BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com # BMJ Open ## User-Centered Clinical Decision Support to Implement Emergency Department-Initiated Buprenorphine for Opioid Use Disorder: ## **Protocol for the Pragmatic Group Randomized EMBED Trial** | Journal: | BMJ Open | | | | |-------------------------------|---|--|--|--| | Manuscript ID | bmjopen-2018-028488 | | | | | Article Type: | Protocol | | | | | Date Submitted by the Author: | | | | | | Complete List of Authors: | Melnick, Edward; Yale University, Emergency Medicine Jeffery, Molly; Mayo Clinic, Department of Emergency Medicine Dziura, James; Yale University School of Medicine, Department of Emergency Medicine Mao, Jodi; Eastern Virginia Medical School Hess, Erik; University of Alabama at Birmingham School of Medicine, Department of Emergency Medicine Platts-Mills, Timothy; University of North Carolina School of Medicine, Department of Emergency Medicine Solad, Yauheni; Yale New-Haven Health Paek, Hyung; Yale New-Haven Health, Information Technology Services Martel, Shara; Yale University School of Medicine, Department of Emergency Medicine Patel, Mehul; University of North Carolina at Chapel Hill School of Medicine, Department of Emergency Medicine Bankowski, Laura; Yale University School of Medicine, Department of Emergency Medicine Lu, Charles; Yale University School of Medicine, Yale Center for Medical Informatics Brandt, Cynthia; Yale University School of Medicine, Yale Center for Medical Informatics, Department of Emergency Medicine D'Onofrio, Gail; Yale University School of Medicine, Department of Emergency Medicine | | | | | Keywords: | ACCIDENT & EMERGENCY MEDICINE, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Change management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Substance misuse < PSYCHIATRY | | | | # SCHOLARONE™ Manuscripts BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. Edward R. Melnick, MD, MHS¹; Molly M. Jeffery, PhD²; James D. Dziura, PhD, MPH¹; Jodi A. Mao³; Erik P. Hess, MD, MSc⁴; Timothy F. Platts-Mills, MD, MSc⁵; Yauheni Solad, MD, MHS⁶; Hyung Paek, MD, MSEE⁶; Shara Martel¹; Mehul D. Patel, PhD⁵; Laura Bankowski¹; Charles C. Lu⁷; Cynthia Brandt, MD, MPH^{1,7}; Gail D'Onofrio, MD, MS¹ - ¹ Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT - ² Department of Emergency Medicine, Mayo Clinic, Rochester, MN - ³ Eastern Virginia Medical School, Norfolk, VA - ⁴ Department of Emergency Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL - ⁵ Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC - ⁶ Yale New-Haven Health, Information Technology Services, New Haven, CT - ⁷ Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT Corresponding Author: Edward R. Melnick, MD Department of Emergency Medicine Yale School of Medicine 464 Congress Ave, Suite 260 New Haven, CT 06519 Telephone (203) 785-5174 Fax (203) 785-4580 e-mail: edward.melnick@yale.edu Funding: This work is supported within the NIH Health Care Systems Research Collaboratory, by a cooperative agreement (UG3DA047003) from the National Institute on Drug Abuse of the NIH. This work also received logistical and technical support from the NIH Collaboratory Coordinating Center (U24AT009676). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in decision to publish or preparation of the manuscript. The National Institutes of Health contributed to the design of the study. Conflicts of interest: The authors have no financial conflicts to disclose Word count: 4754 *Author contributions*: ERM and GD conceived of the work. All authors substantially contributed to the design and implementation of the trial. ERM, MMJ, and XYM drafted the initial manuscript. All authors edited and approved the final version submitted for publication. ERM takes responsibility for all aspects of the work. Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies #### **ABSTRACT** #### Introduction The goal of this trial is to determine whether implementation of a user-centered clinical decision support (CDS) system can increase adoption of initiation of buprenorphine into the routine emergency care of individuals with Opioid Use Disorder (OUD). #### **Methods** A pragmatic cluster randomized trial is planned to be carried out in 20 Emergency Departments (EDs) across five healthcare systems over 18 months. The intervention consists of a user-centered CDS integrated into ED clinician electronic workflow and available for guidance to: 1) determine whether patients presenting to the ED meet criteria for OUD, 2) assess withdrawal symptoms, and 3) ascertain and motivate patient willingness to initiate treatment. The CDS guides the ED clinician to initiate buprenorphine and facilitate follow up. The primary outcome is the rate of buprenorphine initiated in the ED. Secondary outcomes are: 1) rates of receiving a referral, 2) fidelity with the CDS, and 3) rates of clinicians providing any ED-initiated buprenorphine, referral for ongoing treatment, and receiving Drug Addiction Act of 2000 training. Primary and secondary outcomes will be analyzed using generalized linear mixed models, with fixed effects for intervention status (CDS vs. usual care), pre-specified site and patient characteristics and random effects for study site. #### **Ethics and Dissemination** The protocol has been approved by the Western Institutional Review Board. No identifiable private information will be collected from patients. A waiver of informed consent was obtained for collection of data for clinician prescribing and other activities. As a minimal risk implementation study of established best practices, an Independent Study Monitor will be utilized in place of a Data Safety Monitoring Board. Results will be reported in ClinicalTrials.gov and published in open-access, peer-reviewed journals, presented at national meetings, and shared with the clinicians at participating sites via a broadcast e-mail notification of publications. **Trial registration number**: clinicaltrials.gov NCT03658642 #### Strengths and limitations of this study: - User-centered design of the intervention - IT integration: perhaps largest trial of its kind integrating a similar intervention across a large number of healthcare and EHR systems. Using streamlined workflow to overcome barriers to adoption of a safe and effective treatment for opioid use disorder. - Study design: group randomized trial shortens the study length to better control for temporal trends in the opioid epidemic. Heterogeneity of sites controlled for by constrained randomization - Pragmatic trial: embedding intervention into routine care more likely to have an immediate impact on actual care delivery - EHR phenotyping: establishing patient eligibility for the intervention via phenotyping permits passive data collection from EHR #### INTRODUCTION #### **Background & Rationale** Dependence on opioids is a major public health problem in the United States, taking a devastating toll on Americans, their families, and communities.[1,2] An estimated 2.1 million people in the U.S. have opioid use disorder (OUD)[3] and more than 33,000 opioid-related deaths occur annually.[4] In 2011, there were 605,000 ED visits related to opioids in the United States.[5] From
2016-2017, emergency departments (EDs) experienced a 30% increase in visits for opioid overdose.[6] The ED offers a unique treatment opportunity for patients receiving care for acute and comorbid conditions related to opioid use. One of the most promising treatments for OUD is buprenorphine/naloxone (BUP), a partial opioid agonist combined with an antagonist, that can be prescribed by an appropriately trained clinician in an office setting for use at home. BUP decreases mortality as well as symptoms of withdrawal, craving, and opioid use.[7,8] In a placebo-controlled randomized trial of 40 OUD patients who all received cognitive-behavioral group therapy, weekly individual counseling, and weekly urine drug screening, cumulative retention in treatment at one year was 75% for individuals in the BUP group compared to 0% in the placebo group (p = 0.0001).[9] A recent Cochrane review including 31 trials with 5430 participants found high quality evidence that BUP is superior to placebo in retention of participants in treatment and can reduce illicit opioid use effectively compared to placebo.[10] Currently, ED clinicians often refer patients with OUD to opioid treatment programs rather than initiating medication for OUD (MOUD) treatment in the ED. In a randomized clinical trial involving 329 individuals with OUD, we found that ED-initiation of BUP with referral for ongoing MOUD treatment was superior to referral alone, resulting in nearly twice the percentage of patients who were engaged in formal addiction treatment at 30 days (78% with BUP vs 37% with referral alone vs 45% with brief intervention, p < 0.001) and less illicit opioid use.[11] Despite the efficacy of ED-initiated BUP with referral for ongoing MOUD treatment, it is currently not routinely offered in EDs due to medical, regulatory, and logistical barriers.[11–13] Adopting this evidence-based practice into routine care would shift the clinical practice paradigm for early OUD identification and treatment by initiating treatment at a time when the patient may be motivated and particularly vulnerable to morbidity and mortality.[14,15] Clinical decision support (CDS), computerized tools that offer patient-specific assessments or recommendations to clinicians, represents one approach to embed this complex intervention into routine emergency care.[16,17] However, CDS faces its own challenges, including unintended consequences such as alert fatigue and increased cognitive load.[18–22] CDS design recommendations suggest careful consideration of the socio-technical environment and delivery of the right information, to the right person, in the right format, at the right time in clinical workflow to optimize medical decision-making.[23–26] #### **Objectives** For these reasons, we employed a user-centered design process to design and formatively evaluate the EMBED (Emergency Department-Initiated Buprenorphine for Opioid Use Disorder) CDS intervention. The user-centered design and formative evaluation of the EMBED intervention is reported elsewhere. Given the current opioid epidemic in the US, there is great urgency for prospective trials to identify the best approaches to BUP implementation and integration into routine practice. The goal of this multicenter, pragmatic, parallel cluster randomized trial is to compare the effectiveness of user-centered CDS for ED-initiated BUP and referral for ongoing MOUD treatment to usual care on the rates of ED initiation of BUP and referral in ED patients with OUD. We hypothesize that rates of ED-initiation of BUP and referral will be higher in the user-centered CDS arm of the trial. #### Study Design The study design is an 18-month pragmatic, parallel, cluster randomized, superiority trial using constrained randomization of clusters to arms (schematic diagram, **Figure 1**).[27–29] The unit of randomization (i.e. cluster) is the ED. EDs will be randomly allocated with an allocation ratio of 1:1. Adequate lead time will be allotted to install the intervention in the EHR at all intervention sites -- including a three month implementation and washout phase. The intervention will then begin at the same time across all sites with the CDS intervention fully implemented in the intervention sites' EHRs at the start of the trial. Clinicians at control sites will retain all control of their practice and practice as usual without the CDS intervention installed in their EHR. Pragmatic trials study an intervention under the usual conditions in which it will be applied, as opposed to an explanatory trial which would test an intervention under ideal conditions.[27,30] In cluster randomized trials, treatment intervention is allocated to clusters (i.e. groups of individuals) rather than individuals. This is done to manipulate the physical or social environment of the intervention when an individual intervention would likely result in contamination between intervention and control participants at the group level.[28] The parallel cluster randomized design was chosen over a stepped wedge design due to the high likelihood of confounding by temporal trends from ongoing efforts to mitigate the opioid epidemic.[31][32] A major challenge of the cluster randomized design is from potential confounding due to a limited number of heterogeneous groups. [28] Constrained randomization offers a solution to this source of confounding by balancing key cluster-level prognostic factors across the study to avoid distorting estimates of treatment effect due to the confounding factors.[29] This allocation technique more evenly distributes potential confounders between intervention arms by specifying the confounding factors, characterizing each cluster in terms of these factors. identifying a subset of randomization combinations of clusters that adequately balance confounding factors between intervention arms and randomly selecting one of these combinations as the allocation scheme.[29] Potential confounders that will be used for this trial are: EHR vendor, ED annual volume, ED type (e.g., academic, community, urban, rural, etc), ratio of ED attendings who have a waiver to prescribe BUP, current rate of ED BUP prescribing, resources in ED to facilitate management of patients with OUD, and willingness of staff to adopt the practice of ED-initiation of BUP. #### **METHODS** #### **Participants** There will be 20 participating EDs from hospitals within approximately five health care systems (HCS). At the time of writing this protocol, all of the sites have very low (or 0) rates of BUP initiation in the ED. The final study sites will be determined based on sample size needs, anticipated number of eligible patients per site determined by electronic health records (EHR) phenotype,[33–36] and willingness and ability to participate (e.g., EHR integration of the intervention, EHR data extraction, availability of BUP in the ED and referral for ongoing MOUD treatment in the surrounding community). When finalized, the full study site list will be available at clinicaltrials.gov. The intervention will be conducted at the site level. Patients are not considered human subjects since: (1) no identifiable private information will be collected, (2) the intervention does not target the patient, and (3) EHR data will be collected retrospectively without interaction with the patient. The study sample will include all ED attending physicians credentialed to practice in the study site EDs. For ED encounters with physicians who practice at both an intervention and control site, only the encounters at intervention sites will contribute data for analyses. Encounters with these physicians at a control site will be excluded from the primary analysis. Adult ED patients (age 18 years or older) meeting an EHR-derived phenotype suggesting possible OUD will be included in the analysis: those who are discharged from the ED, not pregnant, and not currently taking a MOUD. The initial phenotype has been developed by the study team and is currently undergoing validation via emergency physician chart review to determine the phenotype's validity in identifying the target patient population.[33] Details of this phenotype and its validation will be reported separately. All ED patients meeting the EHR phenotype criteria will be eligible for the trial. For patients with more than one ED visit during the study period, only the initial ED visit will be eligible for inclusion in the primary analysis. The CDS will also be available for all clinicians on the care team and to use for patients who are not identified by the phenotype. These patients will be excluded from the primary analyses. #### Intervention The intervention for this study includes the user-centered CDS as well as education of ED clinicians practicing at all study sites. The need for flexibility in the graphical user interface of the intervention resulted in the decision to develop the CDS as a web application. This provides the ability to access the tool both embedded within the EHR or directly over the Internet. The web application was developed as a single-page application (SPA) based on React JavaScript library. The CDS is a user-initiated activity in the EHR that calls the web application using Active Guidelines to streamline the flow diagram of our clinical protocol for ED-initiated BUP (Figure 2).[37] The intervention's graphical user interface (**Figure 3**) is an intuitive, simple layout presenting four care pathways in columns based on the patient's diagnosis of OUD, the severity of withdrawal, and readiness to start treatment. There is additional, optional decision support available for guidance to: 1) evaluate OUD severity based on DSM-5 criteria, 2) assess withdrawal severity using the clinical opiate withdrawal scale (COWS) score, and 3) motivate patient willingness and readiness to initiate MOUD treatment with a brief motivational interview.[38,39] These materials are also available to share with other members of the care team via a
web address, text messaging, or QR code. The interface also includes a toggle switch for the user based on whether or not they have a waiver to prescribe BUP. Non-waivered clinicians cannot prescribe BUP but can administer a one-time dose of BUP in the ED for up to 72-hours.[40] When integrated into the local EHR system, launching a care pathway enables the user to: place orders, refer for ongoing MOUD treatment, and update clinical notes. The educational plan will be site-specific and tailored to the usual care at that institution. It will be administered within three months of the study start date. The details of the plan will be developed in partnership with local champions who self-identify an interest in helping to implement an ED-initiated BUP protocol at their site. Specifically, the education plan will be required to include: - A didactic on opioid use disorder, its diagnosis, assessment of withdrawal severity, and local resources for referral for ongoing MOUD treatment - 2. Circulation and posting in each study site ED of the flow diagram of the study's clinical protocol for ED-initiated BUP (Figure 2). Since this protocol is considered best practice, clinicians at control sites will retain all control of their practice and be encouraged to follow this protocol even though the CDS will not be available to them. - 3. Intervention sites will include strategies to increase use of the intervention by training clinicians on how to launch and use the CDS. Use of the intervention will be tracked with site-specific audit and feedback that is consistent with typical quality improvement initiatives at that site. Given the ongoing and escalating opioid epidemic and wide scope of this trial, we anticipate that there may be concomitant interventions to stem OUD at study sites during the trial. We plan to permit these interventions as long as they are: (1) implemented before randomization so that they can be tracked and accounted for in the constrained randomization process, and (2) they are not a health IT intervention targeted at clinicians to initiate BUP in the ED. #### **Outcomes** The primary study hypothesis is that there will be higher rates of ED-initiated BUP with referral for ongoing MOUD with user-centered CDS compared with usual care. Therefore, the primary outcome will be BUP initiation in the ED, defined as whether or not an eligible patient is administered BUP in the ED and/or prescribed BUP upon discharge from the ED. Although this is not a patient-centered outcome, it is a pragmatic and meaningful surrogate that will serve as a lead indicator of the CDS intervention's effect on engaging more OUD patients in treatment. We will also evaluate the effect of user-centered CDS on the following secondary implementation outcomes as compared to usual care, informed by the RE-AIM framework:[41,42] - 1. Referral to follow-up for ongoing MOUD treatment (patient-level; Y/N) - 2. Prescription for naloxone at ED discharge (patient-level; Y/N) - 3. Receipt of discharge instructions on opioid use, overdose education, naloxone education, and buprenorphine education (patient-level; Y/N) - 4. Attending physician adoption rates (physician level): - a. Provision of any ED-initiated BUP during the trial (Y/N) - b. Provision of any referral for ongoing MOUD treatment during the trial (Y/N) - 5. Receipt of Drug Addiction Treatment Act of 2000 training during trial (clinician level; Y/N) Additional secondary implementation outcomes to be obtained from the web application include: clinician fidelity with the intervention assessed via a critical action checklist[43] and error rate of the intervention (using surrogates based on tool usage, e.g., application launched but not used, launching a page in the web application and spending less than two seconds on that page). The intervention will continue to be made available for use after the trial concludes; three months after trial completion, medical record review of eligible patients will be conducted at a subset of intervention sites to determine the maintenance rate of the intervention. #### Sample Size Current rates of BUP use in the ED range from 0-2% with most sites at 0%. Assuming a rate of BUP use in the usual care group of 1%, an increase to 10% would be a convincing and meaningful incremental effect of the intervention. Preliminary data from EDs that will be randomized in this trial suggest an Intraclass Correlation Coefficient (ICC) for BUP use of 0.01. The NIH group randomized sample size calculator[44] was used to determine the required number of sites to be randomized. With a two-sided type I error of 0.05, a conservative ICC of 0.03, and an expected average of 200 participants per site, a total of 12 sites will provide 90% power to detect a difference of 9%. This estimate is based on the assumption that all sites will have at least 200 unique patient visits during the trial that meet the EHR phenotype. We estimated the impact of enrollment variability across sites on the required sample size using the formula described by Eldridge et al.[45] We added 2 sites to the total number of sites given the use of z-scores rather than t-scores in the estimation. As the coefficient of variation (CV) in the number of participants enrolled across sites increases, the required number of sites Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies increases (**Figure 4**). To accommodate this potential variability, we will randomize a total of 20 sites. **Table 1** shows the power to detect different effect sizes given randomization of 20 sites. Even with large variability in participant enrollment (CV=1), we will have over 90% power to detect a difference of 0.09. We will have good power (>80%) to detect effect sizes as low as 0.05 provided the variability in site enrollment is not great (<0.50). | | Effect Size (Difference in Proportions) | | | | | | | |---|---|------|------|------|------|------|--| | | | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | | Coefficient
of Variation
in
Enrollment | 0 | 87% | 94% | 97% | 99% | 99% | | | | 0.2 | 86% | 93% | 97% | 99% | 99% | | | | 0.5 | 80% | 89% | 94% | 97% | 98% | | | | 0.8 | 70% | 80% | 87% | 92% | 95% | | | | 1.0 | 62% | 72% | 80% | 87% | 91% | | #### **Allocation** Study sites that meet readiness criteria at the time of randomization will be allocated 1:1 to CDS and usual care groups using constrained randomization conducted by personnel in the data coordinating center (DCC). The general method will follow procedures and recommendations from the literature on group randomized trials.[29] With a small number of sites that differ in important ways, unconstrained randomization may not adequately balance important site characteristics. To improve comparability of treatment and control sites, personnel in the DCC under the direction of JDD will list all possible allocations of treatment and control groups (with 20 sites, there are about 165,000 combinations of treatment and control groups). The imbalance score (\square) from Raab and Butcher will be calculated for each possible allocation.[46] $$\beta = \sum_{l=1}^{S} \omega_l (\overline{x}_{0l} - \overline{x}_{1l})^2$$ where S is the number of variables on which the groups should be balanced, ω_l is a weight calculated as the inverse variance of the mean of variable l across the hospitals, and the $\overline{x_l}$ represent the means of variable l across the hospitals in the intervention (indexed as 1) and control (indexed as 0) groups. A candidate set of 1000 possible allocations with the most favorable imbalance scores will be selected, and the final allocation will be selected at random from that candidate set. Since clinicians must know how to launch and use the intervention, they will not be blinded to the allocation of their site as a control or intervention site. Clinicians may inform patients that they are using the CDS or not, as they deem appropriate consistent with CDS use in their usual practice. All study sites will post information in their ED informing patients of the study. #### **Data Collection** Outcome data will be collected via SQL query of the local EHR at regular intervals from data routinely collected in each hospital's EHR. This will facilitate large-scale data collection that would not otherwise be practical in an explanatory trial. To enable consistent EHR data collection across sites, a master data dictionary of all data elements will be created. At each study site, the variables in the data dictionary will be validated against the institutional EHR to ensure that the variables are correctly mapped to the EHR field that corresponds to the clinical intent of the variable after accounting for documentation practices and workflow at each site.[47] For data quality assurance, the mapped variables will be validated against the EHR to ensure that the data are clinically relevant to the goals of the project and correctly represents the clinical data that clinicians use to make decisions. Additionally, data to determine compliance, use, and fidelity with the CDS intervention that could not be reliably abstracted from the EHR (e.g., DSM-5 OUD score, COWS score) will be abstracted from the web application's use logs. Information on whether the patient attended the referred follow-up visit and whether the patient was prescribed BUP as an outpatient will be abstracted from the EHR if available (e.g., if the patient is seen for follow-up within the same system). Data will be sent from study sites to the study DCC at predetermined, regular intervals. The DCC will conduct ongoing data monitoring activities on study data from all participating sites to ensure data received is what it is intended to be. Baseline data for the study participants will include demographic and clinical data such as age, gender, race,
ethnicity, insurance status, past medical and psychiatric history, recent medical or psychiatric hospital admissions, recent enrollment in formal addiction treatment, active prescriptions for other opioids, and urine drug screen results as ascertained by regularly collected data in the EHR. #### **Data Management** Study data will only be available to members of the study DCC who are authorized for this study. To ensure the privacy and confidentiality of data for this project, DCC servers hosting data repositories are strongly firewalled; access to the repositories is permitted only through properly authenticated Web APIs. All data will be encrypted both at rest and in transit. The DCC database-hosting is certified by our institution's Information Security Office as conforming to HIPAA and our institution's data protection guidelines. All project computers are stored in locked offices within a building having limited, electronic passkey access. All computers are password protected and protected by our institution's firewall which is encrypted using Microsoft BitLocker. Individually identifiable or deducible data will only be by transmitted via secured telecommunications, never by unsecured telecommunications like email or electronic File Transfer Protocol (FTP). Procedures are in place for rapid recovery from hardware or database failure. #### **Data Monitoring** As a minimal risk implementation study of established best practices, an Independent Study Monitor will be utilized in place of a formal Data Safety Monitoring Board (DSMB). Interim monitoring will focus on adherence to the protocol, completeness of data retrieval from each ED's EHR, and uptake of the CDS intervention. A set of monitoring tables will be generated for this purpose. The Independent Study Monitor will report directly to the study DCC. No interim analyses for effectiveness are planned. #### **Analysis Plan** General Considerations: This is a cluster randomized trial to test the hypothesis that there will be higher rates of provision of ED-initiated BUP and referral for ongoing MOUD with user-centered CDS compared with usual care. Analyses will be conducted as intention to treat including all individuals regardless of intervention receipt. While the unit of randomization is at the level of the ED, the unit of analysis will be the patient. Analyses of primary and secondary outcomes will be conducted using logistic regression with weighted generalized estimating equations (GEE) to account for clustering from the EDs and physicians in patient outcome models.[48] Analyses will be performed in SAS v9.4 (Cary, NC) with a two-sided type I error of Comparability of Baseline and Intervention Patients: Distributions of baseline demographic and clinical characteristics will be described during baseline and intervention periods. Comparability for continuous variables will be examined graphically and by summary statistics (means, medians, quartiles, etc.). Categorical variables will be examined by calculating frequency distributions. Analysis of Primary Outcome: The primary outcome, initiation of BUP in the ED, will be assessed for all patients that meet the criteria for the EHR phenotype. Intervention differences (CDS vs usual care) for this dichotomous outcome will be examined using weighted GEE. The weighted GEE provides consistent parameter estimates when the dropout mechanism is correctly classified by implementing the inverse-probability weighted method to account for dropouts under the missing at random (MAR) assumption. Inverse probability weights are estimated by a logistic regression of dropout. The weighted GEE model will contain an effect for intervention (CDS vs usual care). An exchangeable working correlation will be used to account for clustering of responses within ED and physicians. The model will also include cluster-level covariates included in the constrained randomization and patient-level covariates that may be associated with the delivery of BUP (age, gender, race, ethnicity, insurance status, past medical and psychiatric history, recent medical or psychiatric hospital admissions, recent enrollment in formal addiction treatment, active prescriptions for other opioids, and urine drug screen results). Linear contrasts will be used to estimate treatment differences along with 95% confidence intervals in the proportions of ED patients that received BUP in CDS vs. usual care. Given the relative advantages of Generalized Estimating Equations, and generalized linear mixed models (GLMM) sensitivity analyses will compare treatments using a logistic regression with GLMM, with random effects for ED and physician. Analysis of Secondary Outcomes: Secondary outcomes such as referral for MOUD appointment, attendance at an MOUD appointment (if available in the EHR), prescription for naloxone at ED discharge and receipt of discharge instructions will be evaluated using weighted weighted GEE as described above. Assessments of the physician including provision of any ED-initiated BUP during the trial, provision of any referral for ongoing MOUD treatment during the trial and receipt of Drug Addiction Treatment Act of 2000 training during the trial will be compared between CDS and usual care using GEE. These models will be stratified by the number of eligible patients the physician encountered during the trial and will include an effect for intervention, cluster-level covariates included in the constrained randomization, and an exchangeable working correlation. Discrete numeric outcomes such as clinical fidelity will be compared using the GEE with a log link and a negative binomial distribution. Plan for Missing Data: Several strategies will be imposed to accommodate the likelihood that missing data will occur during this study. Prevention is the most obvious and effective manner to control bias and loss of power from missing data.[49] As noted in the Data Collection section above, prior to the trial we will pilot data collection procedures. Variables with large proportions of missing will be excluded from collection. We will follow the intent to treat principle, requiring follow-up of all EDs randomized regardless of the treatment received.[50] Regular data retrieval from EHRs combined with monitoring and missing data reports will trigger protocols for tracking and obtaining missing data. Despite these prevention efforts it is reasonable to assume missing data will occur. Our primary analysis is valid under the assumption that missing data will be missing at random (MAR).[51] We will evaluate the plausibility of this assumption by determining the extent of missing data and use logistic regression to identify factors associated with missing data. As appropriate, we will conduct sensitivity analysis using pattern-mixture and selection models under missing not at random (MNAR) assumptions to examine the robustness of conclusions of the primary analysis to missing data.[49,51] #### **ETHICS AND DISSEMINATION** We plan to obtain all necessary regulatory and human subjects protection approvals and procedures. The protocol has been approved by the Western Institutional Review Board, central IRB (protocol number 20182278, study number 1189765). The local IRBs at each participating site will implement a reliance agreement with this central board. We anticipate a waiver of informed consent under the Common Rule (45 code of federal regulations (CFR) 46.116 given that:[52,53] (1) the research involves no more than minimal risk to the subjects;[54] (2) the waiver or alteration will not adversely affect the rights and welfare of the subjects; (3) the research could not practicably be carried out without the waiver or alteration; and (4) subjects will be provided with additional pertinent information after participation. Patients are not considered human subjects by HHS regulation 45 CFR 46.102(f)[53] since: (1) no identifiable private information will be collected, (2) the intervention does not target the patient, and (3) EHR data will be collected retrospectively without interaction with the patient. Therefore, consent is not applicable to this population. Furthermore, all recommendations included in the CDS intervention are considered best practices in treatment of OUD. The OUD population has a high underlying risk of morbidity/mortality (approximately 5% risk of death in 12 months).[8] Patient rights and welfare will be protected per standard practice. Therefore, the risk to a patient with OUD who is not receiving MOUD treatment in their ordinary daily lives greatly exceeds the risk of the EMBED intervention. All study sites will post details about the study in a location visible to patients to make them aware of the option to receive BUP and referral to treatment so as best to offer an informed decision for requesting care. Patients will retain the right to request MOUD treatment at any study site. Patients and the public were not involved in the research design. Clinicians at all study sites will have access to all standard OUD medications and services to which they would otherwise have access to treat OUD patients. Clinicians will retain all control of their practice and at intervention sites have the option whether or not to use the intervention (i.e., can opt out). Clinician identifiers will be collected in order to follow practice patterns. However, the investigators will be blinded to both site and clinician identifiers. Each system will use an Honest Broker to protect the welfare and identity of each site and clinician and allow adjudication for analyses. Clinicians will be made aware of the study, its outcomes, the data to be collected and, at intervention sites, how to use and opt out of using the CDS via broadcast email and direct communication by site champions. A flow diagram of the study's clinical protocol (Figure 2) will shared with clinicians and posted in the clinical work area of all study sites. Since this protocol is considered best
practice, clinicians at control sites will retain all control of their practice and be encouraged to follow this protocol even though the CDS will not be available to them. As this is a pragmatic trial focused on implementing this intervention in a way that is as close to routine care as possible, consenting clinicians would not be consistent with routine CDS implementation and could jeopardize the scientific validity of the CDS intervention to overcome barriers to adoption of this practice[52]. Given the stigma[11] associated with treating individuals with OUD, the additional burden of the consent process could be a deterrent for clinicians to provide MOUD treatment to appropriate patients and bias the sample to clinicians with less stigma toward treating these patients. For this reason and since clinician data will be deidentified and unavailable to the investigators, we propose a waiver of consent of the clinicians to ensure the scientific validity of our findings. There is precedent for such a waiver in a similar situation.[55] Results will be published in open-access, peer-reviewed journals, presented at national meetings, and shared with the clinicians at participating sites via a broadcast email notification of publications. #### **REFERENCES** - 1 Rudd RA, Aleshire N, Zibbell JE, *et al.* Increases in Drug and Opioid Overdose Deaths--United States, 2000-2014. *MMWR Morb Mortal Wkly Rep* 2016;**64**:1378–82. - 2 Buchanich JM, Balmert LC, Burke DS. Exponential Growth Of The USA Overdose Epidemic. *bioRxiv* Published Online First: 2017.https://www.biorxiv.org/content/early/2017/05/09/134403.abstract - 3 Abuse S. ... Services Administration (2017). Key substance use and mental health indicators in the United States: Results from the 2015 National Survey on Drug Use Abuse and Mental Health Services Administration ... - 4 Seth P, Scholl L, Rudd RA, *et al.* Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants United States, 2015-2016. *MMWR Morb Mortal Wkly Rep* 2018;**67**:349–58. - Substance Abuse and Mental Health Services Administration. Drug Abuse Warning Network, 2011: National Estimates of Drug-Related Emergency Department Visits. Published Online First: 5/2013.https://www.samhsa.gov/data/sites/default/files/DAWN2k11ED/DAWN2k11ED/DAW N2k11ED.pdf - Vivolo-Kantor AM, Seth P, Gladden RM, *et al.* Vital Signs: Trends in Emergency Department Visits for Suspected Opioid Overdoses United States, July 2016-September 2017. *MMWR Morb Mortal Wkly Rep* 2018;**67**:279–85. - 7 Sullivan LE, Fiellin DA. Narrative review: buprenorphine for opioid-dependent patients in office practice. *Ann Intern Med* 2008;**148**:662–70. - 8 Larochelle MR, Bernson D, Land T, et al. Medication for Opioid Use Disorder After Nonfatal Opioid Overdose and Association With Mortality: A Cohort Study. Ann Intern Med Published Online First: 19 June 2018. doi:10.7326/M17-3107 - 9 Kakko J, Svanborg KD, Kreek MJ, *et al.* 1-year retention and social function after buprenorphine-assisted relapse prevention treatment for heroin dependence in Sweden: a randomised, placebo-controlled trial. *Lancet* 2003;**361**:662–8. - 10 Mattick RP, Breen C, Kimber J, *et al.* Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. *Cochrane Database Syst Rev* Published Online First: 2014. doi:10.1002/14651858.cd002207.pub4 - 11 Sharfstein JM. The Opioid Crisis From Research to Practice. *Milbank Q* 2017;**95**:24–7. Page 18 of 25 - 13 Walsh L. Buprenorphine Waiver Management | SAMHSA Substance Abuse and Mental Health Services Administration. https://www.samhsa.gov/programs-campaigns/medication-assisted-treatment/training-materials-resources/buprenorphine-waiver (accessed 17 Jul 2018). - 14 Duber HC, Barata IA, Cioè-Peña E, et al. Identification, Management, and Transition of Care for Patients With Opioid Use Disorder in the Emergency Department. Ann Emerg Med Published Online First: 4 June 2018. doi:10.1016/j.annemergmed.2018.04.007 - Houry DE, Haegerich TM, Vivolo-Kantor A. Opportunities for Prevention and Intervention of Opioid Overdose in the Emergency Department. *Ann Emerg Med* 2018;**71**:688–90. - 16 Kawamoto K, Houlihan CA, Balas EA, *et al.* Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. *BMJ* 2005;**330**:765. - 17 Garg AX, Adhikari NKJ, McDonald H, *et al.* Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. *JAMA* 2005;**293**:1223–38. - 18 Sittig DF, Wright A, Osheroff JA, *et al.* Grand challenges in clinical decision support. *J Biomed Inform* 2008;**41**:387–92. - 19 Ash JS, Berg M, Coiera E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. *J Am Med Inform Assoc* 2004;**11**:104–12. - 20 Ash JS, Sittig DF, Campbell EM, et al. Some unintended consequences of clinical decision support systems. AMIA Annu Symp Proc 2007;:26–30. - 21 Levin S, France DJ, Hemphill R, *et al.* Tracking workload in the emergency department. *Hum Factors* 2006;**48**:526–39. - 22 Melnick ER, Nielson JA, Finnell JT, *et al.* Delphi consensus on the feasibility of translating the ACEP clinical policies into computerized clinical decision support. *Ann Emerg Med* 2010;**56**:317–20. - 23 Sirajuddin AM, Osheroff JA, Sittig DF, *et al.* Implementation pearls from a new guidebook on improving medication use and outcomes with clinical decision support. Effective CDS is essential for addressing healthcare performance improvement imperatives. *J Healthc Inf Manag* 2009;**23**:38–45. - 24 Phansalkar S, Edworthy J, Hellier E, *et al.* A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems. *J Am Med Inform Assoc* 2010;**17**:493–501. - 25 Horsky J, Phansalkar S, Desai A, *et al.* Design of decision support interventions for medication prescribing. *Int J Med Inform* 2013;**82**:492–503. - 26 Gellert G, Webster S, Gillean J, et al. Should US doctors embrace electronic health records? BMJ 2017;**356**:j242. - 27 Roland M, Torgerson DJ. What are pragmatic trials? *BMJ* 1998;**316**:285. - 28 Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments. *Am J Public Health* 2004;**94**:423–32. - 29 Li F, Lokhnygina Y, Murray DM, *et al.* An evaluation of constrained randomization for the design and analysis of group-randomized trials. *Stat Med* 2016;**35**:1565–79. - 30 Loudon K, Treweek S, Sullivan F, *et al.* The PRECIS-2 tool: designing trials that are fit for purpose. *BMJ* 2015;**350**:h2147. - 31 Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. *Contemp Clin Trials* 2007;**28**:182–91. - Hemming K, Haines TP, Chilton PJ, *et al.* The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. *BMJ* 2015;**350**:h391. - 33 Richesson RL, Hammond WE, Nahm M, *et al.* Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. *J Am Med Inform Assoc* 2013;**20**:e226–31. - 34 Hylan TR, Von Korff M, Saunders K, *et al.* Automated prediction of risk for problem opioid use in a primary care setting. *J Pain* 2015;**16**:380–7. - 35 Carrell DS, Cronkite D, Palmer RE, *et al.* Using natural language processing to identify problem usage of prescription opioids. *Int J Med Inform* 2015;**84**:1057–64. - 36 Reardon JM, Harmon KJ, Schult GC, et al. Use of diagnosis codes for detection of clinically significant opioid poisoning in the emergency department: A retrospective analysis of a surveillance case definition. *BMC Emerg Med* 2016;**16**:11. - 37 Home > ED-Initiated Buprenorphine | Emergency Medicine | Yale School of Medicine. https://medicine.yale.edu/edbup/ (accessed 24 Aug 2018). - 38 American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders* (DSM-5®). American Psychiatric Pub 2013. - 39 Wesson DR, Ling W. The Clinical Opiate Withdrawal Scale (COWS). *J Psychoactive Drugs* 2003;**35**:253–9. - 40 Walsh L. Special Circumstances for Providing Buprenorphine | SAMHSA Substance Abuse and Mental Health Services Administration. https://www.samhsa.gov/programscampaigns/medication-assisted-treatment/legislation-regulations-guidelines/special (accessed 13 Aug 2018). - 41 Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. *Am J Public Health* 1999;**89**:1322–7. - 42 Glasgow RE, Lichtenstein E, Marcus AC. Why don't we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. *Am J* - 43 LeBlanc A, Ruud KL, Branda ME, *et al.* The impact of decision aids to enhance shared decision making for diabetes (the DAD study): protocol of a cluster randomized trial. *BMC Health Serv Res* 2012;**12**:130. - 44 National Institutes of Health (NIH). National Institutes of Health (NIH). https://researchmethodsresources.nih.gov/SampleSizeCalculator.aspx (accessed 13 Aug 2018). - 45 Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. *Int J Epidemiol* 2006;**35**:1292–300. - 46 Raab GM, Butcher I. Balance in cluster randomized trials. Stat Med 2001;20:351–65. - 47 Gong MN, Schenk L, Gajic O, *et al.* Early intervention of patients at risk for acute respiratory failure and prolonged mechanical ventilation with a checklist aimed at the prevention of organ failure: protocol for a pragmatic stepped-wedged cluster trial of PROOFCheck. *BMJ Open* 2016;**6**:e011347. - 48 Preisser JS, Lohman KK, Rathouz PJ. Performance of weighted estimating equations for longitudinal binary data
with drop-outs missing at random. *Stat Med* 2002;**21**:3035–54. - 49 National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, *et al. The Prevention and Treatment of Missing Data in Clinical Trials*. National Academies Press 2010. - Lachin JM. Statistical considerations in the intent-to-treat principle. *Control Clin Trials* 2000;**21**:167–89. - 51 Molenberghs G, Thijs H, Jansen I, *et al.* Analyzing incomplete longitudinal clinical trial data. *Biostatistics* 2004;**5**:445–64. - 52 McKinney RE Jr, Beskow LM, Ford DE, *et al.* Use of altered informed consent in pragmatic clinical research. *Clin Trials* 2015;**12**:494–502. - 53 Office for Human Research Protections (OHRP). 45 CFR 46. HHS.gov. 2016.https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html (accessed 16 Aug 2018). - Lantos JD, Wendler D, Septimus E, *et al.* Considerations in the evaluation and determination of minimal risk in pragmatic clinical trials. *Clin Trials* 2015;**12**:485–93. - 55 Suffoletto B, Lynch M, Pacella CB, *et al.* The Effect of a Statewide Mandatory Prescription Drug Monitoring Program on Opioid Prescribing by Emergency Medicine Providers Across 15 Hospitals in a Single Health System. *J Pain* 2018;**19**:430–8. Figure 1. Schematic diagram of parallel, cluster-randomized study design $305x166mm (72 \times 72 DPI)$ # ED-Initiated Buprenorphine # Diagnosis of Moderate to Severe Opioid Use Disorder #### Assess for opioid type and last use 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Patients taking methadone may have withdrawal reactions to buprenorphine up to 72 hours after last use Consider consultation before starting buprenorphine in these patients 42 All patients should be educated regarding dangers of benzodiazepine and alcohol co-use programs within 24-72 hours whenever possible 16mg dosing for each day (72-hour rule) until appointment for Referral for ongoing treatment ongoing treatment Enseignement Superieur (ABES) Figure 3. Graphical user interface of the user-centered CDS EMBED intervention $360 \times 270 \, \text{mm}$ (72 x 72 DPI) BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. Figure 4. Number of study sites required as a function of coefficient of variation for site size assuming an ICC of 0.03 181x148mm (300 x 300 DPI) | Section/Topic | Item
No | Checklist item | Reported on page No | |------------------------|------------|--|--| | Title and abstract | | or 30 N | | | | 1a | Identification as a randomised trial in the title | | | | 1b | Structured summary of trial design, methods, results, and conclusions (for specific guidance see (200) PT for abstracts) | 2 | | Introduction | | ated | . / | | Background and | 2a | Scientific background and explanation of rationale | 4 | | objectives | 2b | Specific objectives or hypotheses | 5 | | Methods | | ance and a second a | | | Trial design | 3a | Description of trial design (such as parallel, factorial) including allocation ratio | | | i ilai desigii | 3b | Important changes to methods after trial commencement (such as eligibility criteria), with Expans | NIA | | Participants | 4a | Eligibility criteria for participants | G | | artioiparito | 4b | Settings and locations where the data were collected | NIA | | Interventions | 5 | The interventions for each group with sufficient details to allow replication, including how and 8 hen they were | 7 | | | | actually administered | | | Outcomes | - 6a | Completely defined pre-specified primary and secondary outcome measures, including her and when they were assessed | 8 | | | 6b | Any changes to trial outcomes after the trial commenced, with reasons | N/A | | Sample size | 7a | How comple size was determined | 9 1 | | | 7b | When applicable evaluation of any interior analyses and standing a videlines | NIA | | Randomisation: | | when applicable, explanation of any interim analyses and stopping guidelines | 100 | | Sequence | 8a | Method used to generate the random allocation sequence | 10 | | generation | 8b | Type of randomisation; details of any restriction (such as blocking and block size) | 10 | | Allocation | 9 | Mechanism used to implement the random allocation sequence (such as sequentially number do containers), | | | concealment mechanism | | describing any steps taken to conceal the sequence until interventions were assigned | | | Implementation | 10 | Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions | NA | | Blinding | 11a | If done, who was blinded after assignment to interventions (for example, participants, care prodictions, those | The state of s | | CONSORT 2010 checklist | | hiqu | Page | | CONSORT 2010 checklist | | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml | | # **BMJ Open** ## User-Centered Clinical Decision Support to Implement Emergency Department-Initiated Buprenorphine for Opioid Use Disorder: ## **Protocol for the Pragmatic Group Randomized EMBED Trial** | Journal: | BMJ Open | | | | |--------------------------------------|---|--|--|--| | Manuscript ID | bmjopen-2018-028488.R1 | | | | | Article Type: | Protocol | | | | | Date Submitted by the Author: | 1 1 7-War- 7019 | | | | | Complete List of Authors: | Melnick, Edward; Yale University, Emergency Medicine Jeffery, Molly; Mayo Clinic, Department of Emergency Medicine Dziura, James; Yale University School of Medicine, Department of Emergency Medicine Mao, Jodi; Eastern Virginia Medical School Hess, Erik; University of Alabama at Birmingham School of Medicine, Department of Emergency Medicine Platts-Mills, Timothy; University of North Carolina School of Medicine, Department of Emergency Medicine Solad, Yauheni; Yale New-Haven Health Paek, Hyung; Yale New-Haven Health, Information Technology Services Martel, Shara; Yale University School of Medicine, Department of Emergency Medicine Patel, Mehul; University of North Carolina at Chapel Hill School of Medicine, Department of Emergency Medicine Bankowski, Laura; Yale University School of Medicine, Department of Emergency Medicine Lu, Charles; Yale University School of Medicine, Yale Center for Medical Informatics Brandt, Cynthia; Yale University School of Medicine, Yale Center for Medical Informatics, Department of Emergency Medicine D'Onofrio, Gail; Yale University School of Medicine, Department of
Emergency Medicine | | | | | Primary Subject
Heading : | | | | | | Secondary Subject Heading: | Emergency medicine | | | | | Keywords: | ACCIDENT & EMERGENCY MEDICINE, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Change management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Substance misuse < PSYCHIATRY | | | | SCHOLARONE™ Manuscripts BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. Edward R. Melnick, MD, MHS¹; Molly M. Jeffery, PhD²; James D. Dziura, PhD, MPH¹; Jodi A. Mao³; Erik P. Hess, MD, MSc⁴; Timothy F. Platts-Mills, MD, MSc⁵; Yauheni Solad, MD, MHS⁶; Hyung Paek, MD, MSEE⁶; Shara Martel¹; Mehul D. Patel, PhD⁵; Laura Bankowski¹; Charles C. Lu⁷; Cynthia Brandt, MD, MPH^{1,7}; Gail D'Onofrio, MD, MS¹ - ¹ Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT - ² Department of Emergency Medicine, Mayo Clinic, Rochester, MN - ³ Eastern Virginia Medical School, Norfolk, VA - ⁴ Department of Emergency Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL - ⁵ Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC - ⁶ Yale New-Haven Health, Information Technology Services, New Haven, CT - ⁷ Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT #### Corresponding Author: Edward R. Melnick, MD, Department of Emergency Medicine, Yale School of Medicine, 464 Congress Ave, Suite 260, New Haven, CT 06519 Telephone (203) 785-5174; Fax (203) 785-4580; e-mail: edward.melnick@yale.edu Funding: This work is supported within the NIH Health Care Systems Research Collaboratory, by a cooperative agreement (UG3DA047003) from the National Institute on Drug Abuse of the NIH. This work also received logistical and technical support from the NIH Collaboratory Coordinating Center (U24AT009676). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in the decision to publish or the preparation of the manuscript. The National Institutes of Health contributed to the design of the study. Funder contact information: National Institute on Drug Abuse, Office of Science Policy and Communications, Public Information and Liaison Branch, 6001 Executive Boulevard, Room 5213, MSC 9561, Bethesda, Maryland 20892 Conflicts of interest: The authors have no financial conflicts to disclose Word count: 5132 Protocol version 2.0.2; 2019-03-11 *Author contributions*: ERM and GD conceived of the work. ERM, MMJ, JDD, EPH, TPM, and GD designed the study. ERM, MMJ, EPH, TPM, YS, HP, SM, MDP, CCL, CB, and GD are responsible for the implementation of the trial. ERM, MMJ, JAM, JDD (Sample Size, Allocation, and Analysis), and LB (Ethics) drafted the initial manuscript. All authors edited and approved the final version submitted for publication. ERM takes responsibility for all aspects of the work. Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies #### **ABSTRACT** #### Introduction The goal of this trial is to determine whether implementation of a user-centered clinical decision support (CDS) system can increase adoption of initiation of buprenorphine into the routine emergency care of individuals with Opioid Use Disorder (OUD). #### **Methods** A pragmatic cluster randomized trial is planned to be carried out in 20 Emergency Departments (EDs) across five healthcare systems over 18 months. The intervention consists of a user-centered CDS integrated into ED clinician electronic workflow and available for guidance to: 1) determine whether patients presenting to the ED meet criteria for OUD, 2) assess withdrawal symptoms, and 3) ascertain and motivate patient willingness to initiate treatment. The CDS guides the ED clinician to initiate buprenorphine and facilitate follow up. The primary outcome is the rate of buprenorphine initiated in the ED. Secondary outcomes are: 1) rates of receiving a referral, 2) fidelity with the CDS, and 3) rates of clinicians providing any ED-initiated buprenorphine, referral for ongoing treatment, and receiving Drug Addiction Act of 2000 training. Primary and secondary outcomes will be analyzed using generalized linear mixed models, with fixed effects for intervention status (CDS vs. usual care), pre-specified site and patient characteristics and random effects for study site. #### **Ethics and Dissemination** The protocol has been approved by the Western Institutional Review Board. No identifiable private information will be collected from patients. A waiver of informed consent was obtained for collection of data for clinician prescribing and other activities. As a minimal risk implementation study of established best practices, an Independent Study Monitor will be utilized in place of a Data Safety Monitoring Board. Results will be reported in ClinicalTrials.gov and published in open-access, peer-reviewed journals, presented at national meetings, and shared with the clinicians at participating sites via a broadcast e-mail notification of publications. **Trial registration number**: clinicaltrials.gov NCT03658642 BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) data mining, Al training, and similar technologies. Protected by copyright, including for uses related to text and - This pragmatic trial embeds a user-centered clinical decision support tool into routine care in the emergency department, reducing negative impact on providers and increasing the likelihood of immediate impact on actual care delivery - The streamlined workflow developed for the implementation of the intervention allows delivery across a large number of healthcare settings and across different EHR systems, increasing the generalizability of the findings - Study length is shortened by the group-randomized design, better controlling for temporal trends in the opioid overdose epidemic - Constrained randomization allows heterogeneity of included sites despite the small number of entities being randomized (a characteristic of group-randomized designs) - Establishing patient eligibility for the intervention via phenotyping permits passive data collection from the EHR, reducing the reporting burden for sites #### INTRODUCTION #### **Background & Rationale** Dependence on opioids is a major public health problem in the United States, taking a devastating toll on Americans, their families, and communities.[1,2] An estimated 2.1 million people in the U.S. have opioid use disorder (OUD)[3] and more than 33,000 opioid-related deaths occur annually.[4] In 2011, there were 605,000 ED visits related to opioids in the United States.[5] From 2016-2017, emergency departments (EDs) experienced a 30% increase in visits for opioid overdose.[6] The ED offers a unique treatment opportunity for patients receiving care for acute and comorbid conditions related to opioid use. One of the most promising treatments for OUD is buprenorphine/naloxone (BUP), a partial opioid agonist combined with an antagonist, that can be prescribed by an appropriately trained clinician in an office setting for use at home. BUP decreases mortality as well as symptoms of withdrawal, craving, and opioid use.[7,8] In a placebo-controlled randomized trial of 40 OUD patients who all received cognitive-behavioral group therapy, weekly individual counseling, and weekly urine drug screening, cumulative retention in treatment at one year was 75% for individuals in the BUP group compared to 0% in the placebo group (p = 0.0001).[9] A recent Cochrane review including 31 trials with 5430 participants found high quality evidence that BUP is superior to placebo in retention of participants in treatment and can reduce illicit opioid use effectively compared to placebo.[10] Currently, ED clinicians often refer patients with OUD to opioid treatment programs rather than initiating medication for OUD (MOUD) treatment in the ED. In a randomized clinical trial involving 329 individuals with OUD, we found that ED-initiation of BUP with referral for ongoing MOUD treatment was superior to referral alone, resulting in nearly twice the percentage of patients who were engaged in formal addiction treatment at 30 days (78% with BUP vs 37% with referral alone vs 45% with brief intervention, p < 0.001) and less illicit opioid use.[11] Despite the efficacy of ED-initiated BUP with referral for ongoing MOUD treatment, it is currently not routinely offered in EDs due to medical, regulatory, and logistical barriers.[11–13] Adopting this evidence-based practice into routine care would shift the clinical practice paradigm for early OUD identification and treatment by initiating treatment at a time when the patient may be motivated and particularly vulnerable to morbidity and mortality.[14,15] Clinical decision support (CDS), computerized tools that offer patient-specific assessments or recommendations to clinicians, represents one approach to embed this complex intervention into routine emergency care. [16,17] However, CDS faces its own challenges, including unintended consequences such as alert fatigue and increased cognitive load.[18-22] CDS design recommendations suggest careful consideration of the socio-technical environment and delivery of the right information, to the right person, in the right format, at the right time in clinical workflow to optimize medical
decision-making.[23–26] #### **Objectives** For these reasons, we employed a user-centered design process to design and formatively evaluate the EMBED (Emergency Department-Initiated Buprenorphine for Opioid Use Disorder) CDS intervention. The user-centered design and formative evaluation of the EMBED intervention is reported elsewhere. Given the current opioid epidemic in the US, there is great urgency for prospective trials to identify the best approaches to BUP implementation and integration into routine practice. The goal of this multicenter, pragmatic, parallel cluster randomized trial is to compare the effectiveness of user-centered CDS for ED-initiated BUP and referral for ongoing MOUD treatment to usual care on the rates of ED initiation of BUP and referral in ED patients with OUD. We hypothesize that rates of ED-initiation of BUP and referral will be higher in the user-centered CDS arm of the trial. #### Study Design The study design is an 18-month pragmatic, parallel, cluster randomized, superiority trial using constrained randomization of clusters to arms (schematic diagram, Figure 1).[27–29] The unit of randomization (i.e. cluster) is the ED. EDs will be randomly allocated with an allocation ratio of 1:1. Adequate lead time will be allotted to install the intervention in the EHR at all intervention sites -- including a three month implementation and washout phase. The intervention will then begin at the same time across all sites with the CDS intervention fully implemented in the intervention sites' EHRs at the start of the trial. Clinicians at control sites will retain all control of their practice and practice as usual without the CDS intervention installed in their EHR. Pragmatic trials study an intervention under the usual conditions in which it will be applied and generally use usual care as the comparator, as opposed to an explanatory trial which would test an intervention under ideal conditions..[27,30,31] In cluster randomized trials, treatment intervention is allocated to clusters (i.e. groups of individuals) rather than individuals. This is done to manipulate the physical or social environment of the intervention when an individual intervention would likely result in contamination between intervention and control participants at the group level.[28] The parallel cluster randomized design was chosen over a stepped wedge design due to the high likelihood of confounding by temporal trends from ongoing efforts to mitigate the opioid epidemic.[32][33] A major challenge of the cluster randomized design is from potential confounding due to a limited number of heterogeneous groups.[28] Constrained randomization offers a solution to this source of confounding by balancing key cluster-level prognostic factors across the study to avoid distorting estimates of treatment effect due to the confounding factors.[29] This allocation technique more evenly distributes potential confounders between intervention arms by specifying the confounding factors, characterizing each cluster in terms of these factors, identifying a subset of randomization combinations of clusters that adequately balance confounding factors between intervention arms and randomly selecting one of these combinations as the allocation scheme.[29] Potential confounders that will be used for this trial are: EHR vendor, ED annual volume, ED type (e.g., academic, community, urban, rural, etc), ratio of ED attendings who have a waiver to prescribe BUP, current rate of ED BUP prescribing, resources in ED to facilitate management of patients with OUD, and willingness of staff to adopt the practice of ED-initiation of BUP. #### **METHODS** #### **Participants** There will be 20 participating EDs from hospitals in the United States within approximately five health care systems (HCS). At the time of writing this protocol, all of the sites have very low (or 0) rates of BUP initiation in the ED. The final study sites will be determined based on sample size needs, anticipated number of ED patients with OUD per site determined by electronic health records (EHR) phenotype,[34–37] and willingness and ability to participate (e.g., EHR integration of the intervention, EHR data extraction, availability of BUP in the ED and referral for ongoing MOUD treatment in the surrounding community). When finalized, the full study site list will be available at clinicaltrials.gov. The intervention will be conducted at the site level. Patients are not considered human subjects since: (1) no identifiable private information will be collected, (2) the intervention does not target the patient, and (3) EHR data will be collected retrospectively without interaction with the patient. The study sample will include all ED attending physicians credentialed to practice in the study site EDs. For ED encounters with physicians who practice at both an intervention and control site, only the encounters at intervention sites will contribute data for analyses. Encounters with these physicians at a control site will be excluded from the primary analysis. Encounters with adult ED patients (age 18 years or older) meeting an EHR-derived phenotype suggesting possible OUD will be included in the analysis: those who are discharged from the ED, not pregnant, and not currently taking a MOUD. The initial phenotype has been developed by the study team and is currently undergoing validation via emergency physician chart review to determine the phenotype's validity in identifying the target patient population.[34] Details of this phenotype and its validation will be reported separately. All encounters with ED patients meeting the EHR phenotype criteria will be eligible for the trial. For patients with more than one ED visit during the study period, only the initial ED visit will be eligible for inclusion in the primary analysis. The CDS will also be available for all clinicians on the care team and to use for encounters with patients who are not identified by the phenotype. These encounters will be excluded from the primary analyses. #### Intervention The intervention for this study includes the user-centered CDS as well as education of ED clinicians practicing at all study sites. The need for flexibility in the graphical user interface of the intervention resulted in the decision to develop the CDS as a web application. This provides the ability to access the tool both embedded within the EHR or directly over the Internet. The web application was developed as a single-page application (SPA) based on React JavaScript library. The CDS is a user-initiated activity in the EHR that calls the web application using Active Guidelines to streamline the flow diagram of our clinical protocol for ED-initiated BUP (**Figure 2**).[38] The intervention's graphical user interface (**Figure 3**) is an intuitive, simple layout presenting four care pathways in columns based on the patient's diagnosis of OUD, the severity of withdrawal, and readiness to start treatment. There is additional, optional decision support available for guidance to: 1) evaluate OUD severity based on DSM-5 criteria, 2) assess withdrawal severity using the clinical opiate withdrawal scale (COWS) score, and 3) motivate patient willingness and readiness to initiate MOUD treatment with a brief motivational interview.[39,40] These materials are also available to share with other members of the care team via a web address, text messaging, or QR code. The interface also includes a toggle switch for the user based on whether or not they have a waiver to prescribe BUP. Non-waivered clinicians cannot prescribe BUP but can administer a one-time dose of BUP in the ED for up to 72-hours.[41] When integrated into the local EHR system, launching a care pathway enables the user to: place orders, refer for ongoing MOUD treatment, and update clinical notes. The educational plan will be site-specific and tailored to the usual care at that institution. It will be administered within three months of the study start date. The details of the plan will be developed in partnership with local champions who self-identify an interest in helping to implement an ED-initiated BUP protocol at their site. Specifically, the education plan will be required to include: - A didactic on opioid use disorder, its diagnosis, assessment of withdrawal severity, and local resources for referral for ongoing MOUD treatment - 2. Circulation and posting in each study site ED of the flow diagram of the study's clinical protocol for ED-initiated BUP (**Figure 2**). Since this protocol is considered best practice, clinicians at control sites will retain all control of their practice and be encouraged to follow this protocol even though the CDS will not be available to them. - 3. Intervention sites will include strategies to increase use of the intervention by training clinicians on how to launch and use the CDS. Use of the intervention will be tracked with site-specific audit and feedback that is consistent with typical quality improvement initiatives at that site. Given the ongoing and escalating opioid epidemic and wide scope of this trial, we anticipate that there may be concomitant interventions to stem OUD at study sites during the trial. We plan to permit these interventions as long as they are: (1) implemented before randomization so that they can be tracked and accounted for in the constrained randomization process, and (2) they are not a health IT intervention targeted at clinicians to initiate BUP in the ED. #### **Outcomes** The primary study hypothesis is that there will be higher rates of ED-initiated BUP with referral for ongoing MOUD with user-centered CDS compared with usual care. Therefore, the primary outcome will be BUP initiation in the ED, defined as whether or not an eligible patient is administered BUP in the ED and/or prescribed BUP upon discharge from the ED. Although this BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from
http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. is not a patient-centered outcome, it is a pragmatic and meaningful surrogate that will serve as a lead indicator of the CDS intervention's effect on engaging more OUD patients in treatment. We will also evaluate the effect of user-centered CDS on the following secondary implementation outcomes as compared to usual care, informed by the RE-AIM framework:[42,43] - 1. Referral to follow-up for ongoing MOUD treatment made in the EHR (patient-level; Y/N) - 2. Prescription for naloxone at ED discharge (patient-level; Y/N) - 3. Receipt of discharge instructions on opioid use, overdose education, naloxone education, and buprenorphine education (patient-level; Y/N) - 4. Attending physician adoption rates (physician level): - a. Provision of any ED-initiated BUP during the trial (Y/N) - b. Provision of any referral for ongoing MOUD treatment during the trial (Y/N) - 5. Receipt of Drug Addiction Treatment Act of 2000 training during trial (clinician level; Y/N) Additional secondary implementation outcomes to be obtained from the web application include: clinician fidelity with the intervention assessed via a critical action checklist[44] and error rate of the intervention (using surrogates based on tool usage, e.g., application launched but not used, launching a page in the web application and spending less than two seconds on that page). The intervention will continue to be made available for use after the trial concludes; three months after trial completion, medical record review of eligible patients will be conducted at a subset of intervention sites to determine the maintenance rate of the intervention. #### Sample Size Current rates of BUP use in the ED range from 0-2% with most sites at 0%. Assuming a rate of BUP use in the usual care group of 1%, an increase to 10% would be a convincing and meaningful incremental effect of the intervention. Preliminary data from EDs that will be randomized in this trial suggest an Intraclass Correlation Coefficient (ICC) for BUP use of 0.01. The NIH group randomized sample size calculator[45] was used to determine the required number of sites to be randomized. With a two-sided type I error of 0.05, a conservative ICC of 0.03, and an expected average of 200 participants per site, a total of 12 sites will provide 90% power to detect a difference of 9%. This estimate is based on the assumption that all sites will have at least 200 unique patient visits during the trial that meet the EHR phenotype. data mining, Al training, and similar technologies Protected by copyright, including for uses related to text We estimated the impact of enrollment variability across sites on the required sample size using the formula described by Eldridge et al.[46] We added 2 sites to the total number of sites given the use of z-scores rather than t-scores in the estimation. As the coefficient of variation (CV) in the number of participants enrolled across sites increases, the required number of sites increases (**Figure 4**). To accommodate this potential variability, we will randomize a total of 20 sites (**Table 1**). **Table 1.** Power to detect different effect sizes by coefficient of variation in enrollment given randomization of 20 sites. | | Effect Size (Difference in Proportions) | | | | | | |---|---|------|------|------|------|------| | | | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | Coefficient
of Variation
in
Enrollment | 0 | 87% | 94% | 97% | 99% | 99% | | | 0.2 | 86% | 93% | 97% | 99% | 99% | | | 0.5 | 80% | 89% | 94% | 97% | 98% | | | 0.8 | 70% | 80% | 87% | 92% | 95% | | | 1.0 | 62% | 72% | 80% | 87% | 91% | Even with large variability in participant enrollment (CV=1), we will have over 90% power to detect a difference of 0.09. We will have good power (>80%) to detect effect sizes as low as 0.05 provided the variability in site enrollment is not great (<0.50). #### Allocation Study sites that meet readiness criteria at the time of randomization will be allocated 1:1 to CDS and usual care groups using constrained randomization conducted by personnel in the data coordinating center (DCC). The general method will follow procedures and recommendations from the literature on group randomized trials.[29] With a small number of sites that differ in important ways, unconstrained randomization may not adequately balance important site characteristics. To improve comparability of treatment and control sites, personnel in the DCC under the direction of senior statistician (coauthor JDD) will list all possible allocations of treatment and control groups (with 20 sites, there are about 165,000 combinations of treatment and control groups). The imbalance score (□) from Raab and Butcher will be calculated for each possible allocation.[47] $$\beta = \sum_{l=1}^{S} \omega_l (\overline{x}_{0l} - \overline{x}_{1l})^2$$ where S is the number of variables on which the groups should be balanced, ω_l is a weight calculated as the inverse variance of the mean of variable l across the hospitals, and the $\overline{x_l}$ represent the means of variable l across the hospitals in the intervention (indexed as 1) and control (indexed as 0) groups. A candidate set of 1000 possible allocations with the most favorable imbalance scores will be selected, and the final allocation will be selected at random from that candidate set. Since clinicians must know how to launch and use the intervention, they will not be blinded to the allocation of their site as a control or intervention site. Clinicians may inform patients that they are using the CDS or not, as they deem appropriate consistent with CDS use in their usual practice. All study sites will post information in their ED informing patients of the study. #### **Data Collection** Outcome data will be collected via SQL query of the local EHR at regular intervals from data routinely collected in each hospital's EHR. This will facilitate large-scale data collection that would not otherwise be practical in an explanatory trial. To enable consistent EHR data collection across sites, a master data dictionary of all data elements will be created. At each study site, the variables in the data dictionary will be validated against the institutional EHR to ensure that the variables are correctly mapped to the EHR field that corresponds to the clinical intent of the variable after accounting for documentation practices and workflow at each site.[48] For data quality assurance, the mapped variables will be validated against the EHR to ensure that the data are clinically relevant to the goals of the project and correctly represents the clinical data that clinicians use to make decisions. Additionally, data to determine compliance, use, and fidelity with the CDS intervention that could not be reliably abstracted from the EHR (e.g., DSM-5 OUD score, COWS score) will be abstracted from the web application's use logs. Information on whether the patient attended the referred follow-up visit and whether the patient was prescribed BUP as an outpatient will be abstracted from the EHR *only* if available in the same EHR (e.g., if the patient is seen for follow-up within the same system). Given the waiver of informed consent, we will be unable to track patients referred out-of-system. Data will be sent from study sites to the study DCC at predetermined, regular intervals: initially every two weeks, but adjusted as needed. The DCC will conduct ongoing data monitoring activities on study data from all participating sites to ensure data received is what it is intended to be. Baseline data for the study participants will include demographic and clinical data such as age, gender, race, ethnicity, insurance status, past medical and psychiatric history, the most recent medical or psychiatric hospital admissions, recent enrollment in formal addiction treatment, active prescriptions for other opioids, and urine drug screen results as ascertained by regularly collected data in the EHR. #### **Data Management** Study data will only be available to members of the study DCC who are authorized for this study. To ensure the privacy and confidentiality of data for this project, DCC servers hosting data repositories are strongly firewalled; access to the repositories is permitted only through properly authenticated Web APIs. All data will be encrypted both at rest and in transit. The DCC database-hosting is certified by our institution's Information Security Office as conforming to HIPAA and our institution's data protection guidelines. All project computers are stored in locked offices within a building having limited, electronic passkey access. All computers are password protected and protected by our institution's firewall which is encrypted using Microsoft BitLocker. Individually identifiable or deducible data will only be by transmitted via secured telecommunications, never by unsecured telecommunications like email or electronic File Transfer Protocol (FTP). Procedures are in place for rapid recovery from hardware or database failure. #### **Data Monitoring** As a minimal risk implementation study of established best practices, an Independent Study Monitor will be utilized in place of a formal Data Safety Monitoring Board (DSMB). Interim monitoring will focus on adherence to the protocol, completeness of data retrieval from each ED's EHR, and uptake of the CDS intervention. A set of monitoring tables will be generated for this purpose. The Independent Study Monitor will report directly to the study DCC. No interim analyses for effectiveness are planned. #### Study oversight As a UG3/UH3 Demonstration Project, the NIH Health Care Systems Research Collaboratory and its Steering Committee core serve
as the coordinating center and steering committee for this project and have given ongoing support to the design and rapid execution of this project. The DCC is composed of two biostatisticians, two clinical informaticists, a database manager, and two computer programmers. Study progress will be audited monthly for the first 3 months of the trial and then quarterly (but more frequently if needed) independent from investigators and the sponsor. Progress reports, including study progress and any Adverse Events, will be provided to the Independent Study Monitor following each of the monthly reviews. In terms of progress, auditing will focus on adherence to the protocol, completeness of data retrieval from each ED's EHR, and uptake of the CDS intervention. A set of monitoring tables will be generated by the DCC for this purpose. #### **Analysis Plan** General Considerations: This is a cluster randomized trial to test the hypothesis that there will be higher rates of provision of ED-initiated BUP and referral for ongoing MOUD with user-centered CDS compared with usual care. Analyses will be conducted as intention to treat including all individuals regardless of intervention receipt. While the unit of randomization is at the level of the ED, the unit of analysis will be the patient. Analyses of primary and secondary outcomes will be conducted using logistic regression with weighted generalized estimating equations (GEE) to account for clustering from the EDs and physicians in patient outcome models.[49] Analyses will be performed in SAS v9.4 (Cary, NC) with a two-sided type I error of 0.05 (unless otherwise specified). For the primary and secondary analyses described below, only the first ED encounter for an individual patient will be used. Supportive analyses will include patients with repeated ED visits. Comparability of Baseline and Intervention Site Patients: Distributions of baseline demographic and clinical characteristics will be described during baseline and intervention periods. Comparability for continuous variables will be examined graphically and by summary statistics (means, medians, quartiles, etc.). Categorical variables will be examined by calculating frequency distributions. Analysis of Primary Outcome: The primary outcome, initiation of BUP in the ED, will be assessed for all patients that meet the criteria for the EHR phenotype. Intervention differences (CDS vs usual care) for this dichotomous outcome will be examined using weighted GEE. The weighted GEE provides consistent parameter estimates when the dropout mechanism is correctly classified by implementing the inverse-probability weighted method to account for dropouts under the missing at random (MAR) assumption. Inverse probability weights are estimated by a logistic regression of dropout. The weighted GEE model will contain an effect for intervention (CDS vs usual care). An exchangeable working correlation will be used to account for clustering of responses within ED and physicians. The model will also include cluster-level covariates included in the constrained randomization and patient-level covariates that may be associated with the delivery of BUP (age, gender, race, ethnicity, insurance status, past medical and psychiatric history, recent medical or psychiatric hospital admissions, recent enrollment in formal addiction treatment, active prescriptions for other opioids, and urine drug screen results). Linear contrasts will be used to estimate treatment differences along with 95% confidence intervals in the proportions of ED patients that received BUP in CDS vs. usual care. Given the relative advantages of Generalized Estimating Equations, and generalized linear mixed models (GLMM) sensitivity analyses will compare treatments using a logistic regression with GLMM, with random effects for ED and physician. Analysis of Secondary Outcomes: Secondary outcomes such as referral for MOUD Analysis of Secondary Outcomes: Secondary outcomes such as referral for MOUD appointment, attendance at an MOUD appointment (if available in the EHR), prescription for naloxone at ED discharge and receipt of discharge instructions will be evaluated using weighted weighted GEE as described above. Assessments of the physician including provision of any ED-initiated BUP during the trial, provision of any referral for ongoing MOUD treatment during the trial and receipt of Drug Addiction Treatment Act of 2000 training during the trial will be compared between CDS and usual care using GEE. These models will be stratified by the number of eligible patients the physician encountered during the trial and will include an effect for intervention, cluster-level covariates included in the constrained randomization, and an exchangeable working correlation. Discrete numeric outcomes such as clinical fidelity will be compared using the GEE with a log link and a negative binomial distribution. Plan for Missing Data: Several strategies will be imposed to accommodate the likelihood that missing data will occur during this study. Prevention is the most obvious and effective manner to control bias and loss of power from missing data.[50] As noted in the Data Collection section above, prior to the trial we will pilot data collection procedures. Variables with large proportions of missing will be excluded from collection. We will follow the intent to treat principle, requiring follow-up of all EDs randomized regardless of the treatment received.[51] Regular data retrieval ing ing ning ing BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. from EHRs combined with monitoring and missing data reports will trigger protocols for tracking and obtaining missing data. Despite these prevention efforts it is reasonable to assume missing data will occur. Our primary analysis is valid under the assumption that missing data will be missing at random (MAR).[52] We will evaluate the plausibility of this assumption by determining the extent of missing data and use logistic regression to identify factors associated with missing data. As appropriate, we will conduct sensitivity analysis using pattern-mixture and selection models under missing not at random (MNAR) assumptions to examine the robustness of conclusions of the primary analysis to missing data.[50,52] #### **Patient and Public Involvement** The development of the research question and outcome measures was led by emergency physicians, the primary population being studied. Formal user design sessions were conducted with both attending and resident physicians to ensure the CDS would be useful and would not interfere with patient care nor pose an undue burden on clinicians' time. The results of the study will be shared with the clinicians at participating sites via a broadcast email notification of publications. Patients did not participate in the design of the study and will not be involved in recruitment and conduct of the study. #### **ETHICS AND DISSEMINATION** We plan to obtain all necessary regulatory and human subjects protection approvals and procedures. The protocol has been approved by the Western Institutional Review Board, central IRB (protocol number 20182278, study number 1189765). Any important protocol modifications will be submitted to Western Institutional Review Board as protocol amendments. The local IRBs at each participating site will implement a reliance agreement with this central board. We anticipate a waiver of informed consent under the Common Rule (45 code of federal regulations (CFR) 46.116 given that:[53,54] (1) the research involves no more than minimal risk to the subjects;[55] (2) the waiver or alteration will not adversely affect the rights and welfare of the subjects; (3) the research could not practicably be carried out without the waiver or alteration; and (4) subjects will be provided with additional pertinent information after participation. Patients are not considered human subjects by HHS regulation 45 CFR 46.102(f)[54] since: (1) no identifiable private information will be collected, (2) the intervention does not target the patient, and (3) EHR data will be collected retrospectively without interaction with the patient. Therefore, consent is not applicable to this population. Furthermore, all recommendations included in the CDS intervention are considered best practices in treatment of OUD. The OUD population has a high underlying risk of morbidity/mortality (approximately 5% risk of death in 12 months).[8] Patient rights and welfare will be protected per standard practice. Therefore, the risk to a patient with OUD who is not receiving MOUD treatment in their ordinary daily lives greatly exceeds the risk of the EMBED intervention. All study sites will post details about the study in a location visible to patients to make them aware of the option to receive BUP and referral to treatment so as best to offer an informed decision for requesting care. Patients will retain the right to request MOUD treatment at any study site. Clinicians at all study sites will have access to all standard OUD medications and services to which they would otherwise have access to treat OUD patients. Clinicians will retain all control of their practice and at intervention sites have the option whether or not to use the intervention (i.e., can opt out). Clinician identifiers will be collected in order to follow practice patterns. However, the investigators will be blinded to both site and clinician identifiers. Each system will use an Honest Broker to protect the welfare and identity of each site and clinician and allow adjudication for analyses. Clinicians will be made aware of the study, its outcomes, the data to be collected and, at intervention sites, how to use and opt out
of using the CDS via broadcast email and direct communication by site champions. A flow diagram of the study's clinical protocol (Figure 2) will shared with clinicians and posted in the clinical work area of all study sites. Since this protocol is considered best practice, clinicians at control sites will retain all control of their practice and be encouraged to follow this protocol even though the CDS will not be available to them. As this is a pragmatic trial focused on implementing this intervention in a way that is as close to routine care as possible, consenting clinicians would not be consistent with routine CDS implementation and could jeopardize the scientific validity of the CDS intervention to overcome barriers to adoption of this practice[53]. Given the stigma[11] associated with treating individuals with OUD, the additional burden of the consent process could be a deterrent for clinicians to provide MOUD treatment to appropriate patients and bias the sample to clinicians with less stigma toward treating these patients. For this reason and since clinician data will be deidentified and unavailable to the investigators, we propose a waiver of consent of the clinicians to ensure the scientific validity of our findings. There is precedent for such a waiver in a similar situation.[56] Results will be published in open-access, peer-reviewed journals, presented at national meetings, and shared with the clinicians at participating sites via a broadcast email notification of publications. The full protocol will be published for public access; access to the participant-level dataset will be made in accordance with NIH policy after safeguarding that the datasets are fully de-identified at the site, provider, and patient level. No professional writers will be used. Authorship eligibility will follow the guidelines of the International Committee of Medical Journal Editors.[57] #### Figure Legends - **Figure 1.** Schematic diagram of parallel, cluster-randomized study design. - **Figure 2.** Clinical algorithm for ED-initiation of buprenorphine. - Figure 3. Graphical user interface of the user-centered CDS EMBED intervention - **Figure 4.** Number of study sites required as a function of coefficient of variation for site size assuming an ICC of 0.03 #### **REFERENCES** - 1 Rudd RA, Aleshire N, Zibbell JE, *et al.* Increases in Drug and Opioid Overdose Deaths--United States, 2000-2014. *MMWR Morb Mortal Wkly Rep* 2016;**64**:1378–82. - Buchanich JM, Balmert LC, Burke DS. Exponential Growth Of The USA Overdose Epidemic. *bioRxiv* Published Online First: 2017.https://www.biorxiv.org/content/early/2017/05/09/134403.abstract - 3 Center for Behavioral Health Statistics and Quality. Key Substance Use and Mental Health Indicators in the United States: Results from the 2015 National Survey on Drug Use and Health. Substance Abuse and Mental Health Services Administration 2016. https://www.samhsa.gov/data/sites/default/files/NSDUH-FFR1-2015/NSDUH-FFR1-2015.htm - 4 Seth P, Scholl L, Rudd RA, *et al.* Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants United States, 2015-2016. *MMWR Morb Mortal Wkly Rep* 2018;**67**:349–58. - 5 Substance Abuse and Mental Health Services Administration. Drug Abuse Warning Network, 2011: National Estimates of Drug-Related Emergency Department Visits. Published Online First: 5/2013.https://www.samhsa.gov/data/sites/default/files/DAWN2k11ED/DAWN2k11ED/DAW N2k11ED.pdf - Vivolo-Kantor AM, Seth P, Gladden RM, et al. Vital Signs: Trends in Emergency Department Visits for Suspected Opioid Overdoses - United States, July 2016-September 2017. MMWR Morb Mortal Wkly Rep 2018;67:279–85. - Sullivan LE, Fiellin DA. Narrative review: buprenorphine for opioid-dependent patients in office practice. *Ann Intern Med* 2008;**148**:662–70. - 8 Larochelle MR, Bernson D, Land T, et al. Medication for Opioid Use Disorder After Nonfatal Opioid Overdose and Association With Mortality: A Cohort Study. Ann Intern Med Published Online First: 19 June 2018. doi:10.7326/M17-3107 - 9 Kakko J, Svanborg KD, Kreek MJ, *et al.* 1-year retention and social function after buprenorphine-assisted relapse prevention treatment for heroin dependence in Sweden: a randomised, placebo-controlled trial. *Lancet* 2003;**361**:662–8. - Mattick RP, Breen C, Kimber J, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev Published Online First: 2014. doi:10.1002/14651858.cd002207.pub4 - 11 Sharfstein JM. The Opioid Crisis From Research to Practice. *Milbank Q* 2017;**95**:24–7. - We have the tools needed to cut overdose death rates by half but we aren't using them. Paperpile. https://paperpile.com/app/p/964b2025-4e4d-0756-9b7a-d12f213481d7 (accessed 6 Aug 2018). - 13 Walsh L. Buprenorphine Waiver Management | SAMHSA Substance Abuse and Mental Health Services Administration. https://www.samhsa.gov/programs-campaigns/medication-assisted-treatment/training-materials-resources/buprenorphine-waiver (accessed 17 Jul 2018). - 14 Duber HC, Barata IA, Cioè-Peña E, et al. Identification, Management, and Transition of Care for Patients With Opioid Use Disorder in the Emergency Department. Ann Emerg Med Published Online First: 4 June 2018. doi:10.1016/j.annemergmed.2018.04.007 - Houry DE, Haegerich TM, Vivolo-Kantor A. Opportunities for Prevention and Intervention of Opioid Overdose in the Emergency Department. *Ann Emerg Med* 2018;**71**:688–90. - 16 Kawamoto K, Houlihan CA, Balas EA, *et al.* Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. *BMJ* 2005;**330**:765. - 17 Garg AX, Adhikari NKJ, McDonald H, *et al.* Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. *JAMA* 2005;**293**:1223–38. - 18 Sittig DF, Wright A, Osheroff JA, *et al.* Grand challenges in clinical decision support. *J Biomed Inform* 2008;**41**:387–92. - 19 Ash JS, Berg M, Coiera E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. *J Am Med Inform Assoc* 2004;**11**:104–12. - 20 Ash JS, Sittig DF, Campbell EM, et al. Some unintended consequences of clinical decision support systems. AMIA Annu Symp Proc 2007;:26–30. - 21 Levin S, France DJ, Hemphill R, *et al.* Tracking workload in the emergency department. *Hum Factors* 2006;**48**:526–39. - 22 Melnick ER, Nielson JA, Finnell JT, *et al.* Delphi consensus on the feasibility of translating the ACEP clinical policies into computerized clinical decision support. *Ann Emerg Med* 2010;**56**:317–20. - 23 Sirajuddin AM, Osheroff JA, Sittig DF, *et al.* Implementation pearls from a new guidebook on improving medication use and outcomes with clinical decision support. Effective CDS is essential for addressing healthcare performance improvement imperatives. *J Healthc Inf Manag* 2009;**23**:38–45. - 24 Phansalkar S, Edworthy J, Hellier E, et al. A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems. J Am Med Inform Assoc 2010;17:493–501. - 25 Horsky J, Phansalkar S, Desai A, *et al.* Design of decision support interventions for medication prescribing. *Int J Med Inform* 2013;**82**:492–503. - 26 Gellert G, Webster S, Gillean J, *et al.* Should US doctors embrace electronic health records? *BMJ* 2017;**356**:j242. - 27 Roland M, Torgerson DJ. What are pragmatic trials? *BMJ* 1998;**316**:285. - 28 Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments. *Am J Public Health* 2004;**94**:423–32. - 29 Li F, Lokhnygina Y, Murray DM, *et al.* An evaluation of constrained randomization for the design and analysis of group-randomized trials. *Stat Med* 2016;**35**:1565–79. - 30 Loudon K, Treweek S, Sullivan F, *et al.* The PRECIS-2 tool: designing trials that are fit for purpose. *BMJ* 2015;**350**:h2147. - 31 Zuidgeest MGP, Welsing PMJ, van Thiel GJMW, et al. Series: Pragmatic trials and real world evidence: Paper 5. Usual care and real life comparators. J Clin Epidemiol 2017;90:92–8. - 32 Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. *Contemp Clin Trials* 2007;**28**:182–91. - Hemming K, Haines TP, Chilton PJ, *et al.* The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. *BMJ* 2015;**350**:h391. - 34 Richesson RL, Hammond WE, Nahm M, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc 2013;20:e226–31. - 35 Hylan TR, Von Korff M, Saunders K, *et al.* Automated prediction of risk for problem opioid use in a primary care setting. *J Pain* 2015;**16**:380–7. - 36 Carrell DS, Cronkite D, Palmer RE, et al. Using natural language processing to identify - problem usage of prescription opioids. *Int J Med Inform* 2015;**84**:1057–64. - 37 Reardon JM, Harmon KJ, Schult GC, *et al.* Use of diagnosis codes for detection of clinically significant opioid poisoning in the emergency department: A retrospective analysis of a surveillance case definition. *BMC Emerg Med* 2016;**16**:11. - 38 Home > ED-Initiated Buprenorphine | Emergency Medicine | Yale School of Medicine. https://medicine.yale.edu/edbup/ (accessed 24 Aug 2018). - 39 American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders* (DSM-5®). American Psychiatric Pub 2013. - 40 Wesson DR, Ling W. The Clinical Opiate Withdrawal Scale (COWS). *J Psychoactive Drugs* 2003;**35**:253–9. - 41 Walsh L. Special Circumstances for Providing Buprenorphine | SAMHSA Substance Abuse and Mental Health Services Administration.
https://www.samhsa.gov/programs-campaigns/medication-assisted-treatment/legislation-regulations-guidelines/special (accessed 13 Aug 2018). - 42 Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. *Am J Public Health* 1999;**89**:1322–7. - 43 Glasgow RE, Lichtenstein E, Marcus AC. Why don't we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. *Am J Public Health* 2003;**93**:1261–7. - 44 LeBlanc A, Ruud KL, Branda ME, *et al.* The impact of decision aids to enhance shared decision making for diabetes (the DAD study): protocol of a cluster randomized trial. *BMC Health Serv Res* 2012;**12**:130. - 45 National Institutes of Health (NIH). National Institutes of Health (NIH). https://researchmethodsresources.nih.gov/SampleSizeCalculator.aspx (accessed 13 Aug 2018). - 46 Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. *Int J Epidemiol* 2006;35:1292–300. - 47 Raab GM, Butcher I. Balance in cluster randomized trials. Stat Med 2001;20:351–65. - 48 Gong MN, Schenk L, Gajic O, *et al.* Early intervention of patients at risk for acute respiratory failure and prolonged mechanical ventilation with a checklist aimed at the prevention of organ failure: protocol for a pragmatic stepped-wedged cluster trial of PROOFCheck. *BMJ Open* 2016;**6**:e011347. - 49 Preisser JS, Lohman KK, Rathouz PJ. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. *Stat Med* 2002;**21**:3035–54. - 50 National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, *et al. The Prevention and Treatment of Missing Data in Clinical Trials*. National Academies Press 2010. 51 Lachin JM. Statistical considerations in the intent-to-treat principle. Control Clin Trials 2000;**21**:167–89. - 52 Molenberghs G, Thijs H, Jansen I, et al. Analyzing incomplete longitudinal clinical trial data. Biostatistics 2004; **5**:445–64. - 53 McKinney RE Jr, Beskow LM, Ford DE, et al. Use of altered informed consent in pragmatic clinical research. Clin Trials 2015;12:494-502. - 54 Office for Human Research Protections (OHRP). 45 CFR 46. HHS.gov. 2016.https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html (accessed 16 Aug 2018). - 55 Lantos JD, Wendler D, Septimus E, et al. Considerations in the evaluation and determination of minimal risk in pragmatic clinical trials. Clin Trials 2015;12:485–93. - Suffoletto B, Lynch M, Pacella CB, et al. The Effect of a Statewide Mandatory Prescription Drug Monitoring Program on Opioid Prescribing by Emergency Medicine Providers Across 15 Hospitals in a Single Health System. J Pain 2018;19:430–8. - 57 ICMJE | Recommendations | Defining the Role of Authors and Contributors. http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-roleof-authors-and-contributors.html (accessed 8 Mar 2019). Figure 1. Schematic diagram of parallel, cluster-randomized study design $90x49mm (300 \times 300 DPI)$ # ED-Initiated Buprenorphine #### Diagnosis of Moderate to Severe Opioid Use Disorder #### Assess for opioid type and last use 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Patients taking methadone may have withdrawal reactions to buprenorphine up to 72 hours after last use Consider consultation before starting buprenorphine in these patients 40 Warm hand-offs with specific time & date to opioid treatment providers/ programs within 24-72 hours whenever possible 42 All patients should be educated regarding dangers of benzodiazepine and alcohol co-use 16mg dosing for each day until appointment for ongoing treatment 2 days of 16mg dosing (72-hour rule) Referral for ongoing treatment Enseignement Superieur (ABES) Figure 3. Graphical user interface of the user-centered CDS EMBED intervention $86 \times 65 \text{mm} \ (300 \times 300 \ \text{DPI})$ BMJ Open: first published as 10.1136/bmjopen-2018-028488 on 30 May 2019. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. Figure 4. Number of study sites required as a function of coefficient of variation for site size assuming an ICC of 0.03 181x148mm (300 x 300 DPI) # BMJ Open BMJ Open CONSORT 2010 checklist of information to include when reporting a mandomised trial* | Section/Topic | Item
No | Checklist item | Reported on page No | |------------------------|------------|---|---------------------| | itle and abstract | | | • | | | 1a | Identification as a randomised trial in the title | | | | 1b | Structured summary of trial design, methods, results, and conclusions (for specific guidance see 2020RT for abstracts) | 2 | | ntroduction | | 9. D | . / | | Background and | 2a | Scientific background and explanation of rationale | 4 | | bjectives | 2b | Specific objectives or hypotheses | 5 | | /lethods | | ind t | | | rial design | За | Description of trial design (such as parallel, factorial) including allocation ratio | 5 | | | 3b | Important changes to methods after trial commencement (such as eligibility criteria), with | NIA | | Participants | 4a | Eligibility criteria for participants | 6 | | | 4b | Settings and locations where the data were collected | NA | | nterventions | 5 | The interventions for each group with sufficient details to allow replication, including how and when they were actually administered | 7 | | Outcomes | 6a | Completely defined pre-specified primary and secondary outcome measures, including here assessed | 8 | | | 6b | Any changes to trial outcomes after the trial commenced, with reasons | N/A | | Sample size | 7a | How sample size was determined | 91 | | | 7b | | NIA | | Randomisation: | | Mothed used to generate the random allocation sequence | 100 | | Sequence | 8a | Method used to generate the random allocation sequence | | | generation | 8b | Type of randomisation; details of any restriction (such as blocking and block size) | 10 | | Allocation | 9 | Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), | | | concealment mechanism | | describing any steps taken to conceal the sequence until interventions were assigned | | | Implementation | 10 | Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions | NA | | Blinding | 11a | If done, who was blinded after assignment to interventions (for example, participants, care projected, those | 1 | | CONSORT 2010 checklist | | hique | Pag | SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents* | Telated documents | | | | | |----------------------------|------------|--|--|--| | Section/item | Item
No | Description | | | | Administrative in | format | ion | | | | Title | 1 | Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym | | | | | | Page 1 (title page) | | | | Trial registration | 2a | Trial identifier and registry name. If not yet registered, name of intended registry | | | | | | Page 2 (abstract) | | | | | 2b | All items from the World Health Organization Trial Registration Data
Set | | | | | | Clinicaltrials.gov is compliant with the WHO Trial Registration Data requirements | | | | Protocol version | 3 | Date and version identifier Page 1 (Title page) | | | | Funding | 4 | Sources and types of financial, material, and other support Page 1 (Title page) | | | | Roles and responsibilities | 5a | Names, affiliations, and roles of protocol contributors Page 1 (Title page) | | | | | 5b | Name and contact information for the trial sponsor
Page 1 (Title page) | | | | | 5c | Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities Page 1 (Title Page) | | | | | 5d | Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) p 13 | | | #### Introduction | Background and rationale | 6a | Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention pp 4-5 | |--------------------------|----|--| | | 6b | Explanation for choice of comparators page 5 | | Objectives | 7 | Specific objectives or hypotheses: page 5 | | Trial design | 8 | Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory) pp 5-6 | #### Methods: Participants, interventions, and outcomes | Methods. Fartici | pants, | interventions, and
outcomes | |----------------------|--------|---| | Study setting | 9 | Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained page 6 | | Eligibility criteria | 10 | Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists) pp 6-7 | | Interventions | 11a | Interventions for each group with sufficient detail to allow replication, including how and when they will be administered pp 7-8 | | | 11b | Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) p 16 | | | 11c | Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests) N/A: as a pragmatic trial, participant adherence to intervention protocol is not a goal; we will observe participants using the CDS as they choose | | | 11d | Relevant concomitant care and interventions that are permitted or prohibited during the trial p. 8 | #### Methods: Assignment of interventions (for controlled trials) 16a #### Allocation: Sequence | generation | | generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions pp 10-11 | |----------------------------------|-----|--| | Allocation concealment mechanism | 16b | Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned N/A: allocation will not be concealed | | Implementation | 16c | Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions pp 10-11 | | Blinding
(masking) | 17a | Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how p 11, 16 | Method of generating the allocation sequence (eg, computer- 17b If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial N/A #### Methods: Data collection, management, and analysis ## Data collection methods Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol pp. 11 Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols N/A; follow-up is complete on the date of the study encounter ## Data management 20a 21a Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol p 12 ### Statistical methods Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol pp 13-14 20b Methods for any additional analyses (eg, subgroup and adjusted analyses) pp 13-14 20c Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation) pp 13-14 #### **Methods: Monitoring** #### Data monitoring Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed p 12 | f 33 | | | BMJ Open | |------|--------------------------|---------|--| | | | 21b | Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial N/A | | | Harms | 22 | Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct p. 16 | | | Auditing | 23 | Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor p. 13 | | | Ethics and disse | minatio | on | | | Research ethics approval | 24 | Plans for seeking research ethics committee/institutional review board (REC/IRB) approval Abstract | | | Protocol
amendments | 25 | Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) p. 15 | | Research ethics approval | 24 | Plans for seeking research ethics committee/institutional review board (REC/IRB) approval Abstract | |--------------------------|-----|--| | Protocol
amendments | 25 | Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) p. 15 | | Consent or assent | 26a | Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) N/A see pp 15-16 | | | 26b | Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable | | Confidentiality | 27 | How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial p 16 | | Declaration of interests | 28 | Financial and other competing interests for principal investigators for the overall trial and each study site pg 1 (Title page) | | Access to data | 29 | Statement of who will have access to the final trial dataset, and | investigators p12 | Ancillary and post-trial care | 30 | Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation N/A | |-------------------------------|-----|--| | Dissemination policy | 31a | Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions pp 15-16 | | | 31b | Authorship eligibility guidelines and any intended use of professional writers p 16 | | | 31c | Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code p 16 | #### **Appendices** | materials | 32 | participants and authorised surrogates N/A | |-------------------------|----|--| | Biological
specimens | 33 | Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable N/A | ^{*}It is strongly recommended that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons "Attribution-NonCommercial-NoDerivs 3.0 Unported" license.