-129, Pa
	17		Lines 102-107, Pa
	18	Intended sample size and how it was determined	Lines 87-90, Page
RESULTS	10	Flow of portigioants, using a diagram	
Participants	19	Flow of participants, using a diagram	Line 143, Page 5
	20 21-2	Baseline demographic and clinical characteristics of participants Distribution of severity of disease in those with the target condition	Lines 139-143, Pa Lines 139-143, Pa
	21a 21b	Distribution of severity of disease in those with the target condition	Lines 139-143, Pa
	210	Time interval and any clinical interventions between index test and reference standard	Lines 105-107, Pa
Test results	22	Cross tabulation of the index test results (or their distribution)	Table 3, Page 15
iest iesuils	23	by the results of the reference standard	rable 5, Fage 15
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	Lines 167-175, Pa
	24 25	Any adverse events from performing the index test or the reference standard	Line 112, Page 5
DISCUSSION		Any develop events nom performing the mack test of the reference standard	Ence IIZ, Fage J
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	Lines 280-286, Pa
		stary minuterior, mereaning sources of potential bias, statistical ancertainty, and generalisability	10-11
	27	Implications for practice, including the intended use and clinical role of the index test	Lines 288-290, Pa
OTHER			
INFORMATION			
	28	Registration number and name of registry	Lines 309-311, Pa
	29	Where the full study protocol can be accessed	Lines 299-301, Pa
	30	Sources of funding and other support; role of funders	Lines 303-308, Pa

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition.** This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

