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Comparisons of neurodegeneration over time between healthy 
ageing and Alzheimer’s disease cohorts via Bayesian inference 

 
 
 

Marcela  I. Cespedes   · Jurgen Fripp · James M. McGree   · Christopher C. Drovandi · Kerrie  

Mengersen & James D. Doecke 

 

Abstract 
 

Objectives: In recent years, large scale longitudinal neuroimaging studies have improved our 

understanding of healthy ageing and pathologies including Alzheimer’s disease (AD). A particular 

focus of these studies is group differences and identification of subjects at risk of conversion. For 

this, statistical analysis using Linear mixed effects (LME) models are used to account for 

correlated observations from individuals measured over time. A Bayesian framework for LME 

models in AD is introduced in this paper to provide additional insight often not found in current 

LME volumetric analyses.  

Setting and participants: Longitudinal neuroimaging case study of ageing were analysed in this 

research on 260 participants diagnosed as either healthy controls (HC), mild cognitive impaired 

(MCI) or AD. Bayesian LME models for the ventricle and hippocampus regions were used to; (i) 

estimate how the volumes of these regions change over time by diagnosis, (ii) identify high risk 

non-AD individuals with AD like degeneration by ranking participants in order of volumetric rate 

of change, and (iii) determine probabilistic trajectories of diagnosis groups over age.  

Results: We observed (i) large differences in average rate of change of volume for the ventricle 

and hippocampus regions between diagnosis groups, (ii) high risk individuals who had progressed 

from HC to MCI and displayed similar rates of deterioration as AD counterparts, and (iii) critical 

time points which indicate where deterioration of regions begin to diverge between the diagnosis 

groups.  

Conclusion: To our knowledge, this is the first application of Bayesian LME models to 

neuroimaging data which provides inference on a population and individual level in the AD field. 

The application of a Bayesian LME framework, through simulation methods allows for additional 

information to be extracted from longitudinal studies. This provides health professionals with 

valuable information of neurodegeneration stages, and a potential to provide a better 

understanding of disease pathology. 
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Strengths of this study 

• The models presented in this research easily accommodate for realistic longitudinal neuroimaging settings, 

which address challenges such as; large patient drop-out (unbalanced design), large and small diagnosis 

groups and noisy MRI observations. 

• Our quantitative analysis and conclusions support those in neuroimaging and neurodegeneration literature.  

• This is the first study of its kind to incorporate data external to this analysis, in terms of prevalence rates, in 

conjunction with the statistical models to infer trajectories over age. Usually this type of inference would 

require a separate model and analysis with complete and additional data at hand. 

• Variability in model estimates are easily visualized and interpreted in terms of credible intervals, box plots 

and posterior densities. This gives health professionals and people with non-statistical backgrounds various 

options to assess uncertainty and aid in decision making process.    

Limitations of this study 

• This research does not accommodate for participants with other neurological disorders or forms of 

dementia, and assumes participants are in one of three groups; healthy control (HC), mild cognitive impaired 

(MCI) and Alzheimer’s disease (AD). 

• Participants with single observations are also assigned a degeneration rank and estimated rate of change, 

despite not having observed a rate of change in degeneration. 

• Additional covariates which are known to affect neurodegeneration were not included in this analysis, such 

as gender and genetic status. 
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1 INTRODUCTION 

 

Alzheimer’s disease (AD) is the most common form of dementia worldwide 
1
. Advances of neuroimaging 

techniques have been useful for early diagnosis of neurodegenerative disorders 
2,3

 and, coupled with mathematical 

and statistical models, provide insight to better understand healthy ageing and disease pathology degeneration.
4–6

 

The use of linear mixed effects (LME) models has been advocated by Bernal- Rusiel et al. (2013a)
7
 and more 

recently by Ziegler et al. 2015)
8
 to characterise longitudinal degeneration from neuroimaging Longitudinal 

neuroimaging Bayesian LME (BLME) models are applied in this research to provide insight into the diagnosis of AD 

over time. In this research we address three main areas; population diagnosis comparisons based on estimated 

volumetric rate of change over age, ranking of participants by order of linear volumetric rate of change, and 

probability trajectories across age of diagnosis groups, conditional on prevalence rates. 

Clinical diagnosis classification comparisons are often of interest in longitudinal neuroimaging studies.
7,9,10

 

Previous LME models of volumetric degeneration reported on comparisons assessing ranking of diagnosis levels.
7,11

 

However in these studies, the magnitude of the differences of disease progression as well as their estimated 

variances is often excluded,
7,10–13

 thus a richer insight into the differences of diagnosis levels is lacking. The BLME 

approach uses simulation techniques to draw from the posterior distribution, which is a combination of prior 

information and information from the data (through the likelihood function), to assess diagnosis group estimates 

and comparisons. These simulations quantify uncertainty and provide posterior probabilities that can be compared 

directly, without referring to significance levels or multiple statistical tests. 

The development of methods which account for large inter and intra variability of biomarkers presents a challenge 

in longitudinal neuroimaging studies.
14–16

 Furthermore, the observations of diagnosis group tends to become 

unbalanced over time which makes it difficult to deduce information of the complex AD pathway. However, insight 

into neurodegeneration of high risk participants, namely mild cognitive impairment converters, is crucial for early 

detection methods and improving diagnostic accuracy of AD.
5,17

 Several authors such as Harville and Carriquiry 

(1992),
18

 Gelman and Hill (2006)
19

 and Li et al. (2012)
20

 state BLME models have the capability to seamlessly handle 

unbalanced data and small-sample de- sign analysis. This motivates our choice of statistical framework, as we aim 

to utilise as much information as possible from the study analysed, and retain participants with a single 

observation. 

Individuals ranked by order of neurodegeneration severity allows for comparisons of progression of all 

individuals over the study time, while quantifying the uncertainty and estimating variability of individualised 

conversion rates. The application of BLME models allows for estimation of class membership probabilities and 

estimation of deterioration rates of each participant via analysis of random effects. This type of analysis is often 

overlooked in longitudinal studies of ageing.
21

 

As the field of neuroimaging in AD has been rapidly expanding in the past 20 years,
14,22–24

 it is of interest to 

incorporate as much relevant information as possible, as independent longitudinal neuroimaging studies often build 

on and support each other.
5,25,26

 This can be achieved using the Bayesian approach, as it combines external 

information with experimental data at hand, while accounting for various sources of uncertainty. Often this 

background information can be incorporated in the form of the prior, but it can also be applied after estimation of 

the model to provide additional inference from our model outcomes. In the current project, we demonstrate this 

concept by combining model information with prior knowledge obtained from prevalence studies to formulate 

probabilistic diagnosis group trajectories over age. 

Authors Jack et al. (2014)
27

 highlight the importance of population frequency or probabilistic trajectories of 

neurodegeneration groups over a wide age span. Their study quantified frequencies of expected 

neurodegeneration cases de- pendent on ages 50 to 89. Particular focus was placed on asymptomatic individuals 

(preclinical AD) who were at risk of developing AD and ages of increased frequency of convergence to AD as they 

reach their later years. While our methods can also be used for similar purposes and place emphasis on a particular 

neurodegeneration group, the goal for our final analysis is to identify critical time points where all diagnosis levels 

begin to diverge. This can aid in discovering groups or patterns in neurodegeneration consistent with healthy ageing 

or the AD pathway. Alternatively a similar analysis can also be used to compare diagnosis trajectories of different 

longitudinal neuroimgaing population studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

This paper is outlined as follows. Section 2 describes the case study, Sections 3.3 and 4.1 show an application 

of the BLME models to address multiple comparisons of various sizes from baseline diagnosis, including large 
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(healthy control, ��� = 168 people) and small groups (mild cognitive impaired, ���	 = 50	 people and Alzheimer’s 

disease, �� = 42	people at baseline). Sections 3.4 and 4.2 rank individuals by order of neurodegeneration severity, 

thereby comparing the progression of all individuals over the study time. Approximately 10% of individuals 

convert from baseline case to a worse diagnosis throughout the length of the study. This analysis allows for the 

identification of those participants who are most at risk of developing AD like rates of deterioration for the 

hippocampus and ventricle regions of the brain. The third and final area addressed in this research is presented in 

Sections 3.5 and 4.3, which estimates probabilistic diagnosis group trajectories across age, derived from 

neuroimaging information. This requires the synthesis of in- formation from the study cohort and the AD literature. 

 

2 AIBL LONGITUDINAL STUDY OF AGEING 

 

The neuroimaging data analysed in this paper were obtained from the Australian Imaging Biomarker and Lifestyle 

Study of Ageing (AIBL). This is an ongoing study which aims to discover which biomarkers such as cognitive 

assessment results, neuroimaging, lifestyle and demographic factors potentially influence subsequent development 

of AD. The sample comprises � = 260 people, who have at most four repeated observations approximately 18 

months apart. These data are highly unbalanced, since patient drop out occurs at every time point throughout the 

study, with approximately 69% of participants in the final follow up. 

Key regions of the brain which are strongly associated with neurodegeneration in relation to AD and healthy 

ageing include the lateral ventricles
28,29

 and hippocampus volumes.
3,30–33

 Atrophy due to disease pathology spreads 

throughout particular regions such as the hippocampus, which leads to a general decrease in volume over time. The 

decrease in brain matter results in an increase of cerebrospinal fluid (CSF) which bathes and cushions the brain and 

spinal cord. The lateral ventricles are filled with CSF, hence an increase of overall brain atrophy results in an increase 

of ventricle volume. Models presented here were considered separately for the lateral ventricles and the sum of the 

left and right hippocampal (hippocampus) volume derived from MRI. See Rowe et al. (2010)
34

 for details on image 

acquisition and processing. 

Brain region volumes were normalised by the intracranial volume (ICV), hence all volumes are in the (0, 1) 

interval. This accounts for the variability of different cranial sizes, while preserving the trend in volume.
35,36

 Due to 

the wide range in values and in order to eliminate numerical problems in the estimation of these models, age was 

standardised (��� −	��������)/��(���), where ��� and ��(���) are the empirical mean and standard deviations of 

the study group ages. Likewise, the hippocampus ICV response was scaled up by a factor of 100, in order to avoid 

variance estimates close to zero which can be difficult to estimate. All participants in this study were categorised as: 

healthy control (HC), mild cognitive impaired (MCI) and those with a probable diagnosis of Alzheimer’s disease (AD) at 

each time point based on neuropsychological diagnosis. The aim of these models was to capture the linear decrease 

in regional brain volume across ages for people within three diagnosis groups. 

 
3 METHODS 
 

Linear Mixed Effects (LME) models are a standard approach to modelling repeated observations from several 

individuals.
37

 Standard LME models re- quire the following assumptions to be met: a linear relationship exists 

between the response and the explanatory variables; the response and error terms at every level are Gaussian 

although for non-normal models we may extend this assumption to the exponential family and apply generalised 

linear mixed models;
38

 the variances across all levels are homoscedastic, and repeated observations for an 

individual can be correlated, but observations between people are assumed independent. The general LME model is 

of the following form, 

 

� = �� + � + 	!  (1) 
 

where � and � denote design matrices, and vectors � and   are the fixed and random effects respectively for " 
fixed and # random effects. The residual vector ! is assumed to be normally distributed with !	~	�(0, &'()), 
where () is the " × " identity matrix. The random effects vector   is assumed to be multivariate normally 
distributed,  	~	+,�(-, .), where the variance covariance matrix of the random effects is denoted by Σ. 

 
3.1 Statistical analysis 
 
In a Bayesian framework the likelihood corresponding to the model in equation (1) is 0(1|�, �, �,  , &', .),  

which is conditional on the random effects and on the model parameters. The resultant joint posterior distribution 
for the model parameters and random effects given the data is 
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 0(�,  , &', .|�, �, 1) ∝ 0(1|�, �, �,  , &', .)	0( , .)0(�)0(&')0(.).  (2) 

 

In the absence of external information, weakly informative priors, 0(�)0(&') and 0(.) were used 

throughout; refer to expression (3) in Section 3.2 for full specification of priors. Under the Bayesian paradigm all 

the assumptions stated in Section 3 remain. Furthermore as Gelman et al. (2013)
39

 and Gelman and Hill (2006)
19

 

state, additional complexity and generalisation of the LME model comes naturally under the Bayesian framework. 

Estimation of the model parameters was achieved by sampling from the joint posterior distribution using 

Markov chain Monte Carlo (MCMC) techniques
40

 which samples from the marginal posterior distributions as a by-

product. Note that the parameter estimates are obtained by integrating over the posterior distribution, rather than 

maximising the likelihood, as numerical methods to solve for integrals in high dimensions are often difficult to 

compute.
40,41

 

 

3.2 BLME in the context of the case study 

 

Following equation (1), the normalised volume is denoted by 567   for the 89: individual at the ;9: time point, 

where binary values <��	 and <� refer to the two levels of diagnosis, MCI and AD respectively with HC as the 

baseline. The Bayesian LME model for person 8 = 1, 2, … , 260 at time point ; = 1, 2, 3, 4 is given by 
 

 567|	?67 , &
'	~	�(?67 , &

') 
?67 = 	�@ +	�A<��	,67 +	�'<�,67 + �B6CDE�F��67 +	�G6CDE�F��67<��	,67 	

+ 	�H6CDE�F��67<�,67 
�I6 =	�I +	JI6 , KL"	M = 0, 3, 4, 5 
 6 	~	+,�(-, .). 

(3) 

 

Random effects  6 = [J@6 , JB6 , JG6 , JH6] denotes the 89: individuals deviation from population means �@, �B, �G  
and �H. The model in (333) allows for correlation between random effects and this is reflected by the structure of the 

priors. The residual variance and the variance-covariance matrices are designated by semi-conjugate priors 

&'	~	(P(0.001, 0.001) and .	~	Q8�ℎ�"D(S, 6) respectively, where = 1,000 × (G . The fixed effects vector 

T =	 [�@, �', �B, �G, �H]
U is assumed normal with T	~	+,�(-, 1�6,× (V). Posterior predictive plots were used as a 

measure of goodness-of-fit. This involved simulating from the posterior distribution and forming 95% credible 

intervals of the posterior predictive responses, which were compared with the observed responses. 

The R software was used to implement the Bayesian models.
42

 The rjags package
43

 implemented MCMC 

methods to estimate the parameters. Packages coda43 and ggplot2
44

 were used to analyse the MCMC chains and 

visualise the three sets of analyses presented here. All R source code for this manuscript and simulated data is 

available at github website https://github.com/MarcelaCespedes/Bayesian_inference_on_neuroimaging. 

Two independent MCMC runs were performed using different starting values; each chain ran for 300K iterations 

of which 100K were discarded as burn-in and the remaining simulations were thinned at every 509: iteration. The 

retained 8,000 simulations were used to estimate the posterior distributions. Convergence diagnostics of the 

chains included observing the trace, density and autocorrelation plots as well as the Gelman and Rubin 

diagnostic.
45

 Desirable chain mixing and convergence was observed in all diagnostics. For posterior checks and 

diagnostics refer to the supplementary material. 

 

3.3 How do HC, MCI and AD participants degenerate over time? 

 

Performing a Bayesian analysis provides a posterior distribution of the parameter which here can be used to 

estimate the rate of volumetric degeneration for each diagnosis level.
12

 In this analysis, we estimate a diagnosis 

group effect via the posterior mean of the relevant parameter, and investigate differences in these effects via 

credible intervals (about differences of these means). Other than mean diagnosis comparisons, further analysis in 

terms of mean differences of these groups is often not performed in LME volumetric neuroimaging models.
7,46

 

However as highlighted in Apostolova et al. (2012)
28

 and Holland et al. (2012)
32

, such insight allows for potential 

techniques to detect signs of AD like neurodegeneration on pre-symptomatic individuals. 
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As indicated in (3), the population rate of deterioration for each diagnosis consists of the addition of the baseline 

effect (HC) with the interaction terms for the other diagnosis groups (MCI or AD). Thus the posterior marginal 

distributions of �B for the baseline, �B +	�G, �B +	�H for MCI and AD diagnosis respectively, were compared. 

Furthermore, the order of deterioration of the diagnosis levels over both brain regions was assessed. Posterior 

probabilities were used to order parameter values, since this allows for direct probabilistic diagnosis group 

comparisons based on the MCMC output while quantifying uncertainty in the parameter estimates. Let M be the 

number of MCMC posterior draws; in our methods M = 8, 000 as described in Section 3.2. 

The probability that the rate of change for MCI degeneration is smaller than an AD diagnosis for the ventricle 

region is estimated by 

 

 W(+X( < FZ) = 	
A

�
	∑ \(�B

] −	�H
] < 0)�

]^A   (4) 

 

Where the indicator function 1 is equal to 1 if �B
] −	�H

] and 0 otherwise. Probabilities for other comparisons 

of diagnosis levels for the ventricle and hippocampus regions are computed in a similar manner; see Section 4.1 for 

full results. 
 
3.4 How to identify individuals with high levels of neurodegeneration? 

 

It is expected that individuals who are healthy (HC) will have relatively minimal deterioration while those with 

MCI or AD will show increasing levels of deterioration. Hence we would expect that the volumetric rate of change 

will reflect the neuropsychological clinical diagnosis. However as noted by Woolrich et al. (2004);
47

 Bernal-Rusiel et 

al. (2013a)
7
 and Bernal-Rusiel et al. (2013b)

48
, high inter and intra variability is often observed in longitudinal 

neuroimaging studies. For this reason, in this analysis we foresee the estimated volumetric rate of change for a few 

individuals not to group with participants of the same diagnosis and exercise caution when comparing estimated 

trajectories of individuals with a single observation. 

Participants with outlier rates of deterioration or not within range of their diagnosis levels, as well as those who 

con- verted throughout the study are of particular interest as they do  not conform to the larger gradient over time 

ordering. Thus a question of interest might be: if an individual has a high neurodegeneration rate with respect to 

their corresponding diagnosis group, are they likely to degenerate along the AD pathway? 

In the imaging sub-cohort of the AIBL study, three individuals progressed directly from HC to AD, eight people 

progressed from HC to AD and a further 16 individuals progressed from MCI to AD. These converters can be tracked 

to observe their severity with respect to the rest of the cohort. In this section, particular focus is on the converters 

who progressed from HC to MCI, and the comparison of their estimated rates of deterioration with AD participants, 

as they could be potential AD converters of neurodegeneration, to estimate their probability of remaining in such 

high rank. 

Unlike our first analysis, which compared the estimated population effect across all diagnosis levels, the focus 

here is on an individual’s rate of deterioration. The marginal posterior distributions of individual random effects 

values in the HC (�B6), MCI (�B6 +	�G6) and AD (�B6 +	�H6) groups are inspected, to estimate the rate of 

deterioration, for 8 = 1, 2, … , 260 individuals on all four time points. 

Furthermore, as discussed in Section 3.4, the ordered box plots in Fig. 4 illustrate median rankings of participants 

and illustrate the large variation between individuals. Distribution of ranks on participants take into account the 

high variation between individuals, by ranking participants at every iteration of the MCMC simulation of the 

random effects. This results in M = 8, 000 simulations on every individual and allow us to derive probabilistic 

statements on individuals of interest remaining in a specified ranking range, for example the top 159: quantile. 

This analysis was performed on both a subset of the data, using observations with the first three time points as well 

as on the full data (four time points) to investigate the change of rank probabilities over time for particular 

individuals of interest. Such analysis extends the BLME models to allow the identification of high risk converters 

among the participants analysed. Full results are described in Section 4.2. 

 

3.5 How do diagnosis trajectories vary over age? 

 

The ventricle and hippocampus models derived in (3) were used to compute probabilities W(�_|`X, ���), 
W(�_|+X(, ���) and W(�_|FZ, ���), for a specified age with volume range denoted by �_. Given information available 
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on an individual at an early age and within the limits of our data age span, we seek to answer: at this early age, for a 

given volume range (which can be constrained or unbounded), what is the probability that this new individual will be 

diagnosed as HC, MCI or AD? Moreover, how does this change as the individual ages? These probabilities are 

estimated below. 

At a given age for both ventricle and hippocampus models stated in (3) with diagnosis levels Z8��EL�8� =
{`X,+X(, FZ}, the following holds 

 
 W(FZ|�_, ���) = 	

c(d_|�,efg)c(�|efg)

∑ c(d_|�6efhij6jk,efg)c(�6efhij6jk|efg)
l
kmn

  
(5) 

 

The BLME model estimates W(�_|FZ, ���), W(�_|+X(, ���) and W(�_|`X, ���). As M is the number of 

MCMC posterior draws, then 

 
 W(�_|FZ, ���) = 	

A

�
∑ \(�_] 	 ∈ 	 �_),
�
]^A   (6) 

 

where the indicator function \ is equal to 1 if �_] 	 ∈ 	 �_ and 0 otherwise. This expression is the average number of 

predicted values �_] which fall within �_. A similar expression was used for MCI and HC diagnosis levels. Probabilities 

W(`X|���), W(+X(|���) and W(FZ|���) were obtained from Ward et al. (2012)
49

 and Refshauge and Kalisch 

(2012)
50

 for ages 60, 65, 70, 75, 80 and 85. We acknowledged that these are very broad estimates which are 

generalised over genders, genetic status and many other factors which are known to affect prevalence rates. These 

prevalence rates also do not take into account participants who develop other forms of dementia, or any other 

neuropsychological disorders. Refer to the Supplementary material for the full table of probabilities used in this 

analysis. Similar computations were performed for the other diagnosis levels, MCI and HC, to evaluate related 

probabilities. Due to the wide variability observed in the hippocampus and ventricle volumes among participants, the 

volume regions were divided into four different ranges, �_, which vary over age groups. Quantile growth curves 

discussed in Cole and Green (1992)
51

, and Koenker (2005)
52

, highlight the advantages of algorithms that can estimate 

non-crossing quantiles which are monotone increasing over age to reflect the heteroscedasticity often found in 

biological systems. In this paper we utilised the algorithm discussed in Muggeo et al. (2013)
53

, as it addresses all of 

these issues and is available via R package quantregGrowth. The �_ values of took on ranges; 75 −	1009:, 50 −
759:, 25 −	509: and 15 − 259: percentile of observed response values, as shown in Fig. 1. 

 

Fig. 1: Percentile ranges of volume across ages 60 to 85 years old, for ventricle (left) and hippocampus (right). Recall 

region volumes are normalised by the ICV value as they represent a percentage of volume within the intracranial 

cavity. Ranges up to the 1009: percentile henceforth denote the empirical maximum volume for that region. 

Volume percentiles; 75 −	1009: from blue (0.75) to top dotted line, 50 − 759: from green (0.25) to blue (0.75) 

line, 25 −	509: from red (0.25) to green (0.50) line and 15 − 259: from black (0.15) to red (0.25) line. 

 

For completeness in our analysis, volume ranges such as 5 − 259: percentile were explored. However there was 

very little difference in the probability trajectories among these volume ranges, hence we maintained the 

15 − 259: percentile range. Furthermore, we wished to avoid low volume outliers, and place emphasis on the 

degenerating trends present in the majority of the data, for biologically meaningful inferences. 

The results from applying Eq. (5) show probability trajectories of an individual being in one of the three 

diagnosis levels, across ages 60-85 within the four quantile ranges. The goal for this analysis is to identify critical 

time points where diagnosis levels begin to diverge which can aid in discovering groups or patterns in 

neurodegeneration consistent with healthy ageing or the AD pathway. Furthermore, the influence of covariates 

gender and apolipoprotein-E (APOE) was explored, by repeating this analysis on sub-groups of male, female, APOE 

positive and negative. 

 

4 RESULTS 

 

4.1 How do HC, MCI and AD participants degenerate over time? 

 

The atrophy patterns for the ventricle and hippocampus regions described in Section 2 are reflected in the 

results of the BLME models. A decrease of hippocampus volume and an increase of ventricle volume is depicted by 

the posterior densities for the rates of deterioration for the two responses as shown in Fig. 2. As expected, this 
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biological pattern across the three levels of diagnosis is reflected in Fig. 2 as well as in Tables 1 and 2. The 

ventricle population estimates of deterioration show an increase of volume as the diagnosis progressively worsens 

and the hippocampus population estimates of deterioration reflect a decreasing negative slope from HC, to MCI 

and AD. The overlapping densities are expected as individuals generally progress gradually in order of deterioration, 

from HC to MCI to AD. Despite this overlap, there are distinct differences between the average rate of volumetric 

deterioration between the three diagnoses, as seen in Table 1. 

 

Fig. 2: Posterior densities of population mean estimates of linear deterioration rate for diagnosis (top plot): HC, 

MCI and AD, for ventricle (left) and hippocampus volume (right) models. Dotted lines on bottom plots denote the 

means for each density, whose values are shown in Table 1. 

 

Tables 1 and 2 present estimated rates of change as well as the probabilities of diagnosis ordering for the 

hippocampus and ventricles. Furthermore, the difference among HC and progressed degeneration levels MCI and 

AD, show the additional annual standardised age rate of change which make these groups differences. The 

increasing credible intervals for each group as deterioration progresses from HC to MCI to AD, illustrate the 

stratified structure of different sample sizes over groups in our data. The box plots in Fig. 4 also demonstrates the 

general variability due to various diagnosis sample numbers 

 

Table 1: Top: Posterior means for rates of deterioration across three diagnosis levels for ventricle and 

hippocampus volume, credible intervals for estimates in parenthesis. Bottom: Group differences among the three 

diagnosis levels. 

  Regions: units ICV volume/StndAge 

 Parameter Ventricle Hippocampus 

HC β3 5.6e−3       (4.3e−4 , 6.3e−3 ) −1.3e−2       (−1.8e−3 , −9.6e−3 ) 

MCI β3 + β4 6.6e−3       (4.6e−3 , 8.8e−3 ) −2.2e−2       (−3.1e−2 , −1.4e−2 ) 

AD β3 + β5 9.6e-3 (5.7e-3, 1.2e-3) −2.8e−2      (−4.3e−2 , −1.5e−2 ) 

 Estimated difference of volumetric change among diagnosis groups 

HC - MCI β4 9.4e−4      (−6.7e−4 , 2.6e−3 ) −8.6e−3      (−1.8e−2 , −7.8e−4 ) 

HC - AD β5 3.8e−3     (7.9e−4 , 7.0e−3 ) −1.5e−2     (−3.0e−2 , −1.6e−3 ) 

 

Table 2: Posterior probabilities showing comparisons between HC (healthy control), MCI (mild cognitive 

impaired) and AD (Alzheimer’s disease) for ventricle and hippocampus volume. These results provide strong 

evidence regarding the order of diagnosis levels, derived from the case study. 

Ventricle P(HC<MCI) = P(0 < β4) P(MCI<AD) = P(β4 < β5 ) 

 0.980 0.991 

Hippocampus P(AD<MCI) = P(β5 < β4) P(MCI<HC) = P(β4 < 0) 

 0.806 0.985 

 

Our BLME models also allow for probability statements to be made, based on whether any of the slopes are 

greater or smaller than a biologically meaningful constant or threshold. Table 2 shows the posterior probabilities of 

deterioration ordering for the three diagnosis categories for ventricle and hippocampus volume, as computed in Eq.  

(4).4444  The large probabilities support the sequential pattern of deterioration for both regions. 

 

4.2 How to identify individuals with high levels of neurodegeneration? 

 

The rate of deterioration (as measured by the rate of change with respect to age) for the ventricle and 

hippocampus are in reverse order; large positive ventricle slopes denote high atrophy whereas low negative slope 

denote large hippocampus atrophy. Table 3 shows a snippet of the participants ranked in order of their estimated 

median posterior deterioration rate. The data available in this study are highly unbalanced; nonetheless all 

individuals are ranked despite 19 patients being observed at a single time point only. This is due to the “borrowing 

strength” aspect of mixed effects models, in that information across all time points contribute to the estimation of 

the population trends. 

 

Fig. 4 shows clusterings based on HC, MCI and AD participants, denoted by the blue, purple and red box, 

respectively. This reflects the general order of diagnosis rates of deterioration for the ventricle and hippocampus 
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volumes as shown in Fig. 2. However, there are a few individuals who do not follow this pattern, namely those in 

the small clustered group with the positive estimated levels of atrophy in the hippocampus model and participant 

ID 1122 in the ventricle model. Participant ID’s 1122 and 483 are two out of the 19 individuals who only had 

baseline measurements, so the rate of deterioration was not observed, but it was still estimated. 

 

Table 3: Ranking of individuals from largest to smallest in order of posterior expected rate of deterioration 

(�B6 	, �B6 +	�G6 , �B6 +	�H6  ) slope for all 260 participants, with 95% credible intervals in parenthesis. Snippet of table 

shows first and last five individuals, for ventricle and hippocampus volumes. Diagnosis levels; HC, MCI, AD and 

Converter (either from HC to MCI, HC to AD or MCI to AD), to identify the 27 individuals who changed diagnosis 

throughout the study, as seen in Fig. 4. 

 

 Ranking AIBL.ID Diagnosis Posterior mean rate of deterioration for individuals 

(credible intervals) 

Ventricle 1 1122 AD -1.4e-3 (-1.1e-2, 9.8e-3) 

 2 68 HC 2.3e-3 (-1.9e-3, 6.4e-3) 

 3 771 HC 2.8e-3 (-1.3e-3, 6.6e-3) 

 4 814 HC 2.9e-3 (-5.4e-4, 6.4e-3) 

 5 698 HC 2.9e-3 (-1.1e-4, 6.0e-3) 

 ... ... ... … 

 256 1032 AD 1.6e-2 (5.5e-3, 2.7e-2) 

 257 102 AD 1.6e-2 (8.1e-3, 2.4e-2) 

 258 10 AD 1.7e-2 (7.8e-3, 2.7e-2) 

 259 658 AD 1.7e-2 (9.4e-3, 2.5e-3) 

 260 1102 AD 2.3e-2 (1.5e-2, 3.2e-2) 

Hippocampus 1 10 AD -9.3e-2 (-1.6e-1, -3.7e-2) 

 2 12 AD -6.1e-2 (-9.9e-2, -2.4e-2) 

 3 1135 AD -5.7e-2 (-1.1e-2, -1.0e-2) 

 4 398 AD -5.6e-2 (-9.5e-2, -1.7e-2) 

 5 19 AD -5.4e-2 (-9.8e-2, -1.7e-2) 

 ... ... ... … 

 256 156 HC 2.0e-4 (-1.5e-2, 1.8e-2) 

 257 62 HC 4.1e-3 (-9.5e-3, 1.8e-2) 

 258 80 HC 1.0e-2 (-5.4e-3, 2.7e-2) 

 259 483 MCI 1.3e-2 (-1.9e-2, 4.6e-2) 

 260 1122 AD 1.5e-2 (-1.5e-2, 4.9e-2) 

 

There were 27 individuals who progressed from the baseline case to a worse diagnosis. Eight individuals of interest 

are those who progressed from HC to MCI and who had at least three repeated observations recorded. Their 

estimated deterioration rankings are shown in Fig. 4. The majority of the eight converters in the hippocampus 

model are scattered along the lower half of the ranking of deterioration. This suggests that their linear rates of 

hippocampus neurodegeneration are less than those of the AD patients. However patient IDs 757, 232 and 471 

were ranked approximately mid-way in this analysis, suggesting that they are approaching hippocampus rates of 

deterioration similar to AD, and out of the eight converters, they are the most at risk. 

 

Likewise for the ventricle model at the top of Fig. 4, patient ID 471 shows a ventricle rate of deterioration 

strongly similar to the AD cohort. Further investigation of patient ID 471, such as past family mental history of 

other forms of dementia, stroke or other mental illness, current cognitive status and other health related factors 

may provide further insight as to why this individual has an unusually high rate of ventricle deterioration in 

comparison with the rest of the HC to MCI converters. 

 

Fig. 3: Posterior distribution of ranks for converters ID 721, 365 and 12, for Ventricle (top) and hippocampus 

(bottom) ICV volume models. These density rankings were derived with observations from time points one to three. 

 

Fig. 3 shows the posterior distribution of ranks for participants IDs 721 and 12 who converted from MCI to AD 

at time point 4. Probabilities of these individuals ranked in the lowest 159: quantile for the ventricle volume is 

0.75 and 0.46 respectively for participants IDs 721 and 12, likewise for the hippocampus region, these probabilities 
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√

are 0.47 and 0.58. This same analysis can be performed on any quantile range for any participants of interest. 

These probabilities show that these participants are in the high neurodegeneration extreme. This same analyses 

on the full data (over four time points) result in probabilities of participants IDs 721 and 12 ranked in the top 159:  

quantile are 0.80 and 0.66 for the ventricle and 0.54 and 0.69 for the hippocampus regions. Refer to 

Supplementary material for posterior ranks distribution plots for all 27 converters. 

 

Fig. 4: Box plots of posterior distribution of random effect values for participants in AIBL study (N = 260) for full 

data (four time points). Ventricle (top) and hippocampus (bottom) rates of deterioration for each participant in the 

study. As there are 157 HC, 34 MCI, 42 AD and 27 Converters in this study, there is higher uncertainty on the rate of 

deterioration of converters, MCI and AD participants (hence longer box plots) as compared to the HC (narrower box 

plots). Eight individuals who converted from HC to MCI throughout the study are highlighted in red with 

corresponding ID numbers. 

 

4.3 How do diagnosis trajectories vary over age? 

 

The aim of these analyses is to show the relationship between a volume percentile, combined with results from 

external sources, to predict diagnosis changes over time. As described in Section 3.5, here we present the probability 

of a new individual diagnosed as either  HC, MCI or AD conditional on volume range and specified age between 60-

85 years. 

Volume ranges, 1q, were the 75 −	1009:, 50 − 759:, 25 −	509: and rs −	tsuv percentiles, as shown in Fig. 1 in 

Section 3.5. Eq. (5) established relationships W(`X|�_, ���), W(+X(|�_, ���)	and W(FZ|�_, ���) which consists of the 

output from BLME model stated in (3) in conjunction with prevalence rates from Ward et al. (2012)
49

 and Refshauge 

and Kalisch (2012)
50

. 

 

Fig. 5: Probability curves show the posterior probability of HC, MCI or AD diagnosis for the ventricle (top) and hip- 

pocampus (bottom) models, 95% interval denotes Monte Carlo error based on several simulations of the BLME mod- 

els. Total volume divided into four percentile volume ranges, as shown in Fig. 1. Percentiles; 75 −	1009:, 50 −
759:, 25 −	509: and rs −	tsuv. 

 

Uncertainty in the convergence trajectories of diagnosis levels is presented in terms of probabilities, hence no 

credible intervals can be estimated. However, there is Monte Carlo error associated with these estimates as they 

are de- rived from a finite sample from the posterior distribution. Due to simulation running time, the ventricle 

and hippocampus models in expression (3) were estimated independently w = r- times, hence every 

computation to derive the probability trajectories in this analysis was also estimated ten times in order to 

compute the Monte Carlo standard error estimates. Let the estimated quantity be denoted as x and yz be the 

standard deviation, then a 95% interval for the Monte Carlo standard error is estimated as 0̂ 	± 1.96	 ×
��(~A, ~', … , ~�)√�. As �	 → ∞, the Monte Carlo standard error tends to zero, and while practically �  must 

be finite, our narrow confidence intervals in Fig. 3.5 suggests our simulation methods are adequate for our 

application. 

The results in Fig. 5 show a large difference between HC in contrast with MCI and AD diagnosis for ages 60 to 75 

across all ventricle volume quantiles. From age 75 onwards, those individuals in the top percentile range  

(75 −	1009:) show the quickest convergence of all the diagnosis levels, who by age 85, show an approximate 

equal probability (0.30 and 0.31) of being diagnosed as MCI or AD and only a slightly higher chance (0.39) of 

remaining HC. This contrasts those participants in the lower ventricle volume range (rs −	tsuv), whose 

difference in diagnosis is vastly different towards the later ages. By age 85, there is a mean estimated 0.60 

probability of remaining HC, 0.27 probability of being classified as MCI and an approximate 0.13 probability of AD 

diagnosis. 

The hippocampus model results for this analysis are shown on the bottom of Fig. 5. Between the ages 60-70 

there is very little difference across the diagnosis patterns, suggesting individuals whose hippocampus volume lie 

above the 159: percentile have an approximately equal risk of HC, MCI or AD diagnosis. From age 70 onwards a 

noticeable difference in diagnosis trajectories is seen across all volume regions, 5 years earlier than the ventricle 

volume results. This is supported by a large body of literature
5,23,28,54–56

 as the hippocampus is affected at early 

stage of development of AD compared to other brain regions. As low hippocampus volume denotes high atrophy, 

individuals who fall in the lower range volumes, rs −	tsuv percentile, are most at risk of proceeding onto AD. 
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Individuals in the lower hippocampus volume range, at age 85 have an approximate equal chance of HC, MCI or AD, 

as shown in Fig. 5. 

Diagnosis trajectories over groups; male, female, apolipoprotein ε4 (APOE ε4) carriers and non-carriers were 

also investigated for the hippocampus and ventricle regions utilising model (3). We assumed the same prevalence 

rates within the population, for example W(+X(|���) = W(+X(|���, K�#���), hence the same broad prevalence 

rates from Ward et al. (2012)
49

 and Refshauge and Kalisch (2012)
50

 were used. Very little difference in probable 

disease trajectory across all groups between ages 60 to 85 were observed (refer to the Supplementary material 

for plots). APOE ε4 has been associated to an increased likelihood of developing AD.
57–59

 Gender differences 

regarding the prevalence of AD have also been studied.
60,61

 As the BLME models and inference derivation 

presented in this paper are the first of their kind, the objective of this analysis is to demonstrate probable 

diagnosis trajectories conditional on very broad, non-group specific prevalence rates. Future models which 

account for APOE- ε4, gender and other factors will utilise group-specific prevalence rates. However to derive the 

same inference, this would require group specific prevalence rates across ages 60-85, which are difficult to attain 

from literature. 

 

Fig. 5: Probability curves show the posterior probability of HC, MCI or AD diagnosis for the ventricle (top) and 

hippocampus (bottom) models, 95% interval denotes Monte Carlo error based on several simulations of the BLME 

models. Total volume divided into four percentile volume ranges, as shown in Fig. 1. Percentiles; 75 −	1009:, 50 −
759:, 25 −	509: and rs −	tsuv. 

 

Our results support those presented in Holland et al. (2012)
32

, whereby diagnosis trajectories for 

neurodegenerated individuals (that is those with very low hippocampus and high ventricle volume) converge at the 

highest age group, in general over the age of 85. In particular, our results support those presented in Jack et al. 

(2014)
27

 for probabilistic trajectory of beta amyloid negative and neurodegeneration positive participants. To make 

our results comparable to those from Jack et al. (2014)
27

, HC participants whose hippocampus volume is less than 

the 509: percentile are defined as neurodegeneration positive. While both methods present trajectories for 

neurogedegenration of participants over age, the BLME models presented here primarily estimate the rate of 

volumetric change for the ventricle and hippocampus regions. There are many other inferences that can be deduced 

from a combination of tapping into the vast wealth of AD research,
5,62

 coupled with the present study analysis. The 

results presented here are some of the advantages of modelling neurodegeneration through mixed effects models 

in the Bayesian framework. 

 

5 Discussion 

 

In this research we extended the level of insight commonly derived by LME models applied to longitudinal 

neuroimaging data into three key areas based on a BLME model on the ventricle and hippocampus ICV normalised 

volumes. We propose that a Bayesian approach for longitudinal neuroimaging modelling has merit for providing 

further under- standing of brain atrophy over time. These views were demonstrated using an application of BLME 

models applied to a longitudinal AIBL study. 

Comparisons of volumetric rate of change of diagnosis level trajectories were compared for HC, MCI and AD 

participants, with an estimated probability greater than 0.8 on the order of disease pathology. Ranking of 

converters in retrospect to the study cohort and diagnosis trajectories over age based on volumetric quantiles are 

the first BLME analysis of their kind applied to longitudinal neuroimaging data. This analysis identified HC to MCI 

converters most at risk of AD like rate of deterioration and posterior rank distributions provided probabilities on 

individuals of interest in the worst rsuv percentile rank for both regions. The predictive capability of future 

converters can be derived from these BLME models, as individuals with high neurodegeneration estimates would 

rank at the extremes in comparison with the remainder of the cohort. The uncertainty of their rank values among a 

specified quantile is expressed in terms of probabilities, and individuals with a high probability of ranking at 

extreme levels of neurodegeneration may be indicative of their progressive pathway to further stages of 

dementia. However to rigorously validate this analysis a richer data set with many more repeated measures and 

converters over all categories (HC to MCI or AD and MCI to AD) observed at various ages is required. 

Furthermore, the diagnosis trajectories for each volume region identified critical points in time for both ventricle 

and hippocampus degeneration from which participants are most likely to show greater deterioration rates. 

Alternatively a similar analysis can also be used to compare diagnosis trajectories of different longitudinal 

neuroimgaing population studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
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Additional analysis regarding group comparisons can be made. For example, similar probabilities for a simulated 

population mean in comparison to a biologically meaningful constant could also be inferred. An extension to 

our second analysis to allow population studies to focus on specific participants of interest and monitor their 

progression rate throughout follow-ups could assist health professionals in making informed choices with regard 

to patient care. Alternatively HC to AD converters may also be further analysed and ranked with respect to the 

cohort, to provide further clues as to why these individuals deteriorated so quickly compared with their slower 

converter counterparts. It is worth- while to note that these inference extensions would not have been possible had 

we not first attempted the research methods presented in this paper. 

A sensitivity analysis with respect to the prior information used in our analysis was conducted on both the 

ventricle and hippocampus models. This entailed re-running the MCMC sampling technique for each model based 

on various specifications of the prior information. The subsequent posterior summaries did not vary considerably 

based on different prior information. Hence, we conjecture that the results are relatively robust to the priors 

specified in this work. 

Despite every precaution taken to provide robust and reliable conclusions from the BLME models, several 

authors
7,10

 have noted the limitations and disadvantages of Bayesian statistics applied to longitudinal 

neuroimaging analysis. In particular, drawbacks of Bayesian statistics in the neuroimaging context are discussed at 

length in Grunkemeier and Payne (2002)
63

. These include subjective information that can be incorporated in the 

BLME model specification, in the way in which the prior is specified. Moreover, computational intensity is often 

far greater in the Bayesian framework than numerical methods employed in a frequentist analysis. In this paper 

we incorporated vague priors which are semi-conjugate, as we assumed no prior knowledge of the study 

analysed; the prior specification were a standard choice as suggested in Gelman and Hill (2006)
19

. The additional 

computational time taken to run both models specified in Section 3.2 was not excessive and was deemed to be 

worth the additional insight given. We predict more complex models and future extensions to the methods 

presented in this paper may result in an increase of computational time, and this will be a factor to consider for 

future BMLE models. 

Extensions to the BLME models presented in this paper include the addition of more covariates to account for 

trends and variability sources present in gender, genetic factors and additional demographic characteristics which 

are a few of the key factors known to affect AD onset and disease progression. Furthermore, as the Bayesian 

framework is ideal for handling complex models such as generalised linear mixed models
39,64

  and spatio-temporal 

interactions,
65,66

 extensions of this nature will allow for modelling biomarker deterioration rates of multiple brain 

regions simultaneously over time. 
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Fig. 1: Percentile ranges of volume across ages 60 to 85 years old, for ventricle (left) and hippocampus 
(right). Recall region volumes are normalised by the ICV value as they represent a percentage of volume 
within the intracranial cavity. Ranges up to the 100th percentile henceforth denote the empirical maximum 
volume for that region. Volume percentiles; 75-100th from blue (0.75) to top dotted line, 50-75th from 

green (0.25) to blue (0.75) line, 25-50th from red (0.25) to green (0.50) line and 15-25th from black (0.15) 
to red (0.25) line.  
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Fig. 2: Posterior densities of population mean estimates of linear deterioration rate for diagnosis (top plot): 
HC, MCI and AD, for ventricle (left) and hippocampus volume (right) models. Dotted lines on bottom plots 

denote the means for each density, whose values are shown in Table 1.  
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Fig. 3: Posterior distribution of ranks for converters ID 721, 365 and 12, for Ventricle (top) and 
hippocampus (bottom) ICV volume models. These density rankings were derived with observations from 

time points one to three.  
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Fig. 4: Box plots of posterior distribution of random effect values for participants in AIBL study (N = 260) for 
full data (four time points). Ventricle (top) and hippocampus (bottom) rates of deterioration for each 

participant in the study. As there are 157 HC, 34 MCI, 42 AD and 27 Converters in this study, there is higher 

uncertainty on the rate of deterioration of converters, MCI and AD participants (hence longer box plots) as 
compared to the HC (narrower box plots). Eight individuals who converted from HC to MCI throughout the 

study are highlighted in red with corresponding ID numbers.  
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Fig. 5: Probability curves show the posterior probability of HC, MCI or AD diagnosis for the ventricle (top) 
and hippocampus (bottom) models, 95% interval denotes Monte Carlo error based on several simulations of 
the BLME models. Total volume divided into four percentile volume ranges, as shown in Fig. 1. Percentiles; 

75- 100^th,50-75th,25- 50th and 15- 25th.  
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Supplementary Material

Please refer to website
https://github.com/MarcelaCespedes/Bayesian_inference_on_neuroimaging
for full R code (including code for plots) used in analysis outlined in the manuscript Comparisons of neurodegen-
eration over time between healthy ageing and Alzheimer’s disease cohorts via Bayesian inference.

1 Posterior Predictive checks and parameter estimates
Posterior predictive checks were carried out to assess goodness of fit and prediction capability of our models in
expression (3) of the manuscript, as predicted values were simulated from the joint posterior distribution. After
burn-in and thinning, as specified in Section 3.2 of the manuscript, each predicted value consists of 8,000 simula-
tions from which we compute the 95% credible intervals. Posterior predictive plots are shown in Figure S1. MCMC
chain diagnostics such as trace, density and auto-correlation plots as well as the Gelman and Rubin convergence
measures are available upon request.

Figure S1: Posterior predictive means versus response values with the 95% credible interval. The tight bandwidth
on all responses shows we have adequately captured the variability. As both the plots show a general diagonal
pattern of x = y for majority of the values (with the exception of a few cases), this provides evidence of accurate
predicted values from our model.
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Ventricle ESS Hippocampus ESS
β0i 7050 6709
β1i 7101 3388
β2 5152 3164
β3 3817 1932
β4i 5140 1390
β5i 5252 946
σ2 8000 2963
σ2
0 8000 2798
σ2
1 7562 1820
σ2
4 6614 845
σ2
5 5599 1278

DIC - 5822 -4271
P.P. 0.993 0.995

Table S1: Posterior proportion of response (P.P), is a proportion of predicted values which lie within 95% credible
interval of prediction values as seen in Figure S1. Effective sample size (ESS) denotes the estimated number of
independent samples (no auto-correlation) obtained in our estimated parameters. As per our burn-in and thinning
specifications stated in Section 3.2 of the manuscript, the ESS will be at most a value up to 8,000. Deviance
information criterion (DIC) is an overall measure of goodness of fit as described in Section 3.2.

2 Distribution of ranks for converters
As described in Section 4.2 of the manuscript, distribution of ranks were performed on all (27) converters of the
AIBL study, first on a subset of the first three time points; for ventricle model see Figure S2, hippocampus see
Figure S3. Similarly the distribution ranks were estimated on the whole data set, Figure S4 shows the results for
the ventricle model, and Figure S5 correspond to the hippocampus model.

Figure S2: Ventricle converters posterior distribution of ranks for the first three time points.
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Figure S3: Hippocampus converters posterior distribution of ranks for the first three time points.

Figure S4: Ventricle converters posterior distribution of ranks for full data (4 timepoints).
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Figure S5: Hippocampus converters posterior distribution of ranks for full data (4 timepoints).

3 APOE and Gender diagnosis trajectories over age
As mentioned in Section 4.3 of the manuscript, initial exploration of diagnosis trajectories over groups; male,
female, apolipoprotein ε4 (APOE ε4) carriers and non-carriers were also investigated for the ventricle and hip-
pocampus models.

The broad prevalence rates utelised for Inference 3 were derived from Ward et al. (2012); Refshauge and
Kalisch (2012) and is summarised in Table S2. Again the reader is cautioned that these are very broad estimates
of prevalence rates and are generalised over many factors including lifestyle, genetic and demographic. These
prevalence rates also do not take into account participants who develop other forms of dementia or any other
neuropsychological disorders. The authors acknowledge there are several factors which the models presented in the
manuscript do not account for. As the BLME models and inference derivation presented in this paper are the first
of its kind, the objective of Inference 3 is to demonstrate probable diagnosis trajectories conditional on very broad,
non-group specific prevalence rates. In order to account for gender and APOE ε4 status and develop diagnosis
trajectories specific to these groups, prevalence rates across ages 65-85 specific to these groups is required, which
unfortunately is difficult to find in literature. Figure S6 are the disease trajectories for models (3) in the manuscript
applied on male, female, APOE ε4 carriers and non carriers groups separately, for the ventricle and hippocampus
models. We assumed the same prevalence rates as in the manuscript.

4

Page 27 of 29

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 13, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
7 F

eb
ru

ary 2017. 
10.1136/b

m
jo

p
en

-2016-012174 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review
 only

Age HC MCI AD
60 0.945 0.037 0.018
65 0.917 0.055 0.028
70 0.859 0.096 0.045
75 0.592 0.333 0.075
80 0.518 0.357 0.125
85 0.466 0.301 0.203

Table S2: Broad prevalence rates for healthy control (HC), mild cognitive impaired (MCI) and Alzheimer’s dis-
ease taken from Ward et al. (2012); Refshauge and Kalisch (2012). These rates do not account for any lifestyle,
demographic and genetic factors as well as other forms of dementia and neuropsychological disorders which are
known to affect prevalence rates.
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Figure S6: Male, female, APOE ε4 carriers and non-carriers diagnosis trajectories for ventricle (top) and hip-
pocampus (bottom) model. Volume quantiles X1, X2, X3 and X4 denote 75-100th, 50-75th, 25-50th and 15-25th

quantiles respectively. 6
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Comparisons of neurodegeneration over time between healthy 
ageing and Alzheimer’s disease cohorts via Bayesian inference 

 
 
 

Marcela  I. Cespedes   · Jurgen Fripp · James M. McGree   · Christopher C. Drovandi · Kerrie  

Mengersen & James D. Doecke 

 

Abstract 
 

Objectives: In recent years, large scale longitudinal neuroimaging studies have improved our 

understanding of healthy ageing and pathologies including Alzheimer’s disease (AD). A particular 

focus of these studies is group differences and identification of subjects at risk of deteriorating to 

a worse diagnosis. For this, statistical analysis using Linear mixed effects (LME) models are used 

to account for correlated observations from individuals measured over time. A Bayesian 

framework for LME models in AD is introduced in this paper to provide additional insight often 

not found in current LME volumetric analyses.  

Setting and participants: Longitudinal neuroimaging case study of ageing were analysed in this 

research on 260 participants diagnosed as either healthy controls (HC), mild cognitive impaired 

(MCI) or AD. Bayesian LME models for the ventricle and hippocampus regions were used to; (i) 

estimate how the volumes of these regions change over time by diagnosis, (ii) identify high risk 

non-AD individuals with AD like degeneration, and (iii) determine probabilistic trajectories of 

diagnosis groups over age.  

Results: We observed (i) large differences in average rate of change of volume for the ventricle 

and hippocampus regions between diagnosis groups, (ii) high risk individuals who had progressed 

from HC to MCI and displayed similar rates of deterioration as AD counterparts, and (iii) critical 

time points which indicate where deterioration of regions begin to diverge between the diagnosis 

groups.  

Conclusion: To our knowledge, this is the first application of Bayesian LME models to 

neuroimaging data which provides inference on a population and individual level in the AD field. 

The application of a Bayesian LME framework allows for additional information to be extracted 

from longitudinal studies. This provides health professionals with valuable information of 

neurodegeneration stages, and a potential to provide a better understanding of disease 

pathology. 
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Strengths of this study 

• The models presented in this research address realistic challenges in a longitudinal study setting such as; 

large patient drop-out (unbalanced design), large and small diagnosis groups and noisy MRI observations.  

• This is the first study of its kind to incorporate data external to this analysis, in terms of prevalence rates, in 

conjunction with the statistical models to infer disease trajectories for brain regions over age.  

Limitations of this study 

• This research does not accommodate for participants with other neurological disorders and assumes 

participants are in one of three groups; healthy control (HC), mild cognitive impaired (MCI) and Alzheimer’s 

disease (AD). 

• Additional covariates which are known to affect neurodegeneration were not included in this analysis, such 

as gender and genetic status. 
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1 INTRODUCTION 

 

Alzheimer’s disease (AD) is the most common form of dementia worldwide
1
. Advances of neuroimaging 

techniques have been useful for early diagnosis of neurodegenerative disorders 
2,3

 and, coupled with mathematical 

and statistical models, provide insight to better understand healthy ageing and disease pathology degeneration.
4–6

 

The use of linear mixed effects (LME) models has been advocated by Bernal- Rusiel et al. (2013a)
7
 and more 

recently by Ziegler et al. (2015)
8
 to characterise longitudinal degeneration from neuroimaging data. Bayesian LME 

(BLME) models are applied in this research to provide insight into the diagnosis of AD over time. In this research we 

address three main areas; population diagnosis comparisons based on estimated volumetric rate of change over 

age, ranking of participants by order of linear volumetric rate of change, and region specific probability trajectories 

across age of diagnosis groups, conditional on prevalence rates. 

Recent state-of-the-art analysis on clinical diagnosis classification groups emphasise the need to better 

understand disease pathology in asymptomatic and early stages of AD individuals.
9–13

 A strong focus of longitudinal 

neuroimaging studies is to monitor morphological changes among healthy control (HC), mild cognitive impaired 

(MCI) and AD groups as they progress throughout the disease continuum.
7,14

  

Previous LME models of volumetric degeneration reported on comparisons assessing ranking of diagnosis 

levels.
7,15

 However, in these studies, the magnitude of the differences of disease progression as well as their 

estimated variances is often excluded,
7,14–17

 thus a richer insight into the differences of diagnosis levels is lacking. 

The BLME approach uses simulation techniques to draw from the posterior distribution, which is a combination 

of prior information and information from the data (through the likelihood function), to provide diagnosis group 

estimates and comparisons. These simulations quantify uncertainty and provide posterior probabilities that can be 

compared directly, without referring to significance levels or multiple statistical tests. 

The development of methods which account for large inter and intra variability of biomarkers presents a challenge 

in longitudinal neuroimaging studies.
18–20

 Furthermore, the observations of diagnosis group tends to become 

unbalanced over time which makes it difficult to deduce information of the complex AD pathway. However, insight 

into neurodegeneration of high risk participants, namely MCI, is crucial for early detection methods and 

improving diagnostic accuracy of AD.
5,21

 Several authors such as Harville and Carriquiry (1992),
22

 Gelman and Hill 

(2006)
23

 and Li et al. (2012)
24

 state BLME models have the capability to seamlessly handle unbalanced data and 

small-sample design analysis. This motivates our choice of statistical framework, as we aim to utilise as much 

information as possible from the study analysed, and retain participants with a single observation. 

Individuals ranked by order of neurodegeneration severity allows for comparisons of progression of all 

individuals over the study, while quantifying the uncertainty and estimating variability of individualised conversion 

rates. The application of BLME models allows for estimation of class membership probabilities and estimation of 

deterioration rates of each participant via the analysis of random effects. This type of analysis is often overlooked 

in longitudinal studies of ageing.
25

 

As the field of neuroimaging in AD has been rapidly expanding in the past 20 years,
26–29

 it is of interest to 

incorporate as much relevant information as possible, as independent longitudinal neuroimaging studies often build 

on and support each other.
5,30,31

 This can be achieved using the Bayesian approach, as it combines external 

information with experimental data at hand, while accounting for various sources of uncertainty. Often this 

background information can be incorporated in the form of the prior, but it can also be applied after estimation of 

the model to provide additional inference from our model outcomes. In the current project, we demonstrate this 

concept by combining model information with prior knowledge obtained from prevalence studies to formulate 

probabilistic diagnosis group trajectories over age. 

Authors Jack et al. (2014)
32

 highlight the importance of population frequency or probabilistic trajectories of 

neurodegeneration groups over a wide age span. Their study quantified frequencies of expected 

neurodegeneration cases dependent on ages 50 to 89. Particular focus was placed on asymptomatic individuals 

(preclinical AD) who were at risk of developing AD and ages of increased frequency of convergence to AD as they 

reach their later years. While our methods can also be used for similar purposes and place emphasis on a particular 

neurodegeneration group, the goal for our final analysis is to identify critical time points where all diagnosis levels 

begin to diverge. This can aid in discovering groups or patterns in neurodegeneration consistent with healthy ageing 
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or the AD pathway. Alternatively a similar analysis can also be used to compare diagnosis trajectories of different 

longitudinal neuroimgaing population studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

This paper is outlined as follows. Section 2 describes the case study, Sections 3.3 and 4.1 show an application 

of the BLME models to address multiple comparisons of various sizes from baseline diagnosis, including large 

(��� = 168 people) and small groups (���	 = 50	 and �� = 42	people at baseline). Sections 3.4 and 4.2 rank 

individuals by order of neurodegeneration severity, thereby comparing the progression of all individuals over the 

study time. Approximately 10% of individuals convert from baseline case to a worse diagnosis throughout the 

length of the study. This analysis allows for the identification of those participants who are most at risk of 

developing AD like rates of deterioration for the hippocampus and ventricle regions of the brain. The third and 

final area addressed in this research is presented in Sections 3.5 and 4.3, which estimates probabilistic diagnosis 

group trajectories across age, derived from neuroimaging information. This requires the synthesis of information 

from the study cohort and the AD literature. 

 

2 AIBL LONGITUDINAL STUDY OF AGEING 

 

The neuroimaging data analysed in this paper were obtained from the Australian Imaging Biomarker and Lifestyle 

Study of Ageing (AIBL). This is an ongoing study which aims to discover which biomarkers such as cognitive 

assessment results, neuroimaging, lifestyle and demographic factors potentially influence subsequent development 

of AD. The sample comprises � = 260 people, who have at most four repeated observations approximately 18 

months apart. These data are highly unbalanced, since patient drop out occurs at every time point throughout the 

study, with approximately 69% of participants in the final follow up. 

Key regions of the brain which are strongly associated with neurodegeneration in relation to AD and healthy 

ageing include the lateral ventricles
33,34

 and hippocampus volumes.
3,15,35–37

 Atrophy due to disease pathology spreads 

throughout particular regions such as the hippocampus, which leads to a general decrease in volume over time. The 

decrease in brain matter results in an increase of cerebrospinal fluid (CSF) which bathes and cushions the brain and 

spinal cord. The lateral ventricles are filled with CSF, hence an increase of overall brain atrophy results in an increase 

of ventricle volume. Models presented here were considered separately for the lateral ventricles and the sum of the 

left and right hippocampal (hippocampus) volume derived from MRI. See Rowe et al. (2010)
38

 for details on image 

acquisition and processing. While we cannot deduce entire brain neurodegeneration inferences from the analysis of 

two regions, in this research we discuss in detail the application of two well-known AD related regions, and note, the 

BLME models presented here can be easily applied to any other region of interest. 

Brain region volumes were normalised by the intracranial volume (ICV), hence all volumes are in the (0, 1) 

interval. This accounts for the variability of different cranial sizes, while preserving the trend in volume.
39,40

 Due to 

the wide range in values and in order to eliminate numerical problems in the estimation of these models, age was 

standardised (��� −	��������)/��(���), where �������� and ��(���) are the empirical mean and standard deviations of 

the study group ages. Likewise, the hippocampus ICV response was scaled up by a factor of 100, in order to avoid 

variance estimates close to zero which can be difficult to estimate. All participants in this study were categorised as: 

healthy control (HC), mild cognitive impaired (MCI) and those with a probable diagnosis of Alzheimer’s disease (AD) at 

each time point based on neuropsychological diagnosis. The aim of the BLME's was to capture the linear decrease in 

regional brain volume across ages for people within three diagnosis groups. 

 
3 METHODS 
 

LME models are a standard approach to modelling repeated observations from several individuals.
41

 Standard LME 

models require the following assumptions to be met: a linear relationship exists between the response and the 

explanatory variables; the terms at every level are Gaussian although for non-normal models we may extend this 

assumption to the exponential family and apply generalised linear mixed models;
42

 the variances across all levels 

are homoscedastic, and repeated observations for an individual can be correlated, but observations between people 

are assumed independent. The general LME model is of the following form, 

 

� = �� + � + 	!  (1) 
 

where � and � denote design matrices, and vectors � and   are the fixed and random effects respectively for " 
fixed, # random effects and a total sample size of $ observations. The residual vector ! is assumed to be normally 
distributed with !	~	&'�(0, )*+,), where +, is the $ × $ identity matrix. While our response values are constrained to 

Page 5 of 38

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 13, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
7 F

eb
ru

ary 2017. 
10.1136/b

m
jo

p
en

-2016-012174 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review
 only

5 

 

the (0, 1) range the assumptions of the model were assessed via a histogram of the residuals, scatter and quantile-quantile plots and were 
found to not deviate from our model assumptions, refer to the Supplementary material. The parameters in this analysis are in the volume 
ICV/ Standard age unit and careful back transformation is required to convert to an alternative unit, such as mm

3
/ year. The random 

effects vector   is assumed to be multivariate normally distributed,  	~	&'�(., /), where the variance covariance 
matrix of the random effects is denoted by Σ. 

 
3.1 Statistical analysis 
 
In a Bayesian framework the likelihood corresponding to the model in equation (1) is 1(�|�, �, �,  , )* , /),  

which is conditional on the random effects and on the model parameters. The resultant joint posterior distribution 
for the model parameters and random effects given the data is 

 
 1(�,  , )*, /|�, �, �) ∝ 1(�|�, �, �,  , )*, /)	1( , /)1(�)1()*)1(/).  (2) 

 

In the absence of external information, weakly informative priors, 1(�), 1()*) and 1(/) were used 

throughout; refer to expression (3) in Section 3.2 for full specification of priors. Under the Bayesian paradigm all 

the assumptions stated in Section 3 remain. Furthermore as Gelman et al. (2013)
43

 and Gelman and Hill (2006)
23

 

state, additional complexity and generalisation of the LME model comes naturally under the Bayesian framework. 

Estimation of the model parameters was achieved by sampling from the joint posterior distribution using 

Markov chain Monte Carlo (MCMC) techniques
44

 which samples from the marginal posterior distributions as a by-

product. Note that the parameter estimates are obtained by integrating over the posterior distribution, rather than 

maximising the likelihood, as numerical methods to solve integrals in high dimensions are often difficult to 

compute.
44,45

 

 

3.2 BLME in the context of the case study 

 

Following equation (1), the normalised volume is denoted by 567   for the 89: individual at the ;9: time point, 

where binary values <��	 and <� refer to the two levels of diagnosis, MCI and AD respectively with HC as the 

baseline. The Bayesian LME model for person 8 = 1, 2, … , 260 at time point ; = 1, 2, 3, 4 is given by 
 

 567|	?67 , )
*	~	�(?67 , )

*) 
?67 = 	@A +	@B<��	,67 +	@*<�,67 + @C6DE$�F��67 +	@G6DE$�F��67<��	,67 	+	@H6DE$�F��67<�,67  
@I6 =	@I +	JI6 , KL"	M = 0, 3, 4, 5 
 6 	~	&'�(., /). 

(3) 

 

Random effects  6 = [JA6 , JC6 , JG6 , JH6] denotes the 89: individuals deviation from population means @A, @C, @G  
and @H. The model in (3) allows for correlation between random effects and this is reflected by the structure of the 

priors. The residual variance and the variance-covariance matrices are designated by semi-conjugate priors 

)*	~	+P(0.001, 0.001) and /	~	Q8�ℎ�"E(S, 6) respectively, where = 1,000 × +G . The fixed effects vector 

� =	 [@A, @B, @*, @C, @G, @H]
T is assumed normal with �	~	&'�(., 1�6,× +U). Non-linear trends in Age were 

investigated in order to derive an appropriate model for our application, (refer to Supplementary material for 

further details). However, the linear predictor in expression (3) was found to approximately represent the data.  

Posterior predictive plots were used as a measure of goodness-of-fit. This involved simulating from the posterior 

distribution and forming 95% credible intervals of the posterior predictive responses, which were compared with the 

observed responses. 

The R software was used to implement the Bayesian models.
46

 The rjags package
47

 implemented MCMC 

methods to estimate the parameters. Packages coda47 and ggplot2
48

 were used to analyse the MCMC chains and 

visualise the three sets of analyses presented here. All R source code for this manuscript and simulated data is 

available at github website https://github.com/MarcelaCespedes/Bayesian_inference_on_neuroimaging. 

Two independent MCMC runs were performed using different starting values; each chain ran for 300K iterations 

of which 100K were discarded as burn-in and the remaining simulations were thinned at every 509: iteration. The 

retained 8,000 simulations were taken as samples from the posterior distribution. Convergence diagnostics of 

the chains included observing the trace, density and autocorrelation plots as well as the Gelman and Rubin 

diagnostic.
49

 Desirable chain mixing and convergence was observed in all diagnostics. In addition to the residual 
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and posterior checks, leave-one-out cross validation (LOOCV) was performed to assess the models predictive 

capability of new data, and the mean squared error (MSE) was computed on both models. In a hierarchical setting, 

the size of the data and how balanced the structure is heavily affects the relative performance of the model.
50

 For 

this reason we performed two approaches for LOOCV on the ventricle and hippocampus models. First all the 

observations for an individual were omitted from the analysis (and therefore all of their data), and this was 

repeated for all individuals. Secondly, for those participants with more than one observation (199 participants in 

our data set), a single observation was randomly removed from the analysis, refer to the Supplementary material 

for full results. In practice we wish to minimise the MSE, as it comprises of the sum of the variance, bias squared 

and irreducible error. Both LOOCV approaches demonstrated low MSE values, which supports our model choice, 

refer to Supplementary material for full details. 

For comparison, the research questions addressed here were attempted with model (3) fitted in the classical 

framework for both regions. Sections 3.5, 4.2, 4.3 discuss the results for each analysis 

 

3.3 How do HC, MCI and AD participants degenerate over time? 

 

Performing a Bayesian analysis provides a posterior distribution of the parameter which here can be used to 

estimate the rate of volumetric degeneration for each diagnosis level.
16

 In this analysis, we estimate a diagnosis 

group effect via the posterior mean of the relevant parameter, and investigate differences in these effects via 

credible intervals (about differences of these means). Other than mean diagnosis comparisons, further analysis in 

terms of mean differences of these groups is often not performed in LME volumetric neuroimaging models.
7,51

 

However as highlighted in Apostolova et al. (2012)
33

 and Holland et al. (2012)
15

, such insight allows for potential 

techniques to detect signs of AD like neurodegeneration on pre-symptomatic individuals. 

As indicated in (3), the population rate of deterioration for each diagnosis consists of the addition of the baseline 

effect (HC) with the interaction terms for the other diagnosis groups (MCI or AD). Thus the posterior marginal 

distributions of @C for the baseline, @C +	@G, @C +	@H for MCI and AD diagnosis respectively, were compared. 

Furthermore, the order of deterioration of the diagnosis levels over both brain regions was assessed. Posterior 

probabilities were used to order parameter values, since this allows for direct probabilistic diagnosis group 

comparisons based on the MCMC output while quantifying uncertainty in the parameter estimates. Let M be the 

number of MCMC posterior draws; in our methods M = 8, 000 as described in Section 3.2. 

The probability that the rate of change for MCI degeneration is smaller than an AD diagnosis for the ventricle 

region is estimated by 

 
 V(&W+ < FY) = 	

B

�
	∑ [(@G

\ −	@H
\ < 0)�

\]B ,  (4) 

 

where the indicator function [ is equal to 1 if @G
\ −	@H

\ < 0 and 0 otherwise. Probabilities for other 

comparisons of diagnosis levels for the ventricle and hippocampus regions are computed in a similar manner; see 

Section 4.1 for full results. 
 

3.4 How to identify individuals with high levels of neurodegeneration? 

 

It is expected that individuals who are healthy (HC) will have relatively minimal deterioration while those with 

MCI or AD will show increasing levels of deterioration. Hence we would expect that the volumetric rate of change 

will reflect the neuropsychological clinical diagnosis. However as noted by Woolrich et al. (2004);
52

 Bernal-Rusiel et 

al. (2013a)
7
 and Bernal-Rusiel et al. (2013b)

53
, high inter and intra variability is often observed in longitudinal 

neuroimaging studies. For this reason, in this analysis we foresee the estimated volumetric rate of change for a few 

individuals not to group with participants of the same diagnosis and exercise caution when comparing estimated 

trajectories of individuals with a single observation. 

Participants with outlier rates of deterioration or not within range of their diagnosis levels, as well as those who 

converted throughout the study are of particular interest as they do  not conform to the overall trend over time 

ordering. Thus a question of interest might be: if an individual has a high neurodegeneration rate with respect to 

their corresponding diagnosis group, are they likely to degenerate along the AD pathway? 

In our data, one individual progressed directly from HC to AD, two were observed to follow the full spectrum (HC 

to MCI to AD throughout all four follow-ups), eight people progressed from HC to MCI and a further 16 individuals 
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progressed from MCI to AD. These converters can be tracked to observe their severity with respect to the rest of 

the cohort. In this section, particular focus is on the converters who progressed from HC to MCI, and the 

comparison of their estimated rates of deterioration with AD participants, as they could be potential AD converters 

and estimate their probability of remaining in such high rank. 

Unlike our first analysis, which compared the estimated population effect across all diagnosis levels, the focus 

here is on an individual’s rate of deterioration. The marginal posterior distributions of individual random effects 

values in the HC (@C6), MCI (@C6 +	@G6) and AD (@C6 +	@H6) groups are inspected, to estimate the rate of 

deterioration, for 8 = 1, 2, … , 260 individuals on all four time points. 

Furthermore, as discussed in Section 3.4, the ordered box plots in Fig. 4 illustrate median rankings of participants 

and illustrate the large variation between individuals. Distribution of ranks on participants take into account the 

high variation between individuals, by ranking participants at every iteration of the MCMC simulation of the 

random effects. This results in M = 8, 000 simulations on every individual and allow us to derive probabilistic 

statements on individuals of interest remaining in a specified ranking range, for example the top 159: quantile. 

This analysis was performed on both a subset of the data, using observations with the first three time points as well 

as on the full data (four time points) to investigate the change of rank probabilities over time for particular 

individuals of interest. Such analysis extends the BLME models to allow the identification of high risk converters 

among the participants analysed. Full results are described in Section 4.2. 

 

3.5 How do diagnosis trajectories vary over age? 

 

The ventricle and hippocampus models derived in (3) were used to compute probabilities V( _̂|`W, ���), 
V( _̂|&W+, ���) and V( _̂|FY, ���), for a specified age with volume range denoted by _̂. Given information available 

on an individual at an early age and within the limits of our data age span, we seek to answer: at this early age, for a 

given volume range, what is the probability that this new individual will be diagnosed as HC, MCI or AD? Moreover, 

how does this change as the individual ages? These probabilities are estimated below. 

At a given age for both ventricle and hippocampus models stated in (3) with diagnosis levels Y8��$L�8� =
{`W,&W+, FY}, the following holds 

 
 V(FY| _̂, ���) = 	

c(d_|�,efg)c(�|efg)

∑ c(d_|�6ef,hi6ij,efg)c(�6ef,hi6ij|efg)
k
jlm

  (5) 

 

The BLME model estimates V( _̂|FY, ���), V( _̂|&W+, ���) and V( _̂|`W, ���). As M is the number of 

MCMC posterior draws, then 

 
 V( _̂|FY, ���) = 	

B

�
∑ [( _̂\ 	 ∈ 	 _̂),
�
\]B   (6) 

 

where the indicator function [ is equal to 1 if _̂\ 	 ∈ 	 _̂ and 0 otherwise. This expression is the average number of 

predicted values _̂\ which fall within _̂. A similar expression was used for MCI and HC diagnosis levels. Probabilities 

V(`W|���), V(&W+|���) and V(FY|���) were obtained from Ward et al. (2012)
54

 and Refshauge and Kalisch 

(2012)
55

 for ages 60, 65, 70, 75, 80 and 85. We acknowledged that these are very broad estimates which are 

generalised over genders, genetic status and many other factors which are known to affect prevalence rates. These 

prevalence rates also do not take into account participants who develop other forms of dementia, or any other 

neuropsychological disorders. Refer to the Supplementary material for the full table of probabilities used in this 

analysis. Similar computations were performed for the other diagnosis levels, MCI and HC, to evaluate related 

probabilities. Due to the wide variability observed in the hippocampus and ventricle volumes among participants, the 

volume regions were divided into four different ranges, _̂, which vary over age groups. Quantile growth curves 

discussed in Cole and Green (1992)
56

, and Koenker (2005)
57

, highlight the advantages of algorithms that can estimate 

non-crossing quantiles which are monotone increasing over age to reflect the heteroscedasticity often found in 

biological systems. In this paper we utilised the algorithm discussed in Muggeo et al. (2013)
58

, as it addresses all of 

these issues and is available via R package quantregGrowth. The _̂ values of took on ranges; 75 −	1009:, 50 −
759:, 25 −	509: and 15 − 259: percentile of observed response values, as shown in Fig. 1. 

 

*** Figure 1 *** 
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For completeness in our analysis, volume ranges such as 5 − 259: percentile were explored. However there was 

very little difference in the probability trajectories among these volume ranges, hence we maintained the 

15 − 259: percentile range. Furthermore, we wished to avoid low volume outliers, and place emphasis on the 

degenerating trends present in the majority of the data, for biologically meaningful inferences. 

The results from applying Eq. (5) show probability trajectories of an individual being in one of the three 

diagnosis levels, across ages 60-85 within the four quantile ranges. The goal for this analysis is to identify critical 

time points where diagnosis levels begin to diverge which can aid in discovering groups or patterns in 

neurodegeneration consistent with healthy ageing or the AD pathway. Furthermore, the influence of covariates 

gender and apolipoprotein-E (APOE) was explored, by repeating this analysis on sub-groups of male, female, APOE 

positive and negative. 

A similar analysis cannot be performed with a classical LME model, as the method of maximation of the 

likelihood does not allow for the straightforward computation of probabilities V(`W| _̂, ���), V(&W+| _̂, ���) and 

V(FY| _̂, ���). Another drawback of the classical approach is that it does not lend itself to the incorporation of 

relevant additional external data, to further extend statistical inference. 

 

4 RESULTS 

 

4.1 How do HC, MCI and AD participants degenerate over time? 

 

The atrophy patterns for the ventricle and hippocampus regions described in Section 2 are reflected in the 

results of the BLME models. A decrease of hippocampus volume and an increase of ventricle volume is depicted by 

the posterior densities for the rates of deterioration for the two responses as shown in Fig. 2. As expected, this 

biological pattern across the three levels of diagnosis is reflected in Fig. 2 as well as in Tables 1 and 2. The 

ventricle population estimates of deterioration show an increase of volume as the diagnosis progressively worsens 

and the hippocampus population estimates of deterioration reflect a decreasing negative slope from HC, to MCI 

and AD. The overlapping densities are expected as individuals generally progress gradually in order of deterioration, 

from HC to MCI to AD. Despite this overlap, there are distinct differences between the average rate of volumetric 

deterioration between the three diagnoses, as seen in Table 1. 

 

*** Figure 2 *** 

 

Tables 1 and 2 present estimated rates of change as well as the probabilities of diagnosis ordering for the 

hippocampus and ventricles. Furthermore, the difference among HC and degeneration levels MCI and AD, show 

the additional annual standardised age rate of change from baseline. The increasing range of the credible intervals 

for each group as deterioration progresses from HC to MCI to AD, illustrate the stratified structure of different 

sample sizes over groups in our data. The box plots in Fig. 4 also demonstrates the general variability due to 

various diagnosis sample numbers 

 

Table 1: Top: Posterior means for rates of deterioration across three diagnosis levels for ventricle and 

hippocampus volume, credible intervals for estimates in parenthesis. Bottom: Group differences among the three 

diagnosis levels. 

  Regions: units ICV volume/StndAge × 10p* 

 Parameter Ventricle Hippocampus 

HC @C 0.56	(0.43, 0.63) −1.3	(−1.8, −0.094) 
MCI @C +	@G 0.66	(0.46, 0.88) −2.1	(−2.9,−1.4) 
AD @C +	@H 0.96	(0.57, 1.2) −2.4	(−3.7,−1.3) 

 Estimated difference of volumetric change among diagnosis groups 

HC - MCI @G 0.094	(−0.072, 0.23) -0.81	(−1.7,−0.078) 
HC - AD @H 0.38	(0.079, 0.70) −1.4	(−2.5, 0.0011) 

 

Table 2: Posterior probabilities showing comparisons between HC (healthy control), MCI (mild cognitive 

impaired) and AD (Alzheimer’s disease) for ventricle and hippocampus volume. These results provide strong 

evidence regarding the order of diagnosis levels, derived from the case study. 

Ventricle P(HC<MCI) = P(0 < @G) P(MCI<AD) = P(@G <	@H ) 
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 0.980 0.991 

Hippocampus P(AD<MCI) = P(@H <	@G) P(MCI<HC) = P(@H < 0) 

 0.685 0.985 

 

Our BLME models also allow for probability statements to be made, based on whether any of the slopes are 

greater or smaller than a biologically meaningful constant or threshold. Table 2 shows the posterior probabilities of 

deterioration ordering for the three diagnosis categories for ventricle and hippocampus volume, as computed in Eq.  

(4).  The large probabilities support the sequential pattern of deterioration for both regions. 

Group comparisons are generally done via hypothesis tests in a classical LME and do not allow for probability 

statements of group ordering or provide visualization on the distribution of the three groups which quantify the 

variability in the varying group sizes. The results presented in Table 1 support our hypothesis test results (full analysis 

in Supplementary material), which show MCI and AD slope were significantly different from baseline for the 

hippocampus model, whereas only AD slope was significant for the ventricle model. While both classical and 

Bayesian results can be compared in Table 1, Table 2 and the bottom of Figure 2 can only be produced under the 

Bayesian framework. 

 

4.2 How to identify individuals with high levels of neurodegeneration? 

 

The rate of deterioration (as measured by the rate of change with respect to age) for the ventricle and 

hippocampus are in reverse order; large positive ventricle slopes denote high atrophy whereas low negative slope 

denote large hippocampus atrophy. Table 3 shows a snippet of the participants ranked in order of their estimated 

median posterior deterioration rate. The data available in this study are highly unbalanced; nonetheless all 

individuals are ranked despite 19 patients being observed at a single time point only. This is due to the “borrowing 

strength” aspect of mixed effects models, in that information across all time points contribute to the estimation of 

the population trends. 

 

Fig. 4 shows clusterings based on HC, MCI and AD participants, denoted by the blue, purple and red box plots, 

respectively. This reflects the general order of diagnosis rates of deterioration for the ventricle and hippocampus 

volumes as shown in Fig. 2. However, there are a few individuals who do not follow this pattern, namely those in 

the small clustered group with the positive estimated levels of atrophy in the hippocampus model and participant 

ID 1122 in the ventricle model. Participant ID’s 1122 and 483 are two out of the 19 individuals who only had 

baseline measurements, so the rate of deterioration was not observed, but it was still estimated. The same analysis 

was conducted with a classical LME model and Figure 4 and Table 3 were replicated, refer to the Supplementary 

material. We found strong similarities with the ranking of the eight converters of interest on both hippocampus 

and ventricle models.  

 

Table 3: Ranking of individuals from largest to smallest in order of posterior expected rate of deterioration 

(@C6 	, @C6 +	@G6 , @C6 +	@H6  ) slope for all 260 participants, with 95% credible intervals in parenthesis. Snippet of table 

shows first and last five individuals, for ventricle and hippocampus volumes. Diagnosis levels; HC, MCI, AD and 

Converter (either from HC to MCI, HC to AD or MCI to AD), to identify the 27 individuals who changed diagnosis 

throughout the study, as seen in Fig. 4. 

 

 Ranking AIBL.ID Diagnosis Posterior mean rate of deterioration for individuals 

(credible intervals ) × 10p* 

Ventricle 1 1122 AD −0.14	(−1.1, 0.98)  
 2 68 HC 0.23	(−0.19, 0.64) 
 3 771 HC 0.28	(−0.13, 0.66) 
 4 814 HC 0.29	(−0.054, 0.064) 
 5 698 HC 0.29	(−0.011, 0.60) 
 ... ... ... … 

 256 1032 AD 1.6	(0.55, 2.7) 

 257 102 AD 1.6	(0.81, 2.4) 

 258 10 AD 1.7	(0.78, 2.7) 

 259 658 AD 1.7	(0.94, 2.5) 

 260 1102 AD 2.3	(1.5, 3.2) 
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Hippocampus 1 10 AD −9.3	(−16,−3.7) 
 2 12 AD −6.1	(−9.9, −2.4) 
 3 1135 AD −5.7	(−1.1 − 1.0) 
 4 398 AD −5.6	(−9.5, −1.7) 
 5 19 AD −5.4	(−9.8, −1.7) 
 ... ... ... … 

 256 156 HC 0.02	(−1.5, 1.8) 
 257 62 HC 0.41	(−0.95, 1.8) 
 258 80 HC 1.0	(−0.54, 2.7) 
 259 483 MCI 1.2	(−1.9, 4.6) 
 260 1122 AD 1.5	(−1.5, 4.9) 

 

There were 27 individuals who progressed from baseline to a worse diagnosis. Eight individuals of interest are 

those who progressed from HC to MCI and who had at least three repeated observations recorded. Their 

estimated deterioration rankings are shown in Fig. 4. The majority of the eight converters in the hippocampus 

model are scattered along the lower half of the ranking of deterioration. This suggests that their linear rates of 

hippocampus neurodegeneration are less than those of the AD patients. However patient IDs 757, 232 and 471 

were ranked approximately mid-way in this analysis, suggesting that they are approaching hippocampus rates of 

deterioration similar to AD, and out of the eight converters, they are the most at risk. 

 

Likewise for the ventricle model at the top of Fig. 4, patient ID 471 shows a ventricle rate of deterioration 

strongly similar to the AD cohort. Further investigation of patient ID 471, such as past family mental history of 

other forms of dementia, stroke or other mental illness, current cognitive status and other health related factors 

may provide further insight as to why this individual has an unusually high rate of ventricle deterioration in 

comparison with the rest of the HC to MCI converters. 

 

*** Figure 3 *** 

 

Fig. 3 shows the posterior distribution of ranks for participants IDs 721 and 12 who converted from MCI to AD 

at time point 4. Probabilities of these individuals ranked in the lowest 159: quantile for the ventricle volume is 

0.75 and 0.46 respectively for participants IDs 721 and 12, likewise for the hippocampus region, these probabilities 

are 0.47 and 0.58. This same analysis can be performed on any quantile range for any participants of interest. 

These probabilities show that these participants are in the high neurodegeneration extreme. This same analyses 

on the full data (over four time points) result in probabilities of participants IDs 721 and 12 ranked in the top 159:  

quantile are 0.80 and 0.66 for the ventricle and 0.54 and 0.69 for the hippocampus regions. Refer to 

Supplementary material for posterior ranks distribution plots for all 27 converters. Under the classical 

implementation of model (3) the distribution of ranks for participants cannot be derived. Once participant ranking 

is estimated, no probability statements can be made to further analyse individuals at the high or low ranking 

extremes, and compare for example the high and low 159: quantile extremes. Refer to the Supplementary 

material for the classical model results. 

 

*** Figure 4 *** 

 

4.3 How do diagnosis trajectories vary over age? 

 

The aim of these analyses is to show the relationship between a volume percentile, combined with results from 

external sources, to predict region specific diagnosis changes over time. As described in Section 3.5, here we present 

the probability of a new individual diagnosed as either HC, MCI or AD conditional on volume range and specified age 

between 60-85 years. 

Volume ranges, _̂, were the 75 −	1009:, 50 − 759: , 25 −	509: and 15 −	259: percentiles, as shown in Fig. 1 in 

Section 3.5. Eq. (5) established relationships V(`W| _̂, ���), V(&W+| _̂, ���)	and V(FY| _̂, ���) which consists of the 

output from BLME model stated in (3) in conjunction with prevalence rates from Ward et al. (2012)
54

 and Refshauge 

and Kalisch (2012)
55

. 

 

*** Figure 5 *** 
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Uncertainty in the convergence trajectories of diagnosis levels is presented in terms of probabilities, hence no 

credible intervals can be estimated. However, there is Monte Carlo error associated with these estimates as they 

are derived from a finite sample from the posterior distribution. The ventricle and hippocampus models in 

expression (3) were estimated independently r = 10 times, hence every computation to derive the probability 

trajectories in this analysis was also estimated ten times in order to compute the Monte Carlo standard error 

estimates. Let the estimated quantity be denoted as s and �� be the standard deviation, then a 95% interval for 

the Monte Carlo standard error is estimated as 1̂ 	± 1.96	 × ��(sB, s*, … , sv)√r. As r	 → ∞, the Monte Carlo 

standard error tends to zero, and while practically r  must be finite, our narrow confidence intervals in Fig. 3.5 

suggests our simulation methods are adequate for our application. 

The results in Fig. 5 show a large difference between HC in contrast with MCI and AD diagnosis for ages 60 to 75 

across all ventricle volume quantiles. From age 75 onwards, those individuals in the top percentile range  

(75 −	1009:) show the quickest convergence of all the diagnosis levels, who by age 85, show an approximate 

equal probability (0.30 and 0.31) of being diagnosed as MCI or AD and only a slightly higher chance (0.39) of 

remaining HC. This contrasts those participants in the lower ventricle volume range (15 −	259:), whose 

difference in diagnosis is vastly different towards the later ages. By age 85, there is a mean estimated 0.60 

probability of remaining HC, 0.27 probability of being classified as MCI and an approximate 0.13 probability of AD 

diagnosis. 

The hippocampus model results for this analysis are shown on the bottom of Fig. 5. Between the ages 60-70 

there is very little difference across the diagnosis patterns, suggesting individuals whose hippocampus volume lie 

above the 159: percentile have an approximately equal risk of HC, MCI or AD diagnosis. From age 70 onwards a 

noticeable difference in diagnosis trajectories is seen across all volume regions, 5 years earlier than the ventricle 

volume results. This is supported by a large body of literature
5,33,59–62

 as the hippocampus is affected at early stage 

of development of AD compared to other brain regions. As low hippocampus volume denotes high atrophy, 

individuals who fall in the lower range volumes, 15 −	259: percentile, are most at risk of proceeding onto AD. 

Individuals in the lower hippocampus volume range, at age 85 have an approximate equal chance of HC, MCI or AD, 

as shown in Fig. 5. 

Diagnosis trajectories over groups; male, female, apolipoprotein ε4 (APOE ε4) carriers and non-carriers were 

also investigated for the hippocampus and ventricle regions utilising model (3). We assumed the same prevalence 

rates within the population, for example V(&W+|���) = V(&W+|���, K�#�z�), hence the same broad prevalence 

rates from Ward et al. (2012)
54

 and Refshauge and Kalisch (2012)
55

 were used. Very little difference in probable 

disease trajectory across all groups between ages 60 to 85 were observed (refer to the Supplementary material 

for plots). APOE ε4 has been associated to an increased likelihood of developing AD.
63–65

 Gender differences 

regarding the prevalence of AD have also been studied.
66,67

 As the BLME models and inference derivation 

presented in this paper are the first of their kind, the objective of this analysis is to demonstrate probable 

diagnosis trajectories conditional on very broad, non-group specific prevalence rates. Future models which 

account for APOE- ε4, gender and other factors will utilise group-specific prevalence rates. However to derive the 

same inference, this would require group specific prevalence rates across ages 60-85, which are difficult to attain 

from literature. 

Our results support those presented in Holland et al. (2012)
15

, whereby diagnosis trajectories for 

neurodegenerated individuals (that is those with very low hippocampus and high ventricle volume) converge at the 

highest age group, in general over the age of 85. In particular, our results support those presented in Jack et al. 

(2014)
32

 for probabilistic trajectory of beta amyloid negative and neurodegeneration positive participants. To make 

our results comparable to those from Jack et al. (2014)
32

, HC participants whose hippocampus volume is less than 

the 509: percentile are defined as neurodegeneration positive. While both methods present trajectories for 

neurogedegenration of participants over age, the BLME models presented here primarily estimate the rate of 

volumetric change for the ventricle and hippocampus regions. There are many other inferences that can be deduced 

from a combination of tapping into the vast wealth of AD research,
5,68

 coupled with the present study analysis. The 

results presented here are some of the advantages of modelling neurodegeneration through mixed effects models 

in the Bayesian framework. 

 

5 Discussion 

 

In this research, we extended the level of insight commonly derived by LME models applied to longitudinal 

neuroimaging data into three key areas based on a BLME model on the ventricle and hippocampus ICV normalised 
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volumes. We propose that a Bayesian approach for longitudinal neuroimaging modeling has merit for providing 

further understanding of brain atrophy over time. These views were demonstrated using an application of BLME 

models applied to a longitudinal AIBL study, which were compared to the classical alternative of LME models. 

Comparisons of volumetric rate of change of diagnosis level trajectories were compared for HC, MCI and AD 

participants, with an estimated probability greater than 0.65 on the order of disease pathology, while credible 

intervals for the parameters support results from the hypothesis test on a classical LME, under this framework the 

probability of disease pathology order are not straightforward to compute. Ranking of converters with respect to 

the study cohort and diagnosis trajectories over age based on volumetric quantiles are the first BLME analysis of 

their kind applied to longitudinal neuroimaging data. This analysis identified HC to MCI converters most at risk of 

AD like rate of deterioration and posterior rank distributions provided probabilities on individuals of interest in the 

worst 159: percentile rank for both regions. The predictive capability of future converters can be derived from 

these BLME models, as individuals with high neurodegeneration estimates would rank at the extremes in 

comparison with the remainder of the cohort. The uncertainty of their rank values among a specified quantile is 

expressed in terms of probabilities, and individuals with a high probability of ranking at extreme levels of 

neurodegeneration may be indicative of their progressive pathway to further stages of dementia. While classical 

methods were also able to rank participants in order of estimated volumetric rate of change, they do not allow for 

further estimation of the highest ranked individuals and the uncertainty in their position. However to rigorously 

validate this analysis a richer data set with more repeated measures and converters over all categories (HC to MCI 

or AD and MCI to AD) observed at various ages is required. Furthermore, the diagnosis trajectories for each 

volume region identified critical points in time for both ventricle and hippocampus degeneration from which 

participants are most likely to show greater deterioration rates. Alternatively a similar analysis can also be used to 

compare diagnosis trajectories of different longitudinal neuroimgaing population studies, such as the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI).  

Additional analysis regarding group comparisons can be made. For example, similar probabilities for an estimated 

population mean in comparison to a biologically meaningful constant could also be inferred. An extension to 

our second analysis to allow population studies to focus on specific participants of interest and monitor their 

progression rate throughout follow-ups could assist health professionals in making informed choices with regard 

to patient care. Alternatively HC to AD converters may also be further analysed and ranked with respect to the 

cohort, to provide further clues as to why these individuals deteriorated so quickly compared with their slower 

converter counterparts. It is worth- while to note that these inference extensions would not have been possible had 

we not first attempted the research methods presented in this paper. 

A sensitivity analysis with respect to the prior information used in our analysis was conducted on both the 

ventricle and hippocampus models. This entailed re-running the MCMC sampling technique for each model based 

on various specifications of the prior information. The subsequent posterior summaries did not vary considerably 

based on different prior information. Hence, we conjecture that the results are relatively robust to the priors 

specified in this work. Furthermore, two LOOCV methods were applied to assess the models predictive capability.  

Despite every precaution taken to provide robust and reliable conclusions from the BLME models, several 

authors
7,14

 have noted the limitations and disadvantages of Bayesian statistics applied to longitudinal 

neuroimaging analysis. In particular, drawbacks of Bayesian statistics in the neuroimaging context are discussed at 

length in Grunkemeier and Payne (2002)
69

. These include subjective information that can be incorporated in the 

BLME model specification, in the way in which the prior is specified. Moreover, computational intensity is often 

far greater in the Bayesian framework than numerical methods employed in a frequentist analysis. In this paper 

we incorporated vague priors which are semi-conjugate, as we assumed no prior knowledge of the study 

analysed; the prior specification were a standard choice as suggested in Gelman and Hill (2006)
23

. The additional 

computational time taken to run both models specified in Section 3.2 was not excessive and was deemed to be 

worth the additional insight given. We suggest more complex models and future extensions to the methods 

presented in this paper may result in an increase of computational time, and this will be a factor to consider for 

future BMLE models. 

Extensions to the BLME models presented in this paper include the addition of more covariates to account for 

trends and variability sources present in gender, genetic factors and additional demographic characteristics which 

are a few of the key factors known to affect AD onset and disease progression. Furthermore, as the Bayesian 

framework is ideal for handling complex models such as generalised linear mixed models
43,70

  and spatio-temporal 

interactions,
71,72

 extensions of this nature will allow for modelling biomarker deterioration rates of multiple brain 

regions simultaneously over time. 
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Figure legends 

Fig. 1: Percentile ranges of volume across ages 60 to 85 years old, for ventricle (left) and hippocampus (right). Recall 

region volumes are normalised by the ICV value as they represent a percentage of volume within the intracranial 

cavity. Ranges up to the 1009: percentile henceforth denote the empirical maximum volume for that region. 

Volume percentiles; 75 −	1009: from blue (0.75) to top dotted line, 50 − 759: from green (0.25) to blue (0.75) 

line, 25 −	509: from red (0.25) to green (0.50) line and 15 − 259: from black (0.15) to red (0.25) line. 

 

Fig. 2: Posterior densities of population mean estimates of linear deterioration rate for diagnosis (top plot): HC, 

MCI and AD, for ventricle (left) and hippocampus volume (right) models. Dotted lines on bottom plots denote the 

means for each density, whose values are shown in Table 1. 

 

Fig. 3: Posterior distribution of ranks for MCI to AD converters ID 721, 365 and 12, for Ventricle (top) and 

hippocampus (bottom) ICV volume models. These density rankings were derived with observations from time 

points one to three. 
 

Fig. 4: Box plots of posterior distribution of random effect values for participants in AIBL study (N = 260) for full 

data (four time points). Ventricle (top) and hippocampus (bottom) rates of deterioration for each participant in the 

study. As there are 157 HC, 34 MCI, 42 AD and 27 Converters in this study, there is higher uncertainty on the rate of 

deterioration of converters, MCI and AD participants (hence longer box plots) as compared to the HC (narrower box 

plots). Eight individuals who converted from HC to MCI throughout the study are highlighted in red with 

corresponding ID numbers. 
 

Fig. 5: Probability curves show the posterior probability of HC, MCI or AD diagnosis for the ventricle (top) and hip- 

pocampus (bottom) models, 95% interval denotes Monte Carlo error based on several simulations of the BLME mod- 

els. Total volume divided into four percentile volume ranges, as shown in Fig. 1. Percentiles; 75 −	1009:, 50 −
759:, 25 −	509: and 15 −	259:. 
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Fig. 1: Percentile ranges of volume across ages 60 to 85 years old, for ventricle (left) and hippocampus 
(right). Recall region volumes are normalised by the ICV value as they represent a percentage of volume 

within the intracranial cavity. Ranges up to the 100^th percentile henceforth denote the empirical maximum 
volume for that region. Volume percentiles; 75-100^th from blue (0.75) to top dotted line, 50-75^th from 
green (0.25) to blue (0.75) line, 25- 50^th from red (0.25) to green (0.50) line and 15-25^th from black 

(0.15) to red (0.25) line.  
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Fig. 2: Posterior densities of population mean estimates of linear deterioration rate for diagnosis (top plot): 
HC, MCI and AD, for ventricle (left) and hippocampus volume (right) models. Dotted lines on bottom plots 

denote the means for each density, whose values are shown in Table 1.  
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Fig. 3: Posterior distribution of ranks for MCI to AD converters ID 721, 365 and 12, for Ventricle (top) and 
hippocampus (bottom) ICV volume models. These density rankings were derived with observations from 

time points one to three.  

 
75x27mm (300 x 300 DPI)  

 

 

Page 22 of 38

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 13, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
7 F

eb
ru

ary 2017. 
10.1136/b

m
jo

p
en

-2016-012174 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review
 only

  

 

 

Fig. 4: Box plots of posterior distribution of random effect values for participants in AIBL study (N = 260) for 
full data (four time points). Ventricle (top) and hippocampus (bottom) rates of deterioration for each 

participant in the study. As there are 157 HC, 34 MCI, 42 AD and 27 Converters in this study, there is higher 

uncertainty on the rate of deterioration of converters, MCI and AD participants (hence longer box plots) as 
compared to the HC (narrower box plots). Eight individuals who converted from HC to MCI throughout the 

study are highlighted in red with corresponding ID numbers.  
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Fig. 5: Probability curves show the posterior probability of HC, MCI or AD diagnosis for the ventricle (top) 
and hippocampus (bottom) models, 95% interval denotes Monte Carlo error based on several simulations of 
the BLME models. Total volume divided into four percentile volume ranges, as shown in Fig. 1. Percentiles; 

75- 100^th, 50-75^th, 25- 50^th and 15-25^th.  
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Supplementary Material

Please refer to website
https://github.com/MarcelaCespedes/Bayesian_inference_on_neuroimaging
for R code (including code for plots) used in analysis outlined in the manuscript Comparisons of neurodegeneration
over time between healthy ageing and Alzheimer’s disease cohorts via Bayesian inference.

1 Derivation of model
In this section, we compare competing models for neurodegeneration with respect to age. Competing models
include; linear, quadratic, cubir and quartic configurations, see equations (1) to (4), where (.) denotes the the linear
predictor in model (1).

Yij |µij , σ
2 ∼ N(µij , σ

2)

µij = β0i + β1xMCI,ij + β2xAD,ij + β3iStndAgeij + β4iStndAgeijxMCI,ij + β5iStndAgeijxAD,ij

βki = βk + bki for k = 0, 3, 4, 5

bi ∼MVN(0,Σ) (1)

µij = (.) + β6StndAge
2
ij + β7StndAge

2
ijxMCI,ij + β8StndAge

2
ijxAD,ij

(2)

µij = (.) + β6StndAge
2
ij + β7StndAge

2
ijxMCI,ij + β8StndAge

2
ijxAD,ij+

β9StndAge
3
ij + β10StndAge

3
ij + β11StndAge

3
ijxAD,ij (3)

µij = (.) + β6StndAge
2
ij + β7StndAge

2
ijxMCI,ij + β8StndAge

2
ijxAD,ij+

β9StndAge
3
ij + β10StndAge

3
ij + β11StndAge

3
ijxAD,ij+

β12StndAge
4 + β13StndAge

4xMCI,ij + β14StndAge
4
ijxAD,ij

(4)

In Bayesian statistics, model choice can be handled via the posterior model probabilities. These probabilities
can be estimated straightforwardly via normalising the model evidences, and, as the model evidence provides an
inbuilt penalty for model complexity, there is a preference for the model with the largest value (MacKay, 2003).
In this work, the integrated nested Laplace approximation (INLA) (Rue et al., 2009) was used to approximate the
model evidences, and the logarithm of these values are shown in Table S1.

2 Assessment of normality assumption for models
Below are histograms of the residuals, scatter and quantile-quantile plots for the Ventricle and Hippocampus mod-
els presented in the manuscript in expression (3). Refer to Section 3 of the manuscript for assumptions of linear
mixed effects models. Figure S1 shows residuals from both models are approximately normal, despite our response
values being in (0, 1) range. Refer to Section 2 of the manuscript, for further discussion.
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Model fitted, linear predictor with Ventricle Hippocampus
Age (1) -1231 -1510
Age+Age2 (2) -1206 -1129
Age+Age2 +Age3 (3) -1178 -1101
Age+Age2 +Age3 +Age4 (4) -1150 -1073

Table S1: Log evidence for competing models with non-linear terms with respect to age. We can see that the model
with the highest log-evidence for both ventricle and hippocampus models consists of Age as a linear term, which
is expression (1) as this has the highest log-evidence values for both regions.

Figure S1: Ventricle (left) and hippocampus (right) assess linear mixed effect model for violation of normality
assumptions.

3 Cross validation
We performed cross validation on the hippocampus and ventricle models described in the manuscript, to assess the
predictive capability of a new observation. As discussed in Wang and Gelman (2014), there are no clear protocols
for cross validation methods for multilevel models and out of sample validation methods for hierarchical models are
not as straightforward as a random sample of the data for a holdout set. To that end, we carried out two approaches
for leave-one-out cross validation (LOOCV) on the ventricle and hippocampus models presented in the manuscript.

Firstly, all observations for an individual were removed and the model was estimated with the remaining data,
and was used to predict the observations for the missing individual. The posterior mean for each predicted value
was subtracted from the known observation to attain a residual value. The residuals and predictive means were
assessed for the predictive capability of an individual. This was performed on all individuals, including those with
single observations and converters.

2
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The second LOOCV technique involved randomly omitting one observation on individuals with repeated mea-
sures (199 participants in our data set). As our longitudinal data are unbalanced, this method assessed predicting
values across all time points. Predicted values were computed as described above and the residual and predictive
values were assessed for predictive capability within clustered groups.

Figure S2: LOOCV-individual, residual (left), residual histogram (middle) and predicted versus response plots
(right), for the ventricle (top) and hippocampus (bottom) models.

Left top and bottom plots in Figures S2 and S3 show that the variability in the predictions for out of sample
data preserved the overall linear trend and there are no general pattern in the residual scatter plots. As the MSE is
the sum of the variance, bias squared and irreducible error, in practise we seek to reduce both bias and variance,
hence low MSE values are preferred. Nonetheless there MSE values are relatively low for both models, hence we
are satisfied the models stated in (3) in the manuscript do not over-fit the data and provide adequate predictions of
new data.

Ventricle Hippocampus
LOO-individual LOO-within-a-cluster LOO-individual LOO-within-a-cluster

MSE 1.86e−4 1.42e−4 3.91e−4 1.66e−3

Table S2: Mean squared root error (MSE) for leave-one-out (LOO) on an individuals set of observations and
within a cluster cross validation. The posterior mean for predictive value is ỹi and observed response is yi for
n observations computed as MSE=

∑
(ỹi − yi)

2/n as described in Timm (1980). Note both MSE values are
relatively similar for the hippocampus and ventricle models.
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Figure S3: LOOCV-within-a-cluster, residual (left), residual histogram (middle) and predicted versus response
plots (right), for the ventricle (top) and hippocampus (bottom) models.

4 Classical linear mixed effects model
In an effort to compare model (3) in the manuscript with popular conventional longitudinal methods, the model
was also fitted by a classical linear mixed effects (LME) model. Recall the general LME model is of the following
form,

y = Xβ + Zb + ε. (5)

Design matrices are X and Z, and vectors β and b are the fixed and random effects respectively for p fixed
and m random effects. We assume residuals ε ∼ N(0, σ2I), where I is the identity matrix. The random effects
vector b, assume b ∼ N(0, σ2D(θ)), where D(θ) is a symmetric and positive semi-definite matrix, parametrized
by a variance component θ. For further details including methods to estimate the maximisation of the likelihood,
see (Pinheiro, 1994; Corbeil and Searle, 1976).

The classical LME model for this case study is denoted as follows

Yij = β0i + β1iStndAgeij + β2xMCI + β3xAD + β4iStndAgeijxMCI,ij + β5iStndAgeijxAD,ij + εij

βki = βk + bki for k = 0, 1, 4, 5

bi ∼MVN(0,Σ). (6)

Random effects bi = [b0i, b1i, b4i, b5i] denotes the ith individual deviation at time point j, and covariance
structure Σ is 4 × 4 diagonal matrix. Residuals ε are i.i.d with distribution N(0, σ2In), for n total observations.
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R package lme4() (Bates et al., 2014b), was used to estimate model (6) (R Core Team, 2013).

Regions: units ICV volume/StndAge
Parameter Ventricle Hippocampus

HC β3 5.99e−3 (3.29e−4) -1.18e−2 (1.54e−3)
MCI β3 − β4 6.25e−3 (6.69e−4) -2.10e2 (5.61e−3)
AD β3 − β4 1.10e−3 (5.36e−3) -2.82e−2 (7.12e−3)

Estimated difference of volumetric change among diagnosis groups
HC - MCI β4 2.68e−3 (3.40e−4) -9.27e−3 (4.07e−3)
HC - AD β5 5.03e−3 (1.49e−3) -1.64e−2(5.59e−3)

Table S3: Parameter estimates for model (6) for both regions, standard error in parenthesis. Similar to Table 1 in
the manuscript, the fixed effect values are similar to the BLME model.

4.1 How do HC, MCI and AD participants degenerate over time?
Hypothesis tests were conducted in a similar manner to Bernal-Rusiel et al. (2013) for the ventricle and hip-
pocampus models, refer to their supplementary material for their full model expressions, contrast matrices and null
hypothesis statements. In a similar manner, we also state our null hypothesis to compare the rate of volumetric rate
of change on diagnosis groups HC, MCI and AD for both brain regions, and set the significance level to α = 0.05.

Test 1: Are there any differences in the rate of change among the three groups? The null hypothesis is
H0 : β4 = β5 = 0. The contrast matrix for both the ventricle and hippocampus models are of the form

T1 =

[
0 0 0 0 1 0
0 0 0 0 0 1

]

Ventricle Hippocampus
F-statistic 5.850 6.10
p-value 0.0048 0.0058

Table S4: Results for the hypothesis Test 1 for Ventricle and Hippocampus models. As the p-value is less than α
for both tests, we reject the null hypothesis and conclude there is a β4 and β5 are not equal to zero in both models.

Test 2:Is there any difference in the rate of volumetric change between HC and MCI? The null hypothesis
is H0 : β4 = 0, with a contrast matrix for both regions as

T2 = [0 0 0 0 1 0]

Test 3: Is there a difference in the rate of change between HC and AD? Similar to above the null hypothesis is
H0 : β5 = 0, with a contrast matrix for both regions as

T3 = [0 0 0 0 0 1]
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Ventricle Hippocampus
F-statistic 0.623 5.19
p-value 0.431 0.031

Table S5: Results for the hypothesis Test 2 for Ventricle and Hippocampus models. The Ventricle model indicates
we have insufficient evidence to reject the null hypothesis, and conclude the rate of change for MCI is not signif-
icantly different from baseline. Unlike the hippocampus model, there is sufficient evidence to suggest the rate of
change for MCI is significanly different from baseline.

Ventricle Hippocampus
F-statistic 11.39 8.65
p-value 0.0018 0.0061

Table S6: Results for the hypothesis Test 3 for Ventricle and Hippocampus models. As both p-values are less than
α, we reject the null hypothesis and conclude the rate of change for AD diagnosis is significanlty different from
baseline.

4.2 How to identify individuals with high levels of neurodegeneration?
The second analysis presented in the manuscript in Sections 3.4 and 4.2 is presented here where possible, to assess
individual participants rate of change. The caterpillar plots for each region are in Figure S4a and S4b which were
derived from expression (6) above.

Caterpillar plots for classical mixed effects models are often used for analysis of the random effects (Bates
et al., 2014a). The uncertainty for each individual is estimated by conditional variances of the random effects from
the output of lmer() . The general pattern of HC to MCI converters is similar to those in the manuscript. The
ventricle model shows ID’s 4, 113, 737 and 509 and the hippocampus participant ID’s 757, 232, 471 are in the
lower half of the ranks similar to the Bayesian model Figure 4 in the manuscript.

Unfortunately, under this framework we cannot determine the probability of participants ranking in the highest
or lowest degeneration extremes. As the ranking of participants relies on point estimates of the random effects
and conditional variances, which does not include probability distribution to account for uncertainty between and
within observations within clusters.
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(a)

(b)

Figure S4: Individuals ranked by order of estimated ventricle (a) and hippocampus (b) rate of change.
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Ranking AIBL.ID Diagnosis Posterior mean rate of deterioration
for individuals (standard error)

Ventricle 1 877 AD −1.04× 10−2 (8.81× 10−5)
2 1122 HC −8.66× 10−3(3.94× 10−3)
3 911 HC −8.45× 10−3(1.66× 10−4)
4 111 HC −7.86× 10−3 (1.20× 10−2)
5 365 HC −5.11× 10−3 (2.16× 10−4)
...

...
...

...
256 658 AD 1.60× 10−2 ( 2.48× 10−3)
257 1032 AD 1.61× 10−2 (5.69× 10−3)
258 10 AD 1.67× 10−2( 7.34× 10−3)
259 1102 AD 2.37× 10−2(3.45× 10−3)
260 91 AD 2.478× 10−2 (3.35× 10−3)

Hippocampus 1 10 AD −7.42× 10−2 (2.78× 10−2)
2 1135 AD −6.35× 10−2 (2.62× 10−2)
3 12 Converter −5.19× 10−2(2.34× 10−2)
4 1013 AD −5.13× 10−2 (2.39× 10−2)
5 819 AD −4.98× 10−2 (1.86× 10−2)
...

...
...

...
256 483 MCI 2.42× 10−2(1.94× 10−3)
257 113 Converter 2.56× 10−2(2.55× 10−3)
258 509 Converter 2.72× 10−2 (2.75× 10−3)
259 28 HC 3.36× 10−2 (2.68× 10−3)
260 1122 AD 3.71× 10−2(1.78× 10−2)

Table S7: Similar to Table 3 in the manuscript, participants by order of estimated rate of change, standard error in
parenthesis. Snippet of table shows first and last five individuals for the ventricle and hippocampus volumes.

4.3 How do diagnosis trajectories vary over age?
As described in the manuscript, in this analysis P (Diagnosis|ỹ, age) is estimated for Diagnosis = HC,MCI
and AD, as shown in expression (5) in the manuscript. We note that in order to find these probabilities, for
a given range in volume ỹ we need the probability of this range given a diagnosis classification and age, i.e.
P (ỹ|Diagnosis, age).

A similar analysis cannot be performed with a classical LME model, as the method of maximisation of the
likelihood does not allow for the straightforward computation of probabilities P (Diagnosis|ỹ, age). Another
drawback of the classical approach is that it does not lend itself to the incorporation of relevant external data, to
further extend statistical inference.

5 Posterior Predictive checks and parameter estimates
Posterior predictive checks were carried out to assess goodness-of-fit of our models in expression (3) of the
manuscript, as predicted values were simulated from the joint posterior distribution. After burn-in and thinning, as
specified in Section 3.2 of the manuscript, each predicted value consists of 8,000 simulations from which we com-
pute the 95% credible intervals. Posterior predictive plots are shown in Figure S5. MCMC chain diagnostics such
as trace, density and auto-correlation plots as well as the Gelman and Rubin convergence measures are available
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upon request.

Figure S5: Posterior predictive means versus response values with the 95% credible interval. The tight bandwidth
on all responses shows we have adequately captured the variability. As both the plots show a general diagonal
pattern of x = y for majority of the values (with the exception of a few cases), this provides evidence of accurate
predicted values from our model.
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Ventricle ESS Hippocampus ESS
β0i 6895 5625
β1i 7231 2830
β2 5585 3832
β3 3463 2779
β4i 6657 1313
β5i 5693 544
σ2 7662 4810
σ2
0 7351 3023
σ2
1 7753 1824
σ2
4 6670 977
σ2
5 5352 1021

P.P. 0.993 0.995

Table S8: Posterior proportion of response (P.P), is a proportion of predicted values which lie within 95% credible
interval of prediction values as seen in Figure S5. Effective sample size (ESS) denotes the estimated number of
independent samples (no auto-correlation) obtained in our estimated parameters. As per our burn-in and thinning
specifications stated in Section 3.2 of the manuscript, the ESS will be at most a value up to 8,000.

6 Distribution of ranks for converters
As described in Section 4.2 of the manuscript, distribution of ranks were performed on all (27) converters of the
AIBL study, first on a subset of the first three time points; for ventricle model see Figure S6, hippocampus see
Figure S7. Similarly the distribution ranks were estimated on the whole data set, Figure S8 shows the results for
the ventricle model, and Figure S9 correspond to the hippocampus model.

Figure S6: Ventricle converters posterior distribution of ranks for the first three time points.
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Figure S7: Hippocampus converters posterior distribution of ranks for the first three time points.

Figure S8: Ventricle converters posterior distribution of ranks for full data (4 timepoints).
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Figure S9: Hippocampus converters posterior distribution of ranks for full data (4 timepoints).

7 APOE and Gender diagnosis trajectories over age
As mentioned in Section 4.3 of the manuscript, initial exploration of diagnosis trajectories over groups; male,
female, apolipoprotein ε4 (APOE ε4) carriers and non-carriers were also investigated for the ventricle and hip-
pocampus models.

The broad prevalence rates utelised for Inference 3 were derived from Ward et al. (2012); Refshauge and
Kalisch (2012) and is summarised in Table S9. Again the reader is cautioned that these are very broad estimates
of prevalence rates and are generalised over many factors including lifestyle, genetic and demographic. These
prevalence rates also do not take into account participants who develop other forms of dementia or any other
neuropsychological disorders. The authors acknowledge there are several factors which the models presented in the
manuscript do not account for. As the BLME models and inference derivation presented in this paper are the first
of its kind, the objective of Inference 3 is to demonstrate probable diagnosis trajectories conditional on very broad,
non-group specific prevalence rates. In order to account for gender and APOE ε4 status and develop diagnosis
trajectories specific to these groups, prevalence rates across ages 65-85 specific to these groups is required, which
unfortunately is difficult to find in literature. Figure S10 are the disease trajectories for models (3) in the manuscript
applied on male, female, APOE ε4 carriers and non carriers groups separately, for the ventricle and hippocampus
models. We assumed the same prevalence rates as in the manuscript.
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Age HC MCI AD
60 0.945 0.037 0.018
65 0.917 0.055 0.028
70 0.859 0.096 0.045
75 0.592 0.333 0.075
80 0.518 0.357 0.125
85 0.466 0.301 0.203

Table S9: Broad prevalence rates for healthy control (HC), mild cognitive impaired (MCI) and Alzheimer’s dis-
ease taken from Ward et al. (2012); Refshauge and Kalisch (2012). These rates do not account for any lifestyle,
demographic and genetic factors as well as other forms of dementia and neuropsychological disorders which are
known to affect prevalence rates.
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Figure S10: Male, female, APOE ε4 carriers and non-carriers diagnosis trajectories for ventricle (top) and hip-
pocampus (bottom) model. Volume quantiles X1, X2, X3 and X4 denote 75-100th, 50-75th, 25-50th and 15-25th

quantiles respectively. 14
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