

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Assessing the Impact of Tobacco-Induced Volatile Organic Compounds on Cardiovascular Risk in a Cross-Sectional Cohort: Cardiovascular Injury Due to Tobacco Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019850
Article Type:	Protocol
Date Submitted by the Author:	05-Oct-2017
Complete List of Authors:	Keith, Rachel; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Fetterman, Jessica; Boston Medical Center, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center Shah, Jasmit; University of Louisville; American Heart Association- Tobacco Regulation and Addiction Center O'Toole, Timothy; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Nystoriak, Jessica; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Holbrook, Monika; Boston Medical Center, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center Lorkiewicz, Pawel; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Bhatnagar, Aruni; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Bhatnagar, Aruni; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Bhatnagar, Aruni; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center DeFilippis, Andrew; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Hamburg, Naomi ; Boston University, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center
Keywords:	smoking, tobacco, electronic cigarette, cardiovascular risk, vascular injury, cigarettes

SCHOLARONE[™] Manuscripts

2		
3 4	1	Assessing the Impact of Tobacco-Induced Volatile Organic Compounds on
5 6	2	Cardiovascular Risk in a Cross-Sectional Cohort: Cardiovascular Injury Due to
7 8 9	3	Tobacco Study
9 10 11	4	Rachel J. Keith, Jessica L. Fetterman, Daniel W. Riggs, Tim O'Toole, Jessica Nystoriak,
12 13	5	Monica Holbrook, Pawel Lorkiewicz, Aruni Bhatnagar, Andrew DeFilippis*, Naomi M.
14 15	6	Hamburg*
16 17	7	Rachel J. Keith-Division of Cardiovascular Medicine, University of Louisville School of
18 19 20	8	Medicine 580 S. Preston St. Louisville KY, 40202 rachel.keith@louisville.edu 502-852-
21 22	9	4211
23 24	10	Jessica L. Fetterman- Vascular Biology Section, Whitaker Cardiovascular Institute,
25 26 27	11	Boston University School of Medicine Evans Building, Boston, MA USA
28 29	12	Jasmit Shah- University of Louisville School of Medicine Louisville, KY USA
30 31	13	Timothy O-Toole- Division of Cardiovascular Medicine, University of Louisville School of
32 33 34	14	Medicine Louisville, KY USA
35 36	15	Jessica L. Nystoriak- Division of Cardiovascular Medicine, University of Louisville
37 38	16	School of Medicine Louisville, KY USA
39 40 41	17	Monika Holbrook- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston
42 43	18	University School of Medicine Boston, MA USA
44 45	19	Pawel Lorkiewicz- Division of Cardiovascular Medicine, University of Louisville School
46 47 48	20	of Medicine Louisville, KY USA
49 50	21	Aruni Bhatnagar- Division of Cardiovascular Medicine, University of Louisville School of
51 52	22	Medicine Louisville, KY USA
53 54		
55 56 57		1
58 59		T

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

23 Andrew P. DeFilippis- Division of Cardiovascular Medicine, University of Louisville

24 School of Medicine Louisville, KY USA (co-senior author)

25 Naomi M. Hamburg- Vascular Biology Section, Whitaker Cardiovascular Institute,

26 Boston University School of Medicine Boston, MA USA (co-senior author)

28 Word Count: 2581

30 ABSTRACT

Introduction: Tobacco use leads to increased mortality, the majority of which is attributed to cardiovascular disease. Despite this knowledge, the early cardiovascular impact of tobacco product use is not well understood. Tobacco use increases exposure to harmful and potentially harmful constituents including volatile organic compounds (VOCs) such as acrolein and crotonaldehyde, which may contribute to cardiovascular risk. The link between exposure patterns, risk profiles and demographic distribution of tobacco product users, particularly users of new and emerging products, are not well known. Therefore, we designed the Cardiovascular Injury due to Tobacco Use (CITU) study to assess population characteristics, demographic features, exposure patterns and cardiovascular risk in relation to tobacco.

Methods and analysis: This is a cross-section observational study conducted in
Boston MA and Louisville KY from 2014 through 2018. Healthy participants 21 to 45
years of age who use tobacco products, including ENDS, or who never used tobacco
are being recruited. The study aims to recruit an evenly split cohort of African

45 Americans and Caucasians that is sex balanced for evaluation of self-reported tobacco

1		
2 3 4	46	exposure, VOC exposure and tobacco-induced injury profiling. Detailed information
5 6 7	47	about participant's demographics, health status and lifestyle is also collected.
7 8 9	48	Ethics and dissemination: The study protocol was approved institutional review
10 11	49	boards at both participating universities. All study protocols will protect participant
12 13	50	confidentiality. Results from the study will be disseminated via peer-reviewed journals
14 15 16	51	and presented at scientific conferences.
17 18	52	
19 20	53	Strengths and limitations
21 22	54	 Young age to allow for evaluation of early stage disease (e.g. inflammation,
23 24 25	55	endothelial function) as opposed to end stage clinical consequence (e.g.
26 27	56	myocardial infarction)
28 29	57	Diverse tobacco product use allows for assessment of a wide range of tobacco-
30 31 32	58	induced VOC exposure
33 34	59	 All study visits are in English introducing selection bias
35 36	60	Data will inform regulatory agencies on the cardiovascular health effects of
37 38 39	61	multiple tobacco products and the contribution of HPHCs
40 41	62	
42 43	63	Keywords: Tobacco, smoking, electronic cigarette, vascular injury, cardiovascular risk,
44 45	64	cigarettes.
46 47 48	65	
48 49 50	66	INTRODUCTION
51 52	67	Tobacco product use and smoking are the leading causes of preventable deaths
53 54 55	68	throughout the world. Of those deaths, one-third are attributed to cardiovascular disease
56 57		3
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(CVD)¹. The cardiovascular (CV) effects of tobacco exposure can include atherogenesis, vascular injury, thrombosis, arrhythmias and inflammation² and may be attributable to the many different harmful and potentially harmful constituents (HPHCs) present in tobacco products. The HPHCs found in tobacco products include volatile organic compounds (VOCs) of which reactive aldehydes, such as acrolein and crotonaldehyde, are likely the most significant contributors to CV toxicity³. High levels of aldehydes are present in cigarette smoke ⁴⁵ as well as smokeless tobacco (ST)⁶. Risk assessments, using the prevalence of each individual chemical weighed by its potency, suggest that the non-cancer risk of smoking is dominated by acrolein, which contributes 40-100 times more to risk than any other chemical present in cigarette smoke ³. Although HPHCs, including VOC reactive aldehydes, have been suspected to be major contributors to the toxicity of cigarette smoke for over 4 decades, their contribution to CV injury and early CVD risk has not been rigorously evaluated. Experimental studies in animal models suggest that because of low aldehyde-metabolizing capacity, CV tissues are highly sensitive to aldehydes and exposure to low levels of aldehydes can induce CV injury and accelerate CVD ⁷⁻¹⁹. The WHO Study Group on Tobacco Product Regulation (TobReg) has marked acrolein, a VOC, along with 8 other cigarette constituents for monitoring and regulation ²⁰ and the U.S. Environmental Protection Agency lists Acrolein as one of most hazardous air pollutants²¹. Nevertheless, the contribution of tobacco induced VOCs, including acrolein or other aldehydes, toward CV toxicity in humans has not been fully assessed. Greater understanding of how aldehydes affect cardiovascular health and disease will provide

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

new avenues for evaluating the toxicity of cigarette smoke and for assessing the injurious potential of new and emerging tobacco products, such as ENDS, which may also contain VOCs including acrolein ²²⁻²⁴. The latency period between tobacco exposure and the development of major clinical adverse health effects is long, therefore biomarkers that provide information over a shorter period allow for the identification of harm decades before clinical outcome data is available. Thus, the Cardiovascular Injury due To Tobacco Use (CITU) study evaluates the association of the urinary metabolites of 18 parent VOCs from tobacco exposure with a comprehensive set of CV biomarkers representative of early disease and predictive of future CV events.²⁵ METHODS AND DESIGN Overall design The CITU study is an investigator-initiated cross-sectional observational study of around 500 healthy participants 21 to 45 years of age who are never or current tobacco product users in two urban areas at Boston University (BU) and University of Louisville (UofL) (Boston, MA and Louisville, KY) designed to evaluate CV toxicity due to tobacco product use, with correlations to VOCs found in the tobacco products (Figure 1). Figure 1. Cardiovascular Injury due to Tobacco Use CITU is designed to assess how tobacco related VOC exposure contributes to cardiovascular risk factors. Our exposure measurements include a panel of 23 urinary metabolites of 18 parent VOCs and tobacco use patterns. Cardiovascular phenotyping

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

and

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

includes measures of injury, risk, vascular biomarkers and early vascular dysfunction. Tobacco use included use of traditional cigarettes, smokeless tobacco, waterpipe tobacco (hookah), electronic nicotine devices (ENDS), little cigars, cigarillos, pipes, cigars or any other form of tobacco that is available. Enrollment began in July 2014 and is ongoing.

Participant Eligibility Criteria

The goal of the study is to examine the impact of tobacco products on healthy young adults who could be classified as a current tobacco product users (Defined in table 1), or never-users (does not have lifetime use of any tobacco product); therefore we excluded participants if they had: 1) diagnosis of diabetes (HbA1c >7.0 or treatment for diabetes), hypertension (systolic blood pressure >140 mm Hg or diastolic blood pressure >90 mm Hg), hypothyroidism or hyperthyroidism, inflammatory conditions such as lupus or inflammatory bowel disease, HIV/AIDS, hepatitis, liver disease, anemia, cancer of any type or another medical condition that might compromise the successful completion of the study; 2) recipients of organ transplant or renal replacement therapy; individuals that are taking the following medications: immunosuppressant agents estrogen, testosterone, anti TNF agents, certain biologics, Procrit, statins, beta-blockers or other cardiovascular medicine; 4) individuals using nutraceuticals or anabolic steroids beyond the recommended daily allowance; 5) body weight less than 100 pounds; 6) pregnant women; 7) prisoners and other vulnerable populations; and 8) active illness or infection. Participants are rescheduled or considered screen-failures and excluded from the study if symptomatic of an acute illness, i.e. viral upper respiratory infection, on study date.

	Classification	Qualification
	Never	Does not meet lifetime limits for any tobacco use (see below)
	Smoker	>100 lifetime cigarettes and current use for the past year
	Smokeless Tobacco	>20 lifetime dips or chews and current use for the past year
	User	
	Cigar/Cigarillo User	>20 lifetime cigars or cigarillos and current use for the past year
	Pipe User	>20 lifetime pipefuls and current use for the past year
	ENDS User	>20 lifetime vape sessions and current use for the past year
	Hookah User	>20 lifetime hookah sessions and current use for the past year
139	Study participants are	e screened prior to enrollment for current and past tobacco product
140	use. Participants are	characterized and assigned a use group based on self-reported
141	patterns collected dur	ing the study visits.
142	Overall Study Proce	dure
143	Study participa	nts fast for 8 h from food and 6 h from tobacco prior to the visit. Al
144	study visits occur befo	ore 11AM to limit effects due to circadian changes. All vascular
145	function studies are c	ompleted after 10 min of supine positioning. All vascular studies
146	are sent to the BU cer	ntral lab for analysis. BU biologic samples have minimal
147	processing and are sh	nipped overnight to the UofL central laboratory at the completion or
148	each study visit. Sam	ples obtained at UofL are processed to a similar stage, then held
149	overnight prior to anal	lysis for standardization of time to measurement for all samples.
150	•	clude a structured interview on demographics, socioeconomics,
151		history of heart disease, allergies, and tobacco use. All surveys
152		t in Research Electronic Data Capture (REDCap), a secure web
153		g and managing online surveys and databases.
154	Exposure Variables	
155	Tobacco Product Use	& Particulate Matter Exposure
		7

Page 8 of 24

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3HPMA

AAMA

BMJ Open

2	
3	
4	
5	
4 5 6	
7	
8	
٥ ٥	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 4 	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
32 33 34 35	
33	
34	
35	
36	
35 36 37 38 39 40	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

156	Comprehensi	ive tobacco product exposure is assessed using a modified ve	ersion
157	of the National Heal	th Interview survey on tobacco use ²⁶ . The survey is modified	to
158	include detailed info	rmation on electronic nicotine devices (ENDs) and other new	or
159	emerging tobacco p	roducts. Residential addresses are collected for assessment	of
160	ambient airborne pa	rticulate matter ($PM_{2.5}$) exposure and future correction of ove	rall
161	exposure. PM _{2.5} data	a from the day of the study visit, and 3 and 5 days prior to the	study
162	is collected from put	blicly available data associated with EPA monitoring stations.	Other
163	exposure variables,	including occupation, are collected through interview.	
164	VOC Measurements		
165	Standard clea	an catch urine specimens are obtained from participants. We	have
166	developed a robust	Core Lab that utilizes mass spectrometry procedures adopted	l from
167	the Centers for Dise	ase Control and Prevention (CDC) protocols, to quantify 23 u	rinary
168	metabolites of tobac	co smoking related toxins (aldehydes and other VOCs), inclu	ding
169	acrolein ²⁷ (Table 2). The concentration values of analytes are then normalized to		
170	urinary creatinine levels measured using Infinity Creatinine Reagent (Thermo Fisher		her
171	Scientific, MA) on a COBAS MIRA-plus analyzer (Roche, NJ).		
172			
Parer	nt compound	VOC metabolite	Common
	•		abbr.
Aceta	ldehyde	Acetic acid/Acetate	ACETATE
Acrole	ain	N-Acetyl-S-(2-carboxyethyl)-L-cysteine	CEMA
ACIDIE	2111		

60

Acrylamide

8

N-Acetyl-S-(3-hydroxypropyl)-L-cysteine

N-Acetyl-S-(2-carbamoylethyl)-L-cysteine

BMJ

	N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine	GAMA
Acrylonitrile	N-Acetyl-S-(2-cyanoethyl)-L-cysteine	СҮМА
Acrylonitrile, vinyl chloride ethylene oxide	, N-Acetyl-S-(2-hydroxyethyl)-L-cysteine	НЕМА
Anabasine	Anabasine (free)	ANB
Anatabine	Anatabine (free)	ANTB
Benzene	N-Acetyl-S-(phenyl)-L-cysteine	PMA
	trans, trans-Muconic acid	MU
1-Bromopropane	N-Acetyl-S-(n-propyl)-L-cysteine	BPMA
	N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine	DHBMA
1,3-Butadiene	N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	MHBMA1
	N-Acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine	MHBMA2
	N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine	МНВМАЗ
Carbon-disulfide	2-Thioxothiazolidine-4-carboxylic acid	TTCA
Crotonaldehyde	N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine	НРММА
Cyanide	2-Aminothiazoline-4-carboxylic acid	ATCA
N,N-Dimethylformamide	N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine	AMCC
Ethylbenzene, styrene	Phenylglyoxylic acid	PGA
Formaldehyde	Formate	FORMATE
	Nicotine	NIC
Nicotine	Cotinine	СОТ
	3-Hydroxycotinine	ЗНС
	9	1

5 1 6 7 1 8 9 1 1 2 1 2 1 3 4 1 5 5 7 1 8 9 1	17
---	----

Propylene oxide	N-Acetyl-S-(2-hydroxypropyl)-L-cysteine	2HPMA	
	N-Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine +		
Styrene	N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine	PHEMA	
	Mandelic acid	MA	Prote
Tetrachloroethylene	N-Acetyl-S-(trichlorovinyl)-L-cysteine	TCVMA	cted by
Toluene	N-Acetyl-S-(benzyl)-L-cysteine	BMA	y dobài
	N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine	1,2DCVMA	rotected by dopyright, including for uses related to
Trichloroethylene	N-Acetyl-S-(2,2-dichlorovinyl)-L-cysteine	2,2DCVMA	ocluding
	N-Acetyl-S-(2,4-dimethylphenyl)-L-cysteine +		g for u
	N-Acetyl-S-(2,5-dimethylphenyl)-L-cysteine +	DPMA	ses rel
Xylene	N-Acetyl-S-(3,4-dimethylphenyl)-L-cysteine		ated to
	2-Methylhippuric acid	2MHA	text an
	3-Methylhippuric acid + 4-Methylhippuric acid	3MHA+ 4M	
173			mining
174 Urine is analyzed	d for 23 metabolites of 18 parent VOCs and tobacco alkaloids by	y UPLC-	
175 MS/MS. Analytes	Urine is analyzed for 23 metabolites of 18 parent VOCs and tobacco alkaloids by UPLC- Arring and similar technologies MS/MS. Analytes are listed as parent, metabolite and their common abbreviation. Circulating Markers of Cardiovascular Injury To assess tobacco product-induced cardiovascular toxicity, we examine endothelial function, inflammatory mediators, biomarkers, and thrombosis. CV risk is defined through measurements of circulating angiogenic cells, lipid profile, and glucose metabolism ^{25 28 29} . Plasma (BD367863 and BD366415) and serum (BD367814) samples are obtained from all participants for laboratory testing and long term 10		
176			and si
177 Circulating Mark	Circulating Markers of Cardiovascular Injury		
	To assess tobacco product-induced cardiovascular toxicity, we examine		
178 To assess	endothelial function, inflammatory mediators, biomarkers, and thrombosis. CV risk is		
	ion, inflammatory mediators, biomarkers, and thrombosis. CV ris	SK IS	ŝ.
179 endothelial function	ion, inflammatory mediators, biomarkers, and thrombosis. CV ris measurements of circulating angiogenic cells, lipid profile, and g		ës.
179 endothelial function180 defined through n			vs.
 endothelial function defined through n metabolism ^{25 28 2} 	measurements of circulating angiogenic cells, lipid profile, and g		S.

1		
2 3	183	biobanking. Whole blood (BD366415) is obtained for flow cytometry on fresh samples at
4 5		
6 7	184	UofL pathology core. BU biologic samples have minimal processing and are shipped
8 9	185	overnight to the UofL central laboratory at the completion of each study visit. Samples
10 11	186	obtained at UofL are processed to a similar stage, then held overnight prior to analysis
12 13	187	to standardize the time to measurement for all samples. The UofL central laboratory, as
14 15	188	previously reported, will complete fasting and biomarker measurements (Table 3), with
16 17	189	the exception of cytomics ^{13 30} . For cytomic measurements, mononuclear cells are
18 19 20	190	labeled with the peripheral blood phenotyping panel kit (Fluidigm).Samples are shipped
21 22	191	at 4 degree C to Core Lab facilities at the University of Rochester for Mass cytometric
23 24	192	analysis.
25 26	193	Table 3 Blood analysis
27 28		
29		Fasting Measurements
30 31		LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, glucose, uric acid,
32		SAA and fibrinogen
33 34		<u>Biomarkers</u>
35		CAC (1-15) ¹ , Platelet-monocyte aggregates, MP (1-5) ¹ , PF4, t-PA, TxA2, Factor VII,
36 37 38		IL-6, CRP, D-dimer, PAI-1, s-ICAM-1, s-VCAM, s-thrombomodulin, s-TNFR1, MMP-2, MMP-3, MMP-9, cytomics, endothelin, E-selectin and P-selectin
39		1: Fifteen different CAP subpopulations and 5 subtypes of microparticles were
40		measured by flow cytometry.
41 42	194	All participants who complete the study visit will have blood samples taken and
43 44 45	195	processed. Flow cytometric analysis is completed on fresh samples. All other analysis
46 47	196	will be completed on biobanked samples in batches LDL= low density lipoprotein. HDL=
48 49		
50 51	197	high density lipoprotein. SAA= serum amyloid A. CAC= circulating angiogenic cells.
52 53	198	MP= microparticles. PF4= Platelet factor 4. t-PA= tissue plasminogen activator.
54 55	199	TxA2=Thromboxane A. IL-6= Interleukin 6. CRP= C-reactive protein. PAI-=-
56 57 58	200	Plasminogen activator. s- ICAM- soluble intercellular adhesion protein inhibitor. s- 11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

201 VCAM= soluble vascular adhesion protein. TNFR1= Tumor necrosis factor receptor 1.
202 MMP- Matrix metalloproteinase.

203 Non-Invasive Vascular Function Testing

Smoking, is associated with endothelial damage and vascular dysfunction ^{31 32}. Endothelial cells are exposed to circulating toxins and measures of endothelial function are reflective of cardiovascular injury ³³. Thus, we examine the non-invasive endothelial vasodilator function using flow-mediated vasodilation ^{34 35}, arterial stiffness with carotid-femoral and carotid-radial pulse wave velocity ³⁶, and peripheral vascular function with ankle brachial index. All vascular imagers where trained at BU. Similar equipment and software is used at both sites. All vascular studies are sent to the BU central lab for analysis.

29 212 Anthropometric measures

Anthropometric measures included height, weight, waist and hip circumference and body fat. All anthropometric measures are completed twice and the average recorded. Standing height measurements are completed on a fixed stadiometer. Weight measurements are completed on a digital scale to the nearest tenth of a pound. Waist circumference is measured at the level of the umbilicus to the nearest tenth of a centimeter. Hip circumference is measured at the maximal protrusion of the gluteal muscle to the nearest tenth of a centimeter. Body fat percentage is calculated by the bioelectrical impedance measured with the Omron fat loss monitor (HBF-306C).

221 DATA ANALYSIS

222 We expect that from this study we will be able to identify specific biomarkers of 223 cardiovascular injury due to tobacco use and the relationship of these biomarkers to

1 2	
2 3 4	22
5 6	22
7 8	22
9 10 11	22
12 13	22
14 15	22
16 17	23
18 19 20	23
21 22	23
23 24	23
25 26	23
27 28 29	23
30 31	23
32 33	23
34 35 36	23
37 38	23
39 40	24
41 42 43	24
43 44 45	24
46 47	24
48 49	24
50 51 52	24
52 53 54	24
55 56	
57 58 59	

60

specific measures of tobacco exposure. For instance, we will identify which biomarkers 24 are affected by tobacco use, and which ones are most sensitive; including their dose-25 dependence. Additionally we will examine the extent to which biomarkers are 26 associated with exposure to nicotine versus exposure to HPHC of tobacco like 27 aldehydes. 28

All statistical analysis will be performed using SAS version 9.4 software (SAS 29 Institute, Inc., Cary, North Carolina), and a two-sided p-value of <0.05 will be considered 30 significant for any statistical test. Demographics and other baseline characteristics will 31 32 be summarized according to product group. The primary outcomes will be analyzed using multiple regression techniques. Appropriate Interaction variables will be tested for 33 in the regression models and subgroup analyses will be conducted according to the 34 following factors: significant interactions, sex, age, race, tobacco product group. 35 Multiple imputation method will be used for missing data where appropriate. Sensitivity 36 analysis using different analytic approaches, such as generalized linear models, as well 37 as considering different covariate adjustments, will be used to build concordant results. 38 The dose-dependence of the changes in biomarkers will be determined by 39 analyzing the data obtained from individuals that are exposed to different doses of a 40 single product (e.g. smoking 0, <15, 15-20 and >20 cigarettes per day) and by 41 comparing between tobacco products that have different doses of HPHC constituents. 42 In the US the average cigarettes per day is between 15-20³⁷ and therefore this dose 43 range distribution is reflective of general population exposure. Comparisons of the 44 45 effects of novel tobacco products and smoking will be informative of the relative toxicity 46 of the two products.

Page 14 of 24

BMJ Open

1

59

1 2		
2 3 4	247	We believe that the methods employed in the current project are exquisitely
5 6	248	sensitive and responsive to even low dose insults such as ambient air pollution 13
7 8 9	249	allowing us to quantify tobacco product-induced changes with high precision. Moreover,
9 10 11	250	levels of acrolein exposure vary between different individuals due to difference in puffing
12 13	251	intensity and the time a cigarette is left smoldering. Thus, direct measurements of
14 15	252	acrolein metabolites afford better estimates of acrolein exposure than machine yields.
16 17 18	253	We expect to obtain wide variations in acrolein/crotonaldehyde exposure which will
19 20	254	enable us to construct a dose-response relationship and identify which injury
21 22	255	biomarkers are associated with aldehyde exposure and whether high levels of exposure
23 24 25	256	are associated with high levels of injury, despite similar nicotine delivery.
26 27	257	We consider three major factors for balancing sample selection: age, gender,
28 29	258	and race. Given that very few females use e-cigarette, only males will be enrolled in
30 31 32	259	this group. With the balanced design to determine the main effects and interactions in
33 34	260	selected scenarios, we justify the sample size. The analysis plan is primarily based on
35 36	261	evaluating the effect of tobacco exposure on endothelial function (FMD), and the main
37 38	262	biomarkers, EPCs, and platelet-monocyte aggregates (PMA). The sample size is
39 40 41	263	justified in terms of the primary dependent measure, FMD, given the potential
42 43	264	importance of this variable as a direct measure of the impact of tobacco exposure. The
44 45	265	main comparisons are between non-tobacco users and tobacco users. Due to one
46 47 48	266	control group, we will conservatively adjust our α (significance level) using a Bonferroni
49 50	267	correction, and we will set α =0.01. Based on preliminary data for FMD, we have
51 52	268	observed mean \pm SD in smoker and nonsmoker groups to be 4.0 \pm 1.6 and 6.8 \pm 1.0,
53 54 55	269	respectively. We consider at least 25% (mean FMD=3.0 from 4.0) reduction from
56 57		14
58		

270smokers to non-smokers is meaningful. Using a two sample, one-sided t test with an α 271of 0.01 and 80% power (1- β), assuming a common SD of 1.3, we will need 34 evaluable272subjects in each group. To examine dose response, smokers will be recruited in 3273groups (<15, 15-20 and >20 CPD). We will recruit 40 participants in each group; total274group size = 120 participants. In **Table 4** we provide estimable effect size for different275outcome measures.

Table 4 Minimal Detectable Differences in Endpoints at α=0.01 and Power=80%

Variable	Non-smokers	Smokers	n	р	Ref	MØØ	
Primary Fur	nctional Outcome					278	
FMD	6.8 ± 1%	4.0 ± 1.6%	10	<0.05	32	1.0 ²⁷⁹	
Primary Bio	markers					280	
EPC	25 ± 5 cell/ml	10 ± 3 cells/ml	24	0.037	38	3.1 ²⁸¹	
PMA	19.7 ± 8.6%	26.6 ± 9%	25	0.02	39	7.0 ²⁸²	
EMP	1.1 ± 0.4	0.5 ± 0.2	32	<0.05	40	0.23 ⁸³	
Other Bioch	nemical Variables	1		0		284	PMA:
PF4	3.9 ± 1.2 IU/ml	5.0 ± 2.6 IU/ml	12	<0.05	41	2.0 ²⁸⁵	Platele
tPA	3.0 ± 0.6 ng/ml	4.3 ± 2.0 ng/ml	20	<0.05	42	1.6 ²⁸⁶	_
TxA ₂	2.2 ± 0.1 pg/ml	3.3 ± 0.02 pg/ml	12	<0.05	43	0.016	monod
	1		I	<u> </u>	I	288	yte

aggregates; EMP: Endothelial microparticles (CD62+/CD31+); MDD: minimal detectable

290 difference. Values are mean ± SD

291 ETHICS AND DISSEMINATION

Page 16 of 24

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

3	
4	
5	
6	
5 6 7 8	
/	
8	
9	
10	
11	
12	
13	
13 14	
15	
15 16 17	
10	
17	
18	
19	
20	
21	
21 22 22	
23	
24	
25	
26	
26 27	
28	
29	
30 31 32	
31	
32	
33	
34	
35	
36	
36 37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

1 2

292 The CITU study was approved at each institution by their institutional review board (BU #H-32613 and UofL #13.0590) and all participants provide written consent. 293 No study related procedures will be completed until after participant consent. 294 Participants for the CITU study are being recruited in both Boston, MA and 295 Louisville KY. The two populations show significant differences, therefore recruitment at 296 two sites will ensure a range more reflective of the general population. Although overall 297 racial and ethnic demographics for both cities show a clear majority of Caucasians 298 (70%) and despite smokers typically male, we strive to, and currently are successful in, 299 300 recruiting a population that was gender balanced and almost evenly split between Caucasian and African Americans. Despite this balanced recruitment, e-cigarette users 301 have been reported as predominantly Caucasian and male⁴⁴, and thus far our 302 recruitment mirrors these demographics. We expect very few Hispanic/Latino's to 303 participate, due to data suggesting tobacco use, including ENDS, tends to be lower 304 among Hispanic's/Latino's ^{44 45}. Thus we have also opted to only recruit English 305 speakers. We have carefully develop our recruitment strategy and exclusion criteria to 306 protect vulnerable populations, which is important since many report a lower 307 socioeconomic status and educational level in smokers in addition to higher rates of 308 reported alcohol and drug use ^{46 47}. 309

Our study is an observational study where participants have already assumed
 the risk of using tobacco. Study procedures pose minimal risk. Given the known harms
 associated with smoking, we will provide information on tobacco treatment when
 requested by the participant. Participant information is de-identified for analysis and
 reported in aggregate to protect privacy.

Page 17 of 24

BMJ Open

Completion of these studies will enable a greater understanding of the biological responses to use of a variety of tobacco products. Specifically, they will help to identify the constituents of these products; and how a panel of exposure and CV injury biomarkers are associated with these different constituents. This data will be available to the FDA and could help guide new policy measures to reduce or eliminate the harmful components of tobacco smoke and other nicotine products. The study is dedicated to the rapid dissemination of their rigorously characterized and well-controlled research findings to the public in the form of peer-reviewed publications. Subsequent to the initial full-length manuscript publications of the resources generated with funding from this program, the study will make them available to interested and gualified investigators upon written request. The study will provide relevant protocols of published data, upon request (presuming prior publication by the Center members). Participants will be provided a summary of the results as they become available. Finally press releases of relevant findings will inform the general population.

- 330 LIST OF ABBREVIATIONS
- 0 331 ABI- Ankle Brachial Index
- $\frac{2}{2}$ 332 CAC= circulating angiogenic cells
- ¹⁷ 333 CRP= C-reactive protein
- 47 334 CVD- Cardiovascular disease
- ⁴⁹ 335 ENDS- Electronic nicotine Device (i.e. e-cigarette)
- ⁵¹ 336 FACS- Fluorescence-activated cell sorting
- 337 FMD- Flow mediated dilation

338	HDL= high density lipoprotein
339	IL-6= Interleukin 6
340	MMP- Matrix metalloproteinase
341	MP= micoparticles
342	PAI-=- Plasminogen activator
343	PF4= Platelet factor 4
344	PWV- Pulse wave velocity
345	SAA= serum amyloid A
346	s-ICAM- soluble intercellular adhesion protein inhibitor
347	s-VCAM= soluble vascular adhesion protein
348	TNFR1= Tumor necrosis factor receptor 1
349	t-PA= tissue plasminogen activator
350	TxA2=Thromboxane A
351	VOC- Volatile organic compound
352	W:H- ratio: Waist to hip ratio
353	
354	AUTHORS CONTRIBUTIONS
355	Rachel Keith- Study design, study recruitment, study visits, statistical analysis and
356	manuscript preparation. Jessica Fetterman- study recruitment, study visits, manuscript
357	preparation and editing. Dan Riggs- statistical analysis, manuscript preparation and
358	editing. Tim O'Toole- Biomarker measurements, manuscript preparation and editing.
359	Jessica Nystoriak- study recruitment and study visits. Monica Holbrook- study
360	recruitment and study visits. Pawel Lorkiewicz- VOC measurements and manuscript
	18
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
- 3 4	361	preparation. Aruni Bhatnagar- Study design, study funding and manuscript editing.
5 6	362	Andrew DeFilippis- Human subject assessment planning, manuscript preparation and
7 8	363	editing. Naomi M. Hamburg- Study design, study funding, vascular core, manuscript
9 10 11	364	preparation and editing.
12 13	365	COMPETING INTERESTS
14 15	366	None declared
16 17	367	FUNDING
18 19 20	368	This work was supported by the National Institutes of Health and the FDA Center for
21 22	369	Tobacco Products (CTP) grant number P50HL120163.
23 24	370	Acknowledgements
25 26	371	Study design reported in this publication was supported by the AHA Tobacco
27 28 29	372	Regulation and Addiction Center (A-TRAC) and FDA Center for Tobacco Products
30 31	373	(CTP). The content is solely the responsibility of the authors and does not necessarily
32 33	374	represent the official views of the NIH or the Food and Drug Administration.
34 35	275	REFERENCES
36 37	375	
38	376	1. Rostron B. Smoking-Attributable Mortality by Cause in the United States: Revising the CDC's Data and
39	377	Estimates. Nicotine Tob Res 2013; 15 (1):238-46.
40	378	2. Morris PB, Ference BA, Jahangir E, et al. Cardiovascular Effects of Exposure to Cigarette Smoke and
41	379	Electronic Cigarettes: Clinical Perspectives From the Prevention of Cardiovascular Disease
42	380	Section Leadership Council and Early Career Councils of the American College of Cardiology. J
43 44	381	Am Coll Cardiol 2015; 66 (12):1378-91.
44 45	382	3. Haussmann HJ. Use of hazard indices for a theoretical evaluation of cigarette smoke composition.
46	383	Chem Res Toxicol 2012; 25 (4):794-810.
47	384	4. Ghilarducci DP, Tjeerdema RS. Fate and effects of acrolein. Rev Environ Contam Toxicol 1995;144:95-
48	385	146.
49	386	5. Dong JZ, Moldoveanu SC. Gas chromatography-mass spectrometry of carbonyl compounds in
50	387	cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine. J Chromatogr
51	388	A 2004; 1027 (1-2):25-35.
52	389	6. Stepanov I, Jensen J, Hatsukami D, et al. New and traditional smokeless tobacco: comparison of
53	390	toxicant and carcinogen levels. Nicotine Tob Res 2008; 10 (12):1773-82.
54	391	7. Awe SO, Adeagbo AS, D'Souza SE, et al. Acrolein induces vasodilatation of rodent mesenteric bed via
55	392	an EDHF-dependent mechanism. Toxicol Appl Pharmacol 2006; 217 (3):266-76.
56 57		
57 58		19
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4	393	8. Conklin DJ, Barski OA, Lesgards JF, et al. Acrolein consumption induces systemic dyslipidemia and
5	394	lipoprotein modification. Toxicol Appl Pharmacol 2010; 243 (1):1-12.
6	395	9. Conklin DJ, Bhatnagar A, Cowley HR, et al. Acrolein generation stimulates hypercontraction in isolated
7	396	human blood vessels. Toxicol Appl Pharmacol 2006; 217 (3):277-88.
8	397	10. Conklin DJ, Haberzettl P, Lesgards JF, et al. Increased sensitivity of glutathione S-transferase P-null
9	398	mice to cyclophosphamide-induced urinary bladder toxicity. J Pharmacol Exp Ther
10	399	2009; 331 (2):456-69.
11	400	11. Conklin DJ, Haberzettl P, Prough RA, et al. Glutathione-S-transferase P protects against endothelial
12 13	401	dysfunction induced by exposure to tobacco smoke. Am J Physiol Heart Circ Physiol
13 14	402	2009; 296 (5):H1586-97.
15	403	12. Ismahil MA, Hamid T, Haberzettl P, et al. Chronic oral exposure to the aldehyde pollutant acrolein
16	404	induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2011; 301 (5):H2050-60.
17	405	13. O'Toole TE, Hellmann J, Wheat L, et al. Episodic exposure to fine particulate air pollution decreases
18	406	circulating levels of endothelial progenitor cells. Circ Res 2010; 107 (2):200-3.
19	407	14. O'Toole TE, Zheng YT, Hellmann J, et al. Acrolein activates matrix metalloproteinases by increasing
20	408	reactive oxygen species in macrophages. Toxicol Appl Pharmacol 2009; 236 (2):194-201.
21	409	15. Sithu SD, Srivastava S, Siddiqui MA, et al. Exposure to acrolein by inhalation causes platelet
22 23	410	activation. Toxicol Appl Pharmacol 2010; 248 (2):100-10.
23 24	411	16. Srivastava S, Sithu SD, Vladykovskaya E, et al. Oral exposure to acrolein exacerbates atherosclerosis
25	412	in apoE-null mice. Atherosclerosis 2011; 215 (2):301-8.
26	413	17. Tsakadze NL, Srivastava S, Awe SO, et al. Acrolein-induced vasomotor responses of rat aorta. Am J
27	414	Physiol Heart Circ Physiol 2003; 285 (2):H727-34.
28	415	18. Wang GW, Guo Y, Vondriska TM, et al. Acrolein consumption exacerbates myocardial ischemic injury
29	416	and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. J Mol Cell Cardiol
30	417	2008; 44 (6):1016-22.
31 22	418	19. Wheat LA, Haberzettl P, Hellmann J, et al. Acrolein inhalation prevents vascular endothelial growth
32 33	419	factor-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arterioscler Thromb Vasc Biol
33 34	420	2011; 31 (7):1598-606.
35	421	20. WHO Study Group on Tobacco Product Regulation. Report on the scientific basic of tobacco product
36	422	regulation: fourth report of a WHO study group. World Health Organ Tech Rep Ser 2012(967):1-
37	423	83, 1 p following 83.
38	424	21. De Woskin R, Greenberg M, Pepelko W, et al. Toxicological review of acrolein (cas no. 107-02-08) in
39	425	support of summary information on the integrated risk information system (Iris). Washington,
40	426	DC: US Environmental Protection Agency 2003.
41 42	427	22. Kosmider L, Sobczak A, Fik M, et al. Carbonyl compounds in electronic cigarette vapors: effects of
42 43	428	nicotine solvent and battery output voltage. Nicotine Tob Res 2014; 16 (10):1319-26.
44	429	23. Goniewicz ML, Knysak J, Gawron M, et al. Levels of selected carcinogens and toxicants in vapour
45	430	from electronic cigarettes. Tob Control 2014; 23 (2):133-9.
46	431	24. Wang P, Chen W, Liao J, et al. A Device-Independent Evaluation of Carbonyl Emissions from Heated
47	432	Electronic Cigarette Solvents. PLoS One 2017; 12 (1):e0169811.
48	433	25. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and
49	434	cardiovascular risk. The New England journal of medicine 2003; 348 (7):593-600.
50	435	26. Parsons VL, Moriarity C, Jonas K, et al. Design and estimation for the national health interview
51 52	436	survey, 2006-2015. Vital Health Stat 2 2014(165):1-53.
52 53	437	27. Alwis KU, Blount BC, Britt AS, et al. Simultaneous analysis of 28 urinary VOC metabolites using ultra
55 54	438	high performance liquid chromatography coupled with electrospray ionization tandem mass
55	439	spectrometry (UPLC-ESI/MSMS). Analytica chimica acta 2012; 750 :152-60.
56		
57		20
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only intep// onlyopenionly.com/ site/ about/ guidelines.httml

1		
2		
3 4	440	28. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial
5	441	progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res
6	442	2001; 89 (1):E1-7.
7	443	29. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells:
8	444	limitations for therapy? Arterioscler Thromb Vasc Biol 2006; 26(2):257-66.
9	445	30. DeJarnett N, Yeager R, Conklin DJ, et al. Residential Proximity to Major Roadways Is Associated With
10	446	Increased Levels of AC133+ Circulating Angiogenic Cells. Arteriosclerosis, thrombosis, and
11	447	vascular biology 2015; 35 (11):2468-77.
12	448	31. Poredos P, Orehek M, Tratnik E. Smoking is associated with dose-related increase of intima-media
13 14	449	thickness and endothelial dysfunction. Angiology 1999; 50 (3):201-8.
15	450	32. Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial
16	451	progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric
17	452	oxide production. J Am Coll Cardiol 2008; 51 (18):1760-71.
18	453	33. Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research
19	454	into clinical practice. Circulation 2012; 126 (6):753-67.
20	455	34. Benjamin EJ, Larson MG, Keyes MJ, et al. Clinical correlates and heritability of flow-mediated dilation
21	456	in the community: the Framingham Heart Study. Circulation 2004; 109 (5):613-9.
22 23	457	35. Vita JA. Nitric oxide-dependent vasodilation in human subjects. Methods Enzymol 2002; 359 :186-
24	458	200.
25	459	36. Mitchell GF, Guo CY, Benjamin EJ, et al. Cross-sectional correlates of increased aortic stiffness in the
26	460	community: the Framingham Heart Study. Circulation 2007; 115 (20):2628-36.
27	461	37. Benowitz NL, Dains KM, Dempsey D, et al. Racial differences in the relationship between number of
28	462	cigarettes smoked and nicotine and carcinogen exposure. Nicotine Tob Res 2011; 13 (9):772-83.
29	463	38. Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor
30	464	cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004;24(8):1442-7.
31 32	465	39. Harding SA, Sarma J, Josephs DH, et al. Upregulation of the CD40/CD40 ligand dyad and platelet-
33	466	monocyte aggregation in cigarette smokers. Circulation 2004; 109 (16):1926-9.
34	467	40. Gordon C, Gudi K, Krause A, et al. Circulating endothelial microparticles as a measure of early lung
35	468	destruction in cigarette smokers. Am J Respir Crit Care Med 2011; 184 (2):224-32.
36	469	41. Zevin S, Saunders S, Gourlay SG, et al. Cardiovascular effects of carbon monoxide and cigarette
37	470	smoking. J Am Coll Cardiol 2001; 38 (6):1633-8.
38	471	42. Newby DE, McLeod AL, Uren NG, et al. Impaired coronary tissue plasminogen activator release is
39	472	associated with coronary atherosclerosis and cigarette smoking: direct link between endothelial
40 41	473	dysfunction and atherothrombosis. Circulation 2001; 103 (15):1936-41.
42	474	43. Schmid P, Karanikas G, Kritz H, et al. Passive smoking and platelet thromboxane. Thromb Res
43	475	1996; 81 (4):451-60.
44	476	44. Schoenborn CA, Gindi RM. Electronic Cigarette Use Among Adults: United States, 2014. NCHS Data
45	477	Brief 2015(217):1-8.
46	478	45. Maher J, Boysun M, Rohde K, et al. Are Latinos really less likely to be smokers? Lessons from Oregon.
47	479	Nicotine & Tobacco Research 2005; 7 (2):283-87.
48	480	46. Barbeau EM, Krieger N, Soobader M-J. Working Class Matters: Socioeconomic Disadvantage,
49 50	481	Race/Ethnicity, Gender, and Smoking in NHIS 2000. Am J Public Health 2004; 94 (2):269-78.
51	482	47. Giskes K, Kunst AE, Benach J, et al. Trends in smoking behaviour between 1985 and 2000 in nine
52	483	European countries by education. Journal of Epidemiology and Community Health
53	484	2005; 59 (5):395.
54	485	
55	.05	
56		
57		21
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods	•		
Study design	4	Present key elements of study design early in the paper	5, 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5, 7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	6-7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-12
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-12
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	14-16
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	12-14
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12-14
		(b) Describe any methods used to examine subgroups and interactions	13
		(c) Explain how missing data were addressed	13
		(d) If applicable, explain how loss to follow-up was addressed	N/A (study protoco
		(e) Describe any sensitivity analyses	13

Page 24 o	f 24
-----------	------

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	N/A (study protocol)
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A (study protoco
		(c) Consider use of a flow diagram	N/A (study protoco
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	N/A (study protoco
		(b) Indicate number of participants with missing data for each variable of interest	N/A (study protoco
		(c) Summarise follow-up time (eg, average and total amount)	N/A (study protoco
Outcome data	15*	Report numbers of outcome events or summary measures over time	N/A (study protoco
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	N/A (study protoco
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N/A (study protoco
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A (study protoco
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A (study protoco
Discussion			
Key results	18	Summarise key results with reference to study objectives	N/A (study protoco
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Protocol to Assess the Impact of Tobacco-Induced Volatile Organic Compounds on Cardiovascular Risk in a Cross-Sectional Cohort: Cardiovascular Injury Due to Tobacco Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019850.R1
Article Type:	Protocol
Date Submitted by the Author:	02-Jan-2018
Complete List of Authors:	Keith, Rachel; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Fetterman, Jessica; Boston Medical Center, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center Riggs, Daniel; American Heart Association- Tobacco Regulation and Addiction Center; University of Louisville, Medicine O'Toole, Timothy; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Nystoriak, Jessica; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Holbrook, Monika; Boston Medical Center, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center Lorkiewicz, Pawel; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Bhatnagar, Aruni; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Bhatnagar, Aruni; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center DeFilippis, Andrew; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center DeFilippis, Andrew; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center DeFilippis, Naomi ; Boston University, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Public health
Keywords:	smoking, tobacco, electronic cigarette, cardiovascular risk, vascular injury, cigarettes

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

SCHOLARONE[™] Manuscripts

2		
3 4	1	Protocol to Assess the Impact of Tobacco-Induced Volatile Organic Compounds
5 6	2	on Cardiovascular Risk in a Cross-Sectional Cohort: Cardiovascular Injury Due to
7 8 9	3	Tobacco Study
9 10 11	4	Rachel J. Keith, Jessica L. Fetterman, Daniel W. Riggs, Tim O'Toole, Jessica Nystoriak,
12 13	5	Monica Holbrook, Pawel Lorkiewicz, Aruni Bhatnagar, Andrew DeFilippis*, Naomi M.
14 15	6	Hamburg*
16 17 18	7	Rachel J. Keith-Division of Cardiovascular Medicine, University of Louisville School of
19 20	8	Medicine 580 S. Preston St. Louisville KY, 40202 rachel.keith@louisville.edu 502-852-
21 22	9	4211
23 24 25	10	Jessica L. Fetterman- Vascular Biology Section, Whitaker Cardiovascular Institute,
25 26 27	11	Boston University School of Medicine Evans Building, Boston, MA USA
28 29	12	Jasmit Shah- University of Louisville School of Medicine Louisville, KY USA
30 31	13	Timothy O-Toole- Division of Cardiovascular Medicine, University of Louisville School of
32 33 34	14	Medicine Louisville, KY USA
35 36	15	Jessica L. Nystoriak- Division of Cardiovascular Medicine, University of Louisville
37 38	16	School of Medicine Louisville, KY USA
39 40 41	17	Monika Holbrook- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston
41 42 43	18	University School of Medicine Boston, MA USA
44 45	19	Pawel Lorkiewicz- Division of Cardiovascular Medicine, University of Louisville School
46 47	20	of Medicine Louisville, KY USA
48 49 50	21	Aruni Bhatnagar- Division of Cardiovascular Medicine, University of Louisville School of
51 52	22	Medicine Louisville, KY USA
53 54		
55 56 57		
57 58 59		1

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

23 Andrew P. DeFilippis- Division of Cardiovascular Medicine, University of Louisville

24 School of Medicine Louisville, KY USA (co-senior author)

25 Naomi M. Hamburg- Vascular Biology Section, Whitaker Cardiovascular Institute,

26 Boston University School of Medicine Boston, MA USA (co-senior author)

28 Word Count: 2581

30 ABSTRACT

Introduction: Tobacco use leads to increased mortality, the majority of which is attributed to cardiovascular disease. Despite this knowledge, the early cardiovascular impact of tobacco product use is not well understood. Tobacco use increases exposure to harmful and potentially harmful constituents including volatile organic compounds (VOCs) such as acrolein and crotonaldehyde, which may contribute to cardiovascular risk. The link between exposure patterns, risk profiles and demographic distribution of tobacco product users, particularly users of new and emerging products, are not well known. Therefore, we designed the Cardiovascular Injury due to Tobacco Use (CITU) study to assess population characteristics, demographic features, exposure patterns and cardiovascular risk in relation to tobacco.

Methods and analysis: We present the design and methodology of the CITU study a
 cross-section observational tobacco study conducted in Boston MA and Louisville KY
 starting in 2014. Healthy participants 21 to 45 years of age who use tobacco products,
 including ENDS, or who never used tobacco are being recruited. The study aims to

45 recruit an evenly split cohort of African Americans and Caucasians that is sex balanced

1		
2 3 4	46	for evaluation of self-reported tobacco exposure, VOC exposure and tobacco-induced
5 6 7	47	injury profiling. Detailed information about participant's demographics, health status and
7 8 9	48	lifestyle is also collected.
10 11	49	Ethics and dissemination: The study protocol was approved institutional review
12 13 14	50	boards at both participating universities. All study protocols will protect participant
14 15 16	51	confidentiality. Results from the study will be disseminated via peer-reviewed journals
17 18	52	and presented at scientific conferences.
19 20	53	
21 22	54	Strengths and limitations
23 24 25	55	• Young age to allow for evaluation of early stage disease (e.g. inflammation,
26 27	56	endothelial function) as opposed to end stage clinical consequence (e.g.
28 29 30	57	myocardial infarction)
30 31 32	58	Diverse tobacco product use allows for assessment of a wide range of tobacco-
33 34	59	induced VOC exposure
35 36 37	60	 All study visits are in English introducing selection bias
38 39	61	Data will inform regulatory agencies on the cardiovascular health effects of
40 41	62	multiple tobacco products and the contribution of HPHCs
42 43 44	63	
45 46	64	Keywords: Tobacco, smoking, electronic cigarette, vascular injury, cardiovascular risk,
47 48	65	cigarettes.
49 50 51	66	
52 53 54 55	67	INTRODUCTION
56 57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Tobacco product use and smoking are the leading causes of preventable deaths throughout the world. Of those deaths, one-third are attributed to cardiovascular disease (CVD)¹. The cardiovascular (CV) effects of tobacco exposure can include atherogenesis, vascular injury, thrombosis, arrhythmias and inflammation² and may be attributable to the many different harmful and potentially harmful constituents (HPHCs) present in tobacco products. The HPHCs found in tobacco products include volatile organic compounds (VOCs) of which reactive aldehydes, such as acrolein and crotonaldehyde, are likely the

most significant contributors to CV toxicity ³. High levels of aldehydes are present in
cigarette smoke ^{4 5} as well as smokeless tobacco (ST) ⁶. Risk assessments, using the
prevalence of each individual chemical weighed by its potency, suggest that the noncancer risk of smoking is dominated by acrolein, which contributes 40-100 times more
to risk than any other chemical present in cigarette smoke ³.

81 Although HPHCs, including VOC reactive aldehydes, have been suspected to be

82 major contributors to the toxicity of cigarette smoke for over 4 decades, their

83 contribution to CV injury and early CVD risk has not been rigorously evaluated.

84 Experimental studies in animal models suggest that because of low aldehyde-

85 metabolizing capacity, CV tissues are highly sensitive to aldehydes and exposure to low

86 levels of aldehydes can induce CV injury and accelerate CVD ⁷⁻¹⁸. The WHO Study

87 Group on Tobacco Product Regulation (TobReg) has marked acrolein, a VOC, along

88 with 8 other cigarette constituents for monitoring and regulation ¹⁹ and the U.S.

89 Environmental Protection Agency lists Acrolein as one of most hazardous air

90 pollutants²⁰. Nevertheless, the contribution of tobacco induced VOCs, including acrolein

Page 5 of 26

BMJ Open

1 2		
2 3 4	91	or other aldehydes, toward CV toxicity in humans has not been fully assessed. Greater
5 6	92	understanding of how aldehydes affect cardiovascular health and disease will provide
7 8 9	93	new avenues for evaluating the toxicity of cigarette smoke and for assessing the
9 10 11	94	injurious potential of new and emerging tobacco products, such as ENDS, which may
12 13	95	also contain VOCs including acrolein ²¹⁻²³ .
14 15	96	The latency period between tobacco exposure and the development of major
16 17 18	97	clinical adverse health effects is long, therefore biomarkers that provide information over
19 20	98	a shorter period allow for the identification of harm decades before clinical outcome data
21 22	99	is available. Thus, in this paper we present the design and methodology of the
23 24 25	100	Cardiovascular Injury due To Tobacco Use (CITU) study which will evaluate the
25 26 27	101	association of the urinary metabolites of 18 parent VOCs from tobacco exposure with a
28 29	102	comprehensive set of CV biomarkers representative of early disease and predictive of
30 31 32	103	future CV events. ²⁴
32 33 34	104	future CV events. ²⁴ METHODS AND DESIGN Overall design
35 36	105	Overall design
37 38	106	The CITU study is an investigator-initiated cross-sectional observational study of
39 40 41	107	around 500 healthy participants 21 to 45 years of age who are never or current tobacco
42 43	108	product users in two urban areas at Boston University (BU) and University of Louisville
44 45	109	(UofL) (Boston, MA and Louisville, KY) designed to evaluate CV toxicity due to tobacco
46 47 48	110	product use, with correlations to VOCs found in the tobacco products (Figure 1).
48 49 50	111	
51 52	112	
53 54	113	Participant Eligibility Criteria
55 56 57		<u>_</u>
58		5
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SIGN

y Criteria

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

2	
2 3 4	1
5 6	1
7 8	1
9 10 11	1
11 12 13	1
14 15	1
16 17	1
18 19	1
20 21 22 23	1
	1
25	1
26 27 28 29	1
30	L
31 32 33	1
33 34 35	1
36 37	1
38 39	1
40 41	1
42 43	1
44 45 46	1
40 47 48	1
49 50	
51	
52	

	114	The goal of the study is to examine the impact of tobacco products on healthy
	115	young adults who could be classified as a current tobacco product users (Defined in
	116	table 1), or never-users (does not have lifetime use of any tobacco product).
) I	117	Participants were self-reported to be healthy therefore we excluded participants if they
2 3	118	had: 1) diagnosis of clinical cardiovascular disease including but not limited to known
4 5	119	heart attack, peripheral artery disease, heart failure or stroke; 2) diagnosis of diabetes
5 7 3	120	(HbA1c >7.0 or treatment for diabetes), hypertension (systolic blood pressure >140 mm
))	121	Hg or diastolic blood pressure >90 mm Hg), hypothyroidism or hyperthyroidism,
1 2	122	inflammatory conditions such as lupus or inflammatory bowel disease, HIV/AIDS,
3 1 5	123	hepatitis, liver disease, anemia, cancer of any type or another medical condition that
5 7	124	might compromise the successful completion of the study; 2) recipients of organ
3	125	transplant or renal replacement therapy; 3) individuals that are taking the following
) >	126	medications: immunosuppressant agents estrogen, testosterone, anti TNF agents,
<u>2</u> 3 1	127	certain biologics, Procrit, statins, beta-blockers or other cardiovascular medicine; 4)
5	128	individuals using nutraceuticals or anabolic steroids beyond the recommended daily
7 3	129	allowance; 5) body weight less than 100 pounds; 6) pregnant women; 7) prisoners and
9) 	130	other vulnerable populations; and 8) active illness or infection. Participants are
<u>2</u> 3	131	rescheduled or considered screen-failures and excluded from the study if symptomatic
4 5	132	of an acute illness, i.e. viral upper respiratory infection, on study date.
5 7	133	Table 1. Tobacco product use classifications

Classification	Qualification
Never	Does not meet lifetime limits for any tobacco use (see below)
Smoker	>100 lifetime cigarettes and current use for the past year
Smokeless Tobacco User	>20 lifetime dips or chews and current use for the past year
Cigar/Cigarillo User	>20 lifetime cigars or cigarillos and current use for the past year
Pipe User	>20 lifetime pipefuls and current use for the past year

1 2			
3 4		ENDS User	>20 lifetime vape sessions and current use for the past year
5		Hookah User	>20 lifetime hookah sessions and current use for the past year
6	134	Study participants are	screened prior to enrollment for current and past tobacco product
7 8 9	135	use. Participants are c	haracterized and assigned a use group based on self-reported
10 11	136	patterns collected duri	ng the study visits.
12 13 14	137	Overall Study Procee	lure
15 16	138	Study participar	nts fast for 8 h from food and 6 h from tobacco prior to the visit. All
17 18	139	study visits occur befo	re 11AM to limit effects due to circadian changes. All vascular
19 20 21	140	function studies are co	mpleted after 10 min of supine positioning. All vascular studies
21 22 23	141	are sent to the BU cen	tral lab for analysis. BU biologic samples have minimal
24 25	142	processing and are sh	ipped overnight to the UofL central laboratory at the completion of
26 27	143	each study visit. Samp	les obtained at UofL are processed to a similar stage, then held
28 29 30	144	overnight prior to analy	vsis for standardization of time to measurement for all samples.
31 32	145	Study visits tak	e approximately 90 minutes to complete and include a structured
33 34	146	interview on demograp	phics, socioeconomics, lifestyle, health, family history of heart
35 36 37	147	disease, allergies, and	tobacco use. (Figure 2) Participants were compensated
37 38 39	148	appropriately for their	time. All surveys are collected and kept in Research Electronic
40 41	149	Data Capture (REDCa	p), a secure web application for building and managing online
42 43	150	surveys and database	S.
44 45 46	151	Exposure Variables	
47 48	152	Tobacco Product Use	& Particulate Matter Exposure
49 50	153	Comprehensive	tobacco product exposure is assessed using a modified version
51 52 53	154	of the National Health	Interview survey on tobacco use ²⁵ . The survey is modified to
55 54 55	155	include detailed inform	ation on electronic nicotine devices (ENDs) and other new or
56 57 58			7
58 59 60		For peer re	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from ht Enseignement Superieur (ABES

<u>i.com/ on June 12, 2025 at Agence Bibl</u>iographique de I

Protected by copyright, including for uses related to text

emerging tobacco products. Residential addresses are collected for assessment of ambient airborne particulate matter (PM_{2.5}) exposure and future correction of overall exposure. PM_{2.5} data from the day of the study visit, and 3 and 5 days prior to the study is collected from publicly available data associated with EPA monitoring stations. Other exposure variables, including occupation, are collected through interview.

.61 VOC Measurements

Standard clean catch urine specimens are obtained from participants. We have
developed a robust Core Lab that utilizes mass spectrometry procedures adopted from
the Centers for Disease Control and Prevention (CDC) protocols, to quantify 23 urinary
metabolites of tobacco smoking related toxins (aldehydes and other VOCs), including
acrolein²⁶ (**Table 2**). The concentration values of analytes are then normalized to
urinary creatinine levels measured using Infinity Creatinine Reagent (Thermo Fisher
Scientific, MA) on a COBAS MIRA-plus analyzer (Roche, NJ).

Table 2 Exposure Variables (Please see end of article)

		Common
Parent compound	VOC metabolite	abbr.
Acetaldehyde	Acetic acid/Acetate	ACETATE
Acrolein	N-Acetyl-S-(2-carboxyethyl)-L-cysteine	CEMA
	N-Acetyl-S-(3-hydroxypropyl)-L-cysteine	3HPMA
Acrylamide	N-Acetyl-S-(2-carbamoylethyl)-L-cysteine	AAMA
	N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine	GAMA
Acrylonitrile	N-Acetyl-S-(2-cyanoethyl)-L-cysteine	СҮМА

Anabasine Anatabine Benzene 1-Bromopropane 1,3-Butadiene	Anabasine (free) Anatabine (free) N-Acetyl-S-(phenyl)-L-cysteine trans, trans-Muconic acid N-Acetyl-S-(n-propyl)-L-cysteine N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	ANB ANTB PMA MU BPMA DHBMA MHBMA1
Benzene 1-Bromopropane	N-Acetyl-S-(phenyl)-L-cysteine trans, trans-Muconic acid N-Acetyl-S-(n-propyl)-L-cysteine N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	PMA MU BPMA DHBMA
1-Bromopropane	trans, trans-Muconic acid N-Acetyl-S-(n-propyl)-L-cysteine N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	MU BPMA DHBMA
1-Bromopropane	N-Acetyl-S-(n-propyl)-L-cysteine N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	BPMA DHBMA
	N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	DHBMA
1,3-Butadiene	N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	
1,3-Butadiene		MHBMA1
r,o-Dutadiche		
·	N-Acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine	MHBMA2
	N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine	MHBMA3
Carbon-disulfide	2-Thioxothiazolidine-4-carboxylic acid	TTCA
Crotonaldehyde	N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine	HPMMA
Cyanide	2-Aminothiazoline-4-carboxylic acid	ATCA
N,N-Dimethylformamide	N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine	AMCC
Ethylbenzene, styrene	Phenylglyoxylic acid	PGA
Formaldehyde	Formate	FORMATE
	Nicotine	NIC
Nicotine	Cotinine	СОТ
	3-Hydroxycotinine	3HC
Propylene oxide	N-Acetyl-S-(2-hydroxypropyl)-L-cysteine	2HPMA
Styrene	N-Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine +	PHEMA

2	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	l
4	
6	
7	
8	
9	
10	
12	
13	
14	
15	
17	
18	
19	
20	
21	
23	
24	
25	
26 27	
27 28	
29	
21 22 23 24 25 26 27 28 29 30	
21	
32 33 34 35 36 37 38	
33 34	
35	
36	
37	
38 39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

1

	N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine		
	Mandelic acid	MA	
Tetrachloroethylene	N-Acetyl-S-(trichlorovinyl)-L-cysteine	TCVMA	
Toluene	N-Acetyl-S-(benzyl)-L-cysteine	BMA	
T (N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine	1,2DCVMA	
Trichloroethylene	N-Acetyl-S-(2,2-dichlorovinyl)-L-cysteine	2,2DCVMA	
	N-Acetyl-S-(2,4-dimethylphenyl)-L-cysteine +		
	N-Acetyl-S-(2,5-dimethylphenyl)-L-cysteine +	DPMA	
Xylene	N-Acetyl-S-(3,4-dimethylphenyl)-L-cysteine		
	2-Methylhippuric acid	2MHA	
	3-Methylhippuric acid + 4-Methylhippuric acid	3MHA+ 4Mł	
170			
171 Urine is analyzed	for 23 metabolites of 18 parent VOCs and tobacco alkalo	ids by UPLC-	
172 MS/MS. Analytes	are listed as parent, metabolite and their common abbrev	iation.	
173			
174 Circulating Mark	ers of Cardiovascular Injury		
175 To assess	تع To assess tobacco product-induced cardiovascular toxicity, we examine		
176 endothelial function	endothelial function, inflammatory mediators, biomarkers, and thrombosis. CV risk is		
177 defined through m	defined through measurements of circulating angiogenic cells, lipid profile, and glucose		
178 metabolism ²⁴ ²⁷ ²⁶	Circulating Markers of Cardiovascular Injury To assess tobacco product-induced cardiovascular toxicity, we examine endothelial function, inflammatory mediators, biomarkers, and thrombosis. CV risk is defined through measurements of circulating angiogenic cells, lipid profile, and glucose metabolism ^{24 27 28} . Plasma (BD367863 and BD366415) and serum (BD367814)		
179 samples are obta	م samples are obtained from all participants for laboratory testing and long term		
180 biobanking. Whole	biobanking. Whole blood (BD366415) is obtained for flow cytometry on fresh samples at		
181 UofL pathology co	UofL pathology core. BU biologic samples have minimal processing and are shipped		
	10		

Page 11 of 26

1

BMJ Open

1 2		
2 3 4	182	overnight to the UofL central laboratory at the completion of each study visit. Samples
5 6	183	obtained at UofL are processed to a similar stage, then held overnight prior to analysis
7 8 9	184	to standardize the time to measurement for all samples. The UofL central laboratory, as
10 11	185	previously reported, will complete fasting and biomarker measurements (Table 3), with
12 13	186	the exception of cytomics ^{12 29} . For cytomic measurements, mononuclear cells are
14 15 16	187	labeled with the peripheral blood phenotyping panel kit (Fluidigm). Samples are shipped
16 17 18	188	at 4 degree C to Core Lab facilities at the University of Rochester for Mass cytometric
19 20	189	at 4 degree C to Core Lab facilities at the University of Rochester for Mass cytometric analysis.
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56 57		11
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

text

tand

ur (ABES) . data mining, Al training, and similar technologies

Protected by copyright, including for uses related to

190 Table 3 Blood analysis

1 2 3

4 5

6 7

8 9

10

11 12

13

14

15

16 17

18

59

60

Fasting Measurements

LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, glucose, uric acid, SAA and fibrinogen

<u>Biomarkers</u>

CAC (1-15)¹, Platelet-monocyte aggregates, MP (1-5)¹, PF4, t-PA, TxA2, Factor VII, IL-6, CRP, D-dimer, PAI-1, s-ICAM-1, s-VCAM, s-thrombomodulin, s-TNFR1, MMP-2, MMP-3, MMP-9, cytomics, endothelin, E-selectin and P-selectin

1: Fifteen different CAP subpopulations and 5 subtypes of microparticles were measured by flow cytometry.

²¹ 192 processed. Flow cytometric analysis is completed on fresh samples. All other analysis

- will be completed on biobanked samples in batches LDL= low density lipoprotein. HDL=
 will be completed on biobanked samples in batches LDL= low density lipoprotein. HDL=
- $\frac{26}{27}$ 194 high density lipoprotein. SAA= serum amyloid A. CAC= circulating angiogenic cells.
- $^{28}_{29}$ 195 *MP= microparticles. PF4= Platelet factor 4. t-PA= tissue plasminogen activator.*
- ³⁰ ³¹ 196 *TxA2=Thromboxane A. IL-6= Interleukin 6. CRP= C-reactive protein. PAI-=-*
- ³³ 197 Plasminogen activator. s- ICAM- soluble intercellular adhesion protein inhibitor. s-
- $_{36}^{35}$ 198 VCAM= soluble vascular adhesion protein. TNFR1= Tumor necrosis factor receptor 1.
- ³⁷
 ³⁸ 199 *MMP- Matrix metalloproteinase.*³⁹
- 40 200 Non-Invasive Vascular Function Testing
 41

42 Smoking, is associated with endothelial damage and vascular dysfunction ^{30 31}. 201 43 44 Endothelial cells are exposed to circulating toxins and measures of endothelial function 202 45 46 are reflective of cardiovascular injury ³². Thus, we examine the non-invasive endothelial 47 203 48 vasodilator function using flow-mediated vasodilation ^{33 34}, arterial stiffness with carotid-49 204 50 51 femoral and carotid-radial pulse wave velocity ³⁵, and peripheral vascular function with 205 52 53 ankle brachial index. Flow mediated dilation was assessed with a 7.5MHZ ultrasound 206 54 55 56 probe is used to image the brachial artery while a 10cm blood pressure cuff is attached 207 57 12 58

¹⁹ 191 All participants who complete the study visit will have blood samples taken and

Page 13 of 26

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
47	
49	
50	
51	
52	
53	
55	
55	
56	
57	
58	
59	

60

208 to the lower arm and a 3 lead ECG is attached to the patient. After baseline images and 10 cycles of Doppler images are captured using NIHEM R-wave triggered image 209 capturing software, the blood pressure cuff is inflated to 200mmHg or 50mmHg higher 210 than the systolic pressure. After the 5 minute occlusion, the cuff is released and the 211 NIHEM software records two minutes of imaging. Images were analyzed by a single 212 blinded analyzer using MIA vascular Research Tolls Brachial Analyzer for Research, 213 version 6.8.5. All vascular imagers where trained at BU who have a previously reported 214 reproducibility with intra- and inter-observer correlation coefficients of 0.98 and 0.99 for 215 brachial diameter and 0.78 and 0.92 for FMD.³⁶ Similar equipment and software is used 216 at both sites. All vascular studies are sent to the BU central lab for analysis. 217 Anthropometric measures 218

Anthropometric measures included height, weight, waist and hip circumference 219 and body fat. All anthropometric measures are completed twice and the average 220 recorded. Standing height measurements are completed on a fixed stadiometer. Weight 221 measurements are completed on a digital scale to the nearest tenth of a pound. Waist 222 circumference is measured at the level of the umbilicus to the nearest tenth of a 223 centimeter. Hip circumference is measured at the maximal protrusion of the gluteal 224 muscle to the nearest tenth of a centimeter. Body fat percentage is calculated by the 225 bioelectrical impedance measured with the Omron fat loss monitor (HBF-306C). 226

227 DATA ANALYSIS

We expect that from this study we will be able to identify specific biomarkers of cardiovascular injury due to tobacco use and the relationship of these biomarkers to specific measures of tobacco exposure. For instance, we will identify which biomarkers

Page 14 of 26

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text and

BMJ Open

are affected by tobacco use, and which ones are most sensitive; including their dosedependence. Additionally we will examine the extent to which biomarkers are associated with exposure to nicotine versus exposure to HPHC of tobacco like aldehydes.

All statistical analysis will be performed using SAS version 9.4 software (SAS Institute, Inc., Cary, North Carolina), and a two-sided p-value of <0.05 will be considered significant for any statistical test. Demographics and other baseline characteristics will be summarized according to product group. The primary outcomes will be analyzed using multiple regression techniques. Appropriate Interaction variables will be tested for in the regression models and subgroup analyses will be conducted according to the following factors: significant interactions, sex, age, race, tobacco product group. Multiple imputation method will be used for missing data where appropriate. Sensitivity analysis using different analytic approaches, such as generalized linear models, as well as considering different covariate adjustments, will be used to build concordant results. The dose-dependence of the changes in biomarkers will be determined by analyzing the data obtained from individuals that are exposed to different doses of a single product (e.g. smoking 0, <15, 15-20 and >20 cigarettes per day) and by comparing between tobacco products that have different doses of HPHC constituents. In the US the average cigarettes per day is between 15-20³⁷ and therefore this dose range distribution is reflective of general population exposure. Comparisons of the effects of novel tobacco products and smoking will be informative of the relative toxicity of the two products.

Page 15 of 26

1

60

BMJ Open

2		
3 4	253	We believe that the methods employed in the current project are exquisitely
5 6	254	sensitive and responsive to even low dose insults such as ambient air pollution 12
7 8	255	allowing us to quantify tobacco product-induced changes with high precision. Moreover,
9 10 11	256	levels of acrolein exposure vary between different individuals due to difference in puffing
12 13	257	intensity and the time a cigarette is left smoldering. Thus, direct measurements of
14 15	258	acrolein metabolites afford better estimates of acrolein exposure than machine yields.
16 17	259	We expect to obtain wide variations in acrolein/crotonaldehyde exposure which will
18 19 20	260	enable us to construct a dose-response relationship and identify which injury
20 21 22	261	biomarkers are associated with aldehyde exposure and whether high levels of exposure
23 24	262	are associated with high levels of injury, despite similar nicotine delivery.
25 26	263	Sample size
27 28 29	264	The sample size is justified in terms of the primary dependent measure, FMD,
30 31	265	given the potential importance of this variable as a direct measure of the impact of
32 33	266	tobacco exposure. The main comparisons are between non-tobacco users and tobacco
34 35 36	267	users. Due to one control group, we will conservatively adjust our α (significance level)
37 38	268	using a Bonferroni correction, and we will set α =0.01. Based on preliminary data for
39 40	269	FMD, we have observed mean \pm SD in smoker and nonsmoker groups to be 4.0 \pm 1.6
41 42	209	This, we have observed mean ± 05 in shoker and honsmoker groups to be 4.0 ±1.0
43 44	270	and 6.8 ±1.0, respectively. We consider at least 25% (mean FMD=3.0 from 4.0)
45 46	271	reduction from smokers to non-smokers is meaningful. Using a two sample, one-sided t
47 48	272	test with an α of 0.01 and 80% power (1- β), assuming a common SD of 1.3, we will
49 50	273	need 34 evaluable subjects in each group. We will recruit a total of 120 tobacco using
51 52	274	participants per site. This over sampling will allow us to look at multiple endpoints and
53 54 55	275	for associations with VOCs.
56		
57 58		15
59		

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

276 ETHICS AND DISSEMINATION

The CITU study was approved at each institution by their institutional review board (BU #H-32613 and UofL #13.0590) and all participants provide written consent. No study related procedures will be completed until after participant consent. Participants for the CITU study are being recruited in both Boston, MA and Louisville KY. The two populations show significant differences, therefore recruitment at two sites will ensure a range more reflective of the general population. Although overall racial and ethnic demographics for both cities show a clear majority of Caucasians (70%) and despite smokers typically male, we strive to, and currently are successful in, recruiting a population that was gender balanced and almost evenly split between Caucasian and African Americans. Despite this balanced recruitment, e-cigarette users have been reported as predominantly Caucasian and male³⁸, and thus far our recruitment mirrors these demographics. We expect very few Hispanic/Latino's to participate, due to data suggesting tobacco use, including ENDS, tends to be lower among Hispanic's/Latino's ^{38 39}. Thus we have also opted to only recruit English speakers. We have carefully develop our recruitment strategy and exclusion criteria to protect vulnerable populations, which is important since many report a lower socioeconomic status and educational level in smokers in addition to higher rates of reported alcohol and drug use ^{40 41}. Our study is an observational study where participants have already assumed the risk of using tobacco. Study procedures pose minimal risk. Given the known harms associated with smoking, we will provide information on tobacco treatment when

1 2	
3 4	2
5 6	2
7 8 9	3
9 10 11	3
12 13	3
14 15	3
16 17 18	3
19 20	3
21 22	3
23 24 25	3
26 27	3
28 29	3
30 31 32	3
32 33 34	3
35 36	3
37 38 39	3
39 40 41	3
42 43	3
44 45	3
46 47 48	3
49 50	3
51 52	3
53 54 55	3
56 57	
58 59	

60

requested by the participant. Participant information is de-identified for analysis and 98 reported in aggregate to protect privacy. 99

Completion of these studies will enable a greater understanding of the biological 00 responses to use of a variety of tobacco products. Specifically, they will help to identify 01 the constituents of these products; and how a panel of exposure and CV injury 02 biomarkers are associated with these different constituents. This data will be available 03 to the FDA and could help guide new policy measures to reduce or eliminate the 04 harmful components of tobacco smoke and other nicotine products. The study is 05 06 dedicated to the rapid dissemination of their rigorously characterized and well-controlled research findings to the public in the form of peer-reviewed publications. Subsequent to 07 the initial full-length manuscript publications of the resources generated with funding 808 from this program, the study will make them available to interested and qualified 09 investigators upon written request. The study will provide relevant protocols of published 10 data, upon request (presuming prior publication by the Center members). Participants 11 will be provided a summary of the results as they become available. Finally press 12 releases of relevant findings will inform the general population. 13 14 LIST OF ABBREVIATIONS 15 ABI- Ankle Brachial Index 16 17 CAC= circulating angiogenic cells CRP= C-reactive protein 18

- 19 CVD- Cardiovascular disease
- 20 ENDS- Electronic nicotine Device (i.e. e-cigarette)

1 2		
2 3 4	321	FACS- Fluorescence-activated cell sorting
5 6 7 8	322	FMD- Flow mediated dilation
	323	HDL= high density lipoprotein
9 10 11	324	IL-6= Interleukin 6
12 13	325	MMP- Matrix metalloproteinase
14 15	326	MP= micoparticles
16 17 18	327	PAI-=- Plasminogen activator
19 20	328	PF4= Platelet factor 4
21 22	329	PWV- Pulse wave velocity
23 24	330	SAA= serum amyloid A
25 26 27	331	s-ICAM- soluble intercellular adhesion protein inhibitor
28 29	332	s-VCAM= soluble vascular adhesion protein
30 31	333	TNFR1= Tumor necrosis factor receptor 1
32 33 34	334	t-PA= tissue plasminogen activator
34 35 36 37 38 39 40 41	335	TxA2=Thromboxane A
	336	VOC- Volatile organic compound
	337	W:H- ratio: Waist to hip ratio
42 43	338	
44 45	339	AUTHORS CONTRIBUTIONS
46 47	340	Rachel Keith- Study design, study recruitment, study visits, statistical analysis and
48 49 50 51 52 53 54	341	manuscript preparation. Jessica Fetterman- study recruitment, study visits, manuscript
	342	preparation and editing. Dan Riggs- statistical analysis, manuscript preparation and
	343	editing. Tim O'Toole- Biomarker measurements, manuscript preparation and editing.
55 56 57		10
58 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	344	Jessica Nystoriak- study recruitment and study visits. Monica Holbrook- study
5 6	345	recruitment and study visits. Pawel Lorkiewicz- VOC measurements and manuscript
7 8 9	346	preparation. Aruni Bhatnagar- Study design, study funding and manuscript editing.
10 11	347	Andrew DeFilippis- Human subject assessment planning, manuscript preparation and
12 13	348	editing. Naomi M. Hamburg- Study design, study funding, vascular core, manuscript
14 15 16	349	preparation and editing.
17 18	350	COMPETING INTERESTS
19 20	351	None declared
21 22	352	FUNDING
23 24 25	353	This work was supported by the National Institutes of Health and the FDA Center for
26 27	354	Tobacco Products (CTP) grant number P50HL120163.
28 29	355	Acknowledgements
30 31 32	356	Study design reported in this publication was supported by the AHA Tobacco
33 34	357	Regulation and Addiction Center (A-TRAC) and FDA Center for Tobacco Products
35 36	358	(CTP). The content is solely the responsibility of the authors and does not necessarily
37 38 39	359	represent the official views of the NIH or the Food and Drug Administration.
40 41	360	REFERENCES
42 43 44 45 46 47 48 49	361 362 363 364 365 366 367	 Rostron B. Smoking-Attributable Mortality by Cause in the United States: Revising the CDC's Data and Estimates. <i>Nicotine Tob Res</i> 2013;15(1):238-46. doi: 10.1093/ntr/nts120 Morris PB, Ference BA, Jahangir E, et al. Cardiovascular Effects of Exposure to Cigarette Smoke and Electronic Cigarettes: Clinical Perspectives From the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. <i>J Am Coll Cardiol</i> 2015;66(12):1378-91. doi: 10.1016/j.jacc.2015.07.037 [published Online First: 2015/09/19]
50 51 52	368 369	 Haussmann HJ. Use of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem Res Toxicol 2012;25(4):794-810. doi: 10.1021/tx200536w [published Online First:
52 53 54 55 56	370 371 372	2012/02/23] 4. Ghilarducci DP, Tjeerdema RS. Fate and effects of acrolein. <i>Rev Environ Contam Toxicol</i> 1995;144:95- 146. [published Online First: 1995/01/01]
57 58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2		
3	373	5. Dong JZ, Moldoveanu SC. Gas chromatography-mass spectrometry of carbonyl compounds in
4	374	cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine. J Chromatogr
5	375	A 2004;1027(1-2):25-35. [published Online First: 2004/02/20]
6 7	376	6. Stepanov I, Jensen J, Hatsukami D, et al. New and traditional smokeless tobacco: comparison of
8	377	toxicant and carcinogen levels. <i>Nicotine Tob Res</i> 2008;10(12):1773-82. doi:
9	378	10.1080/14622200802443544 [published Online First: 2008/11/22]
10	379	7. Awe SO, Adeagbo AS, D'Souza SE, et al. Acrolein induces vasodilatation of rodent mesenteric bed via
11	380	an EDHF-dependent mechanism. Toxicol Appl Pharmacol 2006;217(3):266-76. doi:
12	381	10.1016/j.taap.2006.08.008 [published Online First: 2006/10/31]
13	382	8. Conklin DJ, Barski OA, Lesgards JF, et al. Acrolein consumption induces systemic dyslipidemia and
14 15	383	lipoprotein modification. Toxicol Appl Pharmacol 2010;243(1):1-12. doi:
16	384	10.1016/j.taap.2009.12.010 [published Online First: 2009/12/26]
17	385	9. Conklin DJ, Bhatnagar A, Cowley HR, et al. Acrolein generation stimulates hypercontraction in isolated
18	386	human blood vessels. <i>Toxicol Appl Pharmacol</i> 2006;217(3):277-88. doi:
19	387	10.1016/j.taap.2006.09.009 [published Online First: 2006/11/11]
20	388	10. Conklin DJ, Haberzettl P, Prough RA, et al. Glutathione-S-transferase P protects against endothelial
21	389	dysfunction induced by exposure to tobacco smoke. Am J Physiol Heart Circ Physiol
22 23	390	2009;296(5):H1586-97. doi: 10.1152/ajpheart.00867.2008 [published Online First: 2009/03/10]
24	391	11. Ismahil MA, Hamid T, Haberzettl P, et al. Chronic oral exposure to the aldehyde pollutant acrolein
25	392	induces dilated cardiomyopathy. <i>Am J Physiol Heart Circ Physiol</i> 2011;301(5):H2050-60. doi:
26	393	10.1152/ajpheart.00120.2011 [published Online First: 2011/09/13]
27	394	12. O'Toole TE, Hellmann J, Wheat L, et al. Episodic exposure to fine particulate air pollution decreases
28	395	circulating levels of endothelial progenitor cells. <i>Circ Res</i> 2010;107(2):200-3. doi:
29 30	396	10.1161/circresaha.110.222679 [published Online First: 2010/07/03]
31	397	13. O'Toole TE, Zheng YT, Hellmann J, et al. Acrolein activates matrix metalloproteinases by increasing
32	398 399	reactive oxygen species in macrophages. <i>Toxicol Appl Pharmacol</i> 2009;236(2):194-201. doi: 10.1016/j.taap.2009.01.024 [published Online First: 2009/04/18]
33	400	14. Sithu SD, Srivastava S, Siddiqui MA, et al. Exposure to acrolein by inhalation causes platelet
34	400 401	activation. Toxicol Appl Pharmacol 2010;248(2):100-10. doi: 10.1016/j.taap.2010.07.013
35	402	[published Online First: 2010/08/04]
36 37	403	15. Srivastava S, Sithu SD, Vladykovskaya E, et al. Oral exposure to acrolein exacerbates atherosclerosis
38	404	in apoE-null mice. <i>Atherosclerosis</i> 2011;215(2):301-8. doi: 10.1016/j.atherosclerosis.2011.01.001
39	405	[published Online First: 2011/03/05]
40	406	16. Tsakadze NL, Srivastava S, Awe SO, et al. Acrolein-induced vasomotor responses of rat aorta. Am J
41	407	Physiol Heart Circ Physiol 2003;285(2):H727-34. doi: 10.1152/ajpheart.00269.2003 [published
42	408	Online First: 2003/05/06]
43 44	409	17. Wang GW, Guo Y, Vondriska TM, et al. Acrolein consumption exacerbates myocardial ischemic injury
44 45	410	and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. J Mol Cell Cardiol
46	411	2008;44(6):1016-22. doi: 10.1016/j.yjmcc.2008.03.020 [published Online First: 2008/05/13]
47	412	18. Wheat LA, Haberzettl P, Hellmann J, et al. Acrolein inhalation prevents vascular endothelial growth
48	413	factor-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arterioscler Thromb Vasc Biol
49	414	2011;31(7):1598-606. doi: 10.1161/atvbaha.111.227124 [published Online First: 2011/04/30]
50	415	19. WHO Study Group on Tobacco Product Regulation. Report on the scientific basic of tobacco product
51 52	416	regulation: fourth report of a WHO study group. World Health Organ Tech Rep Ser 2012(967):1-
52 53	417	83, 1 p following 83. [published Online First: 2012/09/08]
54	418	20. De Woskin R, Greenberg M, Pepelko W, et al. Toxicological review of acrolein (cas no. 107-02-08) in
55	419	support of summary information on the integrated risk information system (Iris). Washington,
56	420	DC: US Environmental Protection Agency 2003
57		20
58 50		
59		For near review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

BMJ Open

	Оре
21. Kosmider L, Sobczak A, Fik M, et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. <i>Nicotine Tob Res</i> 2014;16(10):1319-26. doi: 10.1093/ntr/ntu078 [published Online First: 2014/05/17]	n: first pu
22. Goniewicz ML, Knysak J, Gawron M, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. <i>Tob Control</i> 2014;23(2):133-9. doi: 10.1136/tobaccocontrol-2012-050859 [published Online First: 2013/03/08]	blished a
23. Wang P, Chen W, Liao J, et al. A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents. <i>PLoS One</i> 2017;12(1):e0169811. doi: 10.1371/journal.pone.0169811 [published Online First: 2017/01/12]	s 10.1136 Protect
24. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. <i>The New England journal of medicine</i> 2003;348(7):593-600. doi: 10.1056/NEJMoa022287 [published Online First: 2003/02/14]	/bmjopen ed by cop
25. Parsons VL, Moriarity C, Jonas K, et al. Design and estimation for the national health interview survey, 2006-2015. <i>Vital Health Stat 2</i> 2014(165):1-53. [published Online First: 2014/04/30]	1-2017-0 9yright,
26. Alwis KU, Blount BC, Britt AS, et al. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta 2012;750:152-60. doi: 10.1016/j.aca.2012.04.009 [published Online First: 2012/10/16]	Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded fi Enseignement Superieur Protected by copyright, including for uses related to text and da
 27. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. <i>Circ Res</i> 2001;89(1):E1-7. [published Online First: 2001/07/07] 	0 March 20 Enseig or uses rel
28. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 2006;26(2):257-66. doi: 10.1161/01.ATV.0000198239.41189.5d [published Online First: 2005/12/03])18. Down nement S ated to te
29. DeJarnett N, Yeager R, Conklin DJ, et al. Residential Proximity to Major Roadways Is Associated With Increased Levels of AC133+ Circulating Angiogenic Cells. <i>Arteriosclerosis, thrombosis, and</i> <i>vascular biology</i> 2015;35(11):2468-77. doi: 10.1161/atvbaha.115.305724 [published Online First: 2015/08/22]	ita -
30. Poredos P, Orehek M, Tratnik E. Smoking is associated with dose-related increase of intima-media thickness and endothelial dysfunction. <i>Angiology</i> 1999;50(3):201-8. [published Online First: 1999/03/24]	i http://bmjope 3ES) . mining, Al trai
 31. Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol 2008;51(18):1760-71. doi: 10.1016/j.jacc.2008.01.040 [published Online First: 2008/05/03] 	j <mark>open.bmj.com/</mark> on June 12, 2025 a training, and similar technologies
32. Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research into clinical practice. <i>Circulation</i> 2012;126(6):753-67. doi: 10.1161/circulationaha.112.093245 [published Online First: 2012/08/08]	m∕ on Jui I similar t
33. Benjamin EJ, Larson MG, Keyes MJ, et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. <i>Circulation</i> 2004;109(5):613-9. doi: 10.1161/01.cir.0000112565.60887.1e [published Online First: 2004/02/11]	ne 12, 20; echnolog
34. Vita JA. Nitric oxide-dependent vasodilation in human subjects. <i>Methods Enzymol</i> 2002;359:186-200. [published Online First: 2002/12/17]	25 at Age ies.
 Mitchell GF, Guo CY, Benjamin EJ, et al. Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. <i>Circulation</i> 2007;115(20):2628-36. doi: 10.1161/circulationaha.106.667733 [published Online First: 2007/05/09] 	en.bmj.com/ on June 12, 2025 at Agence Bibliographique de l ining, and similar technologies.
21	raphique
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	; de l

BMJ

467 36. Duffy SJ, Keaney Jr JF, Holbrook M, et al. Short-and long-term black tea consumption reverses
 468 endothelial dysfunction in patients with coronary artery disease. *Circulation* 2001;104(2):151 469 56.

- 409 50.
 470 37. Benowitz NL, Dains KM, Dempsey D, et al. Racial differences in the relationship between number of
 471 cigarettes smoked and nicotine and carcinogen exposure. *Nicotine Tob Res* 2011;13(9):772-83.
 472 doi: 10.1093/ntr/ntr072 [published Online First: 2011/05/07]
- 473 38. Schoenborn CA, Gindi RM. Electronic Cigarette Use Among Adults: United States, 2014. NCHS Data
 474 Brief 2015(217):1-8. [published Online First: 2015/11/12]
- 475
 475
 476
 476
 39. Maher J, Boysun M, Rohde K, et al. Are Latinos really less likely to be smokers? Lessons from Oregon. Nicotine & Tobacco Research 2005;7(2):283-87. doi: 10.1080/14622200500056259
- 477
 478
 478
 478
 479
 40. Barbeau EM, Krieger N, Soobader M-J. Working Class Matters: Socioeconomic Disadvantage, Race/Ethnicity, Gender, and Smoking in NHIS 2000. Am J Public Health 2004;94(2):269-78. doi: 10.2105/AJPH.94.2.269
- 1848041. Giskes K, Kunst AE, Benach J, et al. Trends in smoking behaviour between 1985 and 2000 in nine19481European countries by education. Journal of Epidemiology and Community Health204822005;59(5):395.

Figure 1. Cardiovascular Injury due to Tobacco Use Figure 1. Cardiovascular Injury due to Tobacco Use

CITU is designed to assess how tobacco related VOC exposure contributes to cardiovascular risk factors. Our exposure measurements include a panel of 23 urinary metabolites of 18 parent VOCs and tobacco use patterns. Cardiovascular phenotyping includes measures of injury, risk, vascular biomarkers and early vascular dysfunction. Tobacco use included use of traditional cigarettes, smokeless tobacco, waterpipe tobacco (hookah), electronic nicotine devices (ENDS), little cigars, cigarillos, pipes, cigars or any other form of tobacco that is available. Enrollment began in July 2014 and is ongoing.

33 34 492 Figure 2. Study Visit Design

- Study flow chart for interested participants from screening through study completion.
 Study flow chart for interested participants from screening through study completion.
 Potential participants are pre-screened for eligibility prior to enrollment. Potential participants are asked to fast from tobacco for a minimum of 6 hours prior to the study visit. On the day of the visit the study lasts approximately 90 minute.

Page 24 of 26

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5, 7
Setting	Sgit Present iter paper 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data 5 collection		5, 7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	6-7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 7-12		7-12
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-12
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	14-16
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and 1 why		12-14	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12-14
		(b) Describe any methods used to examine subgroups and interactions	13
		(c) Explain how missing data were addressed	13
		(d) If applicable, explain how loss to follow-up was addressed	N/A (study protoco
		(e) Describe any sensitivity analyses	13

Page 2	6 of 26
--------	---------

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	N/A (study protocol)
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A (study protocol
		(c) Consider use of a flow diagram	N/A (study protocol
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	N/A (study protoco
		(b) Indicate number of participants with missing data for each variable of interest	N/A (study protoco
		(c) Summarise follow-up time (eg, average and total amount)	N/A (study protoco
Outcome data	15*	Report numbers of outcome events or summary measures over time	N/A (study protoco
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	N/A (study protoco
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N/A (study protoco
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A (study protoco
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A (study protoco
Discussion			
Key results	18	Summarise key results with reference to study objectives	N/A (study protoco
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Protocol to Assess the Impact of Tobacco-Induced Volatile Organic Compounds on Cardiovascular Risk in a Cross-Sectional Cohort: Cardiovascular Injury Due to Tobacco Study

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019850.R2
Article Type:	Protocol
Date Submitted by the Author:	14-Feb-2018
Complete List of Authors:	Keith, Rachel; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Fetterman, Jessica; Boston Medical Center, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center Riggs, Daniel; American Heart Association- Tobacco Regulation and Addiction Center; University of Louisville, Medicine O'Toole, Timothy; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Nystoriak, Jessica; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Holbrook, Monika; Boston Medical Center, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center Lorkiewicz, Pawel; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Bhatnagar, Aruni; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center BeFilippis, Andrew; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center DeFilippis, Andrew; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center DeFilippis, Andrew; University of Louisville, Medicine; American Heart Association- Tobacco Regulation and Addiction Center Hamburg, Naomi ; Boston University, Vascular Biology Section, Whitaker Cardiovascular Institute; American Heart Association- Tobacco Regulation and Addiction Center
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Public health
Keywords:	smoking, tobacco, electronic cigarette, cardiovascular risk, vascular injury, cigarettes

SCHOLARONE[™] Manuscripts

2		
3 4	1	Protocol to Assess the Impact of Tobacco-Induced Volatile Organic Compounds
5 6	2	on Cardiovascular Risk in a Cross-Sectional Cohort: Cardiovascular Injury Due to
7 8 9	3	Tobacco Study
9 10 11	4	Rachel J. Keith, Jessica L. Fetterman, Daniel W. Riggs, Tim O'Toole, Jessica Nystoriak,
12 13	5	Monica Holbrook, Pawel Lorkiewicz, Aruni Bhatnagar, Andrew DeFilippis*, Naomi M.
14 15	6	Hamburg*
16 17 18	7	Rachel J. Keith-Division of Cardiovascular Medicine, University of Louisville School of
19 20	8	Medicine 580 S. Preston St. Louisville KY, 40202 rachel.keith@louisville.edu 502-852-
21 22	9	4211
23 24 25	10	Jessica L. Fetterman- Vascular Biology Section, Whitaker Cardiovascular Institute,
25 26 27	11	Boston University School of Medicine Evans Building, Boston, MA USA
28 29	12	Daniel W. Riggs- University of Louisville School of Medicine Louisville, KY USA
30 31	13	Timothy O-Toole- Division of Cardiovascular Medicine, University of Louisville School of
32 33 34	14	Medicine Louisville, KY USA
35 36	15	Jessica L. Nystoriak- Division of Cardiovascular Medicine, University of Louisville
37 38	16	School of Medicine Louisville, KY USA
39 40 41	17	Monika Holbrook- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston
42 43	18	University School of Medicine Boston, MA USA
44 45	19	Pawel Lorkiewicz- Division of Cardiovascular Medicine, University of Louisville School
46 47 48	20	of Medicine Louisville, KY USA
40 49 50	21	Aruni Bhatnagar- Division of Cardiovascular Medicine, University of Louisville School of
51 52	22	Medicine Louisville, KY USA
53 54		
55 56 57		
58 59		1

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

23 Andrew P. DeFilippis- Division of Cardiovascular Medicine, University of Louisville

24 School of Medicine Louisville, KY USA (co-senior author)

25 Naomi M. Hamburg- Vascular Biology Section, Whitaker Cardiovascular Institute,

26 Boston University School of Medicine Boston, MA USA (co-senior author)

28 Word Count: 2581

30 ABSTRACT

Introduction: Tobacco use leads to increased mortality, the majority of which is attributed to cardiovascular disease. Despite this knowledge, the early cardiovascular impact of tobacco product use is not well understood. Tobacco use increases exposure to harmful and potentially harmful constituents including volatile organic compounds (VOCs) such as acrolein and crotonaldehyde, which may contribute to cardiovascular risk. The link between exposure patterns, risk profiles and demographic distribution of tobacco product users, particularly users of new and emerging products, are not well known. Therefore, we designed the Cardiovascular Injury due to Tobacco Use (CITU) study to assess population characteristics, demographic features, exposure patterns and cardiovascular risk in relation to tobacco.

Methods and analysis: We present the design and methodology of the CITU study a
 cross-section observational tobacco study conducted in Boston MA and Louisville KY
 starting in 2014. Healthy participants 21 to 45 years of age who use tobacco products,
 including ENDS, or who never used tobacco are being recruited. The study aims to

45 recruit an evenly split cohort of African Americans and Caucasians that is sex balanced

1		
2 3		for evolveting of ealf responsed to be an even we have a set to be and to be and to be a set in durand
4	46	for evaluation of self-reported tobacco exposure, VOC exposure and tobacco-induced
5 6 7	47	injury profiling. Detailed information about participant's demographics, health status and
7 8 9	48	lifestyle is also collected.
10 11	49	Ethics and dissemination: The study protocol was approved institutional review
12 13 14	50	boards at both participating universities. All study protocols will protect participant
15 16	51	confidentiality. Results from the study will be disseminated via peer-reviewed journals
17 18	52	and presented at scientific conferences.
19 20	53	
21 22	54	Strengths and limitations
23 24 25	55	Young age to allow for evaluation of early stage disease (e.g. inflammation,
26 27	56	endothelial function) as opposed to end stage clinical consequence (e.g.
28 29 30	57	myocardial infarction)
31 32	58	Diverse tobacco product use allows for assessment of a wide range of tobacco-
33 34	59	induced VOC exposure
35 36 37	60	 All study visits are in English introducing selection bias
38 39	61	 Data will inform regulatory agencies on the cardiovascular health effects of
40 41 42	62	multiple tobacco products and the contribution of HPHCs
43	63	
44 45 46	64	Keywords: Tobacco, smoking, electronic cigarette, vascular injury, cardiovascular risk,
47 48	65	cigarettes.
49 50 51	66	
52 53 54 55	67	INTRODUCTION
56 57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Tobacco product use and smoking are the leading causes of preventable deaths
throughout the world. Of those deaths, one-third are attributed to cardiovascular disease
(CVD) ¹. The cardiovascular (CV) effects of tobacco exposure can include
atherogenesis, vascular injury, thrombosis, arrhythmias and inflammation ² and may be
attributable to the many different harmful and potentially harmful constituents (HPHCs)
present in tobacco products.
The HPHCs found in tobacco products include volatile organic compounds

(VOCs) of which reactive aldehydes, such as acrolein and crotonaldehyde, are likely the
most significant contributors to CV toxicity ³. High levels of aldehydes are present in
cigarette smoke ^{4 5} as well as smokeless tobacco (ST) ⁶. Risk assessments, using the
prevalence of each individual chemical weighed by its potency, suggest that the noncancer risk of smoking is dominated by acrolein, which contributes 40-100 times more
to risk than any other chemical present in cigarette smoke ³.

81 Although HPHCs, including VOC reactive aldehydes, have been suspected to be

82 major contributors to the toxicity of cigarette smoke for over 4 decades, their

83 contribution to CV injury and early CVD risk has not been rigorously evaluated.

84 Experimental studies in animal models suggest that because of low aldehyde-

85 metabolizing capacity, CV tissues are highly sensitive to aldehydes and exposure to low

86 levels of aldehydes can induce CV injury and accelerate CVD ⁷⁻¹⁸. The WHO Study

- 87 Group on Tobacco Product Regulation (TobReg) has marked acrolein, a VOC, along
- 88 with 8 other cigarette constituents for monitoring and regulation ¹⁹ and the U.S.
- 89 Environmental Protection Agency lists Acrolein as one of most hazardous air

90 pollutants²⁰. Nevertheless, the contribution of tobacco induced VOCs, including acrolein

Page 5 of 27

BMJ Open

	J Ope
or other aldehydes, toward CV toxicity in humans has not been fully assessed. Greater	J Open: first published as 10.1136/bmjopen-2017-019850 on Protected by copyright, including
understanding of how aldehydes affect cardiovascular health and disease will provide	t publi
new avenues for evaluating the toxicity of cigarette smoke and for assessing the	shed a
injurious potential of new and emerging tobacco products, such as ENDS, which may	Prot
also contain VOCs including acrolein ²¹⁻²³ .	ected
The latency period between tobacco exposure and the development of major	hjopen by cop
clinical adverse health effects is long, therefore biomarkers that provide information over	-2017- yright,
a shorter period allow for the identification of harm decades before clinical outcome data	incluc
is available. Thus, in this paper we present the design and methodology of the	Protected by copyright, including for
Cardiovascular Injury due To Tobacco Use (CITU) study which will evaluate the	Ensei r uses r
association of the urinary metabolites of 18 parent VOCs from tobacco exposure with a	relatec
comprehensive set of CV biomarkers representative of early disease and predictive of	to text
future CV events. ²⁴	t Superieu text and
METHODS AND DESIGN	data m
Overall design	ining, ,
The CITU study is an investigator-initiated cross-sectional observational study of	Al trair
around 500 healthy participants 21 to 45 years of age who are never or current tobacco	aining, and similar technologies
product users in two urban areas at Boston University (BU) and University of Louisville	nd sim
(UofL) (Boston, MA and Louisville, KY) designed to evaluate CV toxicity due to tobacco	ilar teo
product use, with correlations to VOCs found in the tobacco products (Figure 1).	chnolo
	gies.
	Al training, and similar technologies.
Participant Eligibility Criteria	
5	
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	del

BN

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
21	

,		
- 3 1	114	The goal of the study is to examine the impact of tobacco products on healthy
5	115	young adults who could be classified as a current tobacco product users (Defined in
7 3	116	table 1), or never-users (does not have lifetime use of any tobacco product).
9 0 1	117	Participants were self-reported to be healthy therefore we excluded participants if they
2 3	118	had: 1) diagnosis of clinical cardiovascular disease including but not limited to known
4 5	119	heart attack, peripheral artery disease, heart failure or stroke; 2) diagnosis of diabetes
6 7 8	120	(HbA1c >7.0 or treatment for diabetes), hypertension (systolic blood pressure >140 mm
19 20	121	Hg or diastolic blood pressure >90 mm Hg), hypothyroidism or hyperthyroidism,
21 22	122	inflammatory conditions such as lupus or inflammatory bowel disease, HIV/AIDS,
23 24 25	123	hepatitis, liver disease, anemia, cancer of any type or another medical condition that
26 27	124	might compromise the successful completion of the study; 2) recipients of organ
28 29	125	transplant or renal replacement therapy; 3) individuals that are taking the following
30 31	126	medications: immunosuppressant agents estrogen, testosterone, anti TNF agents,
32 33 34	127	certain biologics, Procrit, statins, beta-blockers or other cardiovascular medicine; 4)
85 86	128	individuals using nutraceuticals or anabolic steroids beyond the recommended daily
37 38	129	allowance; 5) body weight less than 100 pounds; 6) pregnant women; 7) prisoners and
39 10	130	other vulnerable populations; and 8) active illness or infection. Participants are
41 42 43	131	rescheduled or considered screen-failures and excluded from the study if symptomatic
14 15	132	of an acute illness, i.e. viral upper respiratory infection, on study date.
16 17	133	Table 1. Tobacco product use classifications
10		

Classification	Qualification
Never	Does not meet lifetime limits for any tobacco use (see below)
Smoker	>100 lifetime cigarettes and current use for the past year
Smokeless Tobacco User	>20 lifetime dips or chews and current use for the past year
Cigar/Cigarillo User	>20 lifetime cigars or cigarillos and current use for the past year
Pipe User	>20 lifetime pipefuls and current use for the past year

1 2			
3 4		ENDS User	>20 lifetime vape sessions and current use for the past year
5		Hookah User	>20 lifetime hookah sessions and current use for the past year
6	134	Study participants are	screened prior to enrollment for current and past tobacco product
7 8 9	135	use. Participants are c	haracterized and assigned a use group based on self-reported
10 11	136	patterns collected duri	ng the study visits.
12 13 14	137	Overall Study Proced	ure
15 16	138	Study participar	ts fast for 8 h from food and 6 h from tobacco prior to the visit. All
17 18	139	study visits occur befor	e 11AM to limit effects due to circadian changes. All vascular
19 20 21	140	function studies are co	mpleted after 10 min of supine positioning. All vascular studies
21 22 23	141	are sent to the BU cen	tral lab for analysis. BU biologic samples have minimal
24 25	142	processing and are shi	pped overnight to the UofL central laboratory at the completion of
26 27 28 29 30 31 32	143	each study visit. Samp	les obtained at UofL are processed to a similar stage, then held
	144	overnight prior to analy	rsis for standardization of time to measurement for all samples.
	145	Study visits tak	e approximately 90 minutes to complete and include a structured
33 34	146	interview on demograp	hics, socioeconomics, lifestyle, health, family history of heart
35 36 37	147	disease, allergies, and	tobacco use. (Figure 2) Participants were compensated
38 39	148	appropriately for their t	ime. All surveys are collected and kept in Research Electronic
40 41	149	Data Capture (REDCa	p), a secure web application for building and managing online
42 43 44	150	surveys and databases	6.
44 45 46	151	Exposure Variables	
47 48	152	Tobacco Product Use	& Particulate Matter Exposure
49 50	153	Comprehensive	tobacco product exposure is assessed using a modified version
51 52 53	154	of the National Health	Interview survey on tobacco use ²⁵ . The survey is modified to
54 55	155	include detailed inform	ation on electronic nicotine devices (ENDs) and other new or
56 57 58			7
59 60		For peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

emerging tobacco products. Residential addresses are collected for assessment of
ambient airborne particulate matter (PM_{2.5}) exposure and future correction of overall
exposure. PM_{2.5} data from the day of the study visit, and 3 and 5 days prior to the study
is collected from publicly available data associated with EPA monitoring stations. Other
exposure variables, including occupation, are collected through interview.

161 VOC Measurements

Humans are exposed to VOCs from a variety of sources including indoor and outdoor environments as well as diet. The most significant sources of ambient exposure ambient are air pollution, car exhaust, household products, personal hygiene products, and solvents^{26 27}. Although concurrent exposures from multiple sources could confound attribution to smoking, the levels of urinary metabolites of these VOCs in smokers far exceeds those measured in non-smokers exposed to typical sources of VOCs²⁸. Standard clean catch urine specimens are obtained from participants. Though only a single urine time point is collected, previous studies show spot urine measurements correlate well with 24-hour urine collections²⁹. Many VOC metabolites have relatively short half-lives that range from 2 - 25.2h, ^{30 31} but given the constant pattern of tobacco product use by most users, spot collection reflects recurrent use. Moreover, even though some VOC metabolites, such as HPMA, are known vary with time of day,²⁹ synchronizing the study visits and requiring a tobacco fast is likely to minimize diurnal variations in metabolism. Our past work has shown that spot-urine collected at the same time of day reliably reflects daily VOC exposure and is correlated to CVD risk³².

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March

Protected by copyright, including for uses

text gus

٩

data

mining, Al training, and similar technologies

<u>com/ on June 12, 2025 at Agence Bibliog</u>raphique de l

BES)

Common

ACETATE

3HPMA

470	Ma have de	valanad a robust Care Lab that utilizes made an attended	
178	We have developed a robust Core Lab that utilizes mass spectrometry		
179	procedures adopte	d from the Centers for Disease Control and Prevention (Cl	DC)
180	protocols, to quant	ify 23 urinary metabolites of tobacco smoking related toxin	S
181	(aldehydes and oth	ner VOCs), including acrolein ³³ (Table 2). The concentration	on valu
182	analytes are then r	normalized to urinary creatinine levels measured using Infir	nity
183	Creatinine Reagen	t (Thermo Fisher Scientific, MA) on a COBAS MIRA-plus a	analyz
184	(Roche, NJ).		
185	Table 2 Exposure	Variables (Please see end of article)	
Daras	at compound	VOC motobalita	(
Paren	nt compound	VOC metabolite	ê
Aceta	ldehyde	Acetic acid/Acetate	ŀ
Acrole	ain	N-Acetyl-S-(2-carboxyethyl)-L-cysteine	(
	511	N-Acetyl-S-(3-hydroxypropyl)-L-cysteine	3
Acryla	amide	N-Acetyl-S-(2-carbamoylethyl)-L-cysteine	ŀ
	annue	N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine	(
Acrylc	onitrile	N-Acetyl-S-(2-cyanoethyl)-L-cysteine	(
Acrylonitrile, vinyl chloride,		, N-Acetyl-S-(2-hydroxyethyl)-L-cysteine	ŀ
ethyle	ene oxide		ľ
Anabasine		Anabasine (free)	ŀ
Anatabine		Anatabine (free)	ŀ
5		N-Acetyl-S-(phenyl)-L-cysteine	F
Benze		trans, trans-Muconic acid	P

I-Bromopropane	N-Acetyl-S-(n-propyl)-L-cysteine	BPMA
	N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine	DHBMA
I,3-Butadiene	N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine	MHBMA1
, 3-Dulaulene	N-Acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine	MHBMA2
	N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine	MHBMA3
Carbon-disulfide	2-Thioxothiazolidine-4-carboxylic acid	TTCA
Crotonaldehyde	N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine	HPMMA
Cyanide	2-Aminothiazoline-4-carboxylic acid	ATCA
N,N-Dimethylformamide	N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine	MHBMA2 MHBMA3 TTCA HPMMA ATCA AMCC
Ethylbenzene, styrene	Phenylglyoxylic acid	PGA
Formaldehyde	Formate	FORMATE
	Nicotine	NIC
Nicotine	Cotinine	СОТ
	3-Hydroxycotinine	3HC
Propylene oxide	N-Acetyl-S-(2-hydroxypropyl)-L-cysteine	2HPMA
	N-Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine +	PHEMA
Styrene	N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine	
	Mandelic acid	MA
Fetrachloroethylene	N-Acetyl-S-(trichlorovinyl)-L-cysteine	TCVMA
Foluene	N-Acetyl-S-(benzyl)-L-cysteine	BMA
Frichloroothydoro	N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine	1,2DCVMA
Frichloroethylene	N-Acetyl-S-(2,2-dichlorovinyl)-L-cysteine	2,2DCVMA

		N-Acetyl-S-(2,4-dimethylphenyl)-L-cysteine +		
		N-Acetyl-S-(2,5-dimethylphenyl)-L-cysteine +	DPMA	
Xyler	e	N-Acetyl-S-(3,4-dimethylphenyl)-L-cysteine		
		2-Methylhippuric acid	2MHA	
		3-Methylhippuric acid + 4-Methylhippuric acid	3MHA+ 4MH	
186				
187	Urine is analyzed f	or 23 metabolites of 18 parent VOCs and tobacc	o alkaloids by UPLC-	
188	MS/MS. Analytes a	re listed as parent, metabolite and their commo	n abbreviation.	
189			c	
190	Circulating Marke	rs of Cardiovascular Injury		
191	To assess to	bacco product-induced cardiovascular toxicity,	we examine	
192	endothelial functior	, inflammatory mediators, biomarkers, and thror	nbosis. CV risk is	
193	defined through me	asurements of circulating angiogenic cells, lipid	profile, and glucose	
194	metabolism ^{24 34 35} .	Plasma (BD367863 and BD366415) and serum	(BD367814)	
195	samples are obtained from all participants for laboratory testing and long term			
196	biobanking. Whole blood (BD366415) is obtained for flow cytometry on fresh samples at UofL pathology core. BU biologic samples have minimal processing and are shipped overnight to the UofL central laboratory at the completion of each study visit. Samples obtained at UofL are processed to a similar stage, then held overnight prior to analysis to standardize the time to measurement for all samples. The UofL central laboratory, as			
197	UofL pathology cor	ية UofL pathology core. BU biologic samples have minimal processing and are shipped ي		
198	overnight to the UofL central laboratory at the completion of each study visit. Samples			
199	ब obtained at UofL are processed to a similar stage, then held overnight prior to analysis			
200	to standardize the	to standardize the time to measurement for all samples. The UofL central laboratory, as		
201	previously reported	previously reported, will complete fasting and biomarker measurements (Table 3), with		
202	the exception of cytomics ^{12 36} . For cytomic measurements, mononuclear cells are			
203	labeled with the pe	ipheral blood phenotyping panel kit (Fluidigm).S	Samples are shipped	
		11		

2		
3 4	204	at 4 degree C to Core Lab facilities at the University of Rochester for Mass cytometric
5 6	205	analysis.
7 8 9	206	Table 3 Blood analysis
10 11		Fasting Measurements
12 13 14		LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, glucose, uric acid, SAA and fibrinogen
15		Biomarkers
16 17 18 19 20		CAC (1-15) ¹ , Platelet-monocyte aggregates, MP (1-5) ¹ , PF4, t-PA, TxA2, Factor VII, IL-6, CRP, D-dimer, PAI-1, s-ICAM-1, s-VCAM, s-thrombomodulin, s-TNFR1, MMP-2, MMP-3, MMP-9, cytomics, endothelin, E-selectin and P-selectin
21 22 23		1: Fifteen different CAP subpopulations and 5 subtypes of microparticles were measured by flow cytometry.
25 24 25	207	All participants who complete the study visit will have blood samples taken and
26 27	208	processed. Flow cytometric analysis is completed on fresh samples. All other analysis
28 29 20	209	will be completed on biobanked samples in batches LDL= low density lipoprotein. HDL=
30 31 32	210	high density lipoprotein. SAA= serum amyloid A. CAC= circulating angiogenic cells.
33 34	211	MP= microparticles. PF4= Platelet factor 4. t-PA= tissue plasminogen activator.
35 36	212	TxA2=Thromboxane A. IL-6= Interleukin 6. CRP= C-reactive protein. PAI-=-
37 38 20	213	Plasminogen activator. s- ICAM- soluble intercellular adhesion protein inhibitor. s-
39 40 41	214	VCAM= soluble vascular adhesion protein. TNFR1= Tumor necrosis factor receptor 1.
42 43	215	MMP- Matrix metalloproteinase.
44 45	216	Non-Invasive Vascular Function Testing
46 47 48	217	Smoking, is associated with endothelial damage and vascular dysfunction ^{37 38} .
49 50	218	Endothelial cells are exposed to circulating toxins and measures of endothelial function
51 52	219	are reflective of cardiovascular injury ³⁹ . Thus, we examine the non-invasive endothelial
53 54 55	220	vasodilator function using flow-mediated vasodilation ^{40 41} , arterial stiffness with carotid-
56 57 58	221	femoral and carotid-radial pulse wave velocity ⁴² , and peripheral vascular function with 12
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 27

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

222 ankle brachial index. Flow mediated dilation was assessed with a 7.5MHZ ultrasound probe is used to image the brachial artery while a 10cm blood pressure cuff is attached 223 to the lower arm and a 3 lead ECG is attached to the patient. After baseline images and 224 10 cycles of Doppler images are captured using NIHEM R-wave triggered image 225 capturing software, the blood pressure cuff is inflated to 200mmHg or 50mmHg higher 226 than the systolic pressure. After the 5 minute occlusion, the cuff is released and the 227 NIHEM software records two minutes of imaging. Images were analyzed by a single 228 blinded analyzer using MIA vascular Research Tolls Brachial Analyzer for Research, 229 230 version 6.8.5. All vascular imagers where trained at BU who have a previously reported reproducibility with intra- and inter-observer correlation coefficients of 0.98 and 0.99 for 231 brachial diameter and 0.78 and 0.92 for FMD.⁴³ Similar equipment and software is used 232 at both sites. All vascular studies are sent to the BU central lab for analysis. 233 Anthropometric measures 234 Anthropometric measures included height, weight, waist and hip circumference 235 and body fat. All anthropometric measures are completed twice and the average 236 recorded. Standing height measurements are completed on a fixed stadiometer. Weight 237

238 measurements are completed on a digital scale to the nearest tenth of a pound. Waist

239 circumference is measured at the level of the umbilicus to the nearest tenth of a

240 centimeter. Hip circumference is measured at the maximal protrusion of the gluteal

241 muscle to the nearest tenth of a centimeter. Body fat percentage is calculated by the

bioelectrical impedance measured with the Omron fat loss monitor (HBF-306C).

243 DATA ANALYSIS

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

and data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

BMJ Open

We expect that from this study we will be able to identify specific biomarkers of cardiovascular injury due to tobacco use and the relationship of these biomarkers to specific measures of tobacco exposure. For instance, we will identify which biomarkers are affected by tobacco use, and which ones are most sensitive; including their dosedependence. Additionally we will examine the extent to which biomarkers are associated with exposure to nicotine versus exposure to HPHC of tobacco like

250 aldehydes.

251 Sample size

The sample size is justified in terms of the primary dependent measure, FMD, given the potential importance of this variable as a direct measure of the impact of tobacco exposure. The main comparisons are between non-tobacco users and tobacco users. Due to one control group, we will conservatively adjust our α (significance level) using a Bonferroni correction, and we will set α =0.01. Based on preliminary data for FMD, we have observed mean \pm SD in smoker and nonsmoker groups to be 4.0 \pm 1.6 and 6.8 ±1.0, respectively. We consider at least 25% (mean FMD=3.0 from 4.0) reduction from smokers to non-smokers is meaningful. Using a two sample, one-sided t test with an α of 0.01 and 80% power (1- β), assuming a common SD of 1.3, we will need 34 evaluable subjects in each group. We will recruit a total of 120 tobacco using participants per site. This over sampling will allow us to look at multiple endpoints and for associations with VOCs.

264 Analysis Plan

All statistical analysis will be performed using SAS version 9.4 software (SAS Institute, Inc., Cary, North Carolina), and a two-sided p-value of <0.05 will be considered Page 15 of 27

BMJ Open

significant for any statistical test. Demographics and other baseline characteristics will be summarized according to product group. Differences in VOC's between product groups will be tested using ANOVA for normally distributed data or Kruskal-Wallis test for non-normal data. The association between primary outcomes of vascular function as well as circulating markers of cardiovascular injury with individual VOC levels will be analyzed using multiple regression models, adjusting for appropriate confounders. Additionally, because we have multiple VOC's, which are highly correlated, we will use methods such as LASSO to identify the VOC's that are most associated with the outcomes of interest. Multipollutant approaches, such as principal component analysis (PCA), will be used to test whether overall VOC exposure is associated with the health outcomes. Interaction variables will be tested for in the regression models and subgroup analyses will be conducted according to the following factors: significant interactions, sex, age, race, tobacco product group. Multiple imputation method will be used for missing data where appropriate. Sensitivity analysis using different analytic approaches, such as generalized linear models, as well as considering different covariate adjustments, will be used to build concordant results. The dose-dependence of the changes in biomarkers will be determined by analyzing the data obtained from individuals that are exposed to different doses of a single product (e.g. smoking 0, <10, 10-20 and >20 cigarettes per day) and by comparing between tobacco products that have different doses of HPHC constituents. In the US the average cigarettes per day is between 10-20⁴⁴ and therefore this dose range distribution is reflective of general population exposure. Comparisons of the

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2 289 effects of novel tobacco products and smoking will be informative of the relative toxicity
 2 290 of the two products.

We believe that the methods employed in the current project are exquisitely sensitive and responsive to even low dose insults such as ambient air pollution ¹² allowing us to quantify tobacco product-induced changes with high precision. Moreover, levels of acrolein exposure vary between different individuals due to difference in puffing intensity and the time a cigarette is left smoldering. Thus, direct measurements of acrolein metabolites afford better estimates of acrolein exposure than machine yields. We expect to obtain wide variations in acrolein/crotonaldehyde exposure which will enable us to construct a dose-response relationship and identify which injury biomarkers are associated with aldehyde exposure and whether high levels of exposure are associated with high levels of injury, despite similar nicotine delivery. ETHICS AND DISSEMINATION The CITU study was approved at each institution by their institutional review board (BU #H-32613 and UofL #13.0590) and all participants provide written consent. No study related procedures will be completed until after participant consent. Participants for the CITU study are being recruited in both Boston, MA and Louisville KY. The two populations show significant differences, therefore recruitment at two sites will ensure a range more reflective of the general population. Although overall racial and ethnic demographics for both cities show a clear majority of Caucasians (70%) and despite smokers typically male, we strive to, and currently are successful in, recruiting a population that was gender balanced and almost evenly split between Caucasian and African Americans. Despite this balanced recruitment, e-cigarette users

Page 17 of 27

BMJ Open

1 2		
2 3 4	312	have been reported as predominantly Caucasian and male ⁴⁵ , and thus far our
5 6	313	recruitment mirrors these demographics. We expect very few Hispanic/Latino's to
7 8 9	314	participate, due to data suggesting tobacco use, including ENDS, tends to be lower
9 10 11	315	among Hispanic's/Latino's ^{45 46} . Thus we have also opted to only recruit English
12 13	316	speakers. We have carefully develop our recruitment strategy and exclusion criteria to
14 15	317	protect vulnerable populations, which is important since many report a lower
16 17 18	318	socioeconomic status and educational level in smokers in addition to higher rates of
19 20	319	reported alcohol and drug use ^{47 48} .
21 22	320	Our study is an observational study where participants have already assumed
23 24 25	321	the risk of using tobacco. Study procedures pose minimal risk. Given the known harms
26 27	322	associated with smoking, we will provide information on tobacco treatment when
28 29	323	requested by the participant. Participant information is de-identified for analysis and
30 31 32	324	reported in aggregate to protect privacy.
32 33 34	325	Completion of these studies will enable a greater understanding of the biological
35 36	326	responses to use of a variety of tobacco products. Specifically, they will help to identify
37 38	327	the constituents of these products; and how a panel of exposure and CV injury
39 40 41	328	biomarkers are associated with these different constituents. This data will be available
42 43	329	to the FDA and could help guide new policy measures to reduce or eliminate the
44 45	330	harmful components of tobacco smoke and other nicotine products. The study is
46 47 48	331	dedicated to the rapid dissemination of their rigorously characterized and well-controlled
49 50	332	research findings to the public in the form of peer-reviewed publications. Subsequent to
51 52	333	the initial full-length manuscript publications of the resources generated with funding
53 54 55	334	from this program, the study will make them available to interested and qualified
56 57		17
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

56 57

58 59

60

335 investigators upon written request. The study will provide relevant protocols of published

data, upon request (presuming prior publication by the Center members). Participants 336

will be provided a summary of the results as they become available. Finally press 337

releases of relevant findings will inform the general population. 338

339

LIST OF ABBREVIATIONS 340

- ABI- Ankle Brachial Index 341
- CAC= circulating angiogenic cells 342
- 343 CRP= C-reactive protein
- CVD- Cardiovascular disease 344
- ENDS- Electronic nicotine Device (i.e. e-cigarette) 345
- FACS- Fluorescence-activated cell sorting 346
- FMD- Flow mediated dilation 347
- HDL= high density lipoprotein 348
- IL-6= Interleukin 6 349
- MMP- Matrix metalloproteinase 350
- MP= micoparticles 351
- PAI-=- Plasminogen activator 352
- PF4= Platelet factor 4 353
- 354 PWV- Pulse wave velocity
- SAA= serum amyloid A 355
- 356 s-ICAM- soluble intercellular adhesion protein inhibitor
- 357 s-VCAM= soluble vascular adhesion protein

Page 19 of 27

1 2		
2 3 4	358	TNFR1= Tumor necrosis factor receptor 1
5 6	359	t-PA= tissue plasminogen activator
7 8 9	360	TxA2=Thromboxane A
9 10 11	361	VOC- Volatile organic compound
12 13	362	W:H- ratio: Waist to hip ratio
14 15 16	363	
16 17 18	364	AUTHORS CONTRIBUTIONS
19 20	365	Rachel Keith- Study design, study recruitment, study visits, statistical analysis and
21 22	366	manuscript preparation. Jessica Fetterman- study recruitment, study visits, manuscript
23 24 25	367	preparation and editing. Dan Riggs- statistical analysis, manuscript preparation and
26 27	368	editing. Tim O'Toole- Biomarker measurements, manuscript preparation and editing.
28 29	369	Jessica Nystoriak- study recruitment and study visits. Monica Holbrook- study
30 31 32	370	recruitment and study visits. Pawel Lorkiewicz- VOC measurements and manuscript
33 34	371	preparation. Aruni Bhatnagar- Study design, study funding and manuscript editing.
35 36	372	Andrew DeFilippis- Human subject assessment planning, manuscript preparation and
37 38	373	editing. Naomi M. Hamburg- Study design, study funding, vascular core, manuscript
39 40 41	374	preparation and editing.
42 43	375	COMPETING INTERESTS
44 45	376	None declared
46 47 48	377	FUNDING
49 50	378	This work was supported by the National Institutes of Health and the FDA Center for
51 52	379	Tobacco Products (CTP) grant number P50HL120163.
53 54 55	380	Acknowledgements
56 57		19
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 27

BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2		
3	381	Study design reported in this publication was supported by the AHA Tobacco
4 5		
6	382	Regulation and Addiction Center (A-TRAC) and FDA Center for Tobacco Products
7 8 9	383	(CTP). The content is solely the responsibility of the authors and does not necessarily
) 10 11	384	represent the official views of the NIH or the Food and Drug Administration.
12 13	385	REFERENCES
14 15	386	1. Rostron B. Smoking-Attributable Mortality by Cause in the United States: Revising the CDC's Data and
16	387	Estimates. <i>Nicotine Tob Res</i> 2013;15(1):238-46. doi: 10.1093/ntr/nts120
17	388	2. Morris PB, Ference BA, Jahangir E, et al. Cardiovascular Effects of Exposure to Cigarette Smoke and
18	389	Electronic Cigarettes: Clinical Perspectives From the Prevention of Cardiovascular Disease
19	390	Section Leadership Council and Early Career Councils of the American College of Cardiology. J
20	391	Am Coll Cardiol 2015;66(12):1378-91. doi: 10.1016/j.jacc.2015.07.037 [published Online First:
21	392	2015/09/19]
22 23	393	3. Haussmann HJ. Use of hazard indices for a theoretical evaluation of cigarette smoke composition.
23 24	394	Chem Res Toxicol 2012;25(4):794-810. doi: 10.1021/tx200536w [published Online First:
25	395	2012/02/23]
26	396	4. Ghilarducci DP, Tjeerdema RS. Fate and effects of acrolein. Rev Environ Contam Toxicol 1995;144:95-
27	397	146. [published Online First: 1995/01/01]
28	398	5. Dong JZ, Moldoveanu SC. Gas chromatography-mass spectrometry of carbonyl compounds in
29	399	cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine. J Chromatogr
30	400	A 2004;1027(1-2):25-35. [published Online First: 2004/02/20]
31 32	401	6. Stepanov I, Jensen J, Hatsukami D, et al. New and traditional smokeless tobacco: comparison of
33	402	toxicant and carcinogen levels. <i>Nicotine Tob Res</i> 2008;10(12):1773-82. doi:
34	403	10.1080/14622200802443544 [published Online First: 2008/11/22]
35	404	7. Awe SO, Adeagbo AS, D'Souza SE, et al. Acrolein induces vasodilatation of rodent mesenteric bed via
36	405	an EDHF-dependent mechanism. Toxicol Appl Pharmacol 2006;217(3):266-76. doi:
37	406	10.1016/j.taap.2006.08.008 [published Online First: 2006/10/31]
38	407	8. Conklin DJ, Barski OA, Lesgards JF, et al. Acrolein consumption induces systemic dyslipidemia and
39	408	lipoprotein modification. Toxicol Appl Pharmacol 2010;243(1):1-12. doi:
40 41	409	10.1016/j.taap.2009.12.010 [published Online First: 2009/12/26]
42	410	9. Conklin DJ, Bhatnagar A, Cowley HR, et al. Acrolein generation stimulates hypercontraction in isolated
43	411	human blood vessels. <i>Toxicol Appl Pharmacol</i> 2006;217(3):277-88. doi:
44	412	10.1016/j.taap.2006.09.009 [published Online First: 2006/11/11]
45	413	10. Conklin DJ, Haberzettl P, Prough RA, et al. Glutathione-S-transferase P protects against endothelial
46	414	dysfunction induced by exposure to tobacco smoke. Am J Physiol Heart Circ Physiol
47	415	2009;296(5):H1586-97. doi: 10.1152/ajpheart.00867.2008 [published Online First: 2009/03/10]
48 49	416	11. Ismahil MA, Hamid T, Haberzettl P, et al. Chronic oral exposure to the aldehyde pollutant acrolein
49 50	417	induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2011;301(5):H2050-60. doi:
51	418	10.1152/ajpheart.00120.2011 [published Online First: 2011/09/13]
52	419	12. O'Toole TE, Hellmann J, Wheat L, et al. Episodic exposure to fine particulate air pollution decreases
53	420	circulating levels of endothelial progenitor cells. <i>Circ Res</i> 2010;107(2):200-3. doi:
54	421	10.1161/circresaha.110.222679 [published Online First: 2010/07/03]
55		
56		
57 58		20
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

2		
3	422	13. O'Toole TE, Zheng YT, Hellmann J, et al. Acrolein activates matrix metalloproteinases by increasing
4	423	reactive oxygen species in macrophages. <i>Toxicol Appl Pharmacol</i> 2009;236(2):194-201. doi:
5	424	10.1016/j.taap.2009.01.024 [published Online First: 2009/04/18]
6 7	425	14. Sithu SD, Srivastava S, Siddiqui MA, et al. Exposure to acrolein by inhalation causes platelet
8	426	activation. Toxicol Appl Pharmacol 2010;248(2):100-10. doi: 10.1016/j.taap.2010.07.013
9	427	[published Online First: 2010/08/04]
10	428	15. Srivastava S, Sithu SD, Vladykovskaya E, et al. Oral exposure to acrolein exacerbates atherosclerosis
11	429	in apoE-null mice. Atherosclerosis 2011;215(2):301-8. doi: 10.1016/j.atherosclerosis.2011.01.001
12	430	[published Online First: 2011/03/05]
13 14	431	16. Tsakadze NL, Srivastava S, Awe SO, et al. Acrolein-induced vasomotor responses of rat aorta. Am J
14	432	Physiol Heart Circ Physiol 2003;285(2):H727-34. doi: 10.1152/ajpheart.00269.2003 [published
16	433	Online First: 2003/05/06]
17	434	17. Wang GW, Guo Y, Vondriska TM, et al. Acrolein consumption exacerbates myocardial ischemic injury
18	435	and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. J Mol Cell Cardiol
19	436	2008;44(6):1016-22. doi: 10.1016/j.yjmcc.2008.03.020 [published Online First: 2008/05/13]
20	437	18. Wheat LA, Haberzettl P, Hellmann J, et al. Acrolein inhalation prevents vascular endothelial growth
21 22	438	factor-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arterioscler Thromb Vasc Biol
23	439	2011;31(7):1598-606. doi: 10.1161/atvbaha.111.227124 [published Online First: 2011/04/30]
24	440	19. WHO Study Group on Tobacco Product Regulation. Report on the scientific basic of tobacco product
25	441	regulation: fourth report of a WHO study group. World Health Organ Tech Rep Ser 2012(967):1-
26	442	83, 1 p following 83. [published Online First: 2012/09/08]
27	443	20. De Woskin R, Greenberg M, Pepelko W, et al. Toxicological review of acrolein (cas no. 107-02-08) in
28 29	444	support of summary information on the integrated risk information system (Iris). <i>Washington,</i>
29 30	445 446	DC: US Environmental Protection Agency 2003 21. Kosmider L, Sobczak A, Fik M, et al. Carbonyl compounds in electronic cigarette vapors: effects of
31	440 447	nicotine solvent and battery output voltage. <i>Nicotine Tob Res</i> 2014;16(10):1319-26. doi:
32	447 448	10.1093/ntr/ntu078 [published Online First: 2014/05/17]
33	449	22. Goniewicz ML, Knysak J, Gawron M, et al. Levels of selected carcinogens and toxicants in vapour
34	450	from electronic cigarettes. <i>Tob Control</i> 2014;23(2):133-9. doi: 10.1136/tobaccocontrol-2012-
35	451	050859 [published Online First: 2013/03/08]
36 37	452	23. Wang P, Chen W, Liao J, et al. A Device-Independent Evaluation of Carbonyl Emissions from Heated
38	453	Electronic Cigarette Solvents. <i>PLoS One</i> 2017;12(1):e0169811. doi:
39	454	10.1371/journal.pone.0169811 [published Online First: 2017/01/12]
40	455	24. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and
41	456	cardiovascular risk. The New England journal of medicine 2003;348(7):593-600. doi:
42	457	10.1056/NEJMoa022287 [published Online First: 2003/02/14]
43 44	458	25. Parsons VL, Moriarity C, Jonas K, et al. Design and estimation for the national health interview
44 45	459	survey, 2006-2015. Vital Health Stat 2 2014(165):1-53. [published Online First: 2014/04/30]
46	460	26. Raysoni AU, Stock TH, Sarnat JA, et al. Evaluation of VOC concentrations in indoor and outdoor
47	461	microenvironments at near-road schools. Environ Pollut 2017;231(Pt 1):681-93. doi:
48	462	10.1016/j.envpol.2017.08.065 [published Online First: 2017/08/30]
49	463	27. Boyle EB, Viet SM, Wright DJ, et al. Assessment of Exposure to VOCs among Pregnant Women in the
50	464	National Children's Study. Int J Environ Res Public Health 2016;13(4):376. doi:
51 52	465	10.3390/ijerph13040376 [published Online First: 2016/04/05]
53	466	28. Jain RB. Distributions of selected urinary metabolites of volatile organic compounds by age, gender,
54	467	race/ethnicity, and smoking status in a representative sample of U.S. adults. Environ Toxicol
55	468	Pharmacol 2015;40(2):471-9. doi: 10.1016/j.etap.2015.07.018 [published Online First:
56	469	2015/08/19]
57		21
58 50		
59		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

2		
3	470	29. Sarkar M, Muhammad-Kah R, Liang Q, et al. Evaluation of spot urine as an alternative to 24h urine
4	471	collection for determination of biomarkers of exposure to cigarette smoke in adult smokers.
5	472	Environ Toxicol Pharmacol 2013;36(1):108-14. doi: 10.1016/j.etap.2013.03.001 [published
6 7	473	Online First: 2013/04/23]
8	474	30. Benowitz NL, Jacob P. Nicotine and cotinine elimination pharmacokinetics in smokers and
9	475	nonsmokers. Clin Pharmacol Ther 1993;53(3):316-23.
10	476	31. Fuhr U, Boettcher MI, Kinzig-Schippers M, et al. Toxicokinetics of acrylamide in humans after
11	477	ingestion of a defined dose in a test meal to improve risk assessment for acrylamide
12	478	carcinogenicity. <i>Cancer Epidemiol Biomarkers Prev</i> 2006;15(2):266-71. doi: 10.1158/1055-
13	479	9965.epi-05-0647 [published Online First: 2006/02/24]
14	480	32. DeJarnett N, Conklin DJ, Riggs DW, et al. Acrolein exposure is associated with increased
15	481	cardiovascular disease risk. J Am Heart Assoc 2014;3(4) doi: 10.1161/jaha.114.000934
16	482	[published Online First: 2014/08/08]
17 18	483	33. Alwis KU, Blount BC, Britt AS, et al. Simultaneous analysis of 28 urinary VOC metabolites using ultra
19	484	high performance liquid chromatography coupled with electrospray ionization tandem mass
20	485	spectrometry (UPLC-ESI/MSMS). Anal Chim Acta 2012;750:152-60. doi:
21	486	10.1016/j.aca.2012.04.009 [published Online First: 2012/10/16]
22	487	34. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial
23	488	progenitor cells inversely correlate with risk factors for coronary artery disease. <i>Circ Res</i>
24	489	2001;89(1):E1-7. [published Online First: 2001/07/07]
25	490	35. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells:
26	491	limitations for therapy? Arterioscler Thromb Vasc Biol 2006;26(2):257-66. doi:
27 28	492	10.1161/01.ATV.0000198239.41189.5d [published Online First: 2005/12/03]
20	493	36. DeJarnett N, Yeager R, Conklin DJ, et al. Residential Proximity to Major Roadways Is Associated With
30	494	Increased Levels of AC133+ Circulating Angiogenic Cells. Arteriosclerosis, thrombosis, and
31	495	vascular biology 2015;35(11):2468-77. doi: 10.1161/atvbaha.115.305724 [published Online First:
32	496	2015/08/22]
33	497	37. Poredos P, Orehek M, Tratnik E. Smoking is associated with dose-related increase of intima-media
34	498	thickness and endothelial dysfunction. <i>Angiology</i> 1999;50(3):201-8. [published Online First:
35	499	1999/03/24]
36 37	500	38. Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial
38	501	progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric
39	501	oxide production. J Am Coll Cardiol 2008;51(18):1760-71. doi: 10.1016/j.jacc.2008.01.040
40	502	[published Online First: 2008/05/03]
41	505	39. Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research
42	504	into clinical practice. <i>Circulation</i> 2012;126(6):753-67. doi: 10.1161/circulationaha.112.093245
43	505	[published Online First: 2012/08/08]
44	507	40. Benjamin EJ, Larson MG, Keyes MJ, et al. Clinical correlates and heritability of flow-mediated dilation
45	508	in the community: the Framingham Heart Study. <i>Circulation</i> 2004;109(5):613-9. doi:
46 47	509	10.1161/01.cir.0000112565.60887.1e [published Online First: 2004/02/11]
47 48	510	41. Vita JA. Nitric oxide-dependent vasodilation in human subjects. <i>Methods Enzymol</i> 2002;359:186-200.
49	510	[published Online First: 2002/12/17]
50		
51	512 513	42. Mitchell GF, Guo CY, Benjamin EJ, et al. Cross-sectional correlates of increased aortic stiffness in the
52		community: the Framingham Heart Study. <i>Circulation</i> 2007;115(20):2628-36. doi:
53	514 515	10.1161/circulationaha.106.667733 [published Online First: 2007/05/09]
54	515 516	43. Duffy SJ, Keaney Jr JF, Holbrook M, et al. Short-and long-term black tea consumption reverses
55	516	endothelial dysfunction in patients with coronary artery disease. <i>Circulation</i> 2001;104(2):151-
56	517	56.
57 58		22
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3	518	44. Benowitz NL, Dains KM, Dempsey D, et al. Racial differences in the relationship between number of
4	518	cigarettes smoked and nicotine and carcinogen exposure. <i>Nicotine Tob Res</i> 2011;13(9):772-83.
5	520	doi: 10.1093/ntr/ntr072 [published Online First: 2011/05/07]
6	521	45. Schoenborn CA, Gindi RM. Electronic Cigarette Use Among Adults: United States, 2014. NCHS Data
7	522	Brief 2015(217):1-8. [published Online First: 2015/11/12]
8 9	523	46. Maher J, Boysun M, Rohde K, et al. Are Latinos really less likely to be smokers? Lessons from Oregon.
10	524	Nicotine & Tobacco Research 2005;7(2):283-87. doi: 10.1080/14622200500056259
11	525	47. Barbeau EM, Krieger N, Soobader M-J. Working Class Matters: Socioeconomic Disadvantage,
12	526	Race/Ethnicity, Gender, and Smoking in NHIS 2000. Am J Public Health 2004;94(2):269-78. doi:
13	527	10.2105/AJPH.94.2.269
14	528	48. Giskes K, Kunst AE, Benach J, et al. Trends in smoking behaviour between 1985 and 2000 in nine
15 16	529	European countries by education. Journal of Epidemiology and Community Health
17	530	2005;59(5):395.
18 19	531	Figure 1. Cardiovascular Injury due to Tobacco Use
20	532	CITU is designed to assess how tobacco related VOC exposure contributes to
21 22	532 533	cardiovascular risk factors. Our exposure measurements include a panel of 23
22	535 534	urinary metabolites of 18 parent VOCs and tobacco use patterns. Cardiovascular
24	535 535	phenotyping includes measures of injury, risk, vascular biomarkers and early
25	535 536	vascular dysfunction. Tobacco use included use of traditional cigarettes,
26	530 537	smokeless tobacco, waterpipe tobacco (hookah), electronic nicotine devices
27		(ENDS), little cigars, cigarillos, pipes, cigars or any other form of tobacco that is
28	538 539	available. Enrollment began in July 2014 and is ongoing.
29 30	223	available. Enrollment began in buly 2014 and is ongoing.
31	540	Figure 2. Study Visit Design
32	541	Study flow chart for interested participants from screening through study completion.
33 34	542	Potential participants are pre-screened for eligibility prior to enrollment. Potential
34 35	543	participants are asked to fast from tobacco for a minimum of 6 hours prior to the
36	544	study visit. On the day of the visit the study lasts approximately 90 minute.
37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47		
48 49		
49 50		
51		
52		
53		
54		
55 56		
56 57		
58		23

Page 24 of 27

57 58 59

60

CITU is designed to assess how tobacco related VOC exposure contributes to cardiovascular risk factors. Our exposure measurements include a panel of 23 urinary metabolites of 18 parent VOCs and tobacco use patterns. Cardiovascular phenotyping includes measures of injury, risk, vascular biomarkers and early vascular dysfunction. Tobacco use included use of traditional cigarettes, smokeless tobacco, waterpipe tobacco (hookah), electronic nicotine devices (ENDS), little cigars, cigarillos, pipes, cigars or any other form of tobacco that is available. Enrollment began in July 2014 and is ongoing.

108x60mm (300 x 300 DPI)

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	BMJ Open: first published as 10.1136/bmjopen-2017-019850 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I
---	--

Study flow chart for interested participants from screening through study completion. Potential participants are pre-screened for eligibility prior to enrollment. Potential participants are asked to fast from tobacco for a minimum of 6 hours prior to the study visit. On the day of the visit the study lasts approximately 90 minute.

 Tobacco and food fast
 Consent and rescreen
 Detailed Surveys
 Vascul release

 T = 8 h food
 T = 15 min
 T = 30 min
 T = 30 min

108x60mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5, 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5, 7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	6-7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-12
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-12
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	14-16
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	12-14
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12-14
		(b) Describe any methods used to examine subgroups and interactions	13
		(c) Explain how missing data were addressed	13
		(d) If applicable, explain how loss to follow-up was addressed	N/A (study protocol
		(e) Describe any sensitivity analyses	13

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	N/A (study protocol)
		(b) Give reasons for non-participation at each stage	N/A (study protocol)
		(c) Consider use of a flow diagram	N/A (study protocol)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	N/A (study protocol)
		(b) Indicate number of participants with missing data for each variable of interest	N/A (study protocol)
		(c) Summarise follow-up time (eg, average and total amount)	N/A (study protocol)
Outcome data	15*	Report numbers of outcome events or summary measures over time	N/A (study protocol)
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	N/A (study protocol)
		(b) Report category boundaries when continuous variables were categorized	N/A (study protocol)
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A (study protocol)
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A (study protocol)
Discussion			
Key results	18	Summarise key results with reference to study objectives	N/A (study protocol)
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.