

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Risk of Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome in Patients with Vertebral Fracture: A Nationwide Populationbased Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030939
Article Type:	Research
Date Submitted by the Author:	08-Apr-2019
Complete List of Authors:	Lee, Feng-You; Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Department of Emergency Medicine; Trauma and Emergency Center, China Medical University Hospital, Taichung, Department of Emergency Medicine Chen, Wei-Kung Lin, Cheng-Li Kao, Chia-Hung; China Medical University, Yang, Tse-Yen; China Medical University Hospital, Department of medical research ; Lai, Ching-Yuan; School of Chinese Medicine, China Medical University, Department of Emergency Medicine
Keywords:	Vertebral column fracture, aortic dissection, congestive heart failure, pneumonia, acute respiratory distress syndrome, National Health Insurance Research Database

SCHOLARONE[™] Manuscripts

Risk of Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome in Patients with Vertebral Fracture: A Nationwide Population-based Cohort Study

Running title: Vertebral Fracture and Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome Risks

Feng-You Lee,^{1,10} Wei-Kung Chen,² Cheng-Li Lin,^{3,4} Chia-Hung Kao,^{5,6,7} Tse-Yen

Yang,^{8,9,¶} and Ching-Yuan Lai,^{2,¶}

¹Department of Emergency Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

²Department of Emergency Medicine, Trauma and Emergency Center, China Medical

University Hospital, Taichung, Taiwan.

³Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.

⁴College of Medicine, China Medical University, Taichung, Taiwan.

⁵Graduate Institute of Clinical Medical Science and School of Medicine, College of

Medicine, China Medical University, Taichung, Taiwan.

⁶Department of Nuclear Medicine and PET Center, China Medical University

BMJ Open

Hospital, Taichung, Taiwan.

⁷Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.

⁸Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.

⁹Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

¹⁰Department of Emergency Medicine, School of Medicine, Tzu Chi University,

Hualien, Taiwan.

*Corresponding author:

TVY.) E-mail: yang t y@yahoo.com.tw (T.-Y.Y.)

[¶] These authors contributed equally to this work

Abstract

Objective: Studies on the association between vertebral column fractures (VCFs) and the subsequent risk of cardiopulmonary diseases, including aortic dissection (AD), congestive heart failure (CHF), pneumonia, and acute respiratory distress syndrome (ARDS), are scarce. Therefore, we used the National Health Insurance Research Database to investigate whether patients with VCF have a heightened risk of subsequent AD, CHF, pneumonia and ARDS.

Design: The National Health Insurance Research Database was used to investigate whether patients with VCFs have an increased risk of subsequent AD, CHF, pneumonia, and ARDS.

Participants: This cohort study comprised patients aged ≥ 18 years with a diagnosis of VCF and were hospitalized at any point during 2000–2010 (n = 111,532). Each VCF patient was frequency-matched to four non-VCF hospitalized patients based on age, sex, index year and comorbidities (n = 446,029). The Cox proportional hazard regressions model was used to estimate the adjusted effect of VCF on AD, CHF, pneumonia, and ARDS risk.

Results: The overall incidence of AD, CHF, pneumonia, and ARDS was higher in the VCF group than in the non-VCF group (5.11 versus 4.24, 124.5 versus 93.5, 297.4 versus 193.9, and 9.98 versus 5.13/10,000 person-years, respectively). After

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

adjustment for age, sex, and comorbidities, patients with VCF had a 1.26-fold higher risk of AD, 1.39-fold higher risk of CHF, 1.63-fold higher risk of pneumonia, and 2.02-fold higher risk of ARDS than did those without VCF. Patients with cervical VCF and SCI were more likely to develop pneumonia and ARDS.

Conclusions: Our study demonstrates that VCFs are associated with an increased risk of subsequent cardiopulmonary diseases. Future investigations are encouraged to delineate the mechanisms underlying this association.

Strengths and limitations of this study:

1. This is the first population-based, longitudinal cohort study to focus on the correlation between VCF and the subsequent risks of specific cardiopulmonary diseases.

2. By sampling from a large nationwide database, which covers nearly 100% of all residents in Taiwan, stable outcomes could be achieved with such adequate, representative samples.

3. All disease definitions and sample selection in our study were based on the

ICD-9-CM coding. Therefore, miscoding or misclassification might exist, although it is considered rare.

4. Because of geographic and epidemiologic discrepancies, our results might not be applicable to other countries or regions.

Keywords: Vertebral column fracture, aortic dissection, congestive heart failure, pneumonia, acute respiratory distress syndrome, National Health Insurance Research Database.

Key messages:

• VCF is significantly associated with an increased risk of specific cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS.

· Patients with cervical VCF and SCI were more likely to develop pneumonia and

ARDS.

• Patients with VCF should be targeted for further screening and preventive

interventions for cardiopulmonary diseases.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Introduction

Vertebral column fractures (VCFs) constitute a major healthcare burden worldwide because of its high incidence and strong influence on individuals' quality of life, medical resource consumption, and direct or potential unfavorable impacts on socioeconomic development¹⁻³. Approximately 1.4 million new cases of VCF are diagnosed globally every year⁴, and among these, osteoporosis, trauma, and malignancy are the major etiologies⁵⁻⁹. Acute aortic dissection (AD) remains the major life-threatening vascular emergency, with a steadily increasing incidence because of population aging and the explosive growth of radiologic technology¹⁰. Without early recognition and timely treatment, the prognosis of AD would be extremely poor, and half the patients would die within 48 h¹⁰. Congestive heart failure (CHF) is the major cause of hospitalization in old age, with more than 650,000 new cases confirmed annually in the United States, and more than 1 million people were hospitalized for decompensated CHF, resulting in costs exceeding 39 billion¹¹⁻¹³. Pneumonia is one of the most common infectious diseases in elderly adults and is also the leading cause of death in Americans older than 65 years¹⁴¹⁵. Acute respiratory distress syndrome (ARDS) is a complex syndrome characterized by diffuse hydrostatic pulmonary edema, alveoli damage, and persistent hypoxemia, which are mainly triggered by infection, inflammation, trauma, or other etiologies. The

BMJ Open

in-hospital mortality rate for this condition could reach 40% even when managed with the standardized lung protective ventilator strategy^{16 17}.

Studies have demonstrated that elderly patients with a history of osteoporotic VCF have an increased risk of cardiovascular events, including stroke (ischemic or hemorrhagic) and coronary heart disease¹⁸⁻²¹. In addition, chronic, worsened and longstanding backache accompanied with VCF might result in a long-term increase of sympathetic tone, fatigue, stress reaction, low physical activity, depressive tendency, diminished pulmonary function, and, consequently a poor quality of life, which might be correlated with cardiopulmonary disease risk^{3 5 7 8 22}. Therefore, we hypothesized that an association exists between VCF and the risk of cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS. Accordingly, we conducted a nationwide, population-based data analysis to verify this hypothesis and tried to provide essential evidence-based information for clinical practice.

Methods

Data Source

This retrospective cohort study used datasets from Taiwan's National Health Insurance Research Database (NHIRD). Taiwan launched a single-payer National Health Insurance (NHI) program in March 1995, and 99% of the 23.74 million residents were enrolled²³. The details of the NHIRD and NHI program are well Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

presented in previous studies²⁴ ²⁵. The NHIRD records diseases according to International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. This study was approved by the Institutional Review Board of China Medical University (CMUH-104-REC2-115).

Sampled Participants

Patients aged ≥ 18 years with newly diagnosed VCF (ICD-9-CM codes, 805 and 806) from January 1, 2000, to December 31, 2010, were identified as the VCF cohort. The location of VCF was defined in two ways as follows: (1) cervical spine (ICD-9-CM codes, 805.0-805.18 and 806.0-806.19), thoracic spine (ICD-9-CM codes, 805.2, 805.3, and 806.2-806.39), lumbar spine (ICD-9-CM codes, 805.4, 805.5, 806.4, and 806.5), and sacrum plus coccyx (ICD-9-CM codes, 805.6, 805.7, and 806.6-806.79) and (2) without spinal cord injury (SCI) (ICD-9-CM codes, 805-805.9), and with SCI (ICD-9-CM codes, 806-806.9). The date of first-time VCF diagnosis at admission was defined as the index date. For each VCF patient, four non-VCF participants were frequency-matched by the index year of VCF diagnosis, age (every 5-year span), sex, and comorbidities of diabetes (ICD-9-CM code, 250), hypertension (ICD-9-CM codes, 401-405), hyperlipidemia (ICD-9-CM code, 272), atrial fibrillation (ICD-9-CM code, 427.31), chronic kidney disease (CKD; ICD-9-CM codes, 580-589), and chronic obstructive pulmonary disease (COPD; ICD-9-CM codes, 491, 492, and 496). We constructed a 1:4 matched cohort study to increase the statistical efficiency

BMJ Open

and power, and to control possible confounding. We excluded participants with prior AD (ICD-9-CM codes, 441.0, 441.00, 441.01, 441.02, and 441.03), CHF (ICD-9-CM code, 428), pneumonia (ICD-9-CM codes, 480-488), and ARDS (ICD-9-CM codes, 518.82 and 518.5) at baseline in both the VCF and non-VCF cohorts.

Outcome

The main outcome was hospitalization with a new diagnosis of AD, CHF, pneumonia, or ARDS during the follow-up period. Both the VCF and non-VCF cohorts were followed up until the diseases appeared or they were censored because of loss to follow-up, death, or the end of December 31, 2011, whichever occurred first.

Statistical analysis

A chi-square test and Student's *t*-test were used to evaluate the differences in the distribution of categorical and continuous variables, respectively, between the VCF and non-VCF cohorts. The overall, sex-, age-, and comorbidity-specific incidence densities of AD, CHF, pneumonia, and ARDS were estimated for each cohort. The relative risks of AD, CHF, pneumonia, and ARDS in the VCF cohort compared with the non-VCF cohort were analyzed using univariable and multivariable Cox proportional hazard regression models and presented as hazard ratios (HRs) and 95% confidence intervals (CIs). The multivariable models were simultaneously adjusted for age, sex, and comorbidities of hypertension, diabetes, hyperlipidemia, atrial

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

fibrillation, CKD, and COPD. Further analysis was performed to assess whether the association of VCF with AD, CHF, pneumonia, and ARDS varied according to the levels of VCF. All statistical analyses were performed using SAS 9.4 software (SAS Institute, Cary, NC, USA), and we set the significance level at less than 0.05 for two-sided testing of P-values.

Results

In this study, 111,532 VCF patients and 446,029 matched non-VCF participants with similar distributions of age, sex, and comorbidities were assessed (Table 1). In the VCF cohort, \geq 44.7% of patients were aged \geq 65 years, and 55.0% of the patients were women (Table 1). The mean age of the patients was 59.0 ± 18.9 years in the VCF cohort and 58.5 ± 18.9 years in the non-VCF cohort. Both cohorts had a medical history of hypertension (26.1%), diabetes (15.3%), COPD (5.50%), hyperlipidemia (5.22%), atrial fibrillation (1.30%), and CKD (3.63%).

Table 1. Comparison of demographics and comorbidity between vertebral
column fracture patients and controls

	Vertebral colu	Vertebral column fracture				
	Yes	No				
	(N=111532)	(N=446029)				
	n(%)	n(%)	<i>p</i> -value			
Age, years			0.99			
≤49	36946(33.1)	147763(33.1)				

50-64	24715(22.2)	98848(22.2)	
≥65	49871(44.7)	199418(44.7)	
Mean (SD) [†]	59.0(18.9)	58.5(18.9)	0.001
Gender			0.99
Female	61352(55.0)	245347(55.0)	
Male	50180(45.0)	200682(45.0)	
Comorbidity			
Hypertension	29143(26.1)	116526(26.1)	0.98
Diabetes	17016(15.3)	68023(15.3)	0.96
Hyperlipidemia	5833(5.23)	23269(5.22)	0.86
Atrial fibrillation	1461(1.31)	5779(1.30)	0.71
СКД	4061(3.64)	16209(3.63)	0.91
СОРД	6151(5.52)	24530(5.50)	0.84

Chi-square test examined categorical data; [†]T-test examined continuous ;

Overall, the incidence of AD was 1.20-fold higher in the VCF cohort than in the non-VCF cohort (5.11 vs. 4.24 per 10,000 person-years), with an adjusted HR (aHR) of 1.26 (95% CI = 1.11-1.43) (Table 2). The aHR of AD among women was significantly higher in the VCF cohort than in the non-VCF cohort (aHR = 1.39, 95% CI = 1.16-1.66). The age-specific relative risk of AD in the VCF cohort was higher than that in the non-VCF cohort for all age groups. The relative risk of AD was higher in the VCF cohort than in the non-VCF cohort for patients without comorbidities (aHR = 1.44, 95% CI = 1.18–1.76). In all stratifications, the risk of CHF, pneumonia, and ARDS remained higher in the VCF cohort than in the non-VCF cohort.

⁵⁷₅₈Table 2. Incidence and adjusted hazard ratio of outcome by sex, age and comorbidity for vertebral column fracture ⁵⁹patients compared to controls

3 4 5		Vertel	oral colu	umn frac	ture		Compare	ed to Control
5		Yes			No		-	
3 9 Variables 10	Events n	PY	Rate [#]	Events n	РҮ	Rate [#]	Crude HR (95% CI)	Adjusted HR [†] (95% CI)
Aortic dissection								
3 All	310	606079	5.11	1083	2552211	4.24	1.20(1.06, 1.37)**	1.26(1.11, 1.43)***
⁴ ₅ Gender								
6 Female	158	330690	4.78	480	1379047	3.48	1.37(1.15, 1.65)***	1.39(1.16, 1.66)***
['] ₈ Male	152	275389	5.52	603	1173164	5.14	1.07(0.90, 1.28)	1.15(0.96, 1.37)
9 Age, years								
⁰ ≤49	21	238047	0.88	50	958814	0.52	1.69(1.01, 2.81)*	1.71(1.03, 2.85)*
2 50-64	43	142801	3.01	127	593672	2.14	1.41(1.00, 2.00)*	1.43(1.01, 2.02)*
$^{13}_{4} \geq 65$	246	225231	10.9	906	999724	9.06	1.21(1.05, 1.39)**	1.23(1.07, 1.42)**
5 Comorbidity [§]								
26 7 No	126	423394	2.98	388	1759071	2.21	1.35(1.10, 1.65)**	1.44(1.18, 1.76)***
8 Yes	184	182684	10.1	695	793140	8.76	1.15(0.98, 1.35)	1.16(0.99, 1.37)
⁹ OCongestive heart								
¹ failure								
² All	7362	591293	124.5	23434	2506566	93.5	1.33(1.30, 1.37)***	1.39(1.36, 1.43)***
⁴ Gender							/	
5 6 Female	5027	320276	157.0	15806	1347497	117.3	1.34(1.30, 1.38)***	1.37(1.32, 1.41)***
7 Male	2335	271018	86.2	7628	1159069	65.8	1.31(1.25, 1.37)***	1.44(1.37, 1.51)***
⁸ Age, years							× · /	
o ≤49	253	237424	10.7	631	957288	6.59	1.61(1.39, 1.87)***	1.66(1.44, 1.92)***
$^{1}_{2}$ 50-64	778	140974	55.2	2476	587448	42.2	1.31(1.21, 1.42)***	1.33(1.23, 1.44)***
² 3 ≥65	6331	212896	297.4	20327	961830	211.3	1.41(1.38, 1.46)***	1.42(1.38, 1.46)***
⁴ Comorbiditv [§]				·				
6 No	2293	418658	54.8	6585	1746146	37.7	1.45(1.39. 1.53)***	1.56(1.49. 1.63)***
7 Yes	5069	172636	293.6	16849	760420	221.6	1.33(1.29, 1.37)***	1.33(1.29, 1.37)***
o <u> </u>							(,,,)	
0 1 All	17088	574670	2974	47887	2469960	193 9	1 53(1 51 1 56)***	1 63(1 60 1 66)***
² Gender	1,000	571070	<i>шу</i> ,,т	17007	2107700	1,5.7		1.05(1.00, 1.00)
3 A Female	9332	313517	2977	26911	1332150	202.0	1 48(1 44 1 51)***	· 1 51(1 47 1 55)***
4 I ciliaic 5 Male	7756	261152	297.1	20011	1137801	18/ /	1.10(1.77, 1.51) 1.61(1.57, 1.65)***	1.31(1.77, 1.33) = 1.78(1.74, 1.83)
6	1150	201133	271.0	20770	115/001	104.4	1.01(1.57, 1.05)	1./0(1./᠇, 1.03)
/ ngu, yuais 8 <10	1604	222011	68.0	7566	051742	27.0	7 55(7 10 7 77)***	: 7 60(7 11 7 76)***
- <u>-</u> +7 9 50.64	1004	232911 127755	00.9 157 4	2300 5561	501202	27.U	2.33(2.40, 2.72)	$2.00(2.44, 2.70)^{+++}$
,0 30-04	2168	13//33	15/.4	2201	581203	95./	$1.03(1.3/, 1./3)^{***}$	1.08(1.39, 1.76)***

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2								
$\frac{3}{4} \ge 65$	13316	204004	652.7	39760	937013	424.3	1.55(1.52, 1.58)***	1.57(1.54, 1.61)***
5 Comorbidity [§]								
6 7 No	6914	409031	169.0	15760	1729775	91.1	1.86(1.81,1.91)***	2.00(1.94, 2.05)***
8 Yes	10174	165639	614.2	32127	740185	434.0	1.42(1.39, 1.45)***	1.44(1.41, 1.47)***
9 Acute respiratory								
¹¹ distress syndrome								
12 13 All	605	6906281	9.98	1311	2553547	5.13	1.94(1.76, 2.14)***	2.02(1.84, 2.23)***
¹⁴ Gender								:
16 Female	281	330769	8.50	655	1379507	4.75	1.79(1.56, 2.06)***	1.81(1.57, 2.08)***
17 Male	324	275511	11.8	656	1174039	5.59	2.10(1.84, 2.40)***	2.25(1.97, 2.57)***
¹⁸ ₁₉ Age, years								j.
20 <u>≤</u> 49	85	237971	3.57	79	958844	0.82	4.33(3.19, 5.88)***	4.41(3.24, 5.99)***
²¹ ₂₂ 50-64	73	142861	5.11	168	593844	2.83	1.81(1.37, 2.38)***	1.82(1.39, 2.40)***
²³ ≥65	447	225448	19.8	1064	1000858	10.6	1.87(1.67, 2.09)***	1.90(1.70, 2.12)***
24 25 Comorbidity [§]								
26 No	255	423421	6.02	444	1759620	2.52	2.39(2.05, 2.79)***	2.52(2.16, 2.94)***
27 28 Yes	350	182859	19.1	867	793926	10.9	1.75(1.55, 1.98)***	1.77(1.56, 2.01)***

²⁹PY, person-years; Rate[#], incidence rate, per 10,000 person-years; Crude HR: relative hazard ratio;
³⁰₃₁Adjusted HR[†]: adjusted hazard ratio controlling for age, sex, and comorbidities of hypertension, diabetes,
³²hyperlipidemia, atrial fibrillation, CKD, and COPD;

³³₃₄Comorbidity[§]: Patients with any one of the comorbidities hypertension, diabetes, hyperlipidemia, atrial fibrillation, ³⁵CKD, and COPD were classified as the comorbidity group

³⁶ ₃₇*p<0.05, **p<0.01, ***p<0.001

Compared with patients without VCF, the risk of AD was 1.38 -fold (95% CI =
1.20-1.59) higher in VCF-lumbar patients and was 1.27-fold (95% CI = 1.12-1.45)
higher in VCF patients without SCI (Table 3). The risk of CHF and pneumonia
remained higher in patients with various levels of VCF than in patients without VCF.
Table 3 also shows that patients with various levels of VCF, except for those with
sacrum or coccyx fractures, had a significantly higher risk of ARDS than did patients
without VCF.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

2
2
3
4
5
6
0
7
8
9
10
10
11
12
13
14
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
27
28
29
30
21
51
32
33
34
35
22
36
37
38
30
40
40
41
42
43
11
44
45
46
47
<u>4</u> 8
40
49
50
51
52
52
53
54
55
56
50
5/
58
59
60

Table 3. Comparisons of Incidence, and Hazard Ratios of outcome by subtypes of vertebral col	umn
fracture	

Variables	N	Evont	Doto#	Crude HR	Adjusted HR [†]
variables	IN	Event	Kate	(95% CI)	(95% CI)
Aortic dissection					
Non-Vertebral column	446020	1092	1 24	1(Deference)	1(Deference)
fracture	440029	1085	4.24	I(Kelelence)	I(Reference)
Cervical spine	10594	14	2.43	0.57(0.34, 0.97)*	0.97(0.57, 1.65)
Thoracic	32895	100	5.87	1.38(1.13, 1.70)**	1.20(0.98, 1.47)
Lumbar	72135	241	6.15	1.45(1.26, 1.67)***	1.38(1.20, 1.59)***
Sacrum and coccyx	7594	6	1.24	0.29(0.13, 0.65)**	1.00(0.45, 2.23)
Without SCI	101171	286	5.26	1.24(1.09, 1.41)**	1.27(1.12, 1.45)***
With SCI	13705	34	4.10	0.97(0.69, 1.36)	1.19(0.84, 1.67)
Congestive heart failure					
Non-Vertebral column	446020	22424	02.5	1(Deference)	1(Deference)
fracture	446029	23434	93.5	I(Reference)	I(Reference)
Cervical spine	10594	296	52.0	0.56(0.50, 0.62)***	1.40(1.25, 1.57)***
Thoracic	32895	2862	174.0	1.86(1.79, 1.94)***	1.47(1.41, 1.53)***
Lumbar	72135	5355	140.6	1.50(1.46, 1.55)***	1.43(1.38, 1.47)***
Sacrum and coccyx	7594	156	32.6	0.35(0.30, 0.41)***	1.35(1.15, 1.58)***
Without SCI	101171	6735	126.9	1.36(1.32, 1.39)***	1.38(1.35, 1.42)***
With SCI	13705	910	112.5	1.20(1.12, 1.28)***	1.59(1.49, 1.70)***
Pneumonia					
Non-Vertebral column	446020	17007	102.0	1(Deference)	1(Deference)
fracture	440029	4/00/	195.9	I(Reference)	I(Reference)
Cervical spine	10594	1256	230.7	1.19(1.12, 1.26)***	2.44(2.30, 2.58)***
Thoracic	32895	6001	375.3	1.94(1.89, 1.99)***	1.62(1.58, 1.67)***
Lumbar	72135	11891	321.0	1.65(1.62, 1.69)***	1.60(1.57, 1.64)***
Sacrum and coccyx	7594	466	99.3	0.51(0.47, 0.56)***	1.79(1.63, 1.96)***
Without SCI	101171	15388	298.0	1.54(1.51, 1.56)***	1.60(1.57, 1.63)***
With SCI	13705	2437	315.1	1.62(1.56, 1.69)***	2.10(2.01, 2.18)***
Acute respiratory distress					
syndrome					
Non-Vertebral column	446020	1311	5 1 3	1(Reference)	1(Reference)
fracture	770023	1311	5.15		
Cervical spine	10594	63	10.9	2.13(1.66, 2.75)***	3.71(2.87, 4.79)***

3 4	Thoracic	32895	214	12.6	2.45(2.12, 2.83)***	2.10(1.82, 2.43)***
5	Lumbar	72135	404	10.3	2.01(1.80, 2.24)***	1.92(1.72, 2.15)***
6 7	Sacrum and coccyx	7594	11	2.28	0.44(0.25, 0.80)**	1.40(0.77, 2.55)
8	Without SCI	101171	532	9.78	1.90(1.72, 2.10)***	1.95(1.76, 2.16)***
9 10 .	With SCI	13705	103	12.4	2.41(1.97, 2.95)***	2.94(2.40, 3.59)***

Rate[#], incidence rate, per 10,000 person-years; Crude HR: relative hazard ratio; Adjusted HR[†]: adjusted hazard ratio controlling for age, sex, and comorbidities of hypertension, diabetes, hyperlipidemia, atrial fibrillation, CKD, and COPD; ICD-9-CM: Cervical spine: 805.0-805.18, 806.0-806.19; Thoracic: 805.2, 805.3, 806.2-806.39; Lumbar: 805.4, 805.5, 806.4, 806.5; Sacrum and coccyx: 805.6, 805.7, 806.6-806.79; SCI involved or Not: Without SCI: 805-805.9 & With SCI: 806-806.9 *p<0.05, **p<0.01, ***p<0.001

Figures 1A–1D show that the VCF cohort had a significantly higher cumulative proportion of AD (P = 0.001; Figure 1A), CHF (P < 0.001; Figure 1B), pneumonia (P< 0.001; Figure 1C), and ARDS (P < 0.001; Figure 1D) than did the non-VCF cohort.

Discussion

To the best of our knowledge, this is the first population-based, longitudinal cohort study to focus on the correlation between VCF and the subsequent risks of specific cardiopulmonary diseases. The main results demonstrated that VCF is significantly associated with an increased risk of several specific cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS. In our study, patients older than 65 years and females accounted for the majority of participants. The incidence and prevalence of vulnerable fractures, accompanied with population aging and

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

subsequent frequently occurring home accidents, are steadily rising²⁶. In addition, VCF in women is constantly a consequence of postmenopausal bone loss^{5 7 8}. According to recent studies, the prevalence of women older than 50 years who experienced at least one VCF event was 23% - 26%, which was higher than that of men (21.5%)²⁷⁻²⁹.

AD represents a complicated, life-threatening emergency and is associated with high morbidity and mortality^{30 31}. In our analysis, with or without VCF, the incidence of AD was higher in men, elderly patients older than 65 years, and those with coexisting comorbidities; this finding is in line with previous epidemiological investigations³⁰⁻³². Notably, most studies examining the incidence of AD have been confined to specific geographic regions or focused on inpatients; thus, the true incidence is hard to be reflected³⁰. Moreover, compared with non-VCF patients, VCF patients, especially female patients and those without comorbidities, bore a higher risk of subsequent AD development. Studies that have focused on this correlation are scarce, and the current literature describes only a few cases of aortic injury following thoracolumbar spine fractures in polytrauma victims³³⁻³⁷. We suppose that the intractable pain induced by fractures, accompanied with increments in sympathetic tone, stress, hypertension, and the impact on the vascular wall, as well as an unfavorable sedentary life style all might contribute to the formation of AD.

Page 17 of 30

BMJ Open

In this study, VCF was associated with an increased risk of CHF, and the results remained statistically significant across various age and sex strata, as well as with or without comorbidities. In a cross-sectional analysis, Lyons et al.³⁸ demonstrated that more than one-tenth of heart failure patients had radiologic recognizable VCF, and among those, multiple VCF accounted for one half, indicating the close correlation between these two diseases. Moreover, the most common etiology of VCF, osteoporosis, together with CHF, are conventionally deemed to be independent diseases. However, recent investigations have indicated that the two diseases share common risk factors, including advantaged age, female sex, hypovitaminosis D, renal insufficiency, diabetes, and a smoking habit, as well as the same etiologic mechanisms, including activation of the renin-angiotensin-aldosterone system, hypersecretion of parathyroid hormones, and oxidative / nitrosative stress^{21 38-42}. Furthermore, unfavorable outcomes following fracture, including a loss of functional and social activities, dependency with poor quality of life, higher serum cortisol levels accompanied with depressive disorder, higher inflammatory markers, lower drug and diet compliance, a sedentary life style, and arrhythmia or cardiac ischemic events caused by high sympathetic activity, might all contribute to the deterioration of heart function^{40 43}.

Our study results reveal that patients with VCF bore a significantly heightened

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

risk of subsequent pneumonia and ARDS across all strata of age and sex and irrespective of the presence of comorbidities. Further analyses demonstrated the strongest correlation between cervical VCF combined with SCI and risks of pneumonia and ARDS. In a 2-year retrospective multicenter trauma registry analysis, Fletcher et al.⁴⁴ noted that 16% of elderly patients older than 65 years with cervical spine trauma ultimately developed pneumonia. Other studies have revealed the incidence of pulmonary complications following cervical spine trauma to be 35% -95%^{45 46}, and among these complications, the most common type was pneumonia and atelectasis, although ARDS was the most severe type and represented the predominant contributor to morbidity and mortality⁴⁷⁻⁴⁹. There are several possible explanations. First, deformity of the vertebral body or even kyphosis might decrease the lung capacity and therefore impair the pulmonary function. Prior studies have indicated that a single VCF would decrease the predicted forced vital capacity by 9%, increase the risk of restrictive lung disease, and lead to a 3-fold risk of mortality^{1 2 50}. Second, cervical VCF combined with SCI might cause paralysis of the diaphragm and hypoactivity of the respiratory accessory muscles, which results in hypoventilation. In addition, the imbalance of sympathetic-parasympathetic interactions would result in an elevated airway tone, bronchorrhea, and poor clearance, which are all associated with the development of various pulmonary complications^{51 52}. Third, Chen et al.⁵¹

BMJ Open

proposed that in upper cervical spine trauma and SCI patients, hypoalbuminemia would not only indicate nutrition status but would also impair the function of respiratory muscles, leading to respiratory complications. However, additional investigations are necessary for verification before definite conclusions are established. Fourth, patients with SCI are prone to develop aspiration and subsequent pulmonary infection due to impaired neuromuscular transmission.

The major strength of our study is sampling from a large nationwide database, which covers nearly 100% of all residents in Taiwan, and stable outcomes could be achieved with such adequate, representative samples. However, the inevitable limitations should be discussed. First, all disease definitions and sample selection in our study were based on the ICD-9-CM coding, which has been rigorously scrutinized and peer-reviewed by clinical physicians, the declaration unit of medical institutions and finally the NHI administration. However, miscoding or misclassification might still exist, although it is considered rare. Second, retrospective dataset analysis results cannot be used to determine causal relationships. Third, several crucial variables could not be obtained from our dataset, including family history, education and socioeconomic status, information of life style and physical activity, body weight, smoking habits, disease severity, laboratory results, radiologic reports, and estimated pain scores, which are potential confounders that might have affected the results.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> Fourth, a considerable portion of VCF patients with slight or no symptoms might not have been diagnosed or might have even been overlooked in clinical settings; thus, the incidence of VCF could be underestimated. Fifth, patients with VCF might have one or more overlapping etiologies include osteoporosis, trauma and malignancies, etc. Therefore, it was technically infeasible to simply divide the VCF patients into several subgroups for sub-analysis based on the coding of etiologies. Finally, because of geographic and epidemiologic discrepancies, our results might not be applicable to other countries or regions.

Conclusion

In conclusion, our study results support the hypothesis that VCF is associated with subsequent risks of AD, CHF, pneumonia, and ARDS. Future studies are warranted to delineate the actual pathophysiologic mechanisms underlying this correlation and to develop optimal strategies for reducing the heath care burden of VCF and its complications. Based on our results, we suggest that patients with VCF should be targeted for further screening and preventive interventions for cardiopulmonary diseases.

Abbreviations:

VCFs: vertebral column fractures; AD: aortic dissection; CHF: congestive heart failure; ARDS: acute respiratory distress syndrome; NHIRD: National Health Insurance Research Database; NHI: National Health Insurance; ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification; SCI: spinal cord injury; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; aHRs: adjusted hazard ratios; CI: confidence interval; SD: standard deviation.

Declarations:

Acknowledgements

Sec. (c 'n This study is supported in part by Taiwan Ministry of Health and Welfare Clinical Trial Center (MOHW108-TDU-B-212-133004), China Medical University Hospital-Academia Sinica Stroke Biosignature Project (BM10701010021), MOST Clinical Trial Consortium for Stroke (MOST 107-2321-B-039 -004), Tseng-Lien Lin Foundation, Taichung, Taiwan, and Katsuzo and Kiyo Aoshima Memorial Funds, Japan.

Ethics approval and consent to participate

This study was approved by the Ethics Review Board of China Medical University and Hospital, Taiwan (CMUH-104-REC2-115). The IRB waived the consent

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

requirement.

Availability of data and materials

Data are available from the NHIRD published by Taiwan National Health Insurance Bureau. Owing to the Personal Information Protection Act, these cannot be made publicly available (http://nhird .nhri.org.tw).

Competing interests

The authors declare that they have no competing interests.

Authors' Contributions

The authors' individual contributions are outlined as follows. Conception and design:

F-Y.L. and T.-Y.Y. Administrative support: T.-Y.Y. Data collection and organization:

All authors. Data analysis and interpretation: All authors. Manuscript writing: All

authors. Final approval of the manuscript: All authors.

References:

- 1. Longo UG, Loppini M, Denaro L, et al. Conservative management of patients with an osteoporotic vertebral fracture: a review of the literature. *J Bone Joint Surg Br* 2012;94(2):152-7. doi: 10.1302/0301-620X.94B2.26894
- 2. Longo UG, Loppini M, Denaro L, et al. Osteoporotic vertebral fractures: current concepts of conservative care. *British medical bulletin* 2012;102(1):171-89.
- Yu CW, Hsieh MK, Chen LH, et al. Percutaneous balloon kyphoplasty for the treatment of vertebral compression fractures. *BMC Surg* 2014;14:3. doi: 10.1186/1471-2482-14-3
- 4. Guo JB, Zhu Y, Chen BL, et al. Surgical versus non-surgical treatment for vertebral compression fracture with osteopenia: a systematic review and

BMJ Open

2	
3	meta-analysis. <i>PloS one</i> 2015:10(5):e0127145. doi:
4	10.1371/iournal none 0.01271/15
6	
7	5. Bliuc D, Center JR. Determinants of mortality risk following osteoporotic fractures.
8	<i>Current opinion in rheumatology</i> 2016;28(4):413-19.
9	6. Chih YP, Wu WT, Lin CL, et al. Vertebral Compression Fracture Related to
10	Pancreatic Cancer With Osteoblastic Metastasis: A Case Report and Literature
12	
13	Review. <i>Medicine</i> 2016;95(5):62670. doi: 10.1097/MD.00000000002670
14	7. Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fracture
15	assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab
17	2006;91(11):4215-22. doi: 10.1210/jc.2006-1178
18	8 Lindsay R Silverman SL Cooper C et al. Risk of new vertebral fracture in the year
19	following a fractive IANAA , the issued of the American Madical Association
20 21	Tonowing a fracture. JAMA : the journal of the American Medical Association
22	2001;285(3):320-3.
23	9. Park SB, Kim J, Jeong JH, et al. Prevalence and Incidence of Osteoporosis and
24	Osteoporotic Vertebral Fracture in Korea: Nationwide Epidemiological Study
25 26	Eocusing on Differences in Socioeconomic Status Spine 2016:41(4):328-36
27	10. Telepsor II. von Degerijen CII. Fogle KA. et el. Undete in the management of
28	10. Tolenaar JL, van Bogerijen GH, Eagle KA, et al. Opdate in the management of
29	aortic dissection. <i>Curr Treat Options Cardiovasc Med</i> 2013;15(2):200-13. doi:
31	10.1007/s11936-012-0226-1
32	11. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure.
33	Nature Reviews Cardioloay 2011:8(1):30-41.
34	12 Givertz MM Tearlink IP. Albert NM at al. Acute decomponsated heart failure:
36	12. Overtz www, reening JR, Albert www, et al. Acute decompensated heart failure.
37	update on new and emerging evidence and directions for future research.
38	Journal of cardiac failure 2013;19(6):371-89.
39	13. Maze R, Haddad H. An update in the management of acute decompensated heart
41	failure. <i>Current opinion in cardioloay</i> 2014:29(2):180-84.
42	14. Bender MT. Niederman MS. Improving outcomes in community-acquired
43	14. Dender Mr, Mederman MS. Improving outcomes in community acquired
44 45	pheumonia. <i>Current opinion in pulmondry medicine</i> 2016;22(3):235-42.
46	15. Marrie TJ, File TM. Bacterial Pneumonia in Older Adults. <i>Clinics in Geriatric</i>
47	Medicine 2016
48	16. Kim WY, Hong SB. Sepsis and Acute Respiratory Distress Syndrome: Recent
49 50	Undate Tuberc Respir Dis (Seoul) 2016:79(2):53-7 doi:
51	10 404C/trid 2010 70 2 52
52	10.4046/10.2016.79.2.53
53	17. Koh Y. Update in acute respiratory distress syndrome. <i>J Intensive Care</i>
54 55	2014;2(1):2. doi: 10.1186/2052-0492-2-2
56	18. Chen YC, Wu JC, Liu L, et al. Hospitalized osteoporotic vertebral fracture
57	increases the risk of stroke: a population-based cohort study <i>I Bone Miner</i>
58	Bac 2012:20/2):E16 22 doi: 10.1002/ibmr 1722
59 60	res 2015;28(5):510-25. 001: 10.1002/JDM11.1/22
~~	

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3	
4	
5	
6	
7	
8	
9	
10	
11	
17	
12	
14	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>4</u> 2	
<u>4</u> 4	
-++ 15	
رب ۸۸	
40 17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

> Laroche M, Pecourneau V, Blain H, et al. Osteoporosis and ischemic cardiovascular disease. *Joint Bone Spine* 2016 doi: 10.1016/j.jbspin.2016.09.022

20. Silverman SL, Delmas PD, Kulkarni PM, et al. Comparison of fracture, cardiovascular event, and breast cancer rates at 3 years in postmenopausal women with osteoporosis. *Journal of the American Geriatrics Society* 2004;52(9):1543-48.

- 21. Ni Mhuircheartaigh O, Crowson CS, Gabriel SE, et al. Fragility Fractures Are Associated with an Increased Risk for Cardiovascular Events in Women and Men with Rheumatoid Arthritis: A Population-based Study. *J Rheumatol* 2017;44(5):558-64. doi: 10.3899/jrheum.160651
- 22. Melton LJ, Kallmes DF. Epidemiology of vertebral fractures: implications for vertebral augmentation. *Academic radiology* 2006;13(5):538-45.
- 23. Shou-Hsia C, Tung-Liang C. The effect of universal health insurance on health care utilization in Taiwan: results from a natural experiment. *JAMA : the journal of the American Medical Association* 1997;278(2):89-93.
- Peng YC, Lin CL, Yeh HZ, et al. Diverticular disease and additional comorbidities associated with increased risk of dementia. *J Gastroenterol Hepatol* 2016;31(11):1816-22. doi: 10.1111/jgh.13389
- 25. Chen YT, Su JS, Tseng CW, et al. Inflammatory bowel disease on the risk of acute pancreatitis: A population-based cohort study. *J Gastroenterol Hepatol* 2016;31(4):782-7. doi: 10.1111/jgh.13171
- 26. Bouyer B, Vassal M, Zairi F, et al. Surgery in vertebral fracture: epidemiology and functional and radiological results in a prospective series of 518 patients at 1 year's follow-up. Orthop Traumatol Surg Res 2015;101(1):11-5. doi: 10.1016/j.otsr.2014.11.012
- Jackson SA, Tenenhouse A, Robertson L. Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 2000;11(8):680-7. doi: 10.1007/s001980070066
- 28. Kendler D, Bauer D, Davison K, et al. Vertebral fractures: clinical importance and management. *The American journal of medicine* 2016;129(2):221. e1-21. e10.
- 29. Melton LJ, 3rd, Lane AW, Cooper C, et al. Prevalence and incidence of vertebral deformities. *Osteoporos Int* 1993;3(3):113-9.
- 30. Melvinsdottir IH, Lund SH, Agnarsson BA, et al. The incidence and mortality of acute thoracic aortic dissection: results from a whole nation study. *European Journal of Cardio-Thoracic Surgery* 2016:ezw235.
- 31. Pacini D, Di Marco L, Fortuna D, et al. Acute aortic dissection: epidemiology and

	outcomes. <i>International journal of cardiology</i> 2013;167(6):2806-12. doi: 10.1016/i.iicard.2012.07.008
32.)	eh TY. Chen CY. Huang JW. et al. Epidemiology and Medication Utilization
0111	Pattern of Aortic Dissection in Taiwan: A Population-Based Study. <i>Medicine</i>
	2015:94(36):e1522. doi: 10.1097/MD.00000000001522
33. (Thoit BL. Tredwell SL Leblanc IG. et al. Abdominal aortic injuries associated with
	chance fractures in pediatric nations. <i>Journal of pediatric surgery</i>
	2006:41(6):1184-90 doi: 10.1016/i inedsurg 2006.01.069
34.1	naba K. Kirkpatrick AW. Finkelstein I. et al. Blunt abdominal aortic trauma in
•	association with thoracolumbar spine fractures. <i>Injury</i> 2001:32(3):201-7.
35 F	Papazoglou KO Karkos CD Kalogirou TE et al Endovascular management of lan
55.1	helt-related abdominal aortic injury in a 9-year-old child Ann Vasc Surg
	2015:29(2):365 e11-5, doi: 10.1016/i.avsg.2014.09.026
36 9	Santoro G. Ramieri A. Chiarella V. et al. Thoraco-lumbar fractures with blunt
50.2	traumatic aortic injury in adult nations: correlations and management <i>Fur</i>
	Spine / 2018 doi: 10 1007/s00586-018-5601-5
37 S	Savolaine FR Ebraheim NA Stitgen S et al. Aortic runture complicating a fractur
57.5	of an ankylosed thoracic spine. A case report. <i>Clin Orthon Relat Res</i>
	1991(272)·136-40
38.1	vons KL Majumdar SR. Ezekowitz IA. The unrecognized burden of
50. 1	osteonorosis-related vertebral fractures in patients with heart failure <i>Circ</i>
	Heart Fail 2011:4(4):419-24 doi: 10.1161/CIRCHEARTEAILURE 111.961185
39 <i>[</i>	Aluoch AO Jessee B. Habal H. et al. Heart failure as a risk factor for osteonorosis
55.7	and fractures. Curr Osteoporos Rep 2012:10(4):258-69 doi:
	10 1007/s11914-012-0115-2
40 I	arina VN_Bart B_Basponova TN_[Chronic heart failure and osteoporosis]
40. L	Kardiologija 2013:53(6):76-84
/1 F	Earbat GN Cauley IA. The link between osteonorosis and cardiovascular disease
41.1	Clin Cases Miner Bone Metab 2008:5(1):19-34
A7 (Gerber V. Melton I.I. 3rd. Weston SA. et al. Osteonorotic fractures and heart
42. (failure in the community. The American journal of medicine
	2011:124/5):418-25 doi: 10.1016/i.amimed.2010.11.029
13 /	Vdelborg K Schmidt M Sundboll L et al MORTALITY RISK AMONG HEART
4J. <i>r</i>	EAULURE DATIENTS WITH DEDRESSION: A NATIONWIDE DODULTATION-BASED
	COHORT STUDY Journal of the American College of Cardiology
	2016:67(13_S):1318-18
	etcher DI Taddonio RE Byrne DW, et al Incidence of acute care complications
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	

Spine (Phila Pa 1976) 1995;20(10):1136-46.

- 45. Jackson AB, Groomes TE. Incidence of respiratory complications following spinal cord injury. *Archives of physical medicine and rehabilitation* 1994;75(3):270-75.
- 46. Winslow C, Bode RK, Felton D, et al. Impact of respiratory complications on length of stay and hospital costs in acute cervical spine injury. *CHEST Journal* 2002;121(5):1548-54.
- 47. Cotton BA, Pryor JP, Chinwalla I, et al. Respiratory complications and mortality risk associated with thoracic spine injury. *Journal of Trauma and Acute Care Surgery* 2005;59(6):1400-09.
- 48. Veeravagu A, Jiang B, Rincon F, et al. Acute respiratory distress syndrome and acute lung injury in patients with vertebral column fracture(s) and spinal cord injury: a nationwide inpatient sample study. *Spinal Cord* 2013;51(6):461-5. doi: 10.1038/sc.2013.16
- 49. Lieberman IH, Webb JK. Cervical spine injuries in the elderly. *J Bone Joint Surg Br* 1994;76(6):877-81.
- 50. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. *Archives of internal medicine* 1999;159(11):1215-20.
- 51. Chen Y, Shao J, Zhu W, et al. Identification of risk factors for respiratory complications in upper cervical spinal injured patients with neurological impairment. *Acta orthopaedica et traumatologica turcica* 2012;47(2):111-17.
- 52. Krassioukov A. Autonomic function following cervical spinal cord injury. *Respiratory physiology & neurobiology* 2009;169(2):157-64.

to beet teriew only

BMJ Open

Figure1

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1&3
		(b) Provide in the abstract an informative and balanced summary of what was	3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	8-10
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8-10
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	8-10
1		participants. Describe methods of follow-up	
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed	8-10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	9-10
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9-10
Study size	10	Explain how the study size was arrived at	10-1
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	12-1
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9-10
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	10-1
-		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	11-1
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcomo data	15*	Depart numbers of outcome quants or summore measures over time	12-1

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	Ν
2	
3 4	
5	
6 7	
8	(
9 10	
11	Ī
12 13	_ <u>k</u>
14	I
15 16	Ī
17	
18 19	_(
20 21	_(
21	F
23 24	_
25	*(
26 27	
28	No
29 30	W
31 22	Ep
32 33	sta
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45 46	
40 47	
48 ⊿q	
50	
51 52	
53	
54 55	
56	
57 58	
59	

60

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	13-15
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	13-15
		analyses	
Discussion			

Key results	18	Summarise key results with reference to study objectives	20
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	18-19
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15-17
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	21
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Risk of Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome in Patients with Clinical Vertebral Fracture: A Nationwide Population-based Cohort Study in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030939.R1
Article Type:	Original research
Date Submitted by the Author:	16-Jul-2019
Complete List of Authors:	Lee, Feng-You; Taichung Tzu Chi Hospital, Department of Emergency Medicine; Tzu Chi University, Department of Emergency Medicine, School of Medicine Chen, Wei-Kung; China Medical University Hospital, Department of Emergency Medicine, Trauma and Emergency Center Lin, Cheng-Li; China Medical University Hospital, Management Office for Health Data; China Medical University, College of Medicine Kao, Chia-Hung; China Medical University, Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine; China Medical University Hospital, Department of Nuclear Medicine and PET Center Yang, Tse-Yen; China Medical University Hospital, Department of Medical University, Center for General Education Lai, Ching-Yuan; China Medical University Hospital, Department of Emergency Medicine, Trauma and Emergency Center
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Cardiovascular medicine, Epidemiology, Public health, Respiratory medicine
Keywords:	aortic dissection, congestive heart failure, pneumonia, acute respiratory distress syndrome, National Health Insurance Research Database, Clinical Vertebral fracture
	Name of the second seco

Risk of Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome in Patients with Clinical Vertebral Fracture: A Nationwide Population-based Cohort Study in Taiwan

Running title: Clinical Vertebral Fracture and Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome Risks Feng-You Lee,^{1,10} Wei-Kung Chen,² Cheng-Li Lin,^{3,4} Chia-Hung Kao,^{5,6,7} Tse-Yen Yang,^{8,9,¶} and Ching-Yuan Lai,^{2,¶}

¹Department of Emergency Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Medical Foundation, Taichung, Taiwan.

²Department of Emergency Medicine, Trauma and Emergency Center, China Medical

University Hospital, Taichung, Taiwan.

³Management Office for Health Data, China Medical University Hospital, Taichung,

Taiwan.

⁴College of Medicine, China Medical University, Taichung, Taiwan.

⁵Graduate Institute of Clinical Medical Science and School of Medicine, College of

Medicine, China Medical University, Taichung, Taiwan.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

⁶Department of Nuclear Medicine and PET Center, China Medical University

Hospital, Taichung, Taiwan.

⁷Department of Bioinformatics and Medical Engineering, Asia University, Taichung,

Taiwan.

⁸Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.

⁹Department of Medical Research, China Medical University Hospital, China Medical

University, Taichung, Taiwan.

.ool of M ¹⁰Department of Emergency Medicine, School of Medicine, Tzu Chi University,

Hualien, Taiwan.

*Corresponding author:

E-mail: yang t y@yahoo.com.tw (T.-Y.Y.)

[¶] These authors contributed equally to this work

Abstract

Objective: Studies on the association between clinical vertebral fractures (CVFs) and the subsequent risk of cardiopulmonary diseases, including aortic dissection (AD), congestive heart failure (CHF), pneumonia, and acute respiratory distress syndrome (ARDS), are scarce. Therefore, we used the National Health Insurance Research Database to investigate whether patients with CVF have a heightened risk of subsequent AD, CHF, pneumonia and ARDS. **Design:** The National Health Insurance Research Database was used to investigate

whether patients with CVFs have an increased risk of subsequent AD, CHF,

pneumonia, and ARDS.

Participants: This cohort study comprised patients aged \geq 18 years with a diagnosis of CVF and were hospitalized at any point during 2000–2010 (n = 108,935). Each CVF patient was frequency-matched to a non-CVF hospitalized patients based on age, sex, index year and comorbidities (n = 108,935). The Cox proportional hazard regressions model was used to estimate the adjusted effect of CVF on AD, CHF, pneumonia, and ARDS risk.

Results: The overall incidence of AD, CHF, pneumonia, and ARDS was higher in the CVF group than in the non-CVF group (4.82 versus 4.06, 118.7 versus 89.6, 282.8 versus 183.6, and 9.11 versus 4.18/10,000 person-years, respectively). After

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies
BMJ Open

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

adjustment for age, sex, comorbidities, and Charlson comorbidity index score, patients with CVF had a 1.20-fold higher risk of AD (95% CI = 1.02-1.42), 1.35-fold higher risk of CHF (95% CI = 1.30-1.40), 1.57-fold higher risk of pneumonia (95% CI = 1.54-1.61), and 2.20-fold higher risk of ARDS (95% CI = 1.90-2.55) than did those without CVF. Patients with cervical CVF and SCI were more likely to develop pneumonia and ARDS.

Conclusions: Our study demonstrates that CVFs are associated with an increased risk of subsequent cardiopulmonary diseases. Future investigations are encouraged to delineate the mechanisms underlying this association.

Strengths and limitations of this study:

1. This is the first population-based, longitudinal cohort study to focus on the correlation between CVF and the subsequent risks of specific cardiopulmonary diseases.

2. By sampling from a large nationwide database, which covers nearly 100% of all residents in Taiwan, stable outcomes could be achieved with such adequate, representative samples.

 All disease definitions and sample selection in our study were based on the ICD-9-CM coding. Therefore, miscoding or misclassification might exist, although it is considered rare.

2	
3	
4	
5	
2	
ю	
7	
8	
0	
10	
10	
11	
12	
13	
13	
14	
15	
16	
17	
10	
١ö	
19	
20	
21	
 วา	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
31	
32	
33	
31	
25	
35	
36	
37	
38	
20	
39	
40	
41	
42	
12	
45	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
~ ~	

60

4. In our study, sampled participants were retrieved from NHIRD from January 1, 2000, to December 31, 2010. Aging property of the data might not truly reflect the current medical conditions. 5. Because of geographic and epidemiologic discrepancies, our results might not be

applicable to other countries or regions.

Keywords: Clinical Vertebral fracture, aortic dissection, congestive heart failure, ress syr. pneumonia, acute respiratory distress syndrome, National Health Insurance Research

Database.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Introduction

Clinical Vertebral fractures (CVFs) constitute a major healthcare burden worldwide because of its high incidence and strong influence on individuals' quality of life, medical resource consumption, and direct or potential unfavorable impacts on socioeconomic development¹⁻³. Approximately 1.4 million new cases of CVF are diagnosed globally every year⁴, and among these, osteoporosis, trauma, and malignancy are the major etiologies⁵⁻⁹. Acute aortic dissection (AD) remains the major life-threatening vascular emergency, with a steadily increasing incidence because of population aging and the explosive growth of radiologic technology¹⁰. Without early recognition and timely treatment, the prognosis of AD would be extremely poor, and half the patients would die within 48 h¹⁰. Congestive heart failure (CHF) is the major cause of hospitalization in old age, with more than 650,000 new cases confirmed annually in the United States, and more than 1 million people were hospitalized for decompensated CHF, resulting in costs exceeding 39 billion¹¹⁻¹³. Pneumonia is one of the most common infectious diseases in elderly adults and is also the leading cause of death in Americans older than 65 years¹⁴¹⁵. Acute respiratory distress syndrome (ARDS) is a complex syndrome characterized by diffuse hydrostatic pulmonary edema, alveoli damage, and persistent hypoxemia, which are mainly triggered by infection, inflammation, trauma, or other etiologies. The

BMJ Open

in-hospital mortality rate for this condition could reach 40% even when managed with the standardized lung protective ventilator strategy¹⁶¹⁷.

Studies have demonstrated that elderly patients with a history of osteoporotic vertebral fracture have an increased risk of cardiovascular events, including stroke (ischemic or hemorrhagic) and coronary heart disease¹⁸⁻²¹. Recently, Kim et al.²² reported an association between isolated CVF and future development of pneumonia in women with low bone density. In addition, chronic, worsened and longstanding backache accompanied with CVF might result in a long-term increase of sympathetic tone, fatigue, stress reaction, low physical activity, depressive tendency, diminished pulmonary function, and, consequently a poor quality of life, which might be correlated with cardiopulmonary disease risk^{3 5 7 8 23}. Therefore, we hypothesized that an association exists between CVF and the risk of cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS. Accordingly, we conducted a nationwide, population-based data analysis to verify this hypothesis and tried to provide essential evidence-based information for clinical practice.

Methods

Data Source

This retrospective cohort study used datasets from Taiwan's National Health Insurance Research Database (NHIRD). Taiwan launched a single-payer National

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Health Insurance (NHI) program in March 1995, and 99% of the 23.74 million residents were enrolled²⁴. The details of the NHIRD and NHI program are well presented in previous studies²⁵⁻³¹. The NHIRD records diseases according to International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. Validation of the NHIRD with cardiovascular diseases were investigated and appeared to be a valid resource for population research³²⁻³⁵. This study was approved by the Institutional Review Board of China Medical University (CMUH-104-REC2-115).

Sampled Participants

Patients aged \geq 18 years with newly diagnosed CVF (ICD-9-CM codes, 805 and 806) from January 1, 2000, to December 31, 2010, were identified as the CVF cohort. The location of CVF was defined in two ways as follows: (1) cervical spine (ICD-9-CM codes, 805.0-805.18 and 806.0-806.19), thoracic spine (ICD-9-CM codes, 805.2, 805.3, and 806.2-806.39), lumbar spine (ICD-9-CM codes, 805.4, 805.5, 806.4, and 806.5), and sacrum plus coccyx (ICD-9-CM codes, 805.6, 805.7, and 806.6-806.79) and (2) without spinal cord injury (SCI) (ICD-9-CM codes, 805-805.9), and with SCI (ICD-9-CM codes, 806-806.9). The date of first-time CVF diagnosis at admission was defined as the index date. Participants with prior AD (ICD-9-CM codes, 441.0, 441.00, 441.01, 441.02, and 441.03), CHF (ICD-9-CM code, 428), pneumonia (ICD-9-CM codes, 480-488), and ARDS (ICD-9-CM codes, 518.82 and

BMJ Open

518.5) before the index date (n=15,697); with the diagnosis of trauma (ICD-9-CM codes, 800-959 except 805-806) during the same period (n=2,597); with any outcome event (AD, CHF, pneumonia, and ARDS) diagnosed within 1 month after the index date (n=2,738); those under 18 years of age (n=4,017); and those with missing information about age or sex (n=4) in both the CVF and non-CVF cohorts; were excluded. For each CVF patient, a non-CVF participant was frequency-matched by the index year of CVF diagnosis, age (every 5-year span), sex, and comorbidities of diabetes (ICD-9-CM code, 250), hypertension (ICD-9-CM codes, 401-405), hyperlipidemia (ICD-9-CM code, 272), atrial fibrillation (ICD-9-CM code, 427.31), chronic kidney disease (CKD; ICD-9-CM codes, 580-589), and chronic obstructive pulmonary disease (COPD; ICD-9-CM codes, 491, 492, and 496) (Figure 1). Coexisting comorbidities were identified before the index date, with at least one time of principal or secondary diagnoses documented in hospitalizations during the period 2000 to 2010. We have also added Charlson comorbidity index (CCI) score as a confounding factor. Summary of ICD-9-CM codes applied for disease definition are presented in online supplementary table 1.

Outcome

The main outcome was hospitalization with a new diagnosis of AD, CHF, pneumonia, or ARDS during the follow-up period. Both the CVF and non-CVF

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> cohorts were followed up until the diseases appeared or they were censored because of loss to follow-up, death, or the end of December 31, 2011, whichever occurred first.

Statistical analysis

A chi-square test and Student's *t*-test were used to evaluate the differences in the distribution of categorical and continuous variables, respectively, between the CVF and non-CVF cohorts. The overall, sex-, age-, and comorbidity-specific incidence densities of AD, CHF, pneumonia, and ARDS were estimated for each cohort. To address the concern of constant proportionality, we examined the proportional hazard model assumption using a test of scaled Schoenfeld residuals. The results showed that there was no significant relationship between Schoenfeld residuals for CVF and follow-up time (p-value = 0.06) in the model evaluating the AD risk and Schoenfeld residuals for CVF and follow-up time (p-value = 0.18) in the model evaluating the ARDS risk. In the model evaluating the CHF and pneumonia risk throughout overall follow-up period, the results of the test revealed a significant relationship between Schoenfeld residuals for CVF and follow-up time, suggesting the proportionality assumption was violated. The relative risks of AD, CHF, pneumonia, and ARDS in the CVF cohort compared with the non-CVF cohort were analyzed using univariable and multivariable Cox proportional hazard regression models and presented as hazard ratios (HRs) and 95% confidence intervals (CIs). The multivariable models were

BMJ Open

simultaneously adjusted for age, sex, and comorbidities of hypertension, diabetes, hyperlipidemia, atrial fibrillation, CKD, and COPD. We further tested the interaction between gender and VCF; between age and VCF; and between comorbidity and VCF by including a cross-product term in the model. Further analysis was performed to assess whether the association of CVF with AD, CHF, pneumonia, and ARDS varied according to the levels of CVF. All statistical analyses were performed using SAS 9.4 software (SAS Institute, Cary, NC, USA), and we set the significance level at less than 0.05 for two-sided testing of P-values.

Patient and public involvement

There was no patient or public involvement in this study.

Results

In this study, 108,935 CVF patients and 108,935 matched non-CVF participants with similar distributions of age, sex, and comorbidities were assessed (Table 1). In the CVF cohort, \geq 44.3% of patients were aged \geq 65 years, and 55.3% of the patients were women (Table 1). The mean age of the patients was 58.8 \pm 18.8 years in the CVF cohort and 58.3 \pm 18.8 years in the non-CVF cohort. Both cohorts had a medical history of hypertension (26.0%), diabetes (15.2%), COPD (5.3%), hyperlipidemia (5.2%), atrial fibrillation (1.2%), and CKD (3.5%). Patients of CVF cohort were more prevalent with CCI than non-CVF cohort. Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
3/
38
39
40 11
41 12
4∠ ⊿२
د ہ 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

1 2

	Clinical vertel		
-	Yes	No	
	(N=108935)	(N=108935)	
	n(%)	n(%)	<i>p</i> -value
Age, years&			0.99
≤49	36313(33.3)	36310(33.3)	
50-64	24341(22.3)	24345(22.4)	
≥65	48281(44.3)	48280(44.3)	
Mean (SD) [†]	58.8(18.8)	58.3(18.8)	< 0.001
Gender ^{&}			0.99
Female	60216(55.3)	60218(55.3)	
Male	48719(44.7)	48717(44.7)	
Comorbidity&			
Hypertension	28339(26.0)	28338(26.0)	0.99
Diabetes	16553(15.2)	16554(15.2)	0.99
Hyperlipidemia	5692(5.2)	5695(5.2)	0.98
Atrial fibrillation	1381(1.2)	1377(1.2)	0.94
CKD	3810(3.5)	3814(3.5)	0.96
COPD	5865(5.3)	5867(5.3)	0.98
CCI score&			< 0.001
0	77930(71.5)	82878(76.1)	
1	17489(16.1)	15662(14.4)	
2	7079(6.5)	5378(4.9)	
3 or more	6437(5.9)	5017(4.6)	

Table 1. Comparison of demographics and comorbidity between clinical vertebral fracture patients and controls

[&]Chi-square test examined categorical data; [†]T-test examined continuous;

Overall, the incidence of AD was 1.19 -fold higher in the CVF cohort than in the non-CVF cohort (4.82 vs. 4.06 per 10,000 person-years), with an adjusted HR (aHR) of 1.20 (95% CI = 1.02-1.42) (Table 2). The aHR of AD among women was significantly higher in the CVF cohort than in the non-CVF cohort (aHR = 1.40, 95%)

BMJ Open

CI = 1.10-1.79). The age-specific relative hazard of AD in the CVF cohort was higher than that in the non-CVF cohort for age ≤ 49 group. The relative hazard of AD was higher in the CVF cohort than in the non-CVF cohort for patients without comorbidities (aHR = 1.35, 95% CI = 1.02-1.77). In all stratifications, the risk of CHF, pneumonia, and ARDS remained higher in the CVF cohort than in the non-CVF cohort.

24, Table 2. Incidence and adjusted hazard ratio of outcome by sex, age and comorbidity for clinical vertebral fracture 26patients compared to controls

28	Clinical vertebral fracture					Compared to Control		
29					- Comput			
30 31		Yes			No		-	
3233 Variables34	Events n	РҮ	Rate [#]	Events n	РҮ	Rate [#]	Crude HR (95% CI)	Adjusted HR [†] (95% CI)
³⁵ Aortic dissection								
37 All	291	603307	4.82	255	628390	4.06	1.19(1.01, 1.41)*	1.20(1.02, 1.42)*
³⁸ Gender								
40 Female	152	329203	4.62	111	341326	3.25	1.42(1.11, 1.82)**	1.40(1.10, 1.79)**
⁴¹ Male	139	274104	5.07	144	287063	5.02	1.01(0.80, 1.27)	1.04(0.82, 1.31)
43P for interaction								0.049
⁴⁴ Age, years								9
45 46 ≤49	20	237557	0.84	9	236602	0.38	2.21(1.01, 4.86)*	2.22(1.01, 4.88)*
47 50-64	43	142476	3.02	33	146642	2.25	1.35(0.86, 2.12)	1.32(0.84, 2.08)
48 49 ≥65	228	223274	10.2	213	245146	8.69	1.18(0.98, 1.43)	1.16(0.97, 1.40)
⁵⁰ ₅₁ P for interaction								0.41
52 Comorbidity [§]								
53 No	92	432848	2.13	121	422004	2.87	1.35(1.03, 1.77)*	1.35(1.02, 1.77)*
55 Yes	163	195541	8.34	170	181303	9.38	1.13(0.91, 1.40)	1.12(0.90, 1.38)
⁵⁶ P for interaction								0.31
58Congestive heart								

⁵⁹₆₀failure

Page	14	of	35
------	----	----	----

³ All 6997 589382 118.7 5529 617386 89.6 1.33(1.28, 1.37)*** 1.35(1.30, 1.40	***
4 5 Gender	
⁶ ₇ Female 4781 319413 149.7 3731 333763 111.8 1.34(1.28, 1.40)*** 1.33(1.27, 1.39	***
8 Male 2216 269969 82.1 1798 283622 63.4 1.29(1.21, 1.38)*** 1.38(1.30, 1.47	***
$^{9}_{10}$ P for interaction 0.38	
11 Age, years	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	***
17P for interaction 0.47	cted
¹⁸ ₁₀ Comorbidity [§]	by c
20 No 2177 417566 52.1 1564 429827 36.4 1.43(1.34, 1.53)*** 1.41(1.32, 1.51	*** ***
²¹ ₂₂ Yes 4820 171816 280.5 3965 187559 211.4 1.33(1.28, 1.39)*** 1.31(1.26, 1.37	righ:
23P for interaction 0.06	t, inc
²⁴ ₂₅ Follow-up period	ludi
26 <5 years	ng fo
	*** u п
29Pneumonia	insei es r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	elate
32 Gender	id to
³³ ₃₄ Female 8931 312978 285.4 6273 330078 190.1 1.50(1.46, 1.55)*** 1.49(1.44, 1.54	*** text
³⁵ Male 7295 260866 279.7 4906 278818 176.0 1.58(1.53, 1.64)*** 1.68(1.62, 1.74	and ***
$^{36}_{37}$ P for interaction 0.02	data
38 Age, years	a mir
$ \begin{array}{r} 39 \\ 40 \end{array} \leq 49 \qquad \qquad 1526 232820 65.5 588 235046 25.0 2.62(2.38, 2.88)^{***} 2.53(2.30, 2.78)^{***} \leq 1000 \\ 1000 2000 $	ning, ***
41 50-64 2076 137694 150.8 1365 143617 95.0 1.59(1.48, 1.70)*** 1.58(1.48, 1.69)	*** Þ
$ \begin{array}{c} 42 \\ 43 \end{array} \geq \!$	*** raini
44P for interaction <0.001	ng, i
⁴⁵ ₄₆ Comorbidity [§]	and
47 No 6589 408667 161.2 3782 425656 88.9 1.82(1.75, 1.89)*** 1.74(1.67, 1.81	*** simil
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*** te
50P for interaction <0.001	≎chn
51 52Follow-up period	olog
53 <5 years	*** jies.
$ \begin{array}{c} 54 \\ 55 \end{array} \geq 5 \text{ years} \qquad 266 \qquad 169126 157.4 2570 148161 139.6 1.13(1.07, \ 1.20)^{***} 1.28(1.21, \ 1.35)^{**} 1.28(1.21, \ 1.35)^{**} 1.28(1.21, \ 1.35)^{***} 1.28(1.21, \ 1.35)^{**} 1.28(1.21, \ 1.3$	***
⁵⁶ Acute respiratory	
58 distress syndrome	
⁵⁹ All 550 603537 9.11 263 628708 4.18 2.18(1.88, 2.52)*** 2.20(1.90, 2.55	***

Page 15 of 35					BM.	J Open						
1 2 3 Gender												
4 Femal	P	260	329305	7 90	118	341422	3 46	2 29(1 84	2 84)***	2 25(1 81	2 80)***	
6 Male		200	274232	10.6	145	287285	5.05	2.29(1.04	, 2.0 4) 2 56)***	2.23(1.01)	2.00)	•
7 8 P for inter	action	270	214232	10.0	175	207203	5.05	2.09(1.72	, 2.30)	2.13(1.70, 0.57	2.02)	
9 Age, yea	irs									0.57		
11 <u>≤</u> 49		75	237516	3.16	20	236607	0.85	3.74(2.28	, 6.12)***	3.52(2.15,	5.78)***	
¹² 50-64		63	142550	4.42	39	146664	2.66	1.67(1.12	, 2.48)*	1.65(1.10,	2.45)*	
13 14 ≥65		412	223472	18.4	204	245437	8.31	2.23(1.89	, 2.64)***	2.19(1.85,	2.60)***	σ
$^{15}_{16}$ P for inter	action							, , , , , , , , , , , , , , , , , , ,	. ,	0.15		rote
17 Comorbi	dity§											cted
18 10 No	5	231	422088	5.47	96	432950	2.22	2.47(1.95	, 3.13)***	2.40(1.89,	3.05)***	l by
20 Yes		319	181449	17.6	167	195758	8.53	2.06(1.71	, 2.49)***	2.06(1.71,	2.49)***	copy
$^{21}_{22}$ P for inter	action							× ×	, ,	0.25	,	/righ
23PY, perso	n-vears: Rate	#. incid	ence rate, r	er 10.0	00 perso	on-vears: C	rude H	R: relative	hazard ra	tio:		rț, in
24 Adjusted	HR [†] · adjusted	i hazar	d ratio cont	rolling f	for age	sex comor	biditie	s of hypert	ension dia	abetes		clud
25 ¹ 26hyperlinid	lemia atrial f	ibrillati	ion CKD (and CCI	score	orantio	s or nypere	e 1151011, u 1			ing
²⁷ Comorbid	litu§· Patients	with a	ny one of th	e como	rhidities	s hypertens	ion di	abetes hvr	erlinidem	ia atrial fib	rillation	for L
28 29CKD and	COPD wara	classif	ing one of u	omorbi	lity grou	nypertens	ion, un	doetes, nyp		ia, atriar fit	initation,	Ens
$30_{*n<0.05}$	**n < 0.01 **	*n<0.0	neu as the e		iny giot	rh						eign rela
31 [°] P<0.05,	p<0.01, ™	p<0.0	01									ited
33												to te
34												supe ext a
35 36	Co	mpared	l with patie	nts with	out CVI	F, the risk c	of AD	was 1.32-fe	old (95% (CI =		rieu nd c
37		1	1						[×]			Ir (A lata
110-158 higher in CVE-lumbar patients and was 122 -fold (95% CI = $103-145$)								BES				
40		0) 1181			punting				1100 11)		ing,
41 higher in CVE notionts without SCI (Table 2). The risk of CIFE and recommendation												
42 inglier in CVF patients without SCI (Table 5). The fisk of CFF and pheumonia												
45	remained higher in patients with various levels of CVF than in patients without CVF.							and				
40												sim
48	Table 3	also sh	ows that pa	tients w	vith varie	ous levels o	of CVF	F, except fo	or those wi	th		nilar
49 50												tecł
51	sacrum or coccyx fractures, had a significantly higher risk of ARDS than did patients							lout				
52												ogie
23	· 11 ·	OUE										Š

without CVF.

Itactule					
Variables	N	Fvent	Rate#	Crude HR	Adjusted HR [†]
v anaolos	11	Lvent	Rate	(95% CI)	(95% CI)
Aortic dissection					
No vertebral fracture	108935	255	4.06	1(Reference)	1(Reference)
Cervical spine	9938	12	2.10	0.52(0.29, 0.92)*	0.86(0.48, 1.55)
Thoracic	32205	96	5.66	1.40(1.11, 1.77)**	1.18(0.93, 1.49)
Lumbar	70723	225	5.77	1.42(1.19, 1.70)***	1.32(1.10, 1.58)***
Sacrum and coccyx	7523	6	1.25	0.30(0.14, 0.68)**	1.01(0.44, 2.28)
Without SCI	98984	270	4.98	1.23(1.04, 1.46)*	1.22(1.03, 1.45)**
With SCI	13209	30	3.65	0.89(0.61, 1.30)	1.05(0.71, 1.53)
Congestive heart failure					
No vertebral fracture	108935	5529	89.6	1(Reference)	1(Reference)
Cervical spine	9938	283	50.1	0.56(0.50, 0.63)***	1.39(1.23, 1.57)***
Thoracic	32205	2729	166.5	1.86(1.78, 1.95)***	1.43(1.37, 1.50)***
Lumbar	70723	5083	133.8	1.49(1.44, 1.55)***	1.38(1.33, 1.43)***
Sacrum and coccyx	7523	150	31.4	0.35(0.30, 1.41)***	1.35(1.14, 1.59)***
Without SCI	98984	6410	121.2	1.35(1.30, 1.40)***	1.34(1.30, 1.39)***
With SCI	13209	854	106.2	1.18(1.10, 1.27)***	1.49(1.39, 1.61)***
Pneumonia					
No vertebral fracture	108935	11179	183.6	1(Reference)	1(Reference)
Cervical spine	9938	1135	208.7	1.14(1.07, 1.21)***	2.22(2.08, 2.36)***
Thoracic	32205	5718	358.3	1.96(1.90, 2.02)***	1.59(1.54, 1.64)***
Lumbar	70723	11338	306.5	1.67(1.63, 1.71)***	1.56(1.52, 1.60)***
Sacrum and coccyx	7523	451	96.2	0.52(0.47, 0.57)***	1.77(1.60, 1.94)***
Without SCI	98984	14645	284.0	1.55(1.51, 1.58)***	1.55(1.52, 1.59)***
With SCI	13209	2265	293.5	1.59(1.52, 1.67)***	1.92(1.83, 2.00)***
Acute respiratory distress					
syndrome					
No vertebral fracture	108935	263	4.18	1(Reference)	1(Reference)
Cervical spine	9938	52	9.10	2.17(1.61, 2.93)***	3.35(2.45, 4.58)***
Thoracic	32205	195	11.5	2.76(2.29, 3.32)***	2.35(1.95, 2.83)***
Lumbar	70723	369	9.46	2.26(1.93, 2.65)***	2.09(1.79, 2.45)***
Sacrum and coccyx	7523	10	2.08	0.49(0.26, 0.93)*	1.47(0.77, 2.79)
Without SCI	98984	482	8.89	2.13(1.83, 2.47)***	2.12(1.82, 2.46)***
With SCI	13209	91	11.1	2.63(2.07, 3.34)***	2.97(2.33, 3.78)***

Table 3. Comparisons of Incidence, and Hazard Ratios of outcome by subtypes of clinical vertebral
fracture

Rate[#],

 Adjusted HR[†]: adjusted hazard ratio controlling for age, sex, comorbidities of hypertension, diabetes, hyperlipidemia, atrial fibrillation, CKD, COPD, and CCI score ICD-9-CM: Cervical spine: 805.0-805.18, 806.0-806.19; Thoracic: 805.2, 805.3, 806.2-806.39; Lumbar: 805.4, 805.5, 806.4, 806.5; Sacrum and coccyx: 805.6, 805.7, 806.6-806.79; SCI involved or Not: Without SCI: 805-805.9 & With SCI: 806-806.9 *p<0.05, **p<0.01, ***p<0.001

Figures 2A–2D show that the CVF cohort had a significantly higher cumulative proportion of AD (P = 0.001; Figure 2A), CHF (P < 0.001; Figure 2B), pneumonia (P < 0.001; Figure 2C), and ARDS (P < 0.001; Figure 2D) than did the non-CVF cohort.

Discussion

To the best of our knowledge, this is the first population-based, longitudinal cohort study to focus on the correlation between CVF and the subsequent risks of specific cardiopulmonary diseases. The main results demonstrated that CVF is significantly associated with an increased risk of several specific cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS. In our study, patients older than 65 years and females accounted for the majority of participants. The incidence and prevalence of vulnerable fractures, accompanied with population aging and subsequent frequently occurring home accidents, are steadily rising³⁶. In addition, CVF in women is constantly a consequence of postmenopausal bone loss^{5 7 8}. According to recent studies, the prevalence of women older than 50 years who

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

experienced at least one CVF event was 23% - 26%, which was higher than that of men $(21.5\%)^{37.38}$. It is noteworthy that young adults aged \leq 49, though represented the minority of CVF patients, bore a significant heightened risk of developing adverse cardiopulmonary outcomes. We speculate that CVF could have more prominent influence on the outcome diseases without the interaction of multiple potential comorbidities and unknown confounders. Moreover, CVF is less frequent in a young, healthy population; it could be more severe, especially for hospitalized trauma victims and therefore, strengthening the correlations between the investigated diseases.

AD represents a complicated, life-threatening emergency and is associated with high morbidity and mortality^{39 40}. In our analysis, with or without CVF, the incidence of AD was higher in men, elderly patients older than 65 years, and those with coexisting comorbidities; this finding is in line with previous epidemiological investigations³⁹⁻⁴¹. Notably, most studies examining the incidence of AD have been confined to specific geographic regions or focused on inpatients; thus, the true incidence is hard to be reflected³⁹. Moreover, compared with patients without CVF, CVF patients, especially female patients, younger population (age \leq 49) and those without comorbidities, bore a higher risk of subsequent AD development. Studies that have focused on this correlation are scarce, and the current literature describes only a few cases of aortic injury following thoracolumbar spine fractures in polytrauma

BMJ Open

victims⁴²⁻⁴⁶. Interestingly, prior studies have provided evidence for the strong correlation between abdominal aortic calcifications and poor bone health with major fragility fracture^{47 48}. With the progressive destruction of intima-media layer accompanied with new bone-like tissue deposition in the aortic wall, aneurysm or dissection might tend to occur. Other potential explanations we suppose include the intractable pain induced by fractures, accompanied with increments in sympathetic tone, stress, hypertension, and the impact on the vascular wall, as well as an unfavorable sedentary life style could all contribute to the formation of AD.

Our study indicated one counterintuitive result that women bore a higher overall incidence of CHF than men did. However, previous investigations of sex-specific epidemiology of CHF have demonstrated that women with atrial fibrillation have a higher incidence of heart failure with preserved ejection fraction, especially in very old age compared with men⁴⁹⁻⁵¹. In this study, CVF was associated with an increased risk of CHF, and the results remained statistically significant across various age and sex strata, as well as with or without comorbidities. In a cross-sectional analysis, Lyons et al.⁵² demonstrated that more than one-tenth of heart failure patients had radiologic recognizable vertebral fracture, and among those, multiple vertebral fractures accounted for one half, indicating the close correlation between these two diseases. Moreover, Sennerby et al.⁵³ conducted a twin population study and proposed

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

that specific genes involved in cellular mechanisms that shared by the vasculature and bone might connect the close relationship between cardiovascular diseases and fractures. Additionally, the most common etiology of CVF, osteoporosis, together with CHF, are conventionally deemed to be independent diseases. However, recent investigations have indicated that the two diseases share common risk factors, including advantaged age, female sex, hypovitaminosis D, renal insufficiency, diabetes, and a smoking habit, as well as the same etiologic mechanisms, including activation of the renin-angiotensin-aldosterone system, hypersecretion of parathyroid hormones, and oxidative / nitrosative stress^{21 52 54-57}. In a meta-analysis, Veronese et al.⁵⁸ provided evidence that low bone mineral density and fractures were modestly associated with increased risk of cardiovascular diseases. The authors speculated that alterations in signaling pathways of bone remodeling and arterial calcifications, low-grade inflammation, higher prevalence of vascular calcifications, and low estrogen levels could all contributed to the higher cardiovascular risk. Indeed, diffuse vascular calcifications which is strongly associated with bone loss, including abdominal aorta and coronary arteries, could result in a higher afterload on the left ventricle, leading to subsequent left ventricular hypertrophy and finally, congestive heart failure^{47 48}. Furthermore, unfavorable outcomes following fracture, including a loss of functional and social activities, dependency with poor quality of life, higher

BMJ Open

serum cortisol levels accompanied with depressive disorder, higher inflammatory markers, lower drug and diet compliance, a sedentary life style, and arrhythmia or cardiac ischemic events caused by high sympathetic activity, might all contribute to the deterioration of heart function^{55 59}.

Our study results reveal that patients with CVF bore a significantly heightened risk of subsequent pneumonia and ARDS across all strata of age and sex and irrespective of the presence of comorbidities. Further analyses demonstrated the strongest correlation between cervical CVF combined with SCI and risks of pneumonia and ARDS. In a 2-year retrospective multicenter trauma registry analysis, Fletcher et al.⁶⁰ noted that 16% of elderly patients older than 65 years with cervical spine trauma ultimately developed pneumonia. Other studies have revealed the incidence of pulmonary complications following cervical spine trauma to be 35% -95%^{61 62}, and among these complications, the most common type was pneumonia and atelectasis, although ARDS was the most severe type and represented the predominant contributor to morbidity and mortality⁶³⁻⁶⁵. There are several possible explanations. First, deformity of the vertebral body or even kyphosis might decrease the lung capacity and therefore impair the pulmonary function. Prior studies have indicated that a single vertebral fracture would decrease the predicted forced vital capacity by 9%, increase the risk of restrictive lung disease, and lead to a 3-fold risk of mortality¹

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

²⁶⁶. Harrison et al.⁶⁷ conducted a systemic review of 4 case-control studies and reported that women with osteoporotic vertebral fractures or kyphosis were associated with decreased predicted vital capacity, as well as total lung capacity. Furthermore, Krege et al.⁶⁸ estimated that spine fracture burden was correlated with reduced lung volume, but not flow; indicating that spine fracture burden is linked with restrictive, but not obstructive lung disease. The authors further concluded that patients with marginally compensated pulmonary function may not tolerate the superimposed lung restrictive change resulting from vertebral fractures and thus, leading to a further compromised pulmonary function and subsequent lung diseases. Second, cervical CVF combined with SCI might cause paralysis of the diaphragm and hypoactivity of the respiratory accessory muscles, which results in hypoventilation. In addition, the imbalance of sympathetic-parasympathetic interactions would result in an elevated airway tone, bronchorrhea, and poor clearance, which are all associated with the development of various pulmonary complications^{69 70}. Third, Chen et al.⁶⁹ proposed that in upper cervical spine trauma and SCI patients, hypoalbuminemia would not only indicate nutrition status but would also impair the function of respiratory muscles, leading to respiratory complications. However, additional investigations are necessary for verification before definite conclusions are established. Fourth, patients with SCI are prone to develop aspiration and subsequent pulmonary infection due to impaired

Page 23 of 35

BMJ Open

neuromuscular transmission. Finally, similar to rib fractures, worsening pain related to CVF might impair cough and secretion clearance, leading to atelectasis and subsequent lung infection²².

The major strength of our study is sampling from a large nationwide database, which covers nearly 100% of all residents in Taiwan, and stable outcomes could be achieved with such adequate, representative samples. However, the inevitable limitations should be discussed. First, all disease definitions and sample selection in our study were based on the ICD-9-CM coding, which has been rigorously scrutinized and peer-reviewed by clinical physicians, the declaration unit of medical institutions and finally the NHI administration. However, miscoding or misclassification might still exist, although it is considered rare. Similarly, diagnostic criteria applied, as well as physician's ability to diagnose the investigated diseases might vary among different hospitals and areas. Second, retrospective dataset analysis results cannot be used to determine causal relationships. Third, several crucial variables could not be obtained from our dataset, including family history, education and socioeconomic status, information of life style and physical activity, body weight, smoking habits, disease severity, laboratory results, radiologic reports, and estimated pain scores, which are potential confounders that might have affected the results. Fourth, a considerable portion of vertebral fracture patients with slight or no symptoms might not have been

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

diagnosed or might have even been overlooked in clinical settings; thus, the true incidence of CVF and the inferred association between CVF and cardiopulmonary diseases could be underestimated. Fifth, patients with CVF might have one or more overlapping etiologies include osteoporosis, trauma and malignancies, etc. Therefore, it was technically infeasible to simply divide the CVF patients into several subgroups for sub-analysis based on the coding of etiologies. Sixth, our sampled participants were retrieved from NHIRD from January 1, 2000, to December 31, 2010. Aging property of the data might not truly reflect the current medical conditions. Finally, because of geographic and epidemiologic discrepancies, our results might not be applicable to other countries or regions. Lich

Conclusion

In conclusion, our study results support the hypothesis that CVF is associated with subsequent risks of AD, CHF, pneumonia, and ARDS. Future studies are warranted to delineate the actual pathophysiologic mechanisms underlying this correlation and to develop optimal strategies for reducing the heath care burden of CVF and its complications. Based on our results, we suggest that patients with CVF should be targeted for further screening and preventive interventions for cardiopulmonary diseases.

Abbreviations:

CVFs: clinical vertebral fractures; AD: aortic dissection; CHF: congestive heart failure; ARDS: acute respiratory distress syndrome; NHIRD: National Health Insurance Research Database; NHI: National Health Insurance; ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification; SCI: spinal cord injury; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; aHRs: adjusted hazard ratios; CI: confidence interval; SD: standard deviation. review

Declarations:

Acknowledgements

This work was supported by grants from Taiwan Ministry of Health and Welfare Clinical Trial Center (MOHW108-TDU-B-212-133004), China Medical University Hospital, Academia Sinica Stroke Biosignature Project (BM10701010021), MOST Clinical Trial Consortium for Stroke (MOST 108-2321-B-039-003-), Tseng-Lien Lin Foundation, Taichung, Taiwan, and Katsuzo and Kiyo Aoshima Memorial Funds, Japan.; The Department of Medical Research at Mackay Memorial Hospital (MMH105-87; MMH-106-81; MMH-107-71; MMH-107-102; MMH-107-135).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Ethics approval and consent to participate

This study was approved by the Ethics Review Board of China Medical University and Hospital, Taiwan (CMUH-104-REC2-115). The IRB waived the consent requirement.

Availability of data and materials

Data are available from the NHIRD published by Taiwan National Health Insurance Bureau. Owing to the Personal Information Protection Act, these cannot be made publicly available (http://nhird .nhri.org.tw).

Competing interests

The authors declare that they have no competing interests.

Authors' Contributions

The authors' individual contributions are outlined as follows. Conception and design:

F-Y.L. and T.-Y.Y. Administrative support: T.-Y.Y. Data collection and organization:

F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L. Data analysis and

interpretation: F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L. Manuscript

writing: F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L. Final approval of the

manuscript: F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L.

References:

ts with oint	
rrent 1-89. e oi:	
rtebral	Protected by
actures.	copyright, inclu
terature	ding t
2670	for u
cture	Ses
etab	eigner relatec
ne year ciation	ient Superieur (I to text and da
nd	(ABE
l Study	ning
8-36.	, ΑΙ 1
t of	train
13. doi:	ing, aı
ilure.	nd similar
ilure:	tech
arch.	nolo
	gies
ed heart	
2.	

1 Longo LIG Lonnini M. Denaro L. et al. Conservative management of natients w
an osteonorotic vertebral fracture: a review of the literature <i>I Bone Joint</i>
Sura Br 2012:94(2):152-7 doi: 10.1302/0301-620X 94B2 26894
2. Longo UG, Loppini M, Denaro L, et al. Osteoporotic vertebral fractures: curren
concepts of conservative care British medical hulletin 2012:102(1):171-8
3 Yu CW Hsieh MK Chen I H et al. Percutaneous balloon kynhonlasty for the
treatment of vertebral compression fractures <i>BMC Surg</i> 2014:14:3 doi:
10 1186/1471-2482-14-3
4. Guo IB. Zhu Y. Chen BL, et al. Surgical versus non-surgical treatment for verter
compression fracture with osteopenia: a systematic review and
meta-analysis. <i>PloS one</i> 2015:10(5):e0127145. doi:
10.1371/journal.pone.0127145
5. Bliuc D. Center IB. Determinants of mortality risk following osteoporotic fractu
Current opinion in rheumatology 2016:28(4):413-19.
6. Chih YP. Wu WT. Lin CL. et al. Vertebral Compression Fracture Related to
Pancreatic Cancer With Osteoblastic Metastasis: A Case Report and Litera
Review. <i>Medicine</i> 2016:95(5):e2670. doi: 10.1097/MD.00000000000267
7. Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fractu
assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab
2006;91(11):4215-22. doi: 10.1210/jc.2006-1178
8. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the y
following a fracture. JAMA : the journal of the American Medical Associat
2001;285(3):320-3.
9. Park SB, Kim J, Jeong JH, et al. Prevalence and Incidence of Osteoporosis and
Osteoporotic Vertebral Fracture in Korea: Nationwide Epidemiological St
Focusing on Differences in Socioeconomic Status. Spine 2016;41(4):328-3
10. Tolenaar JL, van Bogerijen GH, Eagle KA, et al. Update in the management of
aortic dissection. Curr Treat Options Cardiovasc Med 2013;15(2):200-13.
10.1007/s11936-012-0226-1
11. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failur
Nature Reviews Cardiology 2011;8(1):30-41.
12. Givertz MM, Teerlink JR, Albert NM, et al. Acute decompensated heart failure
update on new and emerging evidence and directions for future research
Journal of cardiac failure 2013;19(6):371-89.
13. Maze R, Haddad H. An update in the management of acute decompensated h
failure. Current opinion in cardiology 2014;29(2):180-84.
14. Bender MT, Niederman MS. Improving outcomes in community-acquired
pneumonia. Current opinion in pulmonary medicine 2016;22(3):235-42.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

3	
4	
5	
ć	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
2/	
28	
29	
30	
31	
32	
22	
24	
24	
35	
36	
37	
38	
39	
10	
-+U 1/1	
41	
42	
43	
44	
45	
46	
۰. 47	
77 10	
48	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
59	
60	
60	

- 15. Marrie TJ, File TM. Bacterial Pneumonia in Older Adults. *Clinics in Geriatric Medicine* 2016
- Kim WY, Hong SB. Sepsis and Acute Respiratory Distress Syndrome: Recent Update. *Tuberc Respir Dis (Seoul)* 2016;79(2):53-7. doi: 10.4046/trd.2016.79.2.53
- 17. Koh Y. Update in acute respiratory distress syndrome. *J Intensive Care* 2014;2(1):2. doi: 10.1186/2052-0492-2-2
- Chen YC, Wu JC, Liu L, et al. Hospitalized osteoporotic vertebral fracture increases the risk of stroke: a population-based cohort study. *J Bone Miner Res* 2013;28(3):516-23. doi: 10.1002/jbmr.1722
- 19. Laroche M, Pecourneau V, Blain H, et al. Osteoporosis and ischemic cardiovascular disease. *Joint Bone Spine* 2016 doi: 10.1016/j.jbspin.2016.09.022
- 20. Silverman SL, Delmas PD, Kulkarni PM, et al. Comparison of fracture, cardiovascular event, and breast cancer rates at 3 years in postmenopausal women with osteoporosis. *Journal of the American Geriatrics Society* 2004;52(9):1543-48.
- 21. Ni Mhuircheartaigh O, Crowson CS, Gabriel SE, et al. Fragility Fractures Are Associated with an Increased Risk for Cardiovascular Events in Women and Men with Rheumatoid Arthritis: A Population-based Study. *J Rheumatol* 2017;44(5):558-64. doi: 10.3899/jrheum.160651
- 22. Kim B, Kim J, Jo YH, et al. Risk of Pneumonia After Vertebral Compression Fracture in Women With Low Bone Density: A Population-Based Study. *Spine* (*Phila Pa 1976*) 2018;43(14):E830-E35. doi: 10.1097/BRS.000000000002536
- 23. Melton LJ, Kallmes DF. Epidemiology of vertebral fractures: implications for vertebral augmentation. *Academic radiology* 2006;13(5):538-45.
- 24. Shou-Hsia C, Tung-Liang C. The effect of universal health insurance on health care utilization in Taiwan: results from a natural experiment. *JAMA : the journal of the American Medical Association* 1997;278(2):89-93.
- Peng YC, Lin CL, Yeh HZ, et al. Diverticular disease and additional comorbidities associated with increased risk of dementia. *J Gastroenterol Hepatol* 2016;31(11):1816-22. doi: 10.1111/jgh.13389
- 26. Chen YT, Su JS, Tseng CW, et al. Inflammatory bowel disease on the risk of acute pancreatitis: A population-based cohort study. *J Gastroenterol Hepatol* 2016;31(4):782-7. doi: 10.1111/jgh.13171
- 27. Lee CH, Hsu WC, Ko JY, et al. Trends in the management of peritonsillar abscess in children: A nationwide population-based study in Taiwan. *Int J Pediatr Otorhinolaryngol* 2019;125:32-37. doi: 10.1016/j.ijporl.2019.06.016

) . Ing, Al training, and
Al training, and

	patients with dementia and depression: a nationwide population cohort
	study in Taiwan. Ther Adv Chronic Dis 2019;10:2040622319853719. doi:
	10.1177/2040622319853719
29. H	long WJ, Chen W, Yeo KJ, et al. Increased risk of osteoporotic vertebral fract
	in rheumatoid arthritis patients with new-onset cardiovascular diseases: a
	retrospective nationwide cohort study in Taiwan. Osteoporos Int 2019 do
	10.1007/s00198-019-04966-z
30. H	luang KL, Yeh CC, Wu SI, et al. Risk of Dementia Among Individuals With
	Psoriasis: A Nationwide Population-Based Cohort Study in Taiwan. J Clin
	<i>Psychiatry</i> 2019;80(3) doi: 10.4088/JCP.18m12462
31. L	in CE, Chung CH, Chen LF, et al. Risk of incident hypertension, diabetes, and
	dyslipidemia after first posttraumatic stress disorder diagnosis: A nationw
	cohort study in Taiwan. <i>General hospital psychiatry</i> 2019;58:59-66. doi:
	10.1016/j.genhosppsych.2019.03.004
32. C	heng CL, Chien HC, Lee CH, et al. Validity of in-hospital mortality data among
	patients with acute myocardial infarction or stroke in National Health
	Insurance Research Database in Taiwan. International journal of cardiolog
	2015;201:96-101. doi: 10.1016/j.ijcard.2015.07.075
33. C	heng CL, Kao YH, Lin SJ, et al. Validation of the National Health Insurance
	Research Database with ischemic stroke cases in Taiwan. <i>Pharmacoepider</i>
	Drug Saf 2011;20(3):236-42. doi: 10.1002/pds.2087
34. C	heng CL, Lee CH, Chen PS, et al. Validation of acute myocardial infarction cas
	in the national health insurance research database in taiwan. <i>J Epidemiol</i>
.	2014;24(6):500-7. doi: 10.2188/jea.je20140076
35. H	lo TW, Ruan SY, Huang CT, et al. Validity of ICD9-CM codes to diagnose chror
	obstructive pulmonary disease from National Health Insurance claim data
	Taiwan. Int J Chron Obstruct Pulmon Dis 2018;13:3055-63. doi:
<u>эс</u> р	10.2147/COPD.S174205
50. D	functional and radiological results in a prospective series of 518 patients
	vear's follow-up. Orthon Traumatol Sura Res 2015:101(1):11-5 doi:
	10 1016/i otsr 2014 11 012
37 I:	ackson SA Tenenhouse A Robertson L Vertebral fracture definition from
57.30	population-based data: preliminary results from the Canadian Multicente
	Osteoporosis Study (CaMos), Osteoporos Int 2000:11(8):680-7 doi:
	10.1007/s001980070066
	10.100,00010000,0000

	management. The American journal of medicine 2016;129(2):221. e1-21. e1
39. M	elvinsdottir IH, Lund SH, Agnarsson BA, et al. The incidence and mortality of
	acute thoracic aortic dissection: results from a whole nation study. Europea
	Journal of Cardio-Thoracic Surgery 2016:ezw235.
40. Pa	cini D, Di Marco L, Fortuna D, et al. Acute aortic dissection: epidemiology and
	outcomes. International journal of cardiology 2013;167(6):2806-12. doi:
	10.1016/j.ijcard.2012.07.008
41. Ye	h TY, Chen CY, Huang JW, et al. Epidemiology and Medication Utilization
	Pattern of Aortic Dissection in Taiwan: A Population-Based Study. Medicine
	2015;94(36):e1522. doi: 10.1097/MD.000000000001522
42. Cł	oit RL, Tredwell SJ, Leblanc JG, et al. Abdominal aortic injuries associated wit
	chance fractures in pediatric patients. Journal of pediatric surgery
	2006;41(6):1184-90. doi: 10.1016/j.jpedsurg.2006.01.069
43. In	aba K, Kirkpatrick AW, Finkelstein J, et al. Blunt abdominal aortic trauma in
	association with thoracolumbar spine fractures. <i>Injury</i> 2001;32(3):201-7.
44. Pa	pazoglou KO, Karkos CD, Kalogirou TE, et al. Endovascular management of la
	belt-related abdominal agric injury in a 9-year-old child. Ann Vasc Surg
	2015:29(2):365 e11-5. doi: 10.1016/i.avsg.2014.09.026
45 Sa	ntoro G. Ramieri A. Chiarella V. et al. Thoraco-lumbar fractures with blunt
10.00	traumatic aortic injury in adult patients: correlations and management <i>Fur</i>
	Spine 1 2018 doi: 10 1007/s00586-018-5601-5
46 Sa	volaine FR Ebraheim NA Stitgen S et al April runture complicating a fractu
40. 50	of an ankylosed thoracic spine. A case report <i>Clin Orthon Relat Res</i>
	1991(272)·136-40
17 C7	ule P. Abdominal aertic calcification: A reappraical of epidemiological and
47.32	nathanhurialogical data. Rona 2016:84:25-27. doi:
	10 1016 /i hopo 2015 12 004
40 Th	10.1016/J.bone.2015.12.004
48. 11	hompson B, Towier DA. Arterial calcincation and bone physiology: role of the
	bone-vascular axis. <i>Nat Rev Endocrinoi</i> 2012;8(9):529-43. doi:
40 11	10.1038/nrendo.2012.36
49. Ha	assanein M, Abdelhamid M, Ibrahim B, et al. Gender differences in Egyptian
	patients hospitalized with heart failure: insights from the European Society
	Cardiology Heart Failure Long-Term Registry. ESC Heart Fail
	2018;5(6):1159-64. doi: 10.1002/ehf2.12347
50. M	adan N, Itchhaporia D, Albert CM, et al. Atrial Fibrillation and Heart Failure in
	Women. <i>Heart Fail Clin</i> 2019;15(1):55-64. doi: 10.1016/j.hfc.2018.08.006
51 M	agnussen C, Niiranen TJ, Ojeda FM, et al. Sex-Specific Epidemiology of Heart
51.101	

BMJ Open

2	
3	Consortium. JACC Heart Fail 2019:7(3):204-13. doi:
4	10 1016/i ichf 2018 08 008
6	
7	52. Lyons KJ, Majumdar SR, Ezekowitz JA. The unrecognized burden of
8	osteoporosis-related vertebral fractures in patients with heart failure. Circ
9	Heart Fail 2011;4(4):419-24. doi: 10.1161/CIRCHEARTFAILURE.111.961185
10	53 Sennerby II Melbus H. Gedeborg R. et al. Cardiovascular diseases and risk of hin
12	
13	fracture. JAMA : the journal of the American Medical Association
14	2009;302(15):1666-73. doi: 10.1001/jama.2009.1463
15	54. Aluoch AO, Jessee R, Habal H, et al. Heart failure as a risk factor for osteoporosis
17	and fractures. Curr Osteoporos Rep 2012:10(4):258-69. doi:
18	10 1007/c11914_012_0115_2
19	
20	55. Larina VN, Bart B, Raspopova TN. [Chronic heart failure and osteoporosis].
22	Kardiologiia 2013;53(6):76-84.
23	56. Farhat GN, Cauley JA. The link between osteoporosis and cardiovascular disease.
24	Clin Cases Miner Bone Metab 2008;5(1):19-34.
25 26	57 Gerber V. Melton I.I. 3rd. Weston SA, et al. Osteoporotic fractures and heart
27	foilure in the community. The American journal of medicine
28	Tailure in the community. The American Journal of medicine
29	2011;124(5):418-25. doi: 10.1016/j.amjmed.2010.11.029
30 31	58. Veronese N, Stubbs B, Crepaldi G, et al. Relationship Between Low Bone Mineral
32	Density and Fractures With Incident Cardiovascular Disease: A Systematic
33	Review and Meta-Analysis <i>J Bone Miner Res</i> 2017:32(5):1126-35. doi:
34	10 1002 /ibmr 2020
36	
37	59. Adelborg K, Schmidt M, Sundboll J, et al. MORTALITY RISK AMONG HEART
38	FAILURE PATIENTS WITH DEPRESSION: A NATIONWIDE POPULATION-BASED
39	COHORT STUDY. Journal of the American College of Cardiology
40	2016:67(13 S):1318-18.
42	60 Eletcher DI Taddenie PE Byrne DW, et al. Incidence of acute care complications
43	ou. Hetcher bi, raduonio Kr, byrne bw, et al. incluence of acute care complications
44 45	In vertebral column fracture patients with and without spinal cord injury.
46	<i>Spine (Phila Pa 1976)</i> 1995;20(10):1136-46.
47	61. Jackson AB, Groomes TE. Incidence of respiratory complications following spinal
48	cord injury. Archives of physical medicine and rehabilitation
49 50	1994.75(3).270-75
51	(2) Window C. Rodo DK. Folton D. et al. Impost of requiretory complications on
52	62. Winslow C, Bode RK, Felton D, et al. Impact of respiratory complications on
53	length of stay and hospital costs in acute cervical spine injury. CHEST Journal
54 55	2002;121(5):1548-54.
56	63. Cotton BA, Pryor JP, Chinwalla I, et al. Respiratory complications and mortality
57	risk associated with thoracic spine injury Journal of Trauma and Acute Care
58	Surgery 200E-E0/E):1400-00
60	<i>Julyely</i> 2003,33(0).1400-03.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

3	
4	
5	
c	
0	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
21	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
38	
39	
40	
41	
11	
42	
43	
44	
45	
46	
47	
4/	
47 48	
47 48 49	
47 48 49 50	
47 48 49 50 51	
47 48 49 50 51	
47 48 49 50 51 52	
47 48 49 50 51 52 53	
47 48 49 50 51 52 53 54	
47 48 49 50 51 52 53 54 55	
47 48 49 50 51 52 53 54 55 55	
47 48 49 50 51 52 53 54 55 56	
47 48 49 50 51 52 53 54 55 56 57	

59 60

1 2

- 64. Veeravagu A, Jiang B, Rincon F, et al. Acute respiratory distress syndrome and acute lung injury in patients with vertebral column fracture(s) and spinal cord injury: a nationwide inpatient sample study. *Spinal Cord* 2013;51(6):461-5. doi: 10.1038/sc.2013.16
- 65. Lieberman IH, Webb JK. Cervical spine injuries in the elderly. *J Bone Joint Surg Br* 1994;76(6):877-81.
- 66. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. *Archives of internal medicine* 1999;159(11):1215-20.
- 67. Harrison RA, Siminoski K, Vethanayagam D, et al. Osteoporosis-related kyphosis and impairments in pulmonary function: a systematic review. *J Bone Miner Res* 2007;22(3):447-57. doi: 10.1359/jbmr.061202
- 68. Krege JH, Kendler D, Krohn K, et al. Relationship Between Vertebral Fracture Burden, Height Loss, and Pulmonary Function in Postmenopausal Women With Osteoporosis. J Clin Densitom 2015;18(4):506-11. doi: 10.1016/j.jocd.2015.02.004
- 69. Chen Y, Shao J, Zhu W, et al. Identification of risk factors for respiratory complications in upper cervical spinal injured patients with neurological impairment. *Acta orthopaedica et traumatologica turcica* 2012;47(2):111-17.
- 70. Krassioukov A. Autonomic function following cervical spinal cord injury. Respiratory physiology & neurobiology 2009;169(2):157-64.

Figure Legends

Figure 1. Derivation of our study cohort

Figure 2. Cumulative incidence of aortic dissection (A), congestive heart failure (B), pneumonia (C) and acute respiratory distress syndrome (D) in patients with clinical vertebral fracture and comparison patients

Figure 2. Cumulative incidence of aortic dissection (A), congestive heart failure (B), pneumonia (C) and acute respiratory distress syndrome (D) in patients with clinical vertebral fracture and comparison patients

160x141mm (300 x 300 DPI)

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
20
30 21
31
32
33
34
35
36
37
38
39
40
41
12
ד∠ ⊿2
45
44
45
46
47
48
49
50
51
52
53
55
54
22
50
57
58
59

Supplemental Table 1. Summary of the ICD-9-CM codes used for disease	
definition and their matching diseases	

Diseases	ICD-9-CM codes
Clinical vertebral fracture (CVF)	805, 806
Cervical spine CVF	805.0-805.18, 806.0-806.19
Thoracic spine CVF	805.2, 805.3, 806.2-806.39
Lumbar spine CVF	805.4, 805.5, 806.4, 806.5
Sacrum plus coccyx CVF	805.6, 805.7, 806.6-806.79
CVF without spinal cord injury (SCI)	805-805.9
CVF with spinal cord injury (SCI)	806-806.9
Aortic dissection (AD)	441.0, 441.00, 441.01, 441.02, 441.03
Congestive heart failure (CHF)	428
Pneumonia	480-488
Acute respiratory distress syndrome	518.82, 518.5
(ARDS)	
Comorbidities	
Hypertension	401–405
Diabetes mellitus	250
Hyperlipidemia	272
Atrial fibrillation	427.31
Chronic kidney disease	580-589
Chronic obstructive pulmonary disease	491,492,496

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

*Defined by administration code. ICD-9-CM, Clinical Modification of ICD-9.

BMJ Open

Risk of Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome in Patients with Clinical Vertebral Fracture: A Nationwide Population-based Cohort Study in Taiwan

1	
Journai:	BMJ Open
Manuscript ID	bmjopen-2019-030939.R2
Article Type:	Original research
Date Submitted by the Author:	14-Oct-2019
Complete List of Authors:	Lee, Feng-You; Taichung Tzu Chi Hospital, Department of Emergency Medicine; Tzu Chi University, Department of Emergency Medicine, School of Medicine Chen, Wei-Kung; China Medical University Hospital, Department of Emergency Medicine, Trauma and Emergency Center Lin, Cheng-Li; China Medical University Hospital, Management Office for Health Data; China Medical University, College of Medicine Kao, Chia-Hung; China Medical University, Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine; China Medical University Hospital, Department of Nuclear Medicine and PET Center Yang, Tse-Yen; China Medical University Hospital, Department of Medical University, Center for General Education Lai, Ching-Yuan; China Medical University Hospital, Department of Emergency Medicine, Trauma and Emergency Center
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Cardiovascular medicine, Epidemiology, Public health, Respiratory medicine
Keywords:	aortic dissection, congestive heart failure, pneumonia, acute respiratory distress syndrome, National Health Insurance Research Database, Clinical Vertebral fracture

Risk of Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome in Patients with Clinical Vertebral Fracture: A Nationwide Population-based Cohort Study in Taiwan

Running title: Clinical Vertebral Fracture and Aortic Dissection, Congestive Heart Failure, Pneumonia, and Acute Respiratory Distress Syndrome Risks Feng-You Lee,^{1,10} Wei-Kung Chen,² Cheng-Li Lin,^{3,4} Chia-Hung Kao,^{5,6,7} Tse-Yen Yang,^{8,9,¶} and Ching-Yuan Lai,^{2,¶}

¹Department of Emergency Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Medical Foundation, Taichung, Taiwan.

²Department of Emergency Medicine, Trauma and Emergency Center, China Medical

University Hospital, Taichung, Taiwan.

³Management Office for Health Data, China Medical University Hospital, Taichung,

Taiwan.

⁴College of Medicine, China Medical University, Taichung, Taiwan.

⁵Graduate Institute of Clinical Medical Science and School of Medicine, College of

Medicine, China Medical University, Taichung, Taiwan.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

⁶Department of Nuclear Medicine and PET Center, China Medical University

Hospital, Taichung, Taiwan.

⁷Department of Bioinformatics and Medical Engineering, Asia University, Taichung,

Taiwan.

⁸Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.

⁹Center for General Education & Master Program of Digital Health Innovation, China

Medical University, Taichung, Taiwan.

Jol of Mu ¹⁰Department of Emergency Medicine, School of Medicine, Tzu Chi University,

Hualien, Taiwan.

*Corresponding author:

E-mail: yang t y@yahoo.com.tw (T.-Y.Y.)

[¶] These authors contributed equally to this work

Abstract

Objective: Studies on the association between clinical vertebral fractures (CVFs) and the subsequent risk of cardiopulmonary diseases, including aortic dissection (AD), congestive heart failure (CHF), pneumonia, and acute respiratory distress syndrome (ARDS), are scarce. Therefore, we used the National Health Insurance Research Database to investigate whether patients with CVF have a heightened risk of subsequent AD, CHF, pneumonia and ARDS. **Design:** The National Health Insurance Research Database was used to investigate

whether patients with CVFs have an increased risk of subsequent AD, CHF,

pneumonia, and ARDS.

Participants: This cohort study comprised patients aged ≥ 18 years with a diagnosis of CVF and were hospitalized at any point during 2000–2010 (n = 108,935). Each CVF patient was frequency-matched to a no-CVF hospitalized patients based on age, sex, index year and comorbidities (n = 108,935). The Cox proportional hazard regressions model was used to estimate the adjusted effect of CVF on AD, CHF, pneumonia, and ARDS risk.

Results: The overall incidence of AD, CHF, pneumonia, and ARDS was higher in the CVF group than in the no-CVF group (4.85 versus 3.99, 119.1 versus 89.6, 283.3 versus 183.5, and 9.18 versus 4.18/10,000 person-years, respectively). After

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies
BMJ Open

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

adjustment for age, sex, comorbidities, and Charlson comorbidity index score, patients with CVF had a 1.23-fold higher risk of AD (95% CI = 1.03-1.45), 1.35-fold higher risk of CHF (95% CI = 1.30-1.40), 1.57-fold higher risk of pneumonia (95% CI = 1.54-1.61), and 2.21-fold higher risk of ARDS (95% CI = 1.91-2.57) than did those without CVF. Patients with cervical CVF and SCI were more likely to develop pneumonia and ARDS.

Conclusions: Our study demonstrates that CVFs are associated with an increased risk of subsequent cardiopulmonary diseases. Future investigations are encouraged to delineate the mechanisms underlying this association.

Strengths and limitations of this study:

1. This is the first population-based, longitudinal cohort study to focus on the correlation between CVF and the subsequent risks of specific cardiopulmonary diseases.

2. By sampling from a large nationwide database, which covers nearly 100% of all residents in Taiwan, stable outcomes could be achieved with such adequate, representative samples.

 All disease definitions and sample selection in our study were based on the ICD-9-CM coding. Therefore, miscoding or misclassification might exist, although it is considered rare.

2	
3	
4	
5	
5	
6	
7	
8	
٥.	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
27 27	
20	
26	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
-⊤∠ ∕\?	
43	
44	
45	
46	
47	
<u>⊿</u> 2	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
50	
59	

60

4. In our study, sampled participants were retrieved from NHIRD from January 1, 2000, to December 31, 2010. Aging property of the data might not truly reflect the current medical conditions. 5. Because of geographic and epidemiologic discrepancies, our results might not be applicable to other countries or regions. Keywords: Clinical Vertebral fracture, aortic dissection, congestive heart failure, ress syr pneumonia, acute respiratory distress syndrome, National Health Insurance Research

Database.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Introduction

Clinical Vertebral fractures (CVFs) constitute a major healthcare burden worldwide because of its high incidence and strong influence on individuals' quality of life, medical resource consumption, and direct or potential unfavorable impacts on socioeconomic development¹⁻³. Approximately 1.4 million new cases of CVF are diagnosed globally every year⁴, and among these, osteoporosis, trauma, and malignancy are the major etiologies⁵⁻⁹. Acute aortic dissection (AD) remains the major life-threatening vascular emergency, with a steadily increasing incidence because of population aging and the explosive growth of radiologic technology $^{10-12}$. Without early recognition and timely treatment, the prognosis of AD would be extremely poor, and half the patients would die within 48 h¹⁰. Congestive heart failure (CHF) is the major cause of hospitalization in old age, with more than 650,000 new cases confirmed annually in the United States, and more than 1 million people were hospitalized for decompensated CHF, resulting in costs exceeding 39 billion¹³⁻¹⁵. Pneumonia is one of the most common infectious diseases in elderly adults and is also the leading cause of death in Americans older than 65 years¹⁶¹⁷. Acute respiratory distress syndrome (ARDS) is a complex syndrome characterized by diffuse hydrostatic pulmonary edema, alveoli damage, and persistent hypoxemia, which are mainly triggered by infection, inflammation, trauma, or other etiologies. The

BMJ Open

in-hospital mortality rate for this condition could reach 40% even when managed with the standardized lung protective ventilator strategy^{18 19}.

Studies have demonstrated that elderly patients with a history of osteoporotic vertebral fracture have an increased risk of cardiovascular events, including stroke (ischemic or hemorrhagic) and coronary heart disease²⁰⁻²³. Recently, Kim et al.²⁴ reported an association between isolated CVF and future development of pneumonia in women with low bone density. In addition, chronic, worsened and longstanding backache accompanied with CVF might result in a long-term increase of sympathetic tone, fatigue, stress reaction, low physical activity, depressive tendency, diminished pulmonary function, and, consequently a poor quality of life, which might be correlated with cardiopulmonary disease risk^{3 5 7 8 25}. Therefore, we hypothesized that an association exists between CVF and the risk of cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS. Accordingly, we conducted a nationwide, population-based data analysis to verify this hypothesis and tried to provide essential evidence-based information for clinical practice.

Methods

Data Source

This retrospective cohort study used datasets from Taiwan's National Health Insurance Research Database (NHIRD). Taiwan launched a single-payer National

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Health Insurance (NHI) program in March 1995, and 99% of the 23.74 million residents were enrolled²⁶. The details of the NHIRD and NHI program are well presented in previous studies²⁷⁻³³. The NHIRD records diseases according to International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. Validation of the NHIRD with cardiovascular diseases were investigated and appeared to be a valid resource for population research³⁴⁻³⁷. This study was approved by the Institutional Review Board of China Medical University (CMUH-104-REC2-115).

Sampled Participants

Patients aged \geq 18 years with newly diagnosed CVF (ICD-9-CM codes, 805 and 806) from January 1, 2000, to December 31, 2010, were identified as the CVF cohort. Study subjects with the diagnosis of vertebral fracture from 1996-1999 were excluded at the baseline. The location of CVF was defined in two ways as follows: (1) cervical spine (ICD-9-CM codes, 805.0-805.18 and 806.0-806.19), thoracic spine (ICD-9-CM codes, 805.2, 805.3, and 806.2-806.39), lumbar spine (ICD-9-CM codes, 805.4, 805.5, 806.4, and 806.5), and sacrum plus coccyx (ICD-9-CM codes, 805.6, 805.7, and 806.6-806.79) and (2) without spinal cord injury (SCI) (ICD-9-CM codes, 805-805.9), and with SCI (ICD-9-CM codes, 806-806.9). The date of first-time CVF diagnosis at admission was defined as the index date. Participants with prior AD (ICD-9-CM codes, 428),

BMJ Open

pneumonia (ICD-9-CM codes, 480-488), and ARDS (ICD-9-CM codes, 518.82 and 518.5) before 1999 and before the index date (n=15,697); with the diagnosis of trauma (ICD-9-CM codes, 800-959 except 805-806) during the same period (n=2,597); with any outcome event (AD, CHF, pneumonia, and ARDS) diagnosed within 1 month after the index date (n=2,738); those under 18 years of age (n=4,017); and those with missing information about age or sex (n=4) in both the CVF and no-CVF cohorts; were excluded. For each CVF patient, a no-CVF participant was frequency-matched by the index year of CVF diagnosis, age (every 5-year span), sex, and comorbidities of diabetes (ICD-9-CM code, 250), hypertension (ICD-9-CM codes, 401-405), hyperlipidemia (ICD-9-CM code, 272), atrial fibrillation (ICD-9-CM code, 427.31), chronic kidney disease (CKD; ICD-9-CM codes, 580-589), and chronic obstructive pulmonary disease (COPD; ICD-9-CM codes, 491, 492, and 496) (Figure 1). Coexisting comorbidities were identified before the index date, with at least one time of principal or secondary diagnoses documented in hospitalizations during the period 2000 to 2010. We have also added Charlson comorbidity index (CCI) score as a confounding factor. Summary of ICD-9-CM codes applied for disease definition are presented in online supplementary table 1.

Outcome

The main outcome was hospitalization with a new diagnosis of AD, CHF,

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

pneumonia, or ARDS during the follow-up period. Both the CVF and no-CVF cohorts were followed up until the diseases appeared or they were censored because of loss to follow-up, death, or the end of December 31, 2010, whichever occurred first.

Statistical analysis

A chi-square test and Student's *t*-test were used to evaluate the differences in the distribution of categorical and continuous variables, respectively, between the CVF and no-CVF cohorts. The overall, sex-, age-, and comorbidity-specific incidence densities of AD, CHF, pneumonia, and ARDS were estimated for each cohort. To address the concern of constant proportionality, we examined the proportional hazard model assumption using a test of scaled Schoenfeld residuals. The results showed that there was no significant relationship between Schoenfeld residuals for CVF and follow-up time (p-value = 0.06) in the model evaluating the AD risk and Schoenfeld residuals for CVF and follow-up time (p-value = 0.18) in the model evaluating the ARDS risk. In the model evaluating the CHF and pneumonia risk throughout overall follow-up period, the results of the test revealed a significant relationship between Schoenfeld residuals for CVF and follow-up time, suggesting the proportionality assumption was violated. The relative risks of AD, CHF, pneumonia, and ARDS in the CVF cohort compared with the no-CVF cohort were analyzed using univariable and multivariable Cox proportional hazard regression models and presented as hazard ratios (HRs) and 95% confidence intervals (CIs). The multivariable models were

BMJ Open

simultaneously adjusted for age, sex, and comorbidities of hypertension, diabetes, hyperlipidemia, atrial fibrillation, CKD, and COPD. We further tested the interaction between gender and VCF; between age and VCF; and between comorbidity and VCF by including a cross-product term in the model. Further analysis was performed to assess whether the association of CVF with AD, CHF, pneumonia, and ARDS varied according to the levels of CVF. All statistical analyses were performed using SAS 9.4 software (SAS Institute, Cary, NC, USA), and we set the significance level at less than 0.05 for two-sided testing of P-values.

Patient and public involvement

There was no patient or public involvement in this study.

Results

Demographics and comorbidity

In this study, 108,935 CVF patients and 108,935 matched no-CVF participants with similar distributions of age, sex, and comorbidities were assessed (Table 1). In the CVF cohort, \geq 44.3% of patients were aged \geq 65 years, and 55.3% of the patients were women (Table 1). The mean age of the patients was 58.8 ± 18.8 years in the CVF cohort and 58.3 ± 18.8 years in the no-CVF cohort. Both cohorts had a medical history of hypertension (26.0%), diabetes (15.2%), COPD (5.3%), hyperlipidemia (5.2%), atrial fibrillation (1.2%), and CKD (3.5%). Patients of CVF cohort were more

ie.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

prevalent with CCI than no-CVF cohort.

	Clinical vertel		
	Yes	No	
	(N=108935)	(N=108935)	
	n(%)	n(%)	<i>p</i> -value
Age, years ^{&}			0.99
≤49	36313(33.3)	36310(33.3)	
50-64	24341(22.3)	24345(22.4)	
≥65	48281(44.3)	48280(44.3)	
Mean (SD) [†]	58.8(18.8)	58.3(18.8)	< 0.001
Gender ^{&}			0.99
Female	60216(55.3)	60218(55.3)	
Male	48719(44.7)	48717(44.7)	
Comorbidity ^{&}			
Hypertension	28339(26.0)	28338(26.0)	0.99
Diabetes	16553(15.2)	16554(15.2)	0.99
Hyperlipidemia	5692(5.2)	5695(5.2)	0.98
Atrial fibrillation	1381(1.2)	1377(1.2)	0.94
CKD	3810(3.5)	3814(3.5)	0.96
COPD	5865(5.3)	5867(5.3)	0.98
CCI score&			< 0.001
0	77930(71.5)	82878(76.1)	
1	17489(16.1)	15662(14.4)	
2	7079(6.5)	5378(4.9)	
3 or more	6437(5.9)	5017(4.6)	

Table 1. Comparison of demographics and comorbidity between clinical vertebral fracture patients and controls

& Chi-square test examined categorical data; [†]T-test examined continuous;

Primary outcomes

Overall, the incidence of AD was 1.22 -fold higher in the CVF cohort than in the

no-CVF cohort (4.85 vs. 3.99 per 10,000 person-years), with an adjusted HR (aHR) of

BMJ Open

1.23 (95% CI = $1.03-1.45$) (Table 2). The aHR of AD among women was
significantly higher in the CVF cohort than in the no-CVF cohort ($aHR = 1.40, 95\%$
CI = 1.09-1.79). The age-specific relative hazard of AD in the CVF cohort was higher
than that in the no-CVF cohort for age \leq 49 group. The relative hazard of AD was
higher in the CVF cohort than in the no-CVF cohort for patients without
comorbidities (aHR = 1.38 , 95% CI = $1.04-1.83$). In all stratifications, the risk of
CHF, pneumonia, and ARDS remained higher in the CVF cohort than in the no-CVF
cohort.

 $^{30}_{31}$ Table 2. Incidence and adjusted hazard ratio of outcome by sex, age and comorbidity for clinical vertebral fracture 32patients compared to controls

33 34 35			Clinic	al verte	bral fract	ure		Compared to Control		
36 37			Yes			No				
38 39 40	Variables	Events n	РҮ	Rate [#]	Events n	РҮ	Rate [#]	Crude HR (95% CI)	Adjusted HR [†] (95% CI)	
41^{4}	Aortic dissection									
43	All	286	589915	4.85	245	614133	3.99	1.22(1.02, 1.44)*	1.23(1.03, 1.45)*	
44 45	Gender									
46	Female	149	322213	4.62	109	333909	3.26	1.42(1.11, 1.82)**	1.40(1.09, 1.79)**	
47 48	Male	137	267703	5.12	136	280224	4.85	1.05(0.83, 1.33)	1.08(0.85, 1.37)	
49]	P for interaction								0.09	
50 51	Age, years									
52	<u>≤</u> 49	19	230604	0.82	8	229738	0.35	2.37(1.04, 5.40)*	2.37(1.03, 5.41)*	
53 54	50-64	43	139107	3.09	30	143099	2.10	1.48(0.93, 2.36)	1.45(0.91, 2.31)	
55	≥65	224	220204	10.2	207	241296	8.58	1.19(0.99, 1.44)	1.17(0.97, 1.42)	
56 57	P for interaction								0.29	
58	Comorbidity§									
59 60	No	117	411117	2.85	86	421520	2.04	1.40(1.06, 1.85)*	1.38(1.04, 1.83)*	

Page 14 of 36

2											
³ Yes	169	178798	9.45	159	192612	8.25	1.15(0.92,	1.42)	1.14(0.91,	1.41)	
5 P for interaction									0.28		
⁶ ₇ Congestive heart											
⁸ failure											
10 All	6866	576513	119.1	5411	603639	89.6	1.33(1.28,	1.38)***	1.35(1.30,	1.40)***	
11 Gender											
12 13 Female	4689	312775	149.9	3649	326705	111.7	1.34(1.29,	1.40)***	1.33(1.27,	1.39)***	
14 Male	2177	263738	82.5	1762	276934	63.6	1.30(1.22,	1.38)***	1.38(1.30,	1.47)***	P
$^{15}_{16}$ P for interaction									0.38		otec
17 Age, years											f⊳∩
18 19 ≤49	233	230058	10.1	142	229391	6.19	1.63(1.33,	2.01)***	1.64(1.33, 2	2.03)***	2 2
20 50-64	733	137433	53.3	577	141714	40.7	1.31(1.18,	1.47)***	1.31(1.17,	1.46)***	זאר
$\frac{21}{22} \ge 65$	5900	209022	282.3	4692	232533	201.8	1.41(1.35,	1.46)***	1.38(1.33,	1.44)*** °	inht
²³ P for interaction									0.51		inc
24 25 Comorbidity [§]										5	Indin
26 No	2115	406910	52.0	1508	418712	36.0	1.45(1.35,	1.54)***	1.42(1.33,	1.52)***	ร์ อี
27 28 Yes	4751	169603	280.1	3903	184927	211.1	1.33(1.28,	1.39)***	1.31(1.26,	1.37)***	Г
²⁹ P for interaction									0.04		nsei es re
₃₀ ₃₁ Follow-up period											gner
³² <5 years	5193	194850	266.5	3753	197188	190.3	1.40(1.34,	1.46)***	1.07(1.00,	1.15)*	า ent
$_{34}^{33} \ge 5$ years	1673	166386	100.6	1658	177139	93.6	1.34(1.29,	1.40)***	1.17(1.09,	1.25)***	text Sup
³⁵ Pneumonia											and
36 37 All	15912	561694	283.3	10929	595609	183.5	1.54(1.51,	1.58)***	1.57(1.54,	1.61)***	ประการ
³⁸ Gender											BE
40 Female	8740	306705	285.0	6126	323229	189.5	1.50(1.46,	1.55)***	1.49(1.44,	1.53)*** g	
41 Male	7172	254989	281.3	4803	272380	176.3	1.59(1.53,	1.65)***	1.68(1.62,	1.75)***	∆It
$^{42}_{43}P$ for interaction									0.02	2	r ini i
⁴⁴ Age, years										ÿ	nn N
45 46 ≤49	1468	226184	64.9	557	228317	24.4	2.66(2.41,	2.93)***	2.56(2.32, 2	2.82)***	bue
47 50-64	2018	134598	149.9	1330	140288	94.8	1.59(1.48,	1.70)***	1.57(1.47,	1.69)***	<u>^.</u>
48 49 ≥65	12426	200912	618.5	9042	227004	398.3	1.56(1.52,	1.60)***	1.53(1.49,	1.58)***	lar te
⁵⁰ P for interaction									< 0.001		chn
52 Comorbidity [§]											200
53 No	6398	398499	160.6	3657	414829	88.2	1.82(1.75,	1.90)***	1.74(1.67,	1.82)***	Do
54 55 Yes	9514	163195	583.0	7272	180780	402.3	1.45(1.41,	1.50)***	1.45(1.41,	1.50)***	
⁵⁶ P for interaction									< 0.001		
57 58Follow-up period											
⁵⁹ <5 years ⁶⁰	11970	194479	615.5	7447	197003	378.0	1.63(1.58,	1.67)***	1.23(1.18,	1.29)***	

Page	15	of 36	
i uyc	10	01.50	

BMJ Open

2											
$\geq 5 \text{ years}$	3942	156975	251.1	3482	170874	203.8	1.55(1.5	50, 1.59)***	• 1.36(1.30	0, 1.42)***	:
Acute respiratory											_
distress syndrome	1										
³ All	542	590138	9.18	257	614432	4.18	2.20(1.8	89, 2.55)***	• 2.21(1.9	1, 2.57)***	:
Gender											
1 Female	254	322312	7.88	115	333999	3.44	2.29(1.8	4, 2.85)***	2.25(1.8)	1, 2.81)***	:
12 13 Male	288	267826	10.8	142	280433	5.06	2.12(1.7	4, 2.59)***	· 2.17(1.78	8, 2.66)***	•
¹⁴ P for interaction									0.62		₽
Age, years											rote
17 <u>≤</u> 49	74	230565	3.21	20	229743	0.87	3.69(2.2	25, 6.04)***	· 3.47(2.1)	1, 5.70)***	cted
⁸ 50-64	60	139177	4.31	38	143117	2.66	1.63(1.0	8, 2.44)*	1.60(1.0	7, 2.41)*	by c
20 >65	408	220396	18.5	199	241572	8.24	2.26(1.9	1, 2.68)***	• 2.22(1.8	8, 2.64)***	çopy
$^{21}_{D}$ $^{-}_{P}$ for interaction							× ×	, ,	0.17	, ,	righ
²² Comorbidity [§]											t, in
$\frac{24}{N0}$ No	226	411197	5.50	93	421615	2.21	2.49(1.9	6. 3.18)***	· 2.42(1.89	9. 3.09)***	cludi
26 Yes	316	178941	17.7	164	192717	8.51	2 08(1 7	'2 2 51)***	• 2 08(1 7)	$2 \ 2 \ 51)^{***}$	ing f
27 27	010	1,05,11				0.01		_,)	0.25	_, ,	or u
²⁹ PY person-vears ⁻	Rate [#] incid	ence rate	per 10 0	00 perso	on-vears [.] C	rude H	R· relativ	e hazard ra	tio [.]		Ses I
Adjusted HR [†] ad	iusted hazard	l ratio cont	rolling f	for age	sex comor	biditie	s of hype	rtension di	abetes		relat
³² hvperlipidemia at	rial fibrillati	on CKD	COPD :	and CCI	score	oranic	s or nype		<i>aceres</i> ,		ed to
33 AComorbidity [§] · Pat	ients with ar	ny one of t	he como	rhidities	s hypertens	ion di	ahetes hy	vnerlinidem	ia atrial f	ibrillation	o tex
35CKD and COPD	were classifi	ied as the c	omorbi	lity grou	in	ion, un	uootos, ny	pernpidein	ilu, utilui i	iorination,	t an
36 -*n<0.05 **n<0.0	1 ***n<0.00	100 dis the C		any grot	чр						d da
37 p = 0.00, p = 0.0 38	1, p 0.00	01									ta m
39											inin
ł0 11											ιġ, Α
12 Su	btypes analy	ysis									l tra
13		, ,									linir
14	Compared	with natie	nts with	out CVI	T the risk (of AD y	was 1 33.	fold (95%)	CI =		۱ġ, a
+5 16	Compared	will part	iits with		, the msk v		was 1.55	1010 (7570	CI		ind :
17	1 1 (0) 1 . 1	· OUT	1 1	<i>.</i> .,	1 1	25 6 1	1 (050/ 6	NI 1051	40)		simi
18 I.I 19	1-1.60) high	er in CVF	-lumbar	patients	and was I	.25-101	a (95% C	T = 1.05 - 1.4	48)		lar t
50											ech
51 hig	ther in CVF	patients wi	thout SC	CI (Tabl	e 3). The r	isk of C	CHF and]	pneumonia			nolo
52 53											gies

remained higher in patients with various levels of CVF than in patients without CVF.

Table 3 also shows that patients with various levels of CVF, except for those with

sacrum or coccyx fractures, had a significantly higher risk of ARDS than did patients

without CVF.

Table 3. Comparisons of Incidence, and Hazard Ratios of outcome by subtypes of clinical vertebral fracture

Variables	N	Event	Rate [#]	Crude HR	Adjusted HR [†]
	11	2,010	1.000	(95% CI)	(95% CI)
Aortic dissection					
No vertebral fracture	108935	245	3.99	1(Reference)	1(Reference)
Cervical spine	9938	12	2.15	0.54(0.30, 0.96)*	0.92(0.51, 1.65)
Thoracic	32205	95	5.72	1.44(1.13, 1.82)**	1.20(0.95, 1.53)
Lumbar	70723	220	5.77	1.45(1.21, 1.74)***	1.33(1.11, 1.60)**
Sacrum and coccyx	7523	6	1.28	0.32(0.14, 0.72)**	1.06(0.47, 2.41)
Without SCI	98984	265	5.00	1.25(1.05, 1.49)*	1.25(1.05, 1.48)*
With SCI	13209	30	3.75	0.93(0.64, 1.37)	1.10(0.75, 1.61)
Congestive heart failure					
No vertebral fracture	108935	5411	89.6	1(Reference)	1(Reference)
Cervical spine	9938	278	50.4	0.56(0.50, 0.63)***	1.40(1.24, 1.58)***
Thoracic	32205	2678	166.6	1.86(1.78, 1.95)***	1.43(1.37, 1.50)***
Lumbar	70723	4986	134.1	1.50(1.44, 1.56)***	1.38(1.33, 1.43)***
Sacrum and coccyx	7523	144	31.0	0.35(0.29, 0.41)***	1.33(1.12, 1.57)***
Without SCI	98984	6291	121.5	1.36(1.31, 1.41)***	1.34(1.29, 1.39)***
With SCI	13209	834	106.5	1.19(1.10, 1.28)***	1.50(1.39, 1.61)***
Pneumonia				0	
No vertebral fracture	108935	10929	183.5	1(Reference)	1(Reference)
Cervical spine	9938	1106	208.4	1.14(1.07, 1.21)***	2.22(2.08, 2.36)***
Thoracic	32205	5617	358.8	1.96(1.90, 2.02)***	1.59(1.54, 1.64)***
Lumbar	70723	11125	307.1	1.67(1.63, 1.72)***	1.56(1.52, 1.60)***
Sacrum and coccyx	7523	437	95.7	0.52(0.47, 0.57)***	1.76(1.60, 1.94)***
Without SCI	98984	14378	284.7	1.55(1.51, 1.59)***	1.56(1.52, 1.60)***
With SCI	13209	2203	292.8	1.59(1.52, 1.67)***	1.91(1.82, 2.00)***
Acute respiratory distress					
syndrome					
No vertebral fracture	108935	257	4.18	1(Reference)	1(Reference)
Cervical spine	9938	52	9.33	2.23(1.65, 3.00)***	3.42(2.50, 4.68)***
Thoracic	32205	191	11.5	2.76(2.29, 3.33)***	2.35(1.94, 2.84)***
Lumbar	70723	365	9.57	2.29(1.95, 2.69)***	2.11(1.80, 2.48)***

Sacrum and coccyx	7523	10	2.13	0.51(0.27, 0.95)*	1.51(0.79, 2.87)
Without SCI	98984	478	9.02	2.16(1.85, 2.51)***	2.15(1.84, 2.50)***
With SCI	13209	87	10.9	2.58(2.03, 3.29)***	2.97(2.34, 3.78)***

Rate[#], incidence rate, per 10,000 person-years; Crude HR: relative hazard ratio; Adjusted HR[†]: adjusted hazard ratio controlling for age, sex, comorbidities of hypertension, diabetes, hyperlipidemia, atrial fibrillation, CKD, COPD, and CCI score ICD-9-CM: Cervical spine: 805.0-805.18, 806.0-806.19; Thoracic: 805.2, 805.3, 806.2-806.39; Lumbar: 805.4, 805.5, 806.4, 806.5; Sacrum and coccyx: 805.6, 805.7, 806.6-806.79; SCI involved or Not: Without SCI: 805-805.9 & With SCI: 806-806.9 *p<0.05, **p<0.01, ***p<0.001

Figures 2A–2D show that the CVF cohort had a significantly higher cumulative proportion of AD (P = 0.02; Figure 2A), CHF (P < 0.001; Figure 2B), pneumonia (P < 0.001; Figure 2C), and ARDS (P < 0.001; Figure 2D) than did the no-CVF cohort.

el.

Discussion

To the best of our knowledge, this is the first population-based, longitudinal cohort study to focus on the correlation between CVF and the subsequent risks of specific cardiopulmonary diseases. The main results demonstrated that CVF is significantly associated with an increased risk of several specific cardiopulmonary diseases, including AD, CHF, pneumonia, and ARDS.

Demographics and comorbidity

In our study, patients older than 65 years and females accounted for the majority

of participants. In fact, the incidence and prevalence of vulnerable fractures,

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

accompanied with population aging and subsequent frequently occurring home accidents, are steadily rising³⁸. In addition, CVF in women is constantly a consequence of postmenopausal bone loss⁵⁷⁸. According to recent studies, the prevalence of women older than 50 years who experienced at least one CVF event was 23% - 26%, which was higher than that of men (21.5%)³⁹⁴⁰. It is noteworthy that young adults aged \leq 49, though represented the minority of CVF patients, bore a significant heightened risk of developing adverse outcomes in the following analyses. We speculate that CVF in young adults could have more prominent influence on the outcome diseases without the interaction of multiple potential comorbidities and unknown confounders. Another explanation is that CVF is less frequent in a young, healthy population; it could be more severe and detrimental, strengthening the correlations between the investigated diseases.

Clinical vertebral fracture and aortic dissection

In our analysis, with or without CVF, the incidence of AD was higher in men, elderly patients older than 65 years, and those with coexisting comorbidities; this finding is in line with previous epidemiological investigations^{11 12 41}. Moreover, compared with patients without CVF, CVF patients, especially female patients, younger population (age \leq 49) and those without comorbidities, bore a higher risk of subsequent AD development. Studies that have focused on this correlation are scarce.

BMJ Open

Interestingly, prior studies have provided evidence for the strong correlation between poor bone health with major fragility fracture and abdominal aortic calcifications^{42 43}. With the progressive destruction of intima-media layer accompanied with new bone-like tissue deposition in the aortic wall, aneurysm or dissection might tend to occur. Other potential explanations we suppose include the intractable pain induced by fractures, accompanied with increments in sympathetic tone, stress, hypertension, and the impact on the vascular wall, as well as an unfavorable sedentary life style could all contribute to the formation of AD.

Clinical vertebral fracture and congestive heart failure

Our study indicated one counterintuitive result that women bore a higher overall incidence of CHF than men did. However, previous investigations of sex-specific epidemiology of CHF have demonstrated that women with atrial fibrillation have a higher incidence of heart failure with preserved ejection fraction, especially in very old age compared with men⁴⁴⁻⁴⁶. In this study, CVF was associated with an increased risk of CHF, and the results remained statistically significant across various age and sex strata, as well as with or without comorbidities. In a cross-sectional analysis, Lyons et al.⁴⁷ demonstrated that more than one-tenth of heart failure patients had radiologic recognizable vertebral fracture, and among those, multiple vertebral fractures accounted for one half, indicating the close correlation between these two

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

diseases. Moreover, Sennerby et al.⁴⁸ conducted a twin population study and proposed that specific genes involved in cellular mechanisms that shared by the vasculature and bone might connect the close relationship between cardiovascular diseases and fractures. Additionally, the most common etiology of CVF, osteoporosis, together with CHF, share common risk factors and etiologic mechanisms, including advantaged age, female sex, hypovitaminosis D, renal insufficiency, diabetes, a smoking habit, activation of the renin-angiotensin-aldosterone system, hypersecretion of parathyroid hormones, and oxidative / nitrosative stress^{23 47 49-52}. In a meta-analysis, Veronese et al.⁵³ concluded that alterations in signaling pathways of bone remodeling and arterial calcifications could contributed to the higher cardiovascular risk. Indeed, diffuse vascular calcifications accompanied with bone loss could result in a higher afterload on the left ventricle, leading to subsequent left ventricular hypertrophy and finally, congestive heart failure^{42 43}. Furthermore, unfavorable outcomes following fracture, including a loss of functional and social activities, dependency with poor quality of life, higher serum cortisol levels accompanied with depressive disorder, higher inflammatory markers, lower drug and diet compliance, a sedentary life style, and arrhythmia or cardiac ischemic events caused by high sympathetic activity, might all contribute to the deterioration of heart function^{50 54}.

Clinical vertebral fracture and pneumonia, acute respiratory distress syndrome,

Our study results reveal that patients with CVF bore a significantly heightened risk of subsequent pneumonia and ARDS across all strata of age and sex and irrespective of the presence of comorbidities. Further analyses demonstrated the strongest correlation between cervical CVF combined with SCI and risks of pneumonia and ARDS. In a 2-year retrospective multicenter trauma registry analysis, Fletcher et al.⁵⁵ noted that 16% of elderly patients older than 65 years with cervical spine trauma ultimately developed pneumonia. Other studies have revealed the incidence of pulmonary complications following cervical spine trauma to be 35% -95%^{56 57}, and among these complications, the most common type was pneumonia and atelectasis, although ARDS was the most severe type⁵⁸⁻⁶⁰. There are several possible explanations. First, deformity of the vertebral body or even kyphosis might decrease the lung capacity and therefore impair the pulmonary function. Prior studies have indicated that a single vertebral fracture would decrease the predicted forced vital capacity by 9%, increase the risk of restrictive lung disease^{1 2 61}. Harrison et al.⁶² conducted a systemic review of 4 case-control studies and reported that women with osteoporotic vertebral fractures or kyphosis were associated with decreased predicted vital capacity, as well as total lung capacity. Furthermore, Krege et al.⁶³ estimated that spine fracture burden is linked with restrictive, but not obstructive lung disease. The

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

authors further concluded that patients with marginally compensated pulmonary function may not tolerate the superimposed lung restrictive change resulting from vertebral fractures and thus, leading to a further compromised pulmonary function and subsequent lung diseases. Second, cervical CVF combined with SCI might cause paralysis of the diaphragm and hypoactivity of the respiratory accessory muscles, which results in hypoventilation. In addition, the imbalance of sympathetic-parasympathetic interactions would result in an elevated airway tone, bronchorrhea, and poor clearance, which are all associated with the development of various pulmonary complications^{64 65}. Third, patients with SCI are prone to develop aspiration and subsequent pulmonary infection due to impaired neuromuscular transmission. Finally, similar to rib fractures, worsening pain related to CVF might impair cough and secretion clearance, leading to atelectasis and subsequent lung infection²⁴.

Limitations

The major strength of our study is sampling from a large nationwide database, which covers nearly 100% of all residents in Taiwan, and stable outcomes could be achieved with such adequate, representative samples. However, the inevitable limitations should be discussed. First, all disease definitions and sample selection in our study were based on the ICD-9-CM coding, which has been rigorously scrutinized Page 23 of 36

BMJ Open

and peer-reviewed by clinical physicians, the declaration unit of medical institutions and finally the NHI administration. However, miscoding or misclassification might still exist, although it is considered rare. Similarly, diagnostic criteria applied, as well as physician's ability to diagnose the investigated diseases might vary among different hospitals and areas. Second, retrospective dataset analysis results cannot be used to determine causal relationships. Third, several crucial variables could not be obtained from our dataset, including family history, education and socioeconomic status, information of life style and physical activity, body weight, smoking habits, disease severity, laboratory results, radiologic reports, and estimated pain scores, which are potential confounders that might have affected the results. Fourth, a considerable portion of vertebral fracture patients with slight or no symptoms might not have been diagnosed or might have even been overlooked in clinical settings; thus, the true incidence of CVF and the inferred association between CVF and cardiopulmonary diseases could be underestimated. Fifth, patients with CVF might have one or more overlapping etiologies include osteoporosis, trauma and malignancies, etc. Therefore, it was technically infeasible to simply divide the CVF patients into several subgroups for sub-analysis based on the coding of etiologies. Sixth, our sampled participants were retrieved from NHIRD from January 1, 2000, to December 31, 2010. Aging property of the data might not truly reflect the current medical conditions. Finally,

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

because of geographic and epidemiologic discrepancies, our results might not be applicable to other countries or regions.

Conclusion

In conclusion, our study results support the hypothesis that CVF is associated with subsequent risks of AD, CHF, pneumonia, and ARDS. Future studies are warranted to delineate the actual pathophysiologic mechanisms underlying this correlation and to develop optimal strategies for reducing the heath care burden of CVF and its complications. Based on our results, we suggest that patients with CVF should be targeted for further screening and preventive interventions for r; C' cardiopulmonary diseases.

Abbreviations:

CVFs: clinical vertebral fractures; AD: aortic dissection; CHF: congestive heart failure; ARDS: acute respiratory distress syndrome; NHIRD: National Health Insurance Research Database; NHI: National Health Insurance; ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification; SCI: spinal cord injury; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; aHRs: adjusted hazard ratios; CI: confidence interval; SD:

 standard deviation.

Declarations:

Acknowledgements

This work was supported by grants from the Taiwan Ministry of Health and Welfare Clinical Trial Center (MOHW108-TDU-B-212-133004); China Medical University Hospital; Academia Sinica Stroke Biosignature Project (BM10701010021); MOST Clinical Trial Consortium for Stroke (MOST 108-2321-B-039-003-); Tseng-Lien Lin Foundation, Taichung, Taiwan; Katsuzo and Kiyo Aoshima Memorial Funds, Japan; The Department of Medical Research at Mackay Memorial Hospital (MMH105-87; MMH-106-81; MMH-107-71; MMH-107-102; MMH-107-135).

Ethics approval and consent to participate

This study was approved by the Ethics Review Board of China Medical University and Hospital, Taiwan (CMUH-104-REC2-115-CR4). The IRB waived the consent requirement.

Availability of data and materials

Data are available from the NHIRD published by Taiwan National Health Insurance Bureau. Owing to the Personal Information Protection Act, these cannot be made publicly available (http://nhird.nhri.org.tw).

Competing interests

The authors declare that they have no competing interests.

Authors' Contributions

The authors' individual contributions are outlined as follows. Conception and design:

F-Y.L. and T.-Y.Y. Administrative support: T.-Y.Y. Data collection and organization:

F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L. Data analysis and

interpretation: F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L. Manuscript

writing: F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L. Final approval of the

manuscript: F.-Y.L., W.-K.C., C.-C.L., C.-H. K., T.-Y.Y.& C.-Y.L.

References:

- 1. Longo UG, Loppini M, Denaro L, et al. Conservative management of patients with an osteoporotic vertebral fracture: a review of the literature. *J Bone Joint Surg Br* 2012;94(2):152-7. doi: 10.1302/0301-620X.94B2.26894
- 2. Longo UG, Loppini M, Denaro L, et al. Osteoporotic vertebral fractures: current concepts of conservative care. *British medical bulletin* 2012;102(1):171-89.
- Yu CW, Hsieh MK, Chen LH, et al. Percutaneous balloon kyphoplasty for the treatment of vertebral compression fractures. *BMC Surg* 2014;14:3. doi: 10.1186/1471-2482-14-3
- Guo JB, Zhu Y, Chen BL, et al. Surgical versus non-surgical treatment for vertebral compression fracture with osteopenia: a systematic review and meta-analysis. *PloS one* 2015;10(5):e0127145. doi: 10.1371/journal.pone.0127145
- 5. Bliuc D, Center JR. Determinants of mortality risk following osteoporotic fractures. *Current opinion in rheumatology* 2016;28(4):413-19.
- Chih YP, Wu WT, Lin CL, et al. Vertebral Compression Fracture Related to Pancreatic Cancer With Osteoblastic Metastasis: A Case Report and Literature Review. *Medicine* 2016;95(5):e2670. doi: 10.1097/MD.0000000002670
- 7. Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fracture

	2006·91(11)·4215-22 doi: 10.1210/ic.2006-1178
8 I i	2000, 51(11), +215, 22, 001, 10, 1210, jc. 2000, 1170
0. LI	following a fracture JAMA: the journal of the American Medical Association
о р,	2001,263(3).320-3.
9. Po	Octooporatio Vertabral Fracture in Kerea: Nationwide Enidemiological Study
	Esqueing on Differences in Sociocomorphic Status, Spins 2016;41(4):228-26
40.	Focusing on Differences in Socioeconomic Status. Spine 2016;41(4):328-36.
10.	I olenaar JL, van Bogerijen GH, Eagle KA, et al. Update in the management of
	aortic dissection. <i>Curr Treat Options Cardiovasc Med</i> 2013;15(2):200-13. doi 10.1007/s11936-012-0226-1
11.	Velvinsdottir IH, Lund SH, Agnarsson BA, et al. The incidence and mortality of
	acute thoracic aortic dissection: results from a whole nation study. European
	Journal of Cardio-Thoracic Surgery 2016:ezw235.
12.	Pacini D, Di Marco L, Fortuna D, et al. Acute aortic dissection: epidemiology and
	outcomes. International journal of cardiology 2013:167(6):2806-12. doi:
	10.1016/i.jicard.2012.07.008
13.	Bui AL, Horwich TB, Fonarow GC, Epidemiology and risk profile of heart failure.
	Nature Reviews Cardiology 2011:8(1):30-41.
14.(Givertz MM, Teerlink JR, Albert NM, et al. Acute decompensated heart failure:
	update on new and emerging evidence and directions for future research.
	Journal of cardiac failure 2013:19(6):371-89.
15.	Maze R. Haddad H. An update in the management of acute decompensated hea
	failure. Current opinion in cardiology 2014:29(2):180-84.
16. I	Bender MT. Niederman MS. Improving outcomes in community-acquired
	pneumonia. <i>Current opinion in pulmonary medicine</i> 2016:22(3):235-42.
17.1	Marrie TL File TM, Bacterial Pneumonia in Older Adults, <i>Clinics in Geriatric</i>
±7.1	Medicine 2016
18.1	(im WY, Hong SB, Sepsis and Acute Respiratory Distress Syndrome: Recent
-0.1	Undate Tuberc Respir Dis (Seoul) 2016:79(2):53-7 doi:
	10 4046/trd 2016 79 2 53
19	(oh Y Undate in acute respiratory distress syndrome Untensive Care
19.1	2014·2(1)·2 doi: 10 1186/2052-0492-2-2
20 (Then YC, Wu IC, Liu I, et al. Hospitalized osteonorotic vertebral fracture
20.0	increases the risk of stroke: a nonulation-based cohort study. I Rong Mingr
	$R_{PC} = 2013 \cdot 28(3) \cdot 516 - 23$ doi: 10.1002/ihmr 1722
) 1 I	aroche M. Perourneau V. Blain H. et al. Osteonorosis and ischemic
<u> </u>	

1	
2	
3 4	10.1016/j.jbspin.2016.09.022
5	22. Silverman SL, Delmas PD, Kulkarni PM, et al. Comparison of fracture,
6	cardiovascular event, and breast cancer rates at 3 years in postmenopausal
/	women with osteonorosis Journal of the American Geriatrics Society
9	2004.52(0).1542.48
10	2004;52(9):1543-48.
11	23. Ni Mhuircheartaigh O, Crowson CS, Gabriel SE, et al. Fragility Fractures Are
12	Associated with an Increased Risk for Cardiovascular Events in Women and
14	Men with Rheumatoid Arthritis: A Population-based Study. J Rheumatol
15	2017;44(5):558-64. doi: 10.3899/jrheum.160651
10	24. Kim B. Kim J. Jo YH. et al. Risk of Pneumonia After Vertebral Compression
18	Eracture in Women With Low Bone Density: A Population-Based Study. Snine
19	(phile per 107c) 2010; 42(14)-E020 E2E dei: 10 1007 (ppc 0000000000000000000000000000000000
20 21	(Phila Pa 1976) 2018;43(14):E830-E35. doi: 10.1097/BR5.00000000002536
22	25. Melton LJ, Kallmes DF. Epidemiology of vertebral fractures: implications for
23	vertebral augmentation. Academic radiology 2006;13(5):538-45.
24 25	26. Shou-Hsia C, Tung-Liang C. The effect of universal health insurance on health care
26	utilization in Taiwan: results from a natural experiment. JAMA : the journal of
27	the American Medical Association 1997:278(2):89-93.
28	27 Peng VC Lin CL Veh HZ et al. Diverticular disease and additional comorbidities
30	27.1 cmg rc, cm cc, rcm rc, cc al. Diverticular discuse and additional comorbidities
31	associated with increased risk of dementia. J Gastroenterol Hepatol
32 33	2016;31(11):1816-22. doi: 10.1111/jgh.13389
34	28. Chen YT, Su JS, Tseng CW, et al. Inflammatory bowel disease on the risk of acute
35	pancreatitis: A population-based cohort study. J Gastroenterol Hepatol
36 27	2016;31(4):782-7. doi: 10.1111/jgh.13171
38	29. Lee CH, Hsu WC, Ko JY, et al. Trends in the management of peritonsillar abscess
39	in children: A nationwide nonulation-based study in Taiwan. Int I Pediatr
40 41	Oterhinolary and 2010;12E:22, 27, doi: 10.1016/j.jiport.2010.06.016
41	
43	30. Su JA, Chang CC, Wang HM, et al. Antidepressant treatment and mortality risk in
44 45	patients with dementia and depression: a nationwide population cohort
45 46	study in Taiwan. Ther Adv Chronic Dis 2019;10:2040622319853719. doi:
47	10.1177/2040622319853719
48	31. Hong WJ, Chen W, Yeo KJ, et al. Increased risk of osteoporotic vertebral fracture
49 50	in rheumatoid arthritis natients with new-onset cardiovascular diseases: a
51	retrespective patienwide schort study in Taiwan. Osteopores Int 2010 dei:
52	
53 54	10.1007/s00198-019-04966-z
55	32. Huang KL, Yeh CC, Wu SI, et al. Risk of Dementia Among Individuals With
56	Psoriasis: A Nationwide Population-Based Cohort Study in Taiwan. J Clin
57 58	<i>Psychiatry</i> 2019;80(3) doi: 10.4088/JCP.18m12462
50 59	33. Lin CE, Chung CH, Chen LF. et al. Risk of incident hypertension. diabetes, and
60	

BMJ Open

Page 29 of 36

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Enseignement Superieur (ABES)
	(

	cohort study in Taiwan. <i>General hospital psychiatry</i> 2019:58:59-66. do
	10.1016/j.genhosppsvch.2019.03.004
34. C	heng CL, Chien HC, Lee CH, et al. Validity of in-hospital mortality data am
	patients with acute myocardial infarction or stroke in National Health
	Insurance Research Database in Taiwan. International journal of cardie
	2015;201:96-101. doi: 10.1016/j.ijcard.2015.07.075
35. C	heng CL, Kao YH, Lin SJ, et al. Validation of the National Health Insurance
	Research Database with ischemic stroke cases in Taiwan. <i>Pharmacoep</i>
	<i>Drug Saf</i> 2011;20(3):236-42. doi: 10.1002/pds.2087
36. C	heng CL, Lee CH, Chen PS, et al. Validation of acute myocardial infarctior
	in the national health insurance research database in taiwan. J Epidem
	2014;24(6):500-7. doi: 10.2188/jea.je20140076
37. H	o TW, Ruan SY, Huang CT, et al. Validity of ICD9-CM codes to diagnose cl
	obstructive pulmonary disease from National Health Insurance claim o
	Taiwan. Int J Chron Obstruct Pulmon Dis 2018;13:3055-63. doi:
	10.2147/COPD.S174265
38. B	ouyer B, Vassal M, Zairi F, et al. Surgery in vertebral fracture: epidemiolo
	functional and radiological results in a prospective series of 518 patier
	year's follow-up. Orthop Traumatol Surg Res 2015;101(1):11-5. doi:
	10.1016/j.otsr.2014.11.012
39. Ja	ackson SA, Tenenhouse A, Robertson L. Vertebral fracture definition from
	population-based data: preliminary results from the Canadian Multice
	Osteoporosis Study (CaMos). Osteoporos Int 2000;11(8):680-7. doi:
	10.1007/s001980070066
40. K	endler D, Bauer D, Davison K, et al. Vertebral fractures: clinical importan
	management. The American journal of medicine 2016;129(2):221. e1-2
41. Y	eh TY, Chen CY, Huang JW, et al. Epidemiology and Medication Utilization
	Pattern of Aortic Dissection in Taiwan: A Population-Based Study. Med
	2015;94(36):e1522. doi: 10.1097/MD.000000000001522
42. S	zulc P. Abdominal aortic calcification: A reappraisal of epidemiological ar
	pathophysiological data. <i>Bone</i> 2016;84:25-37. doi:
	10.1016/j.bone.2015.12.004
43. T	hompson B, Towler DA. Arterial calcification and bone physiology: role o
	bone-vascular axis. Nat Rev Endocrinol 2012;8(9):529-43. doi:
	10.1038/nrendo.2012.36
44. H	assanein M, Abdelhamid M, Ibrahim B, et al. Gender differences in Egypt
	we there is a second a line of which is a set of the second s

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	
2	
3 4	Cardiology Heart Failure Long-Term Registry. ESC Heart Fail
5	2018;5(6):1159-64. doi: 10.1002/ehf2.12347
6	45. Madan N. Itchhaporia D. Albert CM. et al. Atrial Fibrillation and Heart Failure in
7	We man $Hoart Fail Clin 2010:15(1):FE 64 doi: 10.1016/j. http://doi.org/10.006$
8 9	women. <i>Healt Fail Clin</i> 2019;15(1):55-64. doi: 10.1016/j.mc.2018.08.006
10	46. Magnussen C, Niiranen TJ, Ojeda FM, et al. Sex-Specific Epidemiology of Heart
11	Failure Risk and Mortality in Europe: Results From the BiomarCaRE
12	Consortium. JACC Heart Fail 2019;7(3):204-13. doi:
13	10.1016/i.ichf.2018.08.008
15	17 Lyons KL Majumdar SR Ezekowitz IA. The unrecognized burden of
16	47. Lyons Ky, Wajumaa SK, Ezekowitz SA. The unrecognized burden of
17 18	osteoporosis-related vertebral fractures in patients with heart failure. Circ
19	Heart Fail 2011;4(4):419-24. doi: 10.1161/CIRCHEARTFAILURE.111.961185
20	48. Sennerby U, Melhus H, Gedeborg R, et al. Cardiovascular diseases and risk of hip
21	fracture. JAMA : the journal of the American Medical Association
22	2009:302(15):1666-73. doi: 10.1001/jama.2009.1463
24	19 Aluoch AO, Jessee B, Habal H, et al. Heart failure as a risk factor for osteonorosis
25	45. Aldoen AG, Jessee R, Habarn, et al. Heart failure as a fisk factor for oscoporosis
26 27	and fractures. Curr Osteoporos Rep 2012;10(4):258-69. doi:
28	10.1007/s11914-012-0115-2
29	50. Larina VN, Bart B, Raspopova TN. [Chronic heart failure and osteoporosis].
30 21	Kardiologiia 2013;53(6):76-84.
32	51. Farhat GN. Cauley JA. The link between osteoporosis and cardiovascular disease.
33	Clin Cases Miner Bone Metab 2008:5(1):10-34
34	52. Carbon V. Malhard H. 2nd Marker Ch. et al. Orthogonalia (markers address)
35 36	52. Gerber Y, Melton LJ, 3rd, Weston SA, et al. Osteoporotic fractures and heart
37	failure in the community. <i>The American journal of medicine</i>
38	2011;124(5):418-25. doi: 10.1016/j.amjmed.2010.11.029
39	53. Veronese N, Stubbs B, Crepaldi G, et al. Relationship Between Low Bone Mineral
40 41	Density and Fractures With Incident Cardiovascular Disease: A Systematic
42	Review and Meta-Analysis, <i>L Rone Miner Res</i> 2017;32(5):1126-35, doi:
43	10 1002 (here 2000
44 45	10.1002/Jbmr.3089
46	54. Adelborg K, Schmidt M, Sundboll J, et al. MORTALITY RISK AMONG HEART
47	FAILURE PATIENTS WITH DEPRESSION: A NATIONWIDE POPULATION-BASED
48 40	COHORT STUDY. Journal of the American College of Cardiology
49 50	2016:67(13_S):1318-18.
51	55 Eletebor DI Taddonio RE Byrno DW, et al Incidence of acute care complications
52	55. Therefore Di, Taddonio Ki, Byrne DW, et al. Incidence of acute care complications
53 54	in vertebral column fracture patients with and without spinal cord injury.
55	Spine (Phila Pa 1976) 1995;20(10):1136-46.
56	56. Jackson AB, Groomes TE. Incidence of respiratory complications following spinal
57	cord injury. Archives of physical medicine and rehabilitation
50 59	1994:75(3):270-75.
60	100 (), 0(0). <u>-</u> , 0 , 0.

	31	
Figur pneur vertet	re 2. Cummulative incidence of aortic dissection (A), congestive heart failure (B), monia (C) and acute respiratory distress syndrome (D) in patients with clinical bral fracture and comparison patients	ogies.
Figur	re 1. Derivation of our study cohort	hnolo
Figu	ire Legends	nilar tec
62. Hi 63. Kr 64. Cł 65. Kr	1999;159(11):1215-20. arrison RA, Siminoski K, Vethanayagam D, et al. Osteoporosis-related kyphosis and impairments in pulmonary function: a systematic review. <i>J Bone Miner</i> <i>Res</i> 2007;22(3):447-57. doi: 10.1359/jbmr.061202 rege JH, Kendler D, Krohn K, et al. Relationship Between Vertebral Fracture Burden, Height Loss, and Pulmonary Function in Postmenopausal Women With Osteoporosis. <i>J Clin Densitom</i> 2015;18(4):506-11. doi: 10.1016/j.jocd.2015.02.004 hen Y, Shao J, Zhu W, et al. Identification of risk factors for respiratory complications in upper cervical spinal injured patients with neurological impairment. <i>Acta orthopaedica et traumatologica turcica</i> 2012;47(2):111-17. rassioukov A. Autonomic function following cervical spinal cord injury. <i>Respiratory physiology & neurobiology</i> 2009;169(2):157-64.	Enseignement Superieur (ABES) . cluding for uses related to text and data mining, Al training, and simila
58. Co 59. Ve 60. Lie 61. Ka	 length of stay and hospital costs in acute cervical spine injury. <i>CHEST Journal</i> 2002;121(5):1548-54. otton BA, Pryor JP, Chinwalla I, et al. Respiratory complications and mortality risk associated with thoracic spine injury. <i>Journal of Trauma and Acute Care Surgery</i> 2005;59(6):1400-09. eeravagu A, Jiang B, Rincon F, et al. Acute respiratory distress syndrome and acute lung injury in patients with vertebral column fracture(s) and spinal cord injury: a nationwide inpatient sample study. <i>Spinal Cord</i> 2013;51(6):461-5. doi: 10.1038/sc.2013.16 eberman IH, Webb JK. Cervical spine injuries in the elderly. <i>J Bone Joint Surg Br</i> 1994;76(6):877-81. ado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. <i>Archives of internal medicine</i> 	Protected by copyright, inc
57. W	/inslow C, Bode RK, Felton D, et al. Impact of respiratory complications on	

BMJ Open

Subjects without clinical

vertebral fracture

Finally 108,935 controls were

selected

Using the same

exclusion criteria as the clinical

vertebral fracture

cohort and 1:1

matching by the propensity score

Figure 2. Cummulative incidence of aortic dissection (A), congestive heart failure (B), pneumonia (C) and acute respiratory distress syndrome (D) in patients with clinical vertebral fracture and comparison patients.

338x190mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2019-030939 on 21 November 2019. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

2
3
1
4
2
6
7
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
29
30
21
21
2∠ 22
33
34
35
36
37
38
39
40
41
42
43
44
45
75 76
40 47
4/
48 40
49
50
51
52
53
54
55
56
57
58
50
22

60

1

Supplemental Table 1. Summary of the ICD-9-CM codes used for disease
definition and their matching diseases

Diseases	ICD-9-CM codes
Clinical vertebral fracture (CVF)	805, 806
Cervical spine CVF	805.0-805.18, 806.0-806.19
Thoracic spine CVF	805.2, 805.3, 806.2-806.39
Lumbar spine CVF	805.4, 805.5, 806.4, 806.5
Sacrum plus coccyx CVF	805.6, 805.7, 806.6-806.79
CVF without spinal cord injury (SCI)	805-805.9
CVF with spinal cord injury (SCI)	806-806.9
Aortic dissection (AD)	441.0, 441.00, 441.01, 441.02, 441.03
Congestive heart failure (CHF)	428
Pneumonia	480-488
Acute respiratory distress syndrome	518.82, 518.5
(ARDS)	
Comorbidities	
Hypertension	401–405
Diabetes mellitus	250
Hyperlipidemia	272
Atrial fibrillation	427.31
Chronic kidney disease	580-589
Chronic obstructive pulmonary disease	491,492,496

*Defined by administration code. ICD-9-CM, Clinical Modification of ICD-9.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	No	Recommendation	I ag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	2-5
			3-4
		(b) Provide in the abstract an informative and balanced summary of what was	5-4
		done and what was found	
Introduction	2		6
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	0
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7-11
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-11
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7-11
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	7-11
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	8-11
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	9-10
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	17-2
Study size	10	Explain how the study size was arrived at	11-1
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	13-1
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	10-1
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	11-1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	11-1
•		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
<u> </u>	1.5.4		13_1

2
3
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
20
∠∪ 21
21
22
23
24
25
26
27
29
20
29
30
31
32
33
34
35
36
27
27
38
39
40
41
42
43
44
45
45
40
4/
48
49
50
51
52
53
54
54
55 52
56
57
58
59

1

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	13-17
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	13-17
		analyses	
Discussion			

Key results	18	Summarise key results with reference to study objectives	11-17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	22-24
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	18-21
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	25
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.