

Comparison of Two Anterior Fusion Methods in Two level Cervical Spondylosis Myelopathy: A Meta-Analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004581
Article Type:	Research
Date Submitted by the Author:	03-Dec-2013
Complete List of Authors:	Huang, Zhe-Yu; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Wu, Ai-Min; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Li, Qing-Long; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Lei, Tao; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Wang, Kang-Yi; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Xu, Hua-Zi; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery ni, wenfei; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Surgery
Keywords:	Spine < ORTHOPAEDIC & TRAUMA SURGERY, Orthopaedic & trauma surgery < SURGERY, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

BMJ Open

4	
1	
2	
3	Title: Comparison of Two Antorior Fusion Methods in Two level Convised
4	Title: Comparison of Two Anterior Fusion Methods in Two level Cervical
5	
6	Spondylosis Myelopathy: A Meta-Analysis
7	
8	
9	
10	
11	Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD;
12	Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD.
13	
	All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated
14	Hospital of Wenzhou university, Wenzhou, China.
15	Postal code: 325027
16	
17	Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of
18	China.
19	
20	
21	First author: Zhe-Yu Huang MD
22	E-mail: <u>huangzheyu2011@gmail.com</u>
23	Phone number: +86 0577 88002814
24	
25	
26	Second author: Ai-Min Wu MD
27	E-mail: aiminwu@163.com
28	
29	
30	Third author: Qing-Long Li MD
31	E-mail: 18367853350@163.com
32	
33	Forth author: Tao Lei MD
34	Third author: Qing-Long Li MD E-mail: 18367853350@163.com Forth author: Tao Lei MD E-mail: leitao4317@126.com Fifth author: Kang-Yi Wang MD E-mail: wangkangyi1989@163.com
35	
36	
37	Fifth author: Kang-Yi Wang MD
38	E-mail: wangkangyi1989@163.com
39	
40	
41	Sixth author: Hua-Zi Xu MD
42	E-mail: spine-xu@163.com
43	
44	
45	Seventh author and Corresponding author: Wen-Fei Ni MD PhD
46	E-mail: wenfeini@yeah.net
47	Phone number: +86 0577 88002814
48	
49	Fax number: +86 0577 88002823
49 50	
51	
52	Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;
53	The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical
54	University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic
55	
56	of China.
57	
58	
59	
60	

Keywords: Cervical spondylosis myelopathy; Anterior cervical discectomy and fusion; Anterior cervical corpectomy and fusion.

Word count: 2448

ABSTRACT

Background: Anterior cervical corpectomy and fusion (ACCF) and anterior cervical discectomy and fusion(ACDF) are both the popular methods for treating cervical spondylosis myelopathy(CSM). However, it remains unclear that whether ACDF is superior or inferior to ACCF. The aim of this meta-analysis is performed to evaluate the efficacy and safety of above two treatments.

Methods: We searched electronic databases of PubMed, Cochrane Central Register of Controlled Trials , ScienceDirect, CNKI, WANFANG DATA, CQVIP. Risk of bias of included studies is assessed using the Cochrane Risk of Bias Tool. We generated pooled risk ratios of dichotomous outcomes and standardised mean differences of continuous outcomes. Using the chi-square and I-square tests, we assessed the statistical heterogeneity. Perioperative parameters (hospital stay, bleeding amounts, operation time), clinical parameters (Japaneses Orthopedic Association scores (JOA), neck and arm pain Visual Analog scale Scores (VAS)), radiologic parameters (cervical lordosis for C2-C7 and fusion, rang of motion (ROM) for total and fusion, fused segment height, graft collapse, fusion rate,adjacent-level ossification), and complications were compared.

Results: Nine eligible trials with a total of 631 patients were included in this meta-analysis. No significant difference was identified between the two groups regarding hospital stay, JOA, neck and arm pain VAS, total cervical ROM, fusion ROM, fusion rate, adjacent-level ossification, and complications. While ACDF has significantly less blood loss (SMD = 1.70, 95% CI: [0.62, 2.78]), shorter operative

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

time (SMD =1.21, 95% CI: [0.73, 1.70]), greater cervical lordosis both total cervical (SMD= -2.95, 95% CI: [-4.79,-1.12]) and fused segment (SMD= -2.24, 95% CI: [-3.31,-1.17]), higher segmental height (SMD= -1.75, 95% CI: [-3.33,-0.16]), and less

graft subsidence (SMD=0.40, 95% CI: [0.06,0.75]).

Conclusions: The results suggested that ACDF has more advantages for treating CSM. Further high-quality RCT and longer follow-up duration are needed to assess the two treatments.

Article summary

Strengths and limitations of this study

1) ACCF and ACDF are both effective and safe for treating CSM in our study. 2) ACDF has more advantages than ACCF in some aspects. 3) The trials in our study are not the high-quality RCTs, and do not have long enough follow-up duration.

BMJ Open

Cervical spondylosis is a common disease and a progressive degenerative process of the cervical spine result in loss of disc height and formation of osteophyte. When it develops into cervical spondylosis myelopathy (CSM), motion abnormalities and sensory disturbances will follow, resulting in decreasing life quality of patients.¹ Surgical intervention is recommended for these patients with severe symptoms.²

The choice between an anterior, posterior, or combined approach for decompression is based primarily on (1) the sagittal alignment of the spinal column, (2) the extent of disease, (3) the location of compressive abnormality, (4) the presence of preoperative neck pain, and (5) previous operations.²

ACDF and ACCF is two widely used anterior methods for CSM especially with two levels.^{3 4} However, controversies still exist between ACCF and ACDF for treating CSM. This meta-analysis is to compare the efficacy and safety of ACCF and ACDF for patients with two-adjacent-level CSM.

Materials and Methods

Search Strategy

We searched electronic databases including PubMed (1966-2013), Cochrane Central Register of Controlled Trials (Issue 9, 2013), ScienceDirect (1985-2013), CNKI(1996-2013), WANFANG DATA(1997-2013), CQVIP(1996-2013). The keywords of search strategy is: "cervical spondylosis myelopathy", "anterior cervical discectomy and fusion", "anterior cervical corpectomy and fusion", "two level(s)", or "single-level").

Eligibility Criteria

Criteria for inclusion: We identified all comparative studies of adopting ACCF and ACDF to treat adjacent two-level cervical spondylosis regardless of published and unpublished, searched reference lists of articles, and included studies to identify other potentially eligible studies. 1) ACCF with tatanium mesh, cage or autologous ilium bone grafting, ACDF with interbody cage devices or autologous ilium bone grafting, moreover the two surgeries both used anterior cervical plate and screw fixation. 2) All patients included with a confirmed CSM at two adjacent segments that recommended surgical intervention. 3) The search was limited to trials with 12 months of follow-up results or long-term results reported were included in this meta-analysis.

Criteria exclusion: 1) Objects of studies and intervention measures did not meet the inclusion criteria. 2) Do not have enough material for data consolidation. 3) The number of samples was less than 30 cases.

Data Extraction

Two reviewers independently extracted data using a standardized form. 1) Basic characteristics, including published year, study design, inclusion/exclusion criteria, age, sex, enrolled number, and follow-up rate. 2) Intraoperative parameters, consisting of hospital stays, bleeding amounts, operation times. 3) Clinical parameters, including Japanese Orthopedic Association scores(JOA), Visual Analog Scale scores(VAS) for

BMJ Open

neck and arm pain. 4) Radiologic parameters, such as cervical lordosis for total cervical and fused segment, total cervical range of motion, segmental range of motion, graft collapse, segmental height, fusion rate, degeneration of the adjacent-level. 4) complications, including short term and long term complications.

Risk of Bias Assessment

We assessed the risk of bias according to the Cochrane Handbook for Systematic Reviews of Interventions. Seven domains were assessed in each included studies. 1) Random sequence generation. 2) Allocation concealment. 3) Blinding of participants and personnel. 4) Blinding of outcome assessment. 5) Incomplete outcome data. 6) Selective reporting. 7) Other sources of bias. BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Statistical Analysis

We performed all meta-analysis with the Review Manager 5.2 software (Cochrane Collaboration, Oxford, UK). For continuous outcomes, means and standard deviations were pooled to generate a standardised mean difference (SMD), and 95% confidence intervals (CI) were generated. In study of Kim 2012,¹⁴ we used a formula to get a combined mean and standard deviation (SD).⁵ For dichotomous outcomes, the risk ratio (RR) and 95% CI were assessed. A probability of *P*< 0.05 was considered to be statistically significant. Assessment for statistical heterogeneity was calculated using the chi-square and I-square tests. When the test for heterogeneity was investigated

by subgroup analysis and sensitivity analysis. Fixed effects model was used for non-significant heterogeneity, while a random effects model was used for data with high heterogeneity.

Results

Literature Search

A total of 606 potential reports were retrieved with the search strategy(Fig. 1). 597 reports were excluded according to our inclusion criteria. No additional studies were obtained after reference review.Finally nine studies were selected and analyzed.⁶⁻¹⁴

Risk of bias assessment

One trial described adequate method of random sequence generation,¹³ which did not described in another trial,⁶ In the quasi-RCT, patients were allocated according to sequence of hospitalization,¹¹ the remaining were all not randomized controlled trials.^{7-10 12 14} Information of allocation concealment was not available in any of the studies. Due to the nature of the trials, it was impossible to perform blinding of participants and personnel. All studies did not reported blinding of outcome assessment. No patients were lost to follow-up except for Liu et al.,¹³ in which eight patients were excluded because the time of follow-up was less than two years. Since the missing data was small in number, which also balances in both arms, we considered it with a low risk of bias of incomplete outcome data addressed. In all trials, the outcomes were provided in detail, we regarded them as a low risk of bias of

BMJ Open

selective reporting. Owing to insufficient information to assess whether an important risk of bias existed in a number of trials, we argued all trials had unclear risk of bias towards other potential sources of bias. The methodological quality assessment was summarized in Table 1.

Table 1.doc

Demographic Characteristics

The demographic characteristics of the studies included are presented in Table

Table 2 and 3.doc

2. A total of 631 patients with male to female ratio of 1.38:1 were included: 270 underwent anterior cervical corpectomy and fusion(ACCF) procedures, and 361 were treated by the anterior cervical discectomy and fusion(ACDF) approach, the two surgeries used various grafts, including autografts, allografts, and cage and/or plate systems. The mean age was 55.1 years. The average duration of follow-up ranged from 18.9 to 43.2 months. Statistically similar baseline characteristics were

> Table 2 and 3.doc

observed between the ACCF and ACDF groups(Table 3).

Hospital Stay

Details regarding hospital stay were available in three papers(Table S1),^{6 12 13} statistical heterogeneity was absent in these studies ($I^2 = 0\%$; P = 0.69). The pooled

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from I Enseignement Superieur (AB

Protected by copyright, including for uses related to text and

data mining, AI training, and similar technologies

http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de

(ABES)

estimate revealed statistically insignificant difference (SMD=0.18, 95% CI: [-0.15, 0.51], P = 0.28)(Fig. 2).

Bleeding Amounts

Relevant data was documented in four articles(Table S1),^{6 11-13} all the trials showed ACDF significantly reduced intraoperative Bleeding amounts. Pooling of relevant data also showed statistically significant difference between the two groups (SMD = 1.70, 95% CI: [0.62, 2.78], P=0.002). Significant heterogeneity was detected (I² =89%; P<0.00001)(Fig. 2).

Operative Time

Four trials reported significant decreased surgical time in the ACDF(Table S1).⁶ ¹¹⁻¹³ Overall, the standardised mean difference was 1.21 (95% CI: [0.73, 1.70], P<0.00001) in favor of the ACDF group. There was obvious evidence for statistically significant heterogeneity ($I^2 = 54\%$; P=0.009)(Fig. 2).

JOA

Four studies reported JOA score(Table S2),^{6 12 13} the pooled estimate revealed statistically insignificant difference (SMD=0.14, 95% CI: [-0.19, 0.47], P= 0.41) with low heterogeneity(I² = 12%)(Fig. 3).

Neck VAS

BMJ Open

Three studies reported a postoperative neck VAS score(Table S2),^{6 9 12} the pooled data from the two relevant studies did not reveal any significant difference(SMD=0.13, 95% CI: [-0.15,0.41], P= 0.36) with low heterogeneity(I² = 45%)(Fig. 3).

Arm VAS

Relevant data was documented in three articles(Table S2).^{6 9 12} There was no significant difference between the two treatment groups(SMD=-0.15, 95%CI =[-0.43,0.13]; P = 0.28) with low heterogeneity (I² = 4%)(Fig. 3).

C2-C7 Cobb

Five studies reported the C2-C7 Cobb at final follow-up (Table S3a),^{6 7 10 12 14} the available data demonstrated low heterogeneity($I^2 = 8\%$), and ACCF had a significant lower cobb than ACDF(SMD= -0.32, 95% CI: [-0.53,-0.10], *P*= 0.004)(Fig. 4).

Fusion Cobb

There studies reported the fusion Cobb at final follow-up (Table S3a),^{7 10 13} the available data demonstrated no heterogeneity($I^2 = 0\%$), and ACCF had a significant lower cobb than ACDF(SMD= -0.50, 95% CI: [-0.75,-0.24], *P*=0.0001)(Fig. 4).

Total cervical ROM

Two studies reported the data of total cervical ROM at the final follow-up(Table S3b),^{6 12} the other two studies demonstrated that there was no significant difference in

total cervical ROM between the two groups(SMD= -0.02, 95% CI: [-0.42,0.37], P=0.90) with no heterogeneity(I² = 0%)(Fig. 4).

Fusion ROM

Two studies reported fusion ROM at the last follow-up(Table S3b),^{6 12} there was no significant difference in fusion ROM between the two groups(SMD= -0.05, 95% CI: [-0.45,0.35], P=0.80) with low heterogeneity(I² = 20%)(Fig. 4).

Fused segment height

Five studies reported the data of fused segment height at final follow-up(Table S3b),^{6 9 12-14} the pooled results demonstrated that ACCF had a significant lower height of fused segment than ACDF(SMD=-0.56, 95%CI: [-1.06,-0.06], P=0.03) with high heterogeneity(I² = 76%)(Fig. 5).

Graft collapse

Two studies reported graft collapse at last follow-up(Table S3c),^{7 10} showing that there was a significant reduction in graft collapse for ACDF(SMD=0.40, 95% CI: [0.06,0.75], P=0.02) with moderate heterogeneity (I² = 68%)(Fig. 5).

Fusion rate

Six studies reported fusion rate at last follow-up(Table S3c),⁶⁹¹⁰¹¹¹²¹⁴ there was no significant in fusion rate between the two groups(RR=1.00, 95% CI: [0.97,1.04],

Degeneration

Three studies reported degeneration of the adjacent-level to the fusion(Table S3c),⁶ ⁹ ¹⁰ showing that there was no significant difference in degeneration of the adjacent-level to the fusion between the two groups(RR=1.31, 95% CI: [0.44,3.93], P=0.63) with no heterogeneity(I²=0%)(Fig. 6).

Complications

Data regarding complications were provided in eight studies(Table S4).^{6 8-14} There was no significant difference between ACCF and ACDF groups according to individual and pooled data(RR=1.25, 95%CI = [0.74, 2.13]; P= 0.40). Statistical heterogeneity was absent in these studies (I²= 0%; P= 0.52)(Fig. 6).

Discussion

Although most studies included in this analysis reported consistent results,⁶⁻¹⁴ the pooled estimates should be explained with caution. With regard to operative parameters, hospital stay was similar in both groups; blood loss and operative time were significant lower in the ACDF than in the ACCF. ACDF required less exposure of the spinal cord than corpectomy did as we know,² which caused less damage to the spinal column, accordingly, ACDF might decrease the blood loss than ACCF. In terms of ACCF, what must be done is a 15 to 19-mm anterior midline trough in the vertebral

BMJ Open

body down to the posterior longitudinal ligament or dura, with removal of the cephalad and caudad discs,² which would not only cost longer time to be removed, but also spend more time to obtain a graft material fitting the trough, consequently ACDF had a significant reduction about operative time.

In our meta analysis, JOA scores, VAS for neck and arm pain both significantly improved in each group without significant differences between two groups. The results suggested that both surgical methods are safe and effective in treatment of CSM, and improve the patients' neurologic function, quality of life and disability. The similar outcome was achieved between ACDF and ACCF for multilevel cervical spondylosis by Jiang et al..¹⁵

Total cervical ROM, fusion ROM, fusion rete, and adjacent-level ossification yielded no significant differences between the two groups. Concerning the high fusion rate in the two groups, it may be related to the following factors: 1) the use of poly ether ether ketone (PEEK) cage or titanium meshes packed with autogenous tricortical bone and fixed—screw titanium plate or Atlantis plate fixation.⁶⁻¹⁴ 2) The fixation system provides a stably biomechanical environment which greatly promote bone healing. 3) Bone healing is a process of creeping substitution,¹⁶ and the distance of creeping substitution for single-level ACCF and two-level ACDF are both short. We believed that the high fusion rate effectively reduced the range of motion no matter of total cervical or fused segment. Eck et al. demonstrated that significantly greater adjacent level disc pressures was achieved after cervical fusion.¹⁷ The normal degenerative process plays a major role through impaired nutrition, loss of viable cells,

BMJ Open

matrix protein modification, and matrix failure.¹⁸ This normal aging process, in combination with the increased mechanical pressures, may synergistically hasten the process of degeneration. While it has not been conclusively demonstrated.¹⁹

For C2-C7 Cobb, ACDF had a significantly greater lordosis angle than ACCF not only at the immediate postoperative but also at the final follow-up, the same to the fusion Cobb at the last follow-up. The reasons may be associated with the following two factors: 1) Single-level ACCF removes both the vertebral body and two discs while two-level ACDF just take out the two discs,² as a result ACDF allows the construction after surgery more like a normal spinal column. We can draw a conclusion carefully that the loss of Cobb is less in ACDF. In other words, ACDF preserve the sagittal alignment somewhat than ACCF does. 2) Eck et al. reported that each of the involved joints contributes to the total ROM.¹⁷ With fusion, the contribution of one joint to ROM is reduced. BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

In terms of fused segment height, ACCF has a significant reduction than ACDF both at immediate postoperative and at the last follow-up. With ACDF, screws placed in the intervening segment and two caudal end plates synergistically share the load of the construct. In contrast, with a single-level corpectomy, screws are only at the cranial and caudal vertebral segments and the caudal end plate bears the full load of the construct,⁷ additionally the graft contact area is less for ACCF than ACDF, which results in the higher shear stress for ACCF. These reasons might hasten the process that the grafts are absorbed into the cover plate of adjacent vertebral body leading to a significant subsidence of treated segment in ACCF especially at the

anterior and caudal portion.

Concerning complications, data shows that there is no significant difference between the two groups and the incidence are low in each group. This result suggests that both the two treatments are safe.

The methodological quality assessment should be considered, which identified several limitations to the clinical evidence base. Only nine studies met the pre-defined eligibility criteria, which meaned all results were based on only 631 patients, what's worse, there were just three studies reported on randomization. All of the included studies had poor concealment of randomization, including selection and allocation bias. It is inevitable for patients or operators to have no knowledge to the surgical procedures because of informed consent, as a result of allowing further measurement and expectation bias. Not all the included studies had consistent baselines characteristics between the ACCF and ACDF groups. Additionally, various outcome measurements were reported in the studies. Therefore, larger randomized controlled trials with high quality are still needed in the future.

Conclusion

Based on this meta-analysis, we could not draw any firm conclusions regarding the superiority of one treatment over the other, but it should be kept in mind that ACDF was associated with significantly less blood loss, shorter operative time, greater cervical lordosis both total cervical and fused segment, higher segmental height, and less graft subsidence. This information give surgeons a deeper understanding of the

BMJ Open

Acknowledgement:

This work is supported by Department of Health of Zhejiang Province, Backbone of Talent Project (2012RCB037); and Department of Science and Technology of Wenzhou, Wenzhou Science and Technology Project (Y20120073). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceived and designed the experiments: ZYH AMW WFN. Performed the experiments: ZYH AMW WFN. Analyzed the data: ZYH AMW. Contributed reagents/materials/analysis tools: QLL TL KYW HZX. Wrote the paper: ZYH AMW.

Data Sharing Statement

None

inc. sts **Competing interests**

None

4

5

6 7

8

9

10

11

12 13

14

15

16

17 18

19

20

21

22 23

24

25

26

27 28

29

30

31 32

33

34

35

36 37

38

39

40

41 42

43

44

45

46 47

48

49

50

51 52

53

54

55

56 57

58 59 60

Reference

- Joseph T. King J, M.D., M.S.C.E., Kathleen A. McGinnis, M.S., Mark S. Roberts, M.D., M.P.P. QUALITY OF LIFE ASSESSMENT WITH THE MEDICAL OUTCOMES STUDY SHORT FORM-36 AMONG PATIENTS WITH CERVICAL SPONDYLOTIC MYELOPATHY. NEUROSURGERY 2003;52(1):113-21.
- 2. Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. The Journal of bone and joint surgery. American volume 2006;88(7):1619-40.
- KAZUO YONENOBU M, TAKESHI FUJI, MD, KEIRO ONO, MD, et al. Choice of Surgical Treatment for Multisegmental Cervical Spondylotic Myelopathy. CERVICAL SPONDYLOTIC MYELOPATHY 1985;10(8):710-16.
- Mamoru Kawakami MTT, MD; Hiroshi Iwasaki, MD; Munehito Yoshida, MD; et al. A Comparative Study of Surgical Approaches for Cervical Compressive Myelopathy. CLINICAL ORTHOPAEDICS AND RELATED RESEARCH 2000;381:129-36.
- Jia-Hong Yin Z-HZ, Jin Chen. On the Combined Calculation of the Average, the Standard Deviation and the Passing Rate of Various Small Samples. JOURNAL OF ZHAOTONG TEACHER'S COLLEGE 2010;32(5):61-64.
- Min Chul Oh M, Ho Yeol Zhang, MD, Jeong Yoon Park, MD, et al. Two-Level Anterior Cervical Discectomy versus one-level corpectomy in cervical spondylotic myelopathy. Spine 2009;34(7):692-96.
- 7. Park Y, Maeda T, Cho W, et al. Comparison of anterior cervical fusion after two-level discectomy or single-level corpectomy: sagittal alignment, cervical lordosis, graft collapse, and adjacent-level ossification. The spine journal : official journal of the North American Spine Society 2010;10(3):193-9.
- Jeffrey C. Wang PWM, Kevin K. Endow, and Rick B. Delamarter. A Comparison of Fusion Rates Between Single-Level Cervical. Journal of Spinal Disorders 2001;14(3):222-25.
- Burkhardt JK, Mannion AF, Marbacher S, et al. A comparative effectiveness study of patient-rated and radiographic outcome after 2 types of decompression with fusion for spondylotic myelopathy: anterior cervical discectomy versus corpectomy. Neurosurgical focus 2013;35(1):E4.
- Feng-Bin Yu, De-Yu Chen, Xin-Wei Wang, et al. Radiographic comparison of anterior cervical fusion after two-level discectomy or single-level corpectomy for two-level cervical spondylotic myelopathy. National Medical Journal of China 2012;92(37):2636-40.
- 11. You-Lai Yu, Wei-Cheng Gong, Bing Xin, et al. The comparison of therapeutic eff icacy between two operative methods for the treatment of two-adjacent-level CSM. Medical College Journal of Qiqihaer 2007;28(23):2821-23.
- 12. Xiao-Lin Jia, Zu-Jian Tan, Fu-Bin Yang, et al. Comparision between single-level cervical corpectomy and two-level discectomy in

BMJ Open

two-adjacent-level cervical spondylotic myelopathy. Orthopedic Journal of China 2012;20(21):1931-34.

- 13. Yong Liu, Liang Chen, Yong Gu, et al. Comparison of two anterior decompression bone fusion treatments plus titanium plate implantation for two-level cervical spondylotic myelopathy. Journal of Clinical Rehabilitative Tissue Engineering Research 2011;15(4):597-601.
- 14. Kim MK, Kim SM, Jeon KM, et al. Radiographic Comparison of Four Anterior Fusion Methods in Two Level Cervical Disc Diseases : Autograft Plate Fixation versus Cage Plate Fixation versus Stand-Alone Cage Fusion versus Corpectomy and Plate Fixation. Journal of Korean Neurosurgical Society 2012;51(3):135-40.
- 15. Jiang SD, Jiang LS, Dai LY. Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion for multilevel cervical spondylosis: a systematic review. Archives of orthopaedic and trauma surgery 2012;132(2):155-61.
- 16. Isaksson H, Wilson W, van Donkelaar CC, et al. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of biomechanics 2006;39(8):1507-16.
- 17. Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 2002;27(22):2431-4.
- 18. Joseph A. Buckwalter, MD. Spine Update Aging and Degeneration of the Human Intervertebral Disc. Spine 1995;20(11):1307-14.
- 19. Hwang SH, Kayanja M, Milks RA, et al. Biomechanical comparison of adjacent segmental motion after ventral cervical fixation with varying angles of lordosis. The spine journal : official journal of the North American Spine Society 2007;7(2):216-21.

Figure Legends

Fig.1: The search strategy for our meta-analysis.

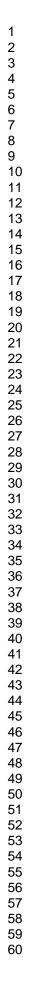
Fig.2: Perioperative parameters, a: Forest plot and tabulated data for hospital stay, b:

Forest plot and tabulated data for bleeding amounts, c: Forest plot and tabulated data

for operative time.

Fig.3: Clinical parameters, a: Forest plot and tabulated data for JOA, b: Forest plot

and tabulated data for neck VAS, c: Forest plot and tabulated data for arm VAS.


BMJ Open

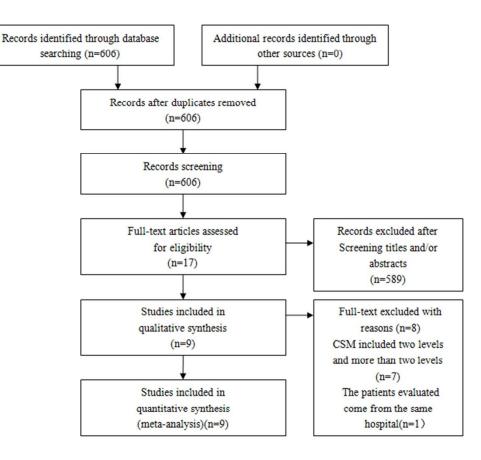

Fig.4: Radiologic parameters, **a**: Forest plot and tabulated data for C2-C7 Cobb **b**: Forest plot and tabulated data for fusion Cobb, **c**: Forest plot and tabulated data for total cervical ROM. **d**: Forest plot and tabulated data for fusion ROM.

Fig.5: Perioperative parameters, **a:** Forest plot and tabulated data for fused segment height, **b:** Forest plot and tabulated data for graft collapse.

Fig.6: Perioperative parameters, a: Forest plot and tabulated data for fusion rate, b: Forest plot and tabulated data for degeneration of the adjacent-level, c: Forest plot and tabulated data for complications.

Page 22 of 34

170x157mm (96 x 96 DPI)

ig.2a hospital sta	· /	1	CDF			Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Jia 2012	11.11	8.52	36	10.79	7.74	31	46.8%	0.04 [-0.44, 0.52]	
Liu 2011	12.2	2.7	23	11.2	2.6	23	31.7%	0.37 [-0.21, 0.95]	
Oh 2009	16.82	7.7	17	15.14	8.5	14	21.5%	0.20 [-0.51, 0.91]	
Total (95% CI)			76			68	100.0%	0.18 [-0.15, 0.51]	•
Heterogeneity: Chi ² =	0.75, df	= 2 (P	= 0.69)); I ² = 09	6				-1 -0.5 0 0.5 1
Test for overall effect:	Z = 1.07	(P=0).28)						ACCE ACDE

Fig.2b bleeding amounts

	4	ACCF		4	ACDF			Std. Mean Difference		Std. Me	an Diffe	rence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Ra	ndom, 95	5% CI	
Jia 2012	279.93	63.21	36	102.21	31.71	31	24.6%	3.43 [2.67, 4.20]				-	
Liu 2011	263	130.4	23	148.3	71.3	23	25.7%	1.07 [0.45, 1.69]				_	
Oh 2009	778.8	644.3	17	306.43	151.1	14	24.7%	0.94 [0.19, 1.69]				_	
Yu 2007	306.75	74.63	20	207.5	65.86	20	25.1%	1.38 [0.69, 2.08]			-	•	
Total (95% CI)			96			88	100.0%	1.70 [0.62, 2.78]					
Heterogeneity: Tau ² : Test for overall effect				3 (P < 0.0	00001);	l² = 89	%		-4	-2 AC		2 0F	4

Fig.2c operative time

	/	ACCF		1	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Jia 2012	141.23	63.21	36	97.37	17.72	31	31.1%	0.90 [0.40, 1.41]	
Liu 2011	190.9	61.4	23	139.9	12.7	23	26.4%	1.13 [0.50, 1.76]	
Oh 2009	210	6	17	140.71	44.5	14	17.3%	2.24 [1.31, 3.17]	
Yu 2007	110.4	18.16	20	91.8	19.43	20	25.2%	0.97 [0.31, 1.63]	-
Total (95% CI)			96			88	100.0%	1.21 [0.73, 1.70]	•
Heterogeneity: Tau ² :	= 0.13; Ch	² = 6.52	2, df = 3	(P = 0.09)	9); l² = 5	4%		-	
Test for overall effect	: Z = 4.90	(P < 0.0	0001)						ACCE ACDE

212x167mm (95 x 95 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

rig.Jaoozi													
0	4		1	ACDF			Std. Mean Difference						
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, F	xed, 95% (
Jia 2012	15.32	1.54	36	15.01	1.76	31	46.8%	0.19 [-0.30, 0.67]					
Liu 2011	14.1	1.4	23	13.6	1.2	23	31.8%	0.38 [-0.21, 0.96]				-	
Oh 2009	14.72	1.7	17	15.25	1.5	14	21.4%	-0.32 [-1.03, 0.39]			•		
Total (95% CI)			76			68	100.0%	0.14 [-0.19, 0.47]			+		
Heterogeneity: Chi ² =); I ² = 12	%				+	-1	- <u> </u>	1	
Test for overall effect	: Z = 0.83	8 (P = (0.41)						-	AC	CF ACDF		-

Fig.3b neck VAS

rig.50 netk vAS	1	ACCF		4	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	0.9	3.1	38	1.3	3.2	80	51.9%	-0.13 [-0.51, 0.26]	
Jia 2012	3.62	2.01	36	2.81	1.33	31	32.7%	0.46 [-0.02, 0.95]	
Oh 2009	3.63	2.3	17	2.93	2.5	14	15.3%	0.29 [-0.43, 1.00]	
Total (95% CI)			91			125	100.0%	0.13 [-0.15, 0.41]	+
Heterogeneity: Chi ² Test for overall effec		•); I² = 45	%				-2 -1 0 1 2 ACCF ACDF

Fig.3c arm VAS

	1	ACCF		1	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	1.4	3.2	38	2.4	2.7	80	51.1%	-0.35 [-0.74, 0.04]	
Jia 2012	2.51	1.43	36	2.35	1.69	31	33.5%	0.10 [-0.38, 0.58]	
Oh 2009	2.63	2.7	17	2.79	2.3	14	15.4%	-0.06 [-0.77, 0.65]	
Total (95% CI)			91			125	100.0%	-0.15 [-0.43, 0.13]	•
Heterogeneity: Chi ² = Test for overall effect); I² = 49	6				-2 -1 0 1 2 ACCE ACDE

212x168mm (95 x 95 DPI)

Fig.4a C2-C7 Cobb

0		ACCF		1	CDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	9.7	7.7	38	13.6	8.6	80	29.6%	-0.47 [-0.86, -0.07]	
Jia 2012	20.26	10.26	36	22.08	9.78	31	19.5%	-0.18 [-0.66, 0.30]	
Kim 2012	15.7	8.6	16	16.7	8.5	54	14.5%	-0.12 [-0.67, 0.44]	
Oh 2009	14.59	10.6	17	23.43	7.4	14	8.1%	-0.93 [-1.67, -0.18]	
Park 2010	9.6	9.1	52	11.2	8.5	45	28.3%	-0.18 [-0.58, 0.22]	
Total (95% CI)			159			224	100.0%	-0.32 [-0.53, -0.10]	•
Heterogeneity: Chi ² =	4.35, df	= 4 (P =	0.36);	l² = 8%					
Test for overall effect	Z = 2.90	(P = 0.	004)						-1 -0.5 0 0.5 1 ACCF ACDF

Fig.4b fusion Cobb

Study or Subgroup	Mean	SD	Total	Mean	CDF	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI	Std. Mean Difference IV, Fixed, 95% CI
Liu 2011		2.5	23		2.7	23	17.7%	-0.72 [-1.32, -0.12]	
Park 2010	2.5	5.9	52	4.4	5.7	45	39.3%	-0.32 [-0.73, 0.08]	
Yu 2012	4.4	4.9	48	7.5	5.9	62	43.0%	-0.56 [-0.95, -0.18]	
Total (95% CI)			123			130	100.0%	-0.50 [-0.75, -0.24]	•
Heterogeneity: Chi ² =									
Test for overall effect	: Z = 3.86	(P=	0.0001)					-1 -0.5 0 0.5 1 ACCF ACDF

Fig.4c Total cervical ROM

		ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Jia 2012	27.98	12.94	36	29.19	10.33	31	68.5%	-0.10 [-0.58, 0.38]	
Oh 2009	30.23	15.1	17	28.13	13.4	14	31.5%	0.14 [-0.57, 0.85]	
Total (95% CI)			53			45	100.0%	-0.02 [-0.42, 0.37]	+
Heterogeneity: Chi² = Test for overall effect				² = 0%					-2 -1 0 1 2 ACCF ACDF

Fig.4d fusion ROM

-	1	ACCF		1	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Jia 2012	3.39	3.01	36	4.01	2.93	31	68.6%	-0.21 [-0.69, 0.28]	
Oh 2009	5.12	4.8	17	3.88	3.4	14	31.4%	0.29 [-0.43, 1.00]	
Total (95% CI)			53			45	100.0%	-0.05 [-0.45, 0.35]	+
Heterogeneity: Chi ² = Test for overall effect:); I² = 20	1%				-2 -1 0 1 2 ACCF ACDF

212x231mm (95 x 95 DPI)

Fig.5a fused segment height

	A	CCF		1	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Burkhardt 2013	37.3	4.3	38	39.9	4.3	80	23.0%	-0.60 [-0.99, -0.21]	
Jia 2012	53.11	1.9	36	55.55	1.84	31	20.6%	-1.29 [-1.82, -0.76]	
Kim 2012	55.1	3.9	16	55.4	3.8	54	20.1%	-0.08 [-0.64, 0.48]	
Liu 2011	56.4	2.4	23	56.1	2.2	23	19.7%	0.13 [-0.45, 0.71]	
Oh 2009	49.9	5	17	56	7	14	16.6%	-0.99 [-1.75, -0.24]	
Total (95% CI)			130			202	100.0%	-0.56 [-1.06, -0.06]	•
Heterogeneity: Tau ² = 0.24; Chi ² = 16.85, df = 4 (P = 0.002); l ² = 76%									-2 -1 0 1 2
Test for overall effect	Z = 2.19	9 (P =	0.03)						ACCF ACDF

Fig.5b graft collapse

		CCF			CDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1 graft collapse	(cranial))							
Park 2010	1.7	1.6	52	1.5	1.1	45	24.8%	0.14 [-0.26, 0.54]	
ru 2012	1.8	0.6	48	1.6	0.6	62	25.6%	0.33 [-0.05, 0.71]	
Subtotal (95% CI)			100			107	50.4%	0.24 [-0.03, 0.52]	◆
Heterogeneity: Tau ² =	0.00; CI	hi² =	0.45, df	= 1 (P	= 0.50)); I ² = (0%		
Test for overall effect:	Z=1.72	(P =	0.09)						
1.2 graft collapse	(caudal)								
Park 2010	3.9	2.6	52	3.4	2	45	24.7%	0.21 [-0.19, 0.61]	-+
ru 2012	4.4	1	48	3.3	1.3	62	24.9%	0.93 [0.53, 1.32]	
Subtotal (95% CI)			100			107	49.6%	0.57 [-0.13, 1.27]	
Heterogeneity: Tau ² =	0.21; C	hi²=	6.18, df	= 1 (P =	= 0.01); l ² = 8	34%		
Test for overall effect:	Z=1.59	(P=	0.11)						
Total (95% CI)			200			214	100.0%	0.40 [0.06, 0.75]	•
Heterogeneity: Tau ² =	0.09; CI	hi² =	9.33, df	= 3 (P =	= 0.03	3); I ² = 6	68%	-	-2 -1 0 1 2
Fest for overall effect:	Z = 2.27	(P=	0.02)						ACCE ACDE
Fest for subgroup diff	erences	: Chi	² = 0.73	, df = 1	(P = ().39), l ^a	= 0%		ACCP ACDP

212x178mm (95 x 95 DPI)

Fig.6a fusion rate

	ACC	F	ACD	F		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	_
Burkhardt 2013	36	38	78	80	25.4%	0.97 [0.89, 1.06]			
Jia 2012	36	36	31	31	17.1%	1.00 [0.94, 1.06]		+	
Kim 2012	16	16	48	54	11.6%	1.10 [0.97, 1.25]			
Oh 2009	17	17	14	14	8.0%	1.00 [0.88, 1.13]		_ 	
Yu 2007	20	20	20	20	10.4%	1.00 [0.91, 1.10]		-	
Yu 2012	48	48	62	62	27.6%	1.00 [0.96, 1.04]		+	
								1	
Total (95% CI)		175		261	100.0%	1.00 [0.97, 1.04]		•	
Total events	173		253						
Heterogeneity: Chi ² =	2.70, df=	5 (P =	0.75); l² =	= 0%			0.5	0.7 1 1.5 2	1
Test for overall effect:	Z = 0.27 ((P = 0.7	'9)				0.5	ACCF ACDF	2

Fig.6b degeneration of the adjacent-leve

	ACC	F	ACD	F		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, F	xed, 95%	CI	
Burkhardt 2013	2	38	3	80	38.7%	1.40 [0.24, 8.05]			-	_	
Oh 2009	3	17	2	14	43.9%	1.24 [0.24, 6.39]		_	-	-	
Yu 2012	1	48	1	62	17.5%	1.29 [0.08, 20.13]			-		
Total (95% CI)		103		156	100.0%	1.31 [0.44, 3.93]			-		
Total events	6		6								
Heterogeneity: Chi ² =	0.01, df=	2 (P =	0.99); l ² =	= 0%			0.01	0.1	+	10	100
Test for overall effect:	Z=0.48	(P = 0.6	i3)				0.01	ACC	FACD	:	100

Fig.6c Complications

	ACC	F	ACD	F		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% Cl
Burkhardt 2013	3	31	14	68	39.3%	0.47 [0.15, 1.52]		
Jia 2012	3	36	2	31	9.6%	1.29 [0.23, 7.24]		!
Kim 2012	3	16	10	54	20.5%	1.01 [0.32, 3.24]		+
Liu 2011	5	23	4	23	17.9%	1.25 [0.38, 4.07]		
Oh 2009	3	17	0	14	2.4%	5.83 [0.33, 104.22]		
Wang 2001	1	20	0	32	1.7%	4.71 [0.20, 110.40]		
Yu 2007	3	20	1	20	4.5%	3.00 [0.34, 26.45]		
Yu 2012	3	48	1	62	3.9%	3.88 [0.42, 36.09]		
Total (95% CI)		211		304	100.0%	1.25 [0.74, 2.13]		•
Total events	24		32					
Heterogeneity: Chi ² =	6.19, df=	7 (P =	0.52); I ² =	= 0%			0.01	0.1 1 10 100
Test for overall effect:	Z = 0.83 ((P = 0.4	0)				0.01	ACCF ACDF

212x222mm (95 x 95 DPI)

Table 1. Risk of bias assessment of all included studies

Oh 2009	Park 2010	Wang 2001	Burkhardt	Yu 2012	Yu 2007	Jia 2012	Liu 2011	Kim 2012
			2013					
High risk	High risk	High risk	High risk	High risk	High risk	High risk	Low risk	High risk
Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
risk	risk	risk	risk	risk	risk	risk	risk	risk
High risk	High risk	High risk	High risk	High risk	High risk	High risk	High risk	High risk
Unclear	Unclear risk	Unclear risk	Unclear risk	Unclear	Unclear	Unclear	Unclear	Unclear
risk				risk	risk	risk	risk	risk
Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Unclear	Unclear risk	Unclear risk	Unclear risk	Unclear	Unclear	Unclear	Unclear	Unclear
risk				risk	risk	risk	risk	risk
	High risk Unclear risk High risk Unclear risk Low risk Low risk Unclear	High riskHigh riskUnclearUnclearriskriskHigh riskHigh riskUnclearUnclear riskriskUnclear riskLow riskLow riskLow riskUnclear risk	High riskHigh riskHigh riskUnclearUnclearUnclearriskriskriskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskLow riskLow riskLow riskLow riskLow riskLow riskUnclearUnclear riskUnclear risk	2013High riskHigh riskHigh riskHigh riskUnclearUnclearUnclearUnclearriskriskriskriskriskHigh riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskUnclear riskUnclearLow riskLow riskLow riskLow riskLow riskLow riskLow riskUnclearUnclear riskUnclear riskUnclear risk	Purphysical SectorHigh riskHigh riskHigh riskHigh riskUnclearUnclearUnclearUnclearriskriskriskriskriskHigh riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskUnclear riskUnclearUnclear riskUnclear riskUnclear riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskLow riskUnclearUnclear riskUnclear riskUnclear riskLow riskLow riskLow riskLow riskUnclearUnclear riskUnclear riskUnclear riskUnclearUnclear riskUnclear riskUnclear risk	2013High riskHigh riskHigh riskHigh riskHigh riskUnclearUnclearUnclearUnclearUnclearriskriskriskriskriskriskHigh riskHigh riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskUnclear riskUnclearriskUnclear riskUnclear riskUnclear riskUnclearLow riskLow riskLow riskLow riskLow riskLow riskLow riskUnclear riskUnclear riskUnclearriskUnclear riskUnclear riskUnclear riskLow riskUnclearUnclear riskUnclear riskUnclear riskUnclearriskUnclear riskUnclear riskUnclear riskUnclearriskUnclear riskUnclear riskUnclearUnclearriskUnclear riskUnclear riskUnclearUnclearriskUnclear riskUnclear riskUnclearUnclearriskUnclear riskUnclear riskUnclearUnclearriskUnclear riskUnclearUnclearUnclearriskUnclear riskUnclearUnclearUnclearriskUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclear	2013High riskHigh riskHigh riskHigh riskHigh riskHigh riskUnclearUnclearUnclearUnclearUnclearUnclearriskriskriskriskriskriskriskHigh riskHigh riskHigh riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskUnclear riskUnclearUnclearriskImage: State	2013High riskHigh riskHigh riskHigh riskHigh riskHigh riskLow riskUnclearUnclearUnclearUnclearUnclearUnclearUnclearriskriskriskriskriskriskriskriskriskHigh riskHigh riskHigh riskHigh riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskHigh riskHigh riskHigh riskHigh riskUnclearUnclear riskUnclear riskUnclear riskUnclearUnclearUnclearriskIIonelar riskLow riskLow riskLow riskIow riskIow riskLow riskUnclearUnclear riskUnclear riskUnclear riskUnclearUnclearUnclearInclearUnclear riskUnclear riskUnclear riskIow riskLow riskLow riskUnclearUnclear riskUnclear riskUnclear riskIiskriskriskIiskInclearUnclear riskUnclear riskUnclear riskIow riskIow riskIow riskIow riskInclearUnclear riskUnclear riskIiskIiskIiskIiskIiskInclearInclear riskIiskIiskIisk <t< td=""></t<>

1	
2 3	
3 4 5 6 7	
5 6	
7 8 9 10 11 12 13 14 15	
8 9	
10)
11) >
13	3
14 15	1 5
16	5
16 17 18 19	7 3
19)
20 21) I
22	2
23	3 1
25	5
26	5
28	3
29)
20 21 22 23 24 25 26 27 28 29 30 31	,
- 32	<u> </u>
33 34 35 36 37	, 1
35	5
37	7
38	3
39 40)
41 42	
43	3
44 45	
46	3
47 48	7 3
49)
50 51)
52	2
53	3 1
54 55	5
56 57	
58	3
59 60	
50	

Study	Hospital	stay(days)	Bleeding	amounts(ml)	Operative time(min)		
	ACCF ACDF		ACCF ACDF		ACCF	ACDF	
Oh 2009	$16.82{\pm}7.7$	$15.14{\pm}8.5$	$777.8 {\pm} 644.3$	$306.43 \!\pm\! 151.1$	$210{\pm}6$	140.71 ± 44.5	
Park 2010	Ν	JA	N	IA	N	A	
Wang 2001	Ν	JA	N	IA	NA		
Burkhardt	Ν	JA	N	IA	NA		
2013							
Yu 2012	Ν	JA	N	IA	NA		
Yu 2007	Ν	JA	$306.75 \!\pm\! 74.63$	$207.5 \!\pm\! 65.86$	110.4 ± 18.16	$91.8 {\pm} 19.43$	
Jia 2012	11.11 ± 8.52	$10.79 {\pm} 7.74$	$279.93 \!\pm\! 63.21$	102.21 ± 31.71	$141.23 \!\pm\! 63.21$	$97.37 \!\pm\! 17.72$	
Liu 2011	12.2±2.7	$11.2\!\pm\!2.6$	$263.0{\pm}130.4$	$148.3 \!\pm\! 71.3$	$190.9{\pm}61.4$	$139.9 {\pm} 12.7$	
Kim 2012	N	JA	N	IA	NA		

NA=not available, ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion.

Table S2 Clinical parameters of included studies.

Study	Postoperative	JOA at last	Postoperative neck VAS	Postoperative arm VAS
	visit			
	ACCF	ACDF	ACCF ACDF	ACCF ACDF
Oh 2009	14.72 ± 1.7	15.25 ± 1.5	3.63±2.3 2.93±2.5	2.63 ± 2.7 2.79 ± 2.3
Park 2010	NA		NA	NA
Wang 2001	NA		NA	NA
Burkhardt 2013	NA		0.9±3.1 1.3±3.2	1.4±3.2 2.4±2.7
Yu 2012	NA		NA	NA
Yu 2007	NA		NA	NA
Jia 2012	15.32 ± 1.54	$15.01 \!\pm\! 1.76$	3.62±2.01 2.81±1.33	2.51 ± 1.43 2.35 ± 1.69
Liu 2011	14.1 ± 1.4	$13.6\!\pm\!1.2$	NA	NA
Kim 2012	NA		NA	NA

NA= not available, JOA=Japanese Orthopedic Association scores, VAS= Visual Analog Scale scores. ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, * the study just reported the data at the sixth month of postoperative.

Table S3a	Postoperative radiologic parameters of included studies.	
-----------	--	--

Study	sagittal alignment		C2-C7	Cobb	fusion Cobb		
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	
Oh 2009	NA		$14.59{\pm}10.6$	$23.43\!\pm\!7.4$	NA		
Park 2010	32L	30L	9.6±9.1	11.2 ± 8.5	$2.5\!\pm\!5.9$	$4.4 {\pm} 5.7$	
Wang 2001	NA		NA		NA		
Burkhardt	NA		$9.7{\pm}7.7$	$13.6\!\pm\!8.6$	NA		
2013							
Yu 2012	36L	47L	NA		$4.4\!\pm\!4.9$	$7.5\!\pm\!5.9$	
Yu 2007	NA		NA		NA		
Jia 2012	NA		$20.26 \!\pm\! 10.26$	$22.08\!\pm\!9.78$	NA		

Liu 2011	NA	NA		6.9±2.5	8.8±2.7
Kim 2012	NA	15.7 ± 8.6	$16.7{\pm}8.5$	5.8/4.6	6.8/6.8

ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

Table S3b	Postoperative radiologic parameters of included studies.
-----------	--

Study	total cervical ROM		fusion ROM		fused seg	ment height
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	30.23 ± 15.1	$28.13 \!\pm\! 13.4$	$5.12\!\pm\!4.8$	$3.88\!\pm\!3.4$	49.9 ± 5	56.0 ± 7
Park 2010	NA		NA		NA	
Wang	NA		NA		NA	
2001						
Burkhardt	NA		NA		$37.3\!\pm\!4.3$	$39.9{\pm}4.3$
2013						
Yu 2012	NA		NA		NA	
Yu 2007	NA		NA		NA	
Jia 2012	$27.98 \!\pm\! 12.94$	29.19 ± 10.33	$3.39\!\pm\!3.01$	$4.01\!\pm\!2.93$	$53.11 \!\pm\! 1.90$	$55.55 \!\pm\! 1.84$
Liu 2011	NA		NA		$56.4{\pm}2.4$	56.1 ± 2.2
Kim 2012	33.5	26.8	NA		$55.1\!\pm\!3.9$	55.4 ± 3.8

ACCF=anterior cervical corpectomy and fusion, ACDF=anterior cervical discectomy and fusion, NA=not available,ROM=range of motion.

Table S3c Postoperative radiologic parameters of inc	uded	studies.
--	------	----------

Study	graft c	fusic	on rate	degeneration ^a		
	ACCF(An/Po/Cr/Ca)	ACDF(An/Po/Cr/Ca)	ACCF	ACDF	ACCI	FACDF
Oh 2009	NA		100%	100%	3	2
Park 2010	$5.0{\pm}2.9/3.5{\pm}2.5/1.7{\pm}1.6/3.9{\pm}2.6$	$4.2\pm2.6/3.0\pm2.4/1.5\pm1.1/3.4\pm2.0$	NA		NA	
Wang	NA		NA		NA	
2001						
Burkhardt	NA		94.7%	97.5%	2	3
2013						
Yu 2012	$3.7 {\pm} 1.3/5.2 {\pm} 2.2/1.8 {\pm} 0.6/4.4 {\pm} 1.0$	$2.9 \pm 1.2/3.6 \pm 2.3/1.6 \pm 0.6/3.3 \pm 1.3$	100%	100%	1	1
Yu 2007	NA		100%	100%	NA	
Jia 2012	NA		100%	100%	NA	
Liu 2011	NA		NA		NA	
Kim 2012	NA		100%	88.9%	NA	

a degeneration means degeneration of the adjacent-level to the fusion. An= anterior, Po= posterior, Cr= cranial, Ca= caudal, ACCF= anterior cervical corpectomy and fusion, ACCF= anterior cervical discectomy and fusion, NA= not available.

Study	Complications		
	ACCF	ACDF	
Oh 2009	3	0	
Park 2010	NA		
Wang 2001	1	0	
Burkhardt 2013	3	14	
Yu 2012	3	1	
Yu 2007	3	1	
Jia 2012	3	2	
Liu 2011	5	4	
Kim 2012	3	10	

ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2009 Checklist

Section/topic	_#	Checklist item	The section that contains each item e#
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page, Page 1
ABSTRACT	-		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2-3
INTRODUCTION	_		
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 3-4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	No
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 4-5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Fig. 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 5
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 6

Page 33 of 34

1 2 3_____

PRISMA 2009 Checklist

Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	Page 6
		Page 1 of 2	
Section/topic	#	Checklist item	The section that contains each item e#
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	NO
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 7, Fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 7, Table 1
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 8, Table 3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 8-12
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 7
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NO
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 12-14
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 15
ygence Bibliographidue de ا کوہمد	-	itest published as 10.136/bmjopen-2013-00136 on 16 July 2014. Downloaded from http://mdjopen.bmj.com/ on June 10, 20 Enseignement Superieur (SBEA) . Protected by copyrightenting for base in the state of the state	:uədO LMB

BMJ Open

PRISMA 2009 Checklist

4 Fl	UNDING			
5 6 Fu 7	unding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 15-16
10 do	om: Moher D, Liberati A, Tetzlaff i:10.1371/journal.pmed1000097	J, Altn	nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	d 6(6): e1000097.
11			For more information, visit: www.prisma-statement.org.	
12 13			Page 2 of 2	
14				
15 16				
17				
18 19				
20				
21				
22				
23				
24				
25				
26 27				
28				
29				
30				
31				
32				
33 34				
35				
36				
37				
38				
39				
40				
41 ⊿2				
42 43				
44				
45				
46		.səipo	Protected by copyrights <i>ingightingingighted</i> tests related to texts and later initia. All training and similar technolo	
47	i an anhuidaileonaid aonach		tirst published as 10.5013-090[md/horizonal fillowol 30.4. Downloaded from http://doi.oom/oom/oo.210.20 أن 20 (SEA) الموازونية (SEA) الموازقة عنه الموازقة (SEA) الموازقة عنه الموازقة (SEA)	
48 ⊿o	I ob eusidernoildig eagen&	+5 20	ne at any no two ind nanoind/lightd most bakeoloword. Atas viul at no t83100-stac-nanoind/astt at as hadaildun tasit	MI One

BMJ Open

BMJ Open

Comparison of Two Anterior Fusion Methods in Two level Cervical Spondylosis Myelopathy: A Meta-Analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004581.R1
Article Type:	Research
Date Submitted by the Author:	01-May-2014
Complete List of Authors:	Huang, Zhe-Yu; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Wu, Ai-Min; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Li, Qing-Long; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Lei, Tao; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Wang, Kang-Yi; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Xu, Hua-Zi; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery ni, wenfei; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Surgery
Keywords:	Spine < ORTHOPAEDIC & TRAUMA SURGERY, Orthopaedic & trauma surgery < SURGERY, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

1 Title: Comparison of Two Anterior Fusion Methods in Two level Cervical 2 Spondylosis Myelopathy: A Meta-Analysis 3	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1	Title: Comparison of Two Anterior Fusion Methods in Two level Cervical
4 1 Title: Comparison of Two Anterior Fusion Methods in Two level Cervical 6 2 Spondylosis Myelopathy: A Meta-Analysis 7 2 Spondylosis Myelopathy: A Meta-Analysis 8 3 1 10 4 Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD; 11 4 Authors: Affiliation: The Department of Orthopedics Surgery, Second Affiliated 11 6 All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated 12 5 Kang-Yi Wang MD; WueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 13 6 China. 14 Phone number: The-Yu Huang MD 21 2 F-mail: Linangzheyu201 [digemail.com 23 14 Phone number: +86 0577 88002814 24 15 Second author: Ai-Min Wu MD 27 7 E-mail: author: Qing-Long Li MD 28 16 Second author: Tao Lei MD 29 1 Third author: Tao Lei MD 20 19 Third author: Kang-Yi Wang MD 29 E-mail: leitao4317@126.com 20 19 Fifth author: Kang-Yi Wang MD	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1	Title: Comparison of Two Anterior Fusion Methods in Two level Cervical
5 Spondylosis Myelopathy: A Meta-Analysis 6 2 Spondylosis Myelopathy: A Meta-Analysis 7 4 Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD; 7 4 Authors affiliation: The Department of Orthopedics Surgery, Second Affiliated 7 1 6 8 Postal code: 325027 9 3 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 10 7 11 8 11 9 11 10 11 11 11 12 12 13 14 14 14 15 16 16 16	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1	
6 2 Spondylosis Myelopathy: A Meta-Analysis 7 3 7 4 7 4 7 4 7 4 7 5 7 6 7 7 7 6 7 7 7 8 <td< th=""><th>6 7 8 9 10 11 12 13 14 15 16 17 18 19</th><td></td><td></td></td<>	6 7 8 9 10 11 12 13 14 15 16 17 18 19		
7 2 Expansion of Stephney Provide Tendent Fundation 9 3 11 4 Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD; 12 5 Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD. 13 6 Hauthors affiliation: The Department of Orthopedics Surgery, Second Affiliated 14 Hospital of Wenzhou university, Wenzhou, China. Postal code: 325027 14 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 15 China. 16 China. 17 Paddress: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 18 China. 19 E-mail: huangzheyu2011/2/gmail.com 21 First author: Zhe-Yu Huang MD 21 First author: Ai-Min Wu MD 22 Forth author: Qing-Long Li MD 24 Forth author: Tao Lei MD 25 Forth author: Tao Lei MD 26 E-mail: author: Kang-Yi Wang MD 27 Forth author: Kang-Yi Wang MD 28 Forth author: Hua-Zi Xu MD 29 Fifth author: Hua-Zi Xu MD 20 E-mail: spine-xu@/163.com	7 8 9 10 11 12 13 14 15 16 17 18 19	2	Such delasis Marshau A. Mata Anglasia
3 4 Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD; 5 Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD. 6 All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated 7 National of Wenzhou university, Wenzhou, China. 8 Postal code: 325027 7 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 7 China. 7 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 7 China. 7 First author: Zhe-Yu Huang MD 8 Forta author: Ai-Min Wu MD 7 E-mail: huangzheyu2011/@gmail.com 7 First author: Qing-Long Li MD 7 F-mail: aiminvu@l63.com 7 Forth author: Ging-Long Li MD 7 E-mail: li3367853350@il63.com 7 Fifth author: Kang-Yi Wang MD 8 E-mail: liaia/ai1/@il26.com 7 Fifth author: Hua-Zi Xu MD 8 Fifth author: Hua-Zi Xu MD 8 E-mail: spine-xu@l63.com 7 Sixth author and Corresponding author: Wen-Fei Ni MD PhD 8 E-mail	8 9 10 11 12 13 14 15 16 17 18 19	2	Spondylosis Myelopathy: A Meta-Analysis
9 3 10 4 Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD; 11 4 Authors: affiliation: The Department of Orthopedics Surgery, Second Affiliated 11 11 6 All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated 11 8 Postal code: 325027 9 11 9 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 11 11 11 12 12 First author: Zhe-Yu Huang MD 13 E-mail: huangzheyu2011@gmail.com 14 Phone number: +86 0577 88002814 15 Second author: Ai-Min Wu MD 16 Second author: Qing-Long Li MD 17 E-mail: aiminwu@163.com 18 Third author: Ging-Long Li MD 19 Third author: Tao Lei MD 21 Forth author: Kang-Yi Wang MD 22 Forth author: Hua-Zi Xu MD 23 E-mail: wangkangyi1989@2163.com 24 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 24 E-mail: wangkangyi1989@2163.com 25 Fifth author: Hua-Zi Xu MD <	9 10 11 12 13 14 15 16 17 18 19		
11 4 Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tab Lei MD; 12 5 Kang-Yi Wang MD; Qin Hua-Zi Xu MD; Wen-Fei Ni MD PhD. 13 6 All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated 14 7 Hospital of Wenzhou university, Wenzhou, China. 16 8 Postal code: 325027 17 9 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 18 10 China. 20 11 21 First author: Zhe-Yu Huang MD 22 13 E-mail: huangzheyu2011@gmail.com 23 14 Phone number: +86 0577 88002814 24 15 Second author: Ai-Min Wu MD 27 17 E-mail: aiminwu@163.com 28 18 Third author: Qing-Long Li MD 29 E-mail: 18367853350/@163.com Second author: Kang-Yi Wang MD 21 21 Forth author: Kang-Yi Wang MD E-mail: eitao4317@126.com 24 25 Fifth author: Kang-Yi Wang MD E-mail: wangkangyi1989@163.com 24 26 E-mail: wangkangyi1989@163.com Sething wangkangyi1989@2163.com <th>11 12 13 14 15 16 17 18 19</th> <td>3</td> <td></td>	11 12 13 14 15 16 17 18 19	3	
 Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD. All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated Hospital of Wenzhou university, Wenzhou, China. Postal code: 325027 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of China. First author: Zhe-Yu Huang MD E-mail: huangzheyu2011/ägenail.com Phone number: +86 0577 88002814 Second author: Ai-Min Wu MD E-mail: aiminwu@163.com Third author: Qing-Long Li MD E-mail: leitao4317@126.com Fifth author: Tao Lei MD E-mail: jeitao4317@126.com Fifth author: Kang-Yi Wang MD E-mail: wangkangyi J989@163.com Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 	12 13 14 15 16 17 18 19		
13 6 All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated 14 7 Hospital of Wenzhou university, Wenzhou, China. 16 8 Postal code: 325027 17 9 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 10 China. 11 First author: Zhe-Yu Huang MD 12 12 First author: Zhe-Yu Huang MD 13 E-mail: huangzhevu2011@gmail.com 24 14 Phone number: +86 0577 88002814 15 Second author: Ai-Min Wu MD 27 7 E-mail: aiminwu@163.com 28 18 29 19 Third author: Qing-Long Li MD 21 E-mail: leitao4317@l26.com 22 24 Forth author: Kang-Yi Wang MD 33 22 Forth author: Kang-Yi Wang MD 34 24 Famail: spine-xu@163.com 35 25 Fifth author: Hua-Zi Xu MD 36 26 E-mail: spine-xu@163.com 37 25 Fifth author and Corresponding author: Wen-Fei Ni MD PhD 36 24 Famail: spine-xu@163.com <th>13 14 15 16 17 18 19</th> <td></td> <td></td>	13 14 15 16 17 18 19		
14 7 Hospital of Wenzhou university, Wenzhou, China. 15 8 Postal code: 325027 17 9 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 11 11 12 First author: Zhe-Yu Huang MD 13 11 14 Phone number: +86 0577 88002814 15 5 16 Second author: Ai-Min Wu MD 17 F-mail: aiminwu@163.com 18 1 19 Third author: Qing-Long Li MD 21 Forth author: Tao Lei MD 22 12 Forth author: Tao Lei MD 23 24 Forth author: Kang-Yi Wang MD 24 29 E-mail: leitao4317@126.com 25 6 Seventh author: Kang-Yi Wang MD 24 29 E-mail: wengkangyi1989@163.com 27 77 Fifth author: Kang-Yi Wang MD 26 E-mail: spine-xu@163.com 27 74 Sixth author: Hua-Zi Xu MD 28 E-mail: spine-xu@163.com 29 E-mail: spine-xu@163.com 20 E-mail: spine-xu@163.com<	14 15 16 17 18 19	5	
16 Frospinal or WeinZhou Interestly, WeinZhou, China. 16 8 17 9 18 Postal code: 325027 17 9 10 China. 11 11 12 First author: Zhe-Yu Huang MD 13 12 14 12 15 E-mail: huangzheyu2011@gmail.com 23 14 14 Phone number: +86 0577 88002814 15 Second author: Ai-Min Wu MD 27 7 E-mail: aiminwu@163.com 28 18 29 19 30 19 31 0 21 Forth author: Qing-Long Li MD 22 13 32 11 33 22 44 Forth author: Tao Lei MD 34 E-mail: leitao4317@126.com 35 26 44 Famail: wangkangvi1989@163.com 36 24 37 25 38 26 49 E-mail: spine	15 16 17 18 19	6	All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated
16 8 Postal code: 325027 17 9 Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of 18 10 China. 19 11 21 12 First author: Zhe-Yu Huang MD 22 13 E-mail: huangzheyu2011@gmail.com 23 14 Phone number: +86 0577 88002814 24 15 25 16 Second author: Ai-Min Wu MD 27 17 E-mail: aiminwu@163.com 28 18 29 19 Third author: Qing-Long Li MD 21 Forth author: Tao Lei MD 22 24 33 22 44 15 35 E-mail: leitao4317@126.com 36 24 37 25 5 Fifth author: Kang-Yi Wang MD 38 26 41 28 5 Sixth author: Hua-Zi Xu MD 42 9 43 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 44 31 Seventh author and Corresponding author:	16 17 18 19	7	Hospital of Wenzhou university, Wenzhou, China.
Address:109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of11China.11First author: Zhe-Yu Huang MD121213E-mail: huangzheyu2011@gmail.com14Phone number: +86 0577 8800281415Second author: Ai-Min Wu MD16E-mail: aiminwu@l63.com17E-mail: aiminwu@l163.com181019Third author: Qing-Long Li MD10E-mail: 18367853350/al 63.com112012Forth author: Tao Lei MD132214Forth author: Tao Lei MD15E-mail: leitao/4317@l26.com16E-mail: spine-xu@l63.com172918E-mail: spine-xu@l63.com19Sixth author: Hua-Zi Xu MD102011Sixth author: Hua-Zi Xu MD12E-mail: spine-xu@l63.com13Seventh author and Corresponding author: Wen-Fei Ni MD PhD142324Fax number: +86 0577 88002814251326Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;2714281529162016201721Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;231624162517264027162816291629162016 <th>17 18 19</th> <td>8</td> <td>Postal code: 325027</td>	17 18 19	8	Postal code: 325027
18 10 China. 19 11 21 12 First author: Zhe-Yu Huang MD 22 13 E-mail: huangzheyu2011@gmail.com 23 14 Phone number: +86 0577 88002814 24 15 25 16 Second author: Ai-Min Wu MD 27 17 E-mail: aiminwu@163.com 28 18 29 19 Third author: Qing-Long Li MD 21 21 Forth author: Tao Lei MD 22 21 Forth author: Tao Lei MD 33 22 Forth author: Kang-Yi Wang MD 34 23 E-mail: leitao4317@126.com 35 23 Fifth author: Kang-Yi Wang MD 36 24 7 37 25 Fifth author: Hua-Zi Xu MD 42 29 E-mail: spine-xu@163.com 43 3 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 44 31 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 44 32 Phone number: +86 0577 88002814 45 Fax number: +86 0577 88002823	18 19	9	
19 11 20 11 21 12 22 13 23 14 Phone number: +86 0577 88002814 24 15 25 16 26 16 27 17 E-mail: aiminwu@163.com 28 18 29 19 30 19 Third author: Qing-Long Li MD 28 21 30 20 20 E-mail: [8367853350@163.com 31 20 21 Forth author: Tao Lei MD 32 21 33 22 40 27 51 Fifth author: Kang-Yi Wang MD 32 26 43 E-mail: wangkangyi1989@163.com 44 28 45 Sixth author: Hua-Zi Xu MD 42 29 43 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 44 31 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 45 36 <	19		
20 11 21 12 22 12 23 14 Phone number: +86 0577 88002814 24 15 25 16 26 16 27 17 E-mail: aiminwu@163.com 28 19 29 19 20 19 21 E-mail: 18367853350@163.com 22 21 23 22 30 E-mail: 18367853350@163.com 31 20 E-mail: 18367853350@163.com 33 22 Forth author: Tao Lei MD 34 23 E-mail: 16itao4317@126.com 35 24 E-mail: wangkangyi1989@163.com 36 24 E-mail: wangkangyi1989@163.com 37 25 Fifth author: Hua-Zi Xu MD 48 29 E-mail: spine-xu@163.com 30 29 E-mail: wenfeini@veah.net 41 28 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 42 29 E-mail: wenfeini@oveah.net 43			ennia.
 E-mail: huangzheyu2011@pmail.com Phone number: +86 0577 88002814 Second author: Ai-Min Wu MD E-mail: aiminwu@163.com Third author: Qing-Long Li MD E-mail: 18367853350@163.com Forth author: Tao Lei MD E-mail: leitao4317@126.com E-mail: leitao4317@126.com E-mail: wangkangyi1989@163.com Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD Fax number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			
2314Phone number: +86 0577 880028142415251626162717E-mail: aiminwu@163.com281829197Third author: Qing-Long Li MD301920E-mail: 18367853350@163.com312021332233224128322133241283227412833294128343043304430453146324733483449577 8800281448344945413551365136523754Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;533654355536543655375636573658375936593650365136523754385539563957365837593659365036503651			
24 1 Fundamentation of operations 25 16 Second author: Ai-Min Wu MD 26 16 Second author: Qing-Long Li MD 27 17 E-mail: <u>18367853350@163.com</u> 28 18 30 19 Third author: Qing-Long Li MD 31 20 E-mail: <u>18367853350@163.com</u> 32 21 33 22 Forth author: Tao Lei MD 34 23 E-mail: leitao4317@126.com 36 24 37 25 Fifth author: Kang-Yi Wang MD 38 26 E-mail: wangkangyi1989@163.com 40 27 41 28 Sixth author: Hua-Zi Xu MD 42 29 E-mail: spine-xu@163.com 43 30 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 44 30 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 45 31 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 46 32 Fax number: +86 0577 88002814 47 33 Phone number: +86 0577 88002823 55 37 <th></th> <td>13</td> <td></td>		13	
251526162717E-mail: aiminwu@163.com281829193120E-mail: 18367853350@163.com32213322Forth author: Tao Lei MD342325E-mail: leitao4317@126.com36243725Fifth author: Kang-Yi Wang MD3826E-mail: wangkangvi1989@163.com392740274128Sixth author: Hua-Zi Xu MD4229E-mail: spine-xu@163.com44304531Seventh author and Corresponding author: Wen-Fei Ni MD PhD4626E-mail: wenfeini@yeah.net473348344940505136513653545537Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;53365438553656395736583759365936503551365237533654395539564057345835593650365439 <td< th=""><th></th><td>14</td><td>Phone number: +86 0577 88002814</td></td<>		14	Phone number: +86 0577 88002814
2616Second author: AI-Min Wu MD2717E-mail: aiminwu@163.com28182919Third author: Qing-Long Li MD3019E-mail: 18367853350@163.com3120E-mail: 1010.com3322Forth author: Tao Lei MD3423E-mail: 1citao4317@126.com3523E-mail: lcitao4317@126.com36243725Fifth author: Kang-Yi Wang MD3826E-mail: wangkangyi1989@163.com3926E-mail: spine-xu@163.com402741284229E-mail: spine-xu@163.com4330443145314632E-mail: wenfeini@yeah.net4733483449344934503551365237403653385439553656395738583959355035513652375338543955365439553656405739583959355035503554395539 </th <th></th> <td>15</td> <td></td>		15	
2717E-mail: aiminwu@163.com28183019Third author: Qing-Long Li MD3120E-mail: 18367853350@163.com32213322Forth author: Tao Lei MD3423E-mail: leitao4317@126.com36243725Fifth author: Kang-Yi Wang MD3826E-mail: wangkangyi1989@163.com392741284229E-mail: spine-xu@163.com4330443151Seventh author and Corresponding author: Wen-Fei Ni MD PhD453152Seventh author and Corresponding author: Wen-Fei Ni MD PhD46324733483449503551365237533854395536523753385439553656405780012812583959355136523753385439553656405780012815839593550355136523754385536564057800128158<		16	Second author: Ai-Min Wu MD
 18 18 19 Third author: Qing-Long Li MD 20 E-mail: <u>18367853350@163.com</u> 21 22 Forth author: Tao Lei MD 23 E-mail: <u>leitao4317@126.com</u> 24 25 Fifth author: Kang-Yi Wang MD 26 E-mail: <u>wangkangyi1989@163.com</u> 29 E-mail: <u>spine-xu@163.com</u> 29 E-mail: <u>spine-xu@163.com</u> 20 E-mail: <u>wenfeini@ycah.net</u> 21 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 26 E-mail: <u>wenfeini@ycah.net</u> 27 Phone number: +86 0577 88002814 28 Fax number: +86 0577 88002823 29 Fax number: +86 0577 88002823 20 Fax number: +86 0577 88002823 21 Seventh author and reprint requests to: Wen-Fei Ni MD PhD; 21 Sing The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical 29 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 		17	E-mail: aiminwu@163.com
 Third author: Qing-Long Li MD E-mail: <u>18367853350@163.com</u> E-mail: <u>18367853350@163.com</u> E-mail: <u>leitao4317@126.com</u> E-mail: <u>leitao4317@126.com</u> E-mail: <u>wangkangyi1989@163.com</u> E-mail: <u>wangkangyi1989@163.com</u> Sixth author: Hua-Zi Xu MD E-mail: <u>spine-xu@163.com</u> Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: <u>wenfeini@yeah.net</u> Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			Third authors Oing Long Li MD
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			$\mathbf{F} = \frac{1}{2} + \frac{1}{2}$
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			E-mail: <u>1830/853350(<i>a</i>)163.com</u>
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 		22	Forth author: Tao Lei MD
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 		23	E-mail: <u>leitao4317@126.com</u>
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 		24	
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 		25	Fifth author: Kang-Yi Wang MD
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net F-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 	38	26	E-mail: wangkangyi1989@163.com
 Sixth author: Hua-Zi Xu MD E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net E-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 35 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			
 E-mail: spine-xu@163.com Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net E-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			Sixth author: Hua Zi Xu MD
 30 30 44 31 Seventh author and Corresponding author: Wen-Fei Ni MD PhD 46 32 E-mail: wenfeini@yeah.net 47 33 Phone number: +86 0577 88002814 48 34 Fax number: +86 0577 88002823 50 50 51 36 52 37 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; 53 38 The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical 54 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 56 40 of China. 			
 Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			
 Seventh author and Corresponding author: Wen-Fei Ni MD PhD E-mail: wenfeini@yeah.net Phone number: +86 0577 88002814 Fax number: +86 0577 88002823 35 36 37 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; 38 The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			
 46 32 E-mail: wenfeini@yeah.net 47 33 Phone number: +86 0577 88002814 48 34 Fax number: +86 0577 88002823 50 51 56 36 52 37 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; 53 54 55 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 56 40 of China. 		31	Seventh author and Corresponding author: Wen-Fei Ni MD PhD
 48 34 Fax number: +86 0577 88002823 50 35 51 36 52 37 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; 53 38 The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical 55 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 56 40 of China. 	46	32	E-mail: wenfeini@yeah.net
 49 35 50 35 51 36 52 37 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; 53 38 The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical 54 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 56 40 of China. 		33	Phone number: +86 0577 88002814
 35 36 37 Address correspondence and reprint requests to: Wen-Fei Ni MD PhD; 38 The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 36 of China. 		34	Fax number: +86 0577 88002823
303651365237Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;5338The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical5439University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic5640of China.		35	
5237Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;5338The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical5439University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic5640of China.			
 The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic of China. 			Address correspondence and reprint requests to Wen-Fei Ni MD PhD.
 54 38 The Department of Spinal Surgery, Second Armated Hospital of Weinzhou Weinzhou Weinzhou 55 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 56 40 of China. 			
55 39 University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic 56 40 of China.			
	55		
57 41		40	of China.
	57	41	
58 59 1			
-	60		

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

2
3
Δ
5
5
6
7
8
ā
3
10
11
12
13
11
45
15
16
17
18
10
13
20
21
22
$\begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10112314151617181922122324252627829303132334353637383940 \end{bmatrix}$
24
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
5 0
50
51
52
53
54
55
22
56
57
58
59
60
00

1 2

Keywords: Cervical spondylosis myelopathy; Anterior cervical discectomy and
 fusion; Anterior cervical corpectomy and fusion.
 3

- 4 **Word count:** 3423
- 5 6

7

- 8 ABSTRACT
- 9 OBJECTIVE: To evaluate the efficacy and safety of Anterior cervical corpectomy and
- 10 fusion (ACCF) and Anterior cervical discectomy and fusion (ACDF) for treating
- 11 two-adjacent-level CSM.

DESIGN: A meta-analysis of two anterior fusion methods was conducted. We 12 13 searched electronic databases of PubMed, Cochrane Central Register of Controlled 14 Trials, ScienceDirect, CNKI, WANFANG DATA, CQVIP. Quality assessment of 15 included studies is evaluated using the Cochrane Risk of Bias Tool and the 16 Methodological Index for Non-Randomized Studies(MINORS) criteria. We generated pooled risk ratios of dichotomous outcomes and standardised mean differences of 17 18 continuous outcomes. Using the chi-square and I-square tests, we assessed the 19 statistical heterogeneity. Subgroup and sensitivity analyses were also performed.

- 20 PARTICIPANTS: Nine eligible trials with a total of 631 patients with male to female
- 21 ratio of 1.38:1 were included in this meta-analysis.
- 22 INCLUSION CRITERIA: Randomized controlled trials (RCTs) and Non-randomized
- 23 controlled trials (NRCTs) of adopting ACCF and ACDF to treat two-adjacent-level
- 24 cervical spondylosis.
- 25 RESULTS: No significant difference was identified between the two groups regarding
- 26 hospital stay, JOA, neck and arm pain VAS, total cervical ROM, fusion ROM, fusion

1 2	
2 3 4	
5	
6 7	
8	
9 10	
11	
12 13	
14 15	
16	
17 18	
19 20	
21	
22 23	
24 25	
26	
19 20 21 22 23 24 25 26 27 28	
29 30	
31	
32 33	
34 35	
36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56 57	
58	
59 60	

1	rate, adjacent-level ossification, and complications. While ACDF has significantly
2	less blood loss (SMD = 1.14, 95% CI: [0.74, 1.53]), shorter operative time (SMD
3	=1.13, 95% CI: [0.82, 1.45]), greater cervical lordosis both total cervical (SMD=
4	-2.95, 95% CI: [-4.79,-1.12]) and fused segment (SMD= -2.24, 95% CI: [-3.31,-1.17]),
5	higher segmental height (SMD= -0.68, 95% CI: [-1.03,-0.34]), and less graft
6	subsidence (SMD=0.40, 95% CI: [0.06,0.75]).
7	CONCLUSIONS: The results suggested that ACDF has more advantages in some
8	aspects. Further high-quality RCT and longer follow-up duration are needed.
9	
10	Article summary
11	Strengths and limitations of this study
12	1) ACCF and ACDF are both effective and safe for treating CSM in our study. 2)
13	ACDF has more advantages than ACCF in some aspects. 3) The trials in our study are
14	not the high-quality RCTs, and do not have long enough follow-up duration. 4) The
15	number of studies used in the meta-analysis is small (9 studies). In fact for most of the
16	outcomes the studies used in the meta-analyses are less than 5. 5) The pathological
17	processes of patients are not always the same.
18	
10	
19	
20	
21	

1	
2	Introduction
3	Cervical spondylosis is a common disease and a progressive degenerative process
4	of the cervical spine result in loss of disc height and formation of osteophyte. When it
5	develops into cervical spondylosis myelopathy (CSM), motion abnormalities and
6	sensory disturbances will follow, resulting in decreasing life quality of patients. ¹
7	Surgical intervention is recommended for these patients with severe symptoms. ²
8	The choice between an anterior, posterior, or combined approach for
9	decompression is based primarily on (1) the sagittal alignment of the spinal column,
10	(2) the extent of disease, (3) the location of compressive abnormality, (4) the presence
11	of preoperative neck pain, and (5) previous operations. ²
12	Shamji et al. ³ and Jiang et al. ⁴ had reviewed the efficacy and safety of anterior
13	procedures for patients with multilevel CSM, covering the patients with
14	two-adjacent-level CSM, which both of them did not pay attention to. Chang et al. ⁵
15	support the treatment of choice for cervical disc herniation and spondylotic
16	radiculopathy or myelopathy is ACDF. Lu et al. ⁶ think ACCF is an effective surgical
17	procedure for the treatment of multilevel cervical myelopathy because it can remove
18	almost all pathology causing spinal cord compression like osteophytes, discs, and
19	ossified PLL. KAZUO et al. ⁷ and Mamoru et al. ⁸ think that ACDF and ACCF are both
20	widely used anterior methods for CSM especially with two levels. And patients with
21	two-adjacent-level CSM often can be seen in clinical practice, while controversies
22	still exist between ACCF and ACDF for patients with two-adjacent-level CSM when

Page 5 of 65

	comparing perioperative, clinical, radiographic and complications outcomes. This
2	meta-analysis is to compare the efficacy and safety of ACCF and ACDF for patients
	with two-adjacent-level CSM.
2	1
:	5
(5
,	7 Materials and Methods
:	3 Search Strategy
9	We searched electronic databases including PubMed (1966-2013), Cochrane
10	Central Register of Controlled Trials (Issue 9, 2013), ScienceDirect (1985-2013),
1	CNKI(1996-2013), WANFANG DATA(1997-2013), CQVIP(1996-2013). The
12	2 keywords used for the search were: "cervical spondylosis myelopathy", "anterior
13	cervical discectomy and fusion", "anterior cervical corpectomy and fusion", "two
14	4 level(s)", or "single-level").
1:	5
10	5 Eligibility Criteria
1′	Criteria for inclusion: We identified all comparative studies of adopting ACCF and
18	ACDF to treat two-adjacent-level cervical spondylosis, searched reference lists of
19	articles, and included studies to identify other potentially eligible studies. 1) ACCF
20	with tatanium mesh, cage or autologous ilium bone grafting, ACDF with interbody
2	cage devices or autologous ilium bone grafting, moreover the two surgeries both used
22	anterior cervical plate and screw fixation. 2) All patients included with a confirmed
	5

Page 6 of 65

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

CSM at two adjacent segments that recommended surgical intervention. 3) The trials have been followed up for more than 12 months. Criteria exclusion: 1) The studies did not meet the inclusion criteria. 2) Do not extract the data what we compare. 3) The number of samples was less than 30 cases. 4) The patients evaluated come from the same hospital. Data Extraction Two reviewers independently extracted data using a standardized form. 1) Basic characteristics, including published year, study design, inclusion/exclusion criteria, age, sex, enrolled number, and follow-up rate. 2) Intraoperative outcomes, consisting of hospital stays, bleeding amounts, operation times. 3) Clinical outcomes, including Japanese Orthopedic Association scores(JOA), Visual Analog Scale scores(VAS) for neck and arm pain. 4) Radiologic outcomes, such as cervical lordosis for total cervical and fused segment, total cervical range of motion, segmental range of motion, graft collapse, segmental height, fusion rate, degeneration of the adjacent-level. 4) complications, including short term and long term complications. Risk of Bias Assessment Two reviewers independently evaluated the quality assessment of included studies. Three randomized studies⁹⁻¹¹ was assessed with the Cochrane Handbook for Systematic Reviews of Interventions, six non-randomized studies¹²⁻¹⁷ was evaluated

according to the methodological index for non-randomized studies(MINORS) criteria,	
an established method for evaluating non-RCTs. ¹⁸	
Statistical Analysis	
We performed all meta-analysis with the Review Manager 5.2 software (Cochrane	
Collaboration, Oxford, UK). For continuous outcomes, means and standard deviations	
were pooled to generate a standardised mean difference (SMD), and 95% confidence	
intervals (CI) were generated. In study of Kim 2012, ¹⁷ we used a formula to get a	
combined mean and standard deviation (SD). ¹⁹ For dichotomous outcomes, the risk	
ratio (RR) and 95% CI were assessed. A probability of $P < 0.05$ was considered to be	
statistically significant. Assessment for statistical heterogeneity was calculated using	
the chi-square and I-square tests. When the test for heterogeneity was $P < 0.1$ or $I^2 >$	
50% indicated very high heterogeneity. The source of heterogeneity was investigated	
by subgroup analysis and sensitivity analysis. Fixed effects model was used for data	
with homogeneity, while a random effects model was used for data with high	
heterogeneity.	
heterogeneity.	
Results	
Literature Search	
A total of 606 potential reports were retrieved with the search strategy(Fig. 1). 597	
reports were excluded according to our inclusion criteria. No additional studies were	
obtained after reference review. Finally nine studies were selected and analyzed. ⁹⁻¹⁷	
7	
For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

$\begin{array}{c} 2&3&4&5&6&7\\ 8&9&1&1&1&2&1&1\\ 1&1&1&1&1&1&1\\ 1&1&1&1&2&2&2&2&2&2&2&2&2&2&3\\ 3&3&3&3&3&3&3&3&3&3&4&4&4&4&4&4&4&4&4&4$
6789112345678901123456789013333333377890412344567890122345678901123455555555555555555555555555555555555

1

2

3	For three randomized studies, ⁹⁻¹¹ two studies are randomized controlled trials, ^{9 11}
4	one of which did not provide the information of allocation concealment. One study is
5	a quasi-RCT, in which patients were allocated according to sequence of
6	hospitalization. ¹⁰ Due to the informed consent right of procedures between patients
7	and doctors, it was impossible to perform blinding of participants and personnel. All
8	of the three studies did not reported blinding of outcome assessment. No patients were
9	lost to follow-up except for Liu et al., ¹¹ in which eight patients were excluded, since
10	the missing data was small in number, which also balances in both arms, we
11	considered it as low risk of bias of incomplete outcome data addressed. In the three
12	trials, the outcomes were provided in detail, we regarded them as low risk of bias of
13	selective reporting. Owing to insufficient information to assess whether an important
14	risk of bias existed in a number of trials, we argued all trials had unclear risk of bias
15	towards other potential sources of bias. The methodological quality assessment was
15 16	towards other potential sources of bias. The methodological quality assessment was summarized in Table 1a. For six non-randomized studies, ¹²⁻¹⁷ according to the
16	summarized in Table 1a. For six non-randomized studies, ¹²⁻¹⁷ according to the
16 17	summarized in Table 1a. For six non-randomized studies, ¹²⁻¹⁷ according to the modified MINORS criteria, ¹⁸ all of them did not report the unbiased assessment of the
16 17 18	summarized in Table 1a. For six non-randomized studies, ¹²⁻¹⁷ according to the modified MINORS criteria, ¹⁸ all of them did not report the unbiased assessment of the study endpoint, the same to the item of prospective calculation of the study size. With
16 17 18 19	summarized in Table 1a. For six non-randomized studies, ¹²⁻¹⁷ according to the modified MINORS criteria, ¹⁸ all of them did not report the unbiased assessment of the study endpoint, the same to the item of prospective calculation of the study size. With regard to prospective collection of data, three studies did not report the relevant

8

BMJ Open

1	
2	Demographic Characteristics
3	The demographic characteristics of the studies included are presented in Table 2. A
4	total of 631 patients with male to female ratio of 1.38:1 were included: 270 underwent
5	anterior cervical corpectomy and fusion(ACCF) procedures, and 361 were treated by
6	the anterior cervical discectomy and fusion(ACDF) approach, the two surgeries used
7	various grafts, including autografts, allografts, and cage and/or plate systems. The
8	mean age was 55.1 years. The average duration of follow-up ranged from 18.9 to 43.2
9	months. Statistically similar baseline characteristics were observed between the ACCF
10	and ACDF groups(Table 3).
11	
12	Hospital Stay
13	Details regarding hospital stay were available in three papers(Table S1),9 11 16
14	statistical heterogeneity was absent in these studies ($I^2 = 0\%$; $P = 0.69$). The pooled
15	estimate revealed statistically insignificant difference (SMD=0.18, 95% CI: [-0.15,
16	0.51], <i>P</i> = 0.28)(Fig. 2).
17	Bleeding Amounts
18	Bleeding Amounts
19	Relevant data was documented in four articles(Table S1), ^{9-11 16} all the trials showed
20	ACDF significantly reduced intraoperative bleeding amounts. Pooling of relevant data
21	also showed statistically significant difference between the two groups (SMD = 1.14 ,
22	95% CI: [0.74, 1.53], $P=0.002$). Significant heterogeneity was detected (I ² =89%;
23	P < 0.00001) from a subgroup analysis(Fig.2b). And the sensitivity analysis confirmed
	7

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 the stability of bleeding amounts outcomes(Fig.S1).

3 Operative Time

Four trials reported significant decreased surgical time in the ACDF(Table S1).⁹⁻¹¹ ¹⁶ Overall, the standardised mean difference was 1.13 (95% CI: [0.82, 1.45], P < 0.00001) in favor of the ACDF group. There was obvious evidence for statistically significant heterogeneity ($I^2 = 54\%$; P = 0.009) from a subgroup analysis(.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2).

11 JOA

Three studies reported JOA score(Table S2),^{9 11 16} the pooled estimate revealed statistically insignificant difference (SMD=0.14, 95% CI: [-0.19, 0.47], P= 0.41) with low heterogeneity(I² = 12%)(Fig. 4a).

16 Neck VAS

17 Three studies reported a postoperative neck VAS score(Table S2),^{914,16} the pooled

- 18 data from the two relevant studies did not reveal any significant difference(SMD=0.13,
- 19 95% CI: [-0.15,0.41], P=0.36) with low heterogeneity($I^2 = 45\%$)(Fig. 4b).

21 Arm VAS

22 Relevant data was documented in three articles(Table S2).^{9 14 16} There was no

BMJ Open

1	significant difference between the two treatment groups(SMD=-0.15, 95%CI
2	=[-0.43,0.13]; $P = 0.28$) with low heterogeneity (I ² = 4%)(Fig. 4c).
3	
4	C2-C7 Cobb
5	Five studies reported the C2-C7 Cobb at final follow-up (Table S3a), ^{9 12 14 16 17} the
6	available data demonstrated low heterogeneity ($I^2 = 8\%$), and ACCF had a significant
7	lower cobb than ACDF(SMD= -0.32, 95% CI: [-0.53,-0.10], <i>P</i> = 0.004)(Fig. 5a).
8	
9	Fusion Cobb
10	There studies reported the fusion Cobb at final follow-up (Table S3a), ^{11 12 15} the
11	available data demonstrated no heterogeneity ($I^2 = 0\%$), and ACCF had a significant
12	lower cobb than ACDF(SMD= -0.50, 95% CI: [-0.75,-0.24], P=0.0001)(Fig. 5b).
13	
14	Total cervical ROM
15	Two studies reported the data of total cervical ROM at the final follow-up(Table
16	S3b), ⁹¹⁶ the other two studies demonstrated that there was no significant difference in
17	total cervical ROM between the two groups(SMD= -0.02, 95% CI: [-0.42,0.37],
18	$P=0.90$) with no heterogeneity($I^2 = 0\%$)(Fig. 5c).
19	
20	Fusion ROM
21	Two studies reported fusion ROM at the last follow-up(Table S3b),916 there was no
22	significant difference in fusion ROM between the two groups(SMD= -0.05, 95% CI:
	11

[-0.45, 0.35], P=0.80) with low heterogeneity($I^2 = 20\%$)(Fig. 5d). Fused segment height Five studies reported the data of fused segment height at final follow-up(Table S3b),^{9 11 14 16 17} we exclude three studies because of the different method to measure the fused segment height,^{11 16 17} the pooled results demonstrated that ACCF had a significant lower height of fused segment than ACDF(SMD= -0.68, 95% CI: [-1.03, -0.34]) with high heterogeneity($I^2 = 76\%$)(Fig. 6a). Graft collapse Two studies reported graft collapse at last follow-up(Table S3c),^{12 15} showing that there was a significant reduction in graft collapse for ACDF(SMD=0.40, 95% CI: [0.06, 0.75], P=0.02) with moderate heterogeneity ($I^2 = 68\%$)(Fig. 6b), no significant clinical heterogeneity and methodological heterogeneity are found, we consider that there exit a statistical heterogeneity, so we also pooled the two studies. Fusion rate Six studies reported fusion rate at last follow-up(Table S3c),^{9 10 14-17} there was no significant in fusion rate between the two groups(RR=1.00, 95% CI: [0.97,1.04], P=0.79) with no heterogeneity($I^2 = 0\%$)(Fig. 7a). Degeneration

1	
2	
3 4	
5	
6 7	
7 8	
9	
10	
11 12	
13	
14	
15 16	
17	
18	
19 20	
21	
22 23	
23 24	
25 26	
26 27	
27 28	
29	
30 31	
32	
33	
34 35	
36	
37 38	
30 39	
40	
41 42	
43	
44 45	
45 46	
47	
48 49	
- 50	
51	
52 53	
54	
55	
56 57	
58	
59	
60	

Three studies reported degeneration of the adjacent-level to the fusion(Table S3c),⁹ ^{14 15} showing that there was no significant difference in degeneration of the adjacent-level to the fusion between the two groups(RR=1.31, 95% CI: [0.44,3.93], P=0.63) with no heterogeneity(I²=0%)(Fig. 7b).

5

6 Complications

Data regarding complications were provided in eight studies(Table S4).^{9-11 13-17} There was no significant difference between ACCF and ACDF groups according to individual and pooled data(RR=1.25, 95%CI = [0.74, 2.13]; *P*= 0.40). Statistical heterogeneity was absent in these studies ($I^2 = 0\%$; *P*= 0.52)(Fig. 7c).

11

12 Discussion

Although most studies included in this analysis reported consistent results,⁹⁻¹⁷ the 13 pooled estimates should be explained with caution. With regard to operative outcomes, 14 hospital stay was similar in both groups, less blood loss and shorter operative time 15 was observed in ACDF than in ACCF. ACDF required less exposure of the spinal cord 16 than corpectomy did as we know,² which caused less damage to the spinal column, 17 18 accordingly, ACDF might decrease the blood loss than ACCF. In terms of ACCF, what 19 must be done is a 15 to 19-mm anterior midline trough in the vertebral body down to the posterior longitudinal ligament or dura, with removal of the cephalad and caudad 20 discs,² which would not only cost longer time to be removed, but also spend more 21 time to obtain a graft material fitting the trough, consequently ACDF had a significant 22

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

reduction about operative time.

In our meta analysis, JOA scores, VAS for neck and arm pain both significantly improved in each group without significant differences between two groups. The results suggested that both have a talent to be effective on treating two-adjacent-level CSM, and improve the patients' neurologic function, quality of life and disability. The similar outcome was achieved between ACDF and ACCF for multilevel cervical spondylosis by Shamji et al.³ and Jiang et al.⁴.

Total cervical ROM, fusion ROM, fusion rate, and adjacent-level ossification yielded no significant differences between the two groups. Concerning the high fusion rate in the two groups, it may be related to the following factors: 1) the use of poly ether ether ketone (PEEK) cage or titanium meshes packed with autogenous tricortical bone and fixed—screw titanium plate or Atlantis plate fixation.⁹⁻¹⁷ 2) The fixation system provides a stably biomechanical environment which greatly promote bone healing. 3) Bone healing is a process of creeping substitution.²⁰ and the distance of creeping substitution for single-level ACCF and two-level ACDF are both short. We believed that the high fusion rate effectively reduced the range of motion no matter of total cervical or fused segment. Eck et al. demonstrated that significantly greater adjacent level disc pressures was achieved after cervical fusion.²¹ The normal degenerative process plays a major role through impaired nutrition, loss of viable cells, matrix protein modification, and matrix failure.²² This normal aging process, in combination with the increased mechanical pressures, may synergistically hasten the process of degeneration. While it has not been conclusively demonstrated.²³

1	For C2-C7 Cobb, ACDF had a significantly greater lordosis angle than ACCF not
2	only at the immediate postoperative but also at the final follow-up, the same to the
3	fusion Cobb at the last follow-up. The reasons may be associated with the following
4	two factors: 1) Single-level ACCF removes both the vertebral body and two discs
5	while two-level ACDF just take out the two discs, ² as a result ACDF allows the
6	construction after surgery more like a normal spinal column. We can draw a
7	conclusion carefully that the loss of Cobb is less in ACDF. In other words, ACDF
8	preserve the sagittal alignment somewhat than ACCF does. 2) Eck et al. reported that
9	each of the involved joints contributes to the total ROM. ²¹ With fusion, the
10	contribution of one joint to ROM is reduced.
11	In terms of fused segment height, ACCF has a significant reduction than ACDF
12	both at immediate postoperative and at the last follow-up. With ACDF, screws

placed in the intervening segment and two caudal end plates synergistically share the load of the construct. In contrast, with a single-level corpectomy, screws are only at the cranial and caudal vertebral segments and the caudal end plate bears the full load of the construct,¹² additionally the graft contact area is less for ACCF than for ACDF, which results in the higher shear stress for ACCF. These reasons might hasten the process that the grafts are absorbed into the cover plate of adjacent vertebral body leading to a significant subsidence of treated segment in ACCF especially at the anterior and caudal portion.

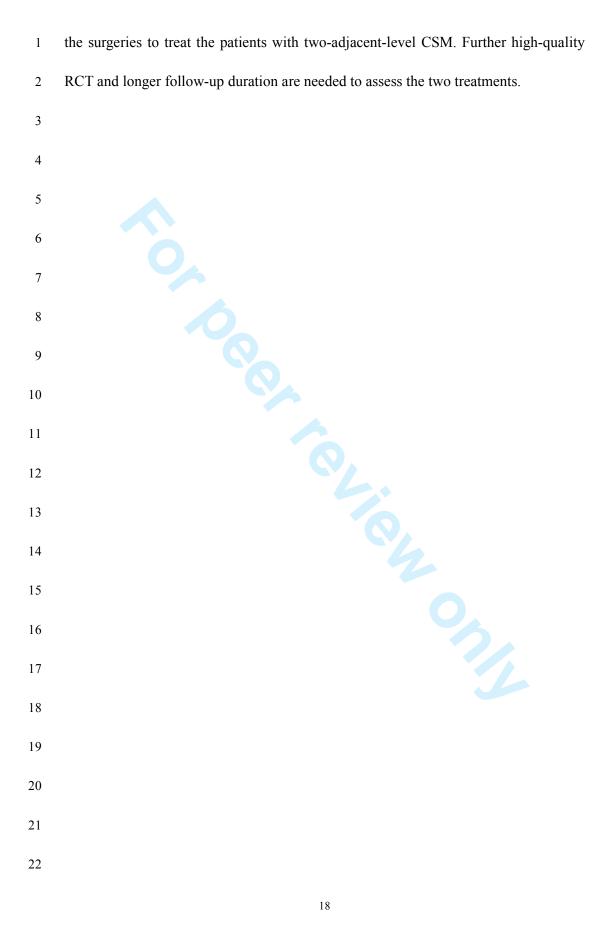
BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

21 Concerning complications, data shows that there is no significant difference 22 between the two groups and the incidence are low in each group. This result suggests

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open


1 that both of the two treatments are safe
--

The methodological quality assessment should be considered, which identified several limitations to the clinical evidence base. Only nine studies met the pre-defined eligibility criteria, which meaned all results were based on only 631 patients, what's worse, there were just three studies reported on randomization. All randomized studies had poor concealment of randomization, including selection and allocation bias. It is inevitable for patients or operators to have no knowledge to the surgical procedures because of informed consent, as a result of allowing further measurement and expectation bias. Four outcomes (bleeding amounts, operative time, fused segment height and graft collapse) have a high heterogeneity. Wu et al. summarized a method to deal with the heterogeneity in meta-analysis.²⁴ For bleeding amounts, we think that there exit a methodological heterogeneity because of different research types. From the sensitivity analysis(Fig.S1), we can easily learn that the result of Jia 2012¹⁶ has a significantly heterogeneity which should be removed. And we owe the heterogeneity to the operative ability of surgeons, and the subgroup SMD and 95%CI were adopted to represent the outcomes of bleeding amounts because of the clinical homogeneity, the results of subgroup analysis about bleeding amounts was showed in Fig.2b. About operative time, we think that there also exit a methodological heterogeneity because of different research types. From the sensitivity analysis(Fig.S2), we can easily learn that the result that ACDF has shorter operative time will not be reversed regardless of which study was removed. So we owe the heterogeneity to the operative ability of surgeons, and the total SMD and 95%CI were

adopted to represent the outcomes of operative time because of the clinical homogeneity, the results of subgroup analysis about operative time was showed in Fig.3. As to fused segment height, there exit a clinical heterogeneity, Oh et al.⁹ and Burkhardt et al.¹⁴ define the fused segment height as the distance between the midlines of involved cranial vertebral bodies and caudal vertebral bodies. Jia et al.¹⁶ did not describe the method to measure the fused segment height. While Liu et al.¹¹ and Kim et al.¹⁷ reported the anterior and posterior height of involved vertebral bodies. In summary, for fused segment height, we pooled the data of Oh et al.⁹ and Burkhardt et al.¹⁴, the outcome is displayed in Fig.6a. With regard to graft collapse, no significant clinical heterogeneity and methodological heterogeneity are found, we consider that there exit a statistical heterogeneity, so we also pooled the two studies.¹² ¹⁵ The result is showed in Fig.6b. Not all the included studies had consistent baselines characteristics between the ACCF and ACDF groups. Therefore, larger randomized controlled trials with high quality are still needed in the future.

16 Conclusion

Based on this meta-analysis, we could not draw any firm conclusions regarding the superiority of one treatment over the other, but ACDF has some advantages such as less blood loss, shorter operative time, greater cervical lordosis both total cervical and fused segment, higher segmental height, and less graft subsidence. These information give surgeons a preliminary understanding of the difference between the two surgeries to treat two-adjacent-level CSM and will be helpful to clinical surgeons for choosing

1	
2	Acknowledgement
3	This work is supported by Department of Health of Zhejiang Province, Backbone
4	of Talent Project (2012RCB037); and Department of Science and Technology of
5	Wenzhou, Wenzhou Science and Technology Project (Y20120073). The funders had
6	no role in study design, data collection and analysis, decision to publish, or
7	preparation of the manuscript.
8	
9	Author Contributions
10	Conceived and designed the experiments: ZYH AMW WFN. Performed the
11	experiments: ZYH AMW WFN. Analyzed the data: ZYH AMW. Contributed
12	reagents/materials/analysis tools: QLL TL KYW HZX. Wrote the paper: ZYH AMW.
13	Competing Interests
14	None
15	Data sharing statement
16	No additional data are available.
17	No additional data are available.
18	
19	
20	
21	
22	
	19

Figure Legends

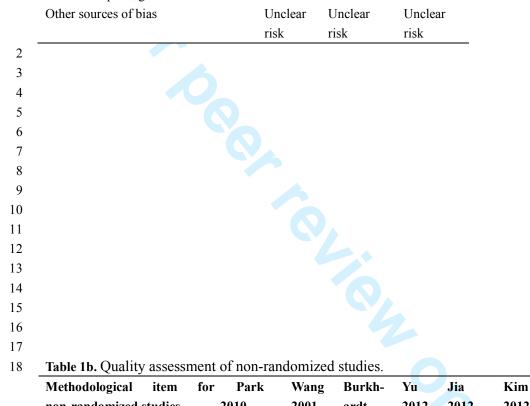
- 2 Fig.1: The search strategy for our meta-analysis.
- 3 Fig.2: Perioperative parameters, a: Forest plot and tabulated data for hospital stay, b:
- 4 Forest plot and tabulated data for bleeding amounts.
- 5 Fig.3: Perioperative parameters, Forest plot and tabulated data for operative time.
- 6 Fig.4: Clinical parameters, a: Forest plot and tabulated data for JOA, b: Forest plot
- 7 and tabulated data for neck VAS, c: Forest plot and tabulated data for arm VAS.
- 8 Fig.5: Radiologic parameters, a: Forest plot and tabulated data for C2-C7 Cobb b:
- 9 Forest plot and tabulated data for fusion Cobb, c: Forest plot and tabulated data for
- 10 total cervical ROM. d: Forest plot and tabulated data for fusion ROM.
- 11 Fig.6: Radiologic parameters, a: Forest plot and tabulated data for fused segment
- 12 height, b: Forest plot and tabulated data for graft collapse.
- 13 Fig.7: a: Forest plot and tabulated data for fusion rate, b: Forest plot and tabulated
- 14 data for degeneration of the adjacent-level, c: Forest plot and tabulated data for
 - 15 complications.
- 16 Fig.S1: The sensitive analysis for bleeding amounts.
- 17 Fig.S2: The sensitive analysis for operative time.

1			
2			
3	1		
4	2		
5	3		
6 7	4		
8	5		
9	6		
10	7		
11	8		
12 13		Dafa	erence
14	9 10	1.	
15		1.	Joseph T. King J, M.D., M.S.C.E., Kathleen A. McGinnis, M.S., Mark S.
16	11		Roberts, M.D., M.P.P. QUALITY OF LIFE ASSESSMENT WITH THE
17 18	12		MEDICAL OUTCOMES STUDY SHORT FORM-36 AMONG PATIENTS
19	13		WITH CERVICAL SPONDYLOTIC MYELOPATHY. NEUROSURGERY
20	14		2003;52(1):113-21.
21	15	2.	Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic
22	16		myelopathy. The Journal of bone and joint surgery. American volume
23 24	17		2006;88(7):1619-40.
24 25	18	3.	Shamji MF, Massicotte EM, Traynelis VC, et al. Comparison of anterior
26	19		surgical options for the treatment of multilevel cervical spondylotic
27	20		myelopathy: a systematic review. Spine 2013;38(22 Suppl 1):S195-209.
28	21	4.	Jiang SD, Jiang LS, Dai LY. Anterior cervical discectomy and fusion versus
29 30	22		anterior cervical corpectomy and fusion for multilevel cervical spondylosis: a
31	23		systematic review. Archives of orthopaedic and trauma surgery
32	24		2012;132(2):155-61.
33	25	5.	Chang WC, Tsou HK, Chen WS, et al. Preliminary comparison of radiolucent
34	26		cages containing either autogenous cancellous bone or hydroxyapatite graft in
35 36	27		multilevel cervical fusion. Journal of clinical neuroscience : official journal of
37	28		the Neurosurgical Society of Australasia 2009;16(6):793-6.
38	20 29	6.	Lu J, Wu X, Li Y, et al. Surgical results of anterior corpectomy in the aged
39	30	0.	patients with cervical myelopathy. European spine journal : official
40	31		publication of the European Spine Society, the European Spinal Deformity
41 42	32		Society, and the European Section of the Cervical Spine Research Society
43	33		2008;17(1):129-35.
44		7	
45	34 25	7.	KAZUO YONENOBU M, TAKESHI FUJI, MD, KEIRO ONO, MD, et al.
46 47	35		Choice of Surgical Treatment for Multisegmental Cervical Spondylotic
47 48	36		Myelopathy. CERVICAL SPONDYLOTIC MYELOPATHY
49	37	0	1985;10(8):710-16.
50	38	8.	Mamoru Kawakami MTT, MD; Hiroshi Iwasaki, MD; Munehito Yoshida, MD;
51	39		et al. A Comparative Study of Surgical Approaches for Cervical Compressive
52 53	40		Myelopathy. CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
53 54	41		2000;381:129-36.
55	42	9.	Min Chul Oh M, Ho Yeol Zhang, MD, Jeong Yoon Park, MD, et al. Two-Level
56	43		Anterior Cervical Discectomy versus one-level corpectomy in cervical
57	44		spondylotic myelopathy. Spine 2009;34(7):692-96.
58 59			21
60			21
			For near review only http://bmienen.hmi.com/site/shout/guidelines.yhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

-2345678901123415678190222324256789031233455678904123445678901223455678902223225278903123345567890412344567890555555555555555555555555555555555555	
60	


1	10.	You-Lai Yu W-CG, Bing Xin. The comparison of therapeutic eff icacy
2		between two operative methods for the treatment of two-adjacent-level CSM.
3		Medical College Journal of Qiqihaer 2007;28(23):2821-23.
4	11.	Yong Liu LC, Yong Gu, Yun Xu, et al. Comparison of two anterior
5		decompression bone fusion treatments plus titanium plate implantation for
6		two-level cervical spondylotic myelopathy. Journal of Clinical Rehabilitative
7		Tissue Engineering Research 2011;15(4):597-601.
8	12.	Park Y, Maeda T, Cho W, et al. Comparison of anterior cervical fusion after
9		two-level discectomy or single-level corpectomy: sagittal alignment, cervical
10		lordosis, graft collapse, and adjacent-level ossification. The spine journal :
11		official journal of the North American Spine Society 2010;10(3):193-9.
12	13.	Jeffrey C. Wang PWM, Kevin K. Endow, and Rick B. Delamarter. A
13		Comparison of Fusion Rates Between Single-Level Cervical. Journal of Spinal
14		Disorders 2001;14(3):222-25.
15	14.	Burkhardt JK, Mannion AF, Marbacher S, et al. A comparative effectiveness
16		study of patient-rated and radiographic outcome after 2 types of
17		decompression with fusion for spondylotic myelopathy: anterior cervical
18	1.5	discectomy versus corpectomy. Neurosurgical focus 2013;35(1):E4.
19 20	15.	Feng-Bin Yu D-YC, Xin-Wei Wang, Xiao-Wei Liu. Radiographic comparison
20		of anterior cervical fusion after two-level discectomy or single-level
21		corpectomy for two-level cervical spondylotic myelopathy. National Medical Journal of China 2012;92(37):2636-40.
22 23	16.	Xiao-Lin Jia Z-JT, Fu-Bin Yang, et al. Comparision between single-level
23 24	10.	cervical corpectomy and two-level discectomy in two-adjacent-level cervical
24 25		spondylotic myelopathy. Orthopedic Journal of China 2012;20(21):1931-34.
25 26	17.	Kim MK, Kim SM, Jeon KM, et al. Radiographic Comparison of Four Anterior
27	17.	Fusion Methods in Two Level Cervical Disc Diseases : Autograft Plate
28		Fixation versus Cage Plate Fixation versus Stand-Alone Cage Fusion versus
29		Corpectomy and Plate Fixation. Journal of Korean Neurosurgical Society
30		2012;51(3):135-40.
31	18.	KAREM SLIM EN, DAMIEN FORESTIER, FABRICE KWIATKOWSKI, et
32		al. Methodological index for non-randomized studies (minors): development
33		and validation of a new instrument. ANZ J. Surg. 2003;73(9):712-16.
34	19.	Jia-Hong Yin Z-HZ, Jin Chen. On the Combined Calculation of the Average, the
35		Standard Deviation and the Passing Rate of Various Small Samples.
36		JOURNAL OF ZHAOTONG TEACHER'S COLLEGE 2010;32(5):61-64.
37	20.	Isaksson H, Wilson W, van Donkelaar CC, et al. Comparison of biophysical
38		stimuli for mechano-regulation of tissue differentiation during fracture
39		healing. Journal of biomechanics 2006;39(8):1507-16.
40	21.	Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effect of
41		cervical spine fusion on adjacent-level intradiscal pressure and segmental
42		motion. Spine 2002;27(22):2431-4.
43	22.	Joseph A. Buckwalter, MD. Spine Update Aging and Degeneration of the
44		Human Intervertebral Disc. Spine 1995;20(11):1307-14.
		22

1			
2			
3	1	23.	Hwang SH, Kayanja M, Milks RA, et al. Biomechanical comparison of
4	2		adjacent segmental motion after ventral cervical fixation with varying angles
5	3		of lordosis. The spine journal : official journal of the North American Spine
6			Society 2007;7(2):216-21.
7	4	2.4	
8 9	5	24.	Tai-xiang Wu G-jL, Jing Li. Some Risk of Affecting the Quality of Published
9 10	6		Systematic Reviews. Chinese J Evidence-Based Medicine 2005;5(1):51-58.
10	7		
12	8		
13	9		
14			
15	10		
16	11		
17	12		
18	13		
19			
20	14		
21	15		
22	16		
23	17		
24	18		
25			
26	19		
27	20		
28	21		
29	22		
30	23		
31			
32	24		
33	25		
34 35	26		
35 36	27		
30 37	28		
38			
39	29		
40	30		
41	31		
42	32		
43	33		
44			
45	34		
46	35		
47	36		
48	37		
49	38		
50			
51	39		
52	40		
53	41		
54 55	42		
55 56	43		
56 57			
57 58	44		
58 59			22
59 60			23
00			
		I	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3 4 5 6 7 8 9 10 11	
4	
5 6	
7	
8 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
29 30	
31	
29 30 31 32 33 34 35 36 37 38	
34	
35 36	
30 37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50	
51 52	
53 54	
55	
56	
57 58	
59	
60	

1	Table 1a.	Risk of bias	assessment	of randomized	studies.
---	-----------	--------------	------------	---------------	----------

Risk of bias assessment	Oh 2009	Yu 2007	Liu 2011
Random sequence generation	Unclear	High risk	Low risk
	risk		
Allocation concealment	Unclear	Unclear	Unclear
	risk	risk	risk
Blinding of participants and personnel	High risk	High risk	High risk
Blinding of outcome assessment	Unclear	Unclear	Unclear
	risk	risk	risk
Incomplete outcome data	Low risk	Low risk	Low risk
Selective reporting	Low risk	Low risk	Low risk
Other sources of bias	Unclear	Unclear	Unclear
	risk	risk	risk

18 Table 1b. Quality assessment of non-randomized studies.

Methodological item for	Park	Wang	Burkh-	Yu	Jia	Kim
non-randomized studies 2	2010	2001	ardt	2012	2012	2012
			2013			
1.A clearly stated aim	2	2	2	2	2	2
2.Inclusion of consecutive patients	2	2	2	2	2	2
3.Prospective collection of data	2	0	2	0	2	0
4.Endpoints appropriate to the aim of the study	2	2	2	2	2	2
5. Unbiased assessment of the study endpoint	0	0	0	0	0	0
6. Follow-up period appropriate to the aim of the study	2	2	2	2	2	2

BMJ Open

7. Loss to follow up less than	0	0	1	0	0	0
5%						
8. Prospective calculation of	0	0	0	0	0	0
the study size						
9. An adequate control group	2	2	2	2	2	2
10. Contemporary groups	2	2	2	2	2	2
11. Baseline equivalence of	2	2	2	2	2	2
groups						
12. Adequate statistical	2	2	2	2	2	2
analyses						

Table 2 Characteristics of the studies included in the meta-analysis.

Year ^{ref}	Design	Samp	le size	Mean ag	ge (years)	Gende	er(M/F)	Mean follow-u	p time(months)
		ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
2009 ⁶	Retro	17	14	55.12	52.64	16/15		27.33	24.9
2010 ⁷	Retro	52	45	$49.4{\pm}8.7$	$49.3\!\pm\!9.7$	30/22	17/28	$23.3\!\pm\!6.6$	$25.7\!\pm\!6.2$
2001 ⁸	Retro	20	32	51.5(17-80)		27/25		43.2(24-84)	
2013 ⁹	Retro	38	80	60.3 ± 11.1	$60.9{\pm}9.9$	25/13	41/39	20.4 ± 13.7	
2012 ¹⁰	Retro	48	62	59.3±6.8(49	-75)	65/45		32±4.2(24-60)	
200711	Quasi-RCT	20	20	53.1 ± 8.98	$52.75 \!\pm\! 7.81$	14/6	15/5	NA	
2012 ¹²	Retro	36	31	$48.83{\pm}8.12$	49.12±7.65	21/15	17/14	$28.96 {\pm} 13.21$	$26.81 \!\pm\! 11.02$
2012 ¹³	RCT	23	23	54.4±10.9	56.5 ± 9.2	18/5	16/7	31(25-53)	29(26-48)
2012^{14}	Retro	16	54	58±8.6	56.7 ± 10.2	13/3	31/23	$20\!\pm\!11.9$	$18.6 {\pm} 11.5$

4 Retro meant Retrospective, Mean age was described as mean±SD or mean or mean (range) of all patients in the

5 study or mean±SD of all patients in the study, Gender was described as M/F or M/F of all patients in the study,

6 Mean follow-up time was presented as mean±SD or mean (range) or mean±SD of all patients in the study, RCT=

7 randomized control trial, SD= standard deviation, ACCF= anterior cervical corpectomy and fusion, ACDF=

8 anterior cervical discectomy and fusion, NA= not available.

Table 3 Comparison of baseline characteristics between the ACCF and ACDF groups.

Characteristic	Oh	Park	Wang	Burkhardt	Yu	Yu	Jia	Liu	Kim
	2009	2010	2001	2013	2012	2007	2012	2011	2012
Mean age	*	*	*	*	*	*	*	*	*
Gender	*	*	*	*	*	*	*	*	*
Follow-up	*	*	*	*	*	*	*	*	*
Preoperative JOA	*	NA	NA	NA	NA	*	*	*	NA
Preoperative neck VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative arm VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative sagittal	NA	*	NA	NA	*	NA	NA	NA	NA
alignment									
Preoperative C2-C7 Cobb	*	*	NA	*	NA	NA	*	NA	*
Preoperative fused segment	*	NA	NA	*	NA	NA	NA	*	*

NA

NA

$\begin{array}{c}1&2&3&4&5&6&7\\8&9&1&1&1&2&1&1&1\\1&1&1&1&1&1&2&2&2&2&2&2&2$	
 42 43 44 45 46	

ROM	ve total	cervical	*	NA	NA	NA	NA	NA	0.02	N.
Preoperati ROM	ve fused	segment	*	NA	NA	NA	NA	NA	0.01	N
						l Analog Scal	e scores. Ro	OM= rang	ge of moti	ion, 1
not availat	ole, * Stat	istically insig	gnificar	nt (P>0.05	i).					

1	Title: Comparison of Two Anterior Fusion Methods in Two level Cervical
2	Spondylosis Myelopathy: A Meta-Analysis
3	
4	Authors: The Vy Hyper MD: Ai Min Wy MD: Ging Long Li MD: Teo Lei MD:
4 5	Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD; Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD.
6	All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated
7	Hospital of Wenzhou university, Wenzhou, China.
8	Postal code: 325027
9	Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of
10	China.
11	
12	First author: Zhe-Yu Huang MD
13	E-mail: huangzheyu2011@gmail.com
14	Phone number: +86 0577 88002814
15	
16	Second author: Ai-Min Wu MD
17	E-mail: aiminwu@163.com
18	
19	Third author: Qing-Long Li MD
20	E-mail: <u>18367853350@163.com</u>
21	
22	Forth author: Tao Lei MD
23	E-mail: <u>leitao4317@126.com</u>
24	
25	Fifth author: Kang-Yi Wang MD
26	Third author: Qing-Long Li MD E-mail: 18367853350@163.com Forth author: Tao Lei MD E-mail: leitao4317@126.com Fifth author: Kang-Yi Wang MD E-mail: wangkangyi1989@163.com
27	
28	Sixth author: Hua-Zi Xu MD
29	E-mail: <u>spine-xu@163.com</u>
30	
31	Seventh author and Corresponding author: Wen-Fei Ni MD PhD
32	E-mail: wenfeini@yeah.net
33	Phone number: +86 0577 88002814
34	Fax number: +86 0577 88002823
35	
36	
37	Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;
38	The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medic
39	University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republ
40 41	of China.

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

	BMJ Open
1 2	Keywords: Cervical spondylosis myelopathy; Anterior cervical discectomy and fusion; Anterior cervical corpectomy and fusion.
3 4	Word count: 3423
5 6 7	
8	ABSTRACT
9	OBJECTIVE: To evaluate the efficacy and safety of Anterior cervical
10	corpectomy and fusion (ACCF) and Anterior cervical discectomy and fusion
11	(ACDF) for treating two-adjacent-level CSM.
12	DESIGN: A meta-analysis of two anterior fusion methods was conducted. We
13	searched electronic databases of PubMed, Cochrane Central Register of
14	Controlled Trials, ScienceDirect, CNKI, WANFANG DATA, CQVIP. Quality
15	assessment of included studies is evaluated using the Cochrane Risk of Bias Tool
16	and the Methodological Index for Non-Randomized Studies(MINORS) criteria.
17	We generated pooled risk ratios of dichotomous outcomes and standardised
18	mean differences of continuous outcomes. Using the chi-square and I-square tests,
19	we assessed the statistical heterogeneity. Subgroup and sensitivity analyses were
20	also performed.
21	PARTICIPANTS: Nine eligible trials with a total of 631 patients with male to
22	female ratio of 1.38:1 were included in this meta-analysis.
23	INCLUSION CRITERIA: Randomized controlled trials (RCTs) and
24	Non-randomized controlled trials (NRCTs) of adopting ACCF and ACDF to
25	treat two-adjacent-level cervical spondylosis.

1		
2		
3	1	DECUUTO, No:: Count differences and identified between the two means
4	1	RESULTS: No significant difference was identified between the two groups
5		
6	2	regarding hospital stay, JOA, neck and arm pain VAS, total cervical ROM,
7		
8	3	fusion ROM, fusion rate, adjacent-level ossification, and complications. While
9	3	rusion ROM, rusion rate, aujacent-rever ossincation, and complications. White
10		
11	4	ACDF has significantly less blood loss (SMD = 1.14, 95% CI: [0.74, 1.53]),
12 13		
14	5	shorter operative time (SMD =1.13, 95% CI: [0.82, 1.45]), greater cervical
15	C	
16	~	
17	6	lordosis both total cervical (SMD= -2.95, 95% CI: [-4.79,-1.12]) and fused
18		
19	7	segment (SMD= -2.24, 95% CI: [-3.31,-1.17]), higher segmental height (SMD=
20		
21	0	-0.68, 95% CI: [-1.03,-0.34]), and less graft subsidence (SMD=0.40, 95% CI:
22	8	-0.00, 95% CI: [-1.05,-0.54]), and less grant subsidence (SMD-0.40, 95% CI:
23		
24	9	[0.06,0.75]).
25		
26	10	CONCLUSIONS: The results suggested that ACDF has more advantages in some
27	10	concelesions, the results suggested that nept has more advantages in some
28		
29	11	aspects. Further high-quality RCT and longer follow-up duration are needed.
30		
31	12	
32		Article summary Strengths and limitations of this study
33	12	Antiala gummany
34	13	Article summary
35 36		
37	14	Strengths and limitations of this study
38		
39		
40	15	1) ACCF and ACDF are both effective and safe for treating CSM in our study. 2)
41	15	1) ACCT and ACDT are bour encentre and sale for treating CSWI in our study. 2)
42		
43	16	ACDF has more advantages than ACCF in some aspects. 3) The trials in our study are
44		
45	17	not the high-quality RCTs, and do not have long enough follow-up duration. 4) The
46		
47	10	were here affected in a state of the second se
48	18	number of studies used in the meta-analysis is small (9 studies). In fact for most
49		
50	19	of the outcomes the studies used in the meta-analyses are less than 5. 5) The
51		
52	20	pathological processes of patients are not always the same.
53	20	pationsfical processes of patients are not always the same.
54		
55		
56 57	21	
57 58		
59		
60		3

3
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	
2	
3	Introduction
4	Cervical spondylosis is a common disease and a progressive degenerative process
5	of the cervical spine result in loss of disc height and formation of osteophyte. When it
6	develops into cervical spondylosis myelopathy (CSM), motion abnormalities and
7	sensory disturbances will follow, resulting in decreasing life quality of patients. ¹
8	Surgical intervention is recommended for these patients with severe symptoms. ²
9	The choice between an anterior, posterior, or combined approach for
10	decompression is based primarily on (1) the sagittal alignment of the spinal column,
11	(2) the extent of disease, (3) the location of compressive abnormality, (4) the presence
12	of preoperative neck pain, and (5) previous operations. ²
13	Shamji et al. ³ and Jiang et al. ⁴ had reviewed the efficacy and safety of anterior
14	procedures for patients with multilevel CSM, covering the patients with
15	two-adjacent-level CSM, which both of them did not pay attention to. Chang et
16	al. ⁵ support the treatment of choice for cervical disc herniation and spondylotic
17	radiculopathy or myelopathy is ACDF. Lu et al. ⁶ think ACCF is an effective
18	surgical procedure for the treatment of multilevel cervical myelopathy because it
19	can remove almost all pathology causing spinal cord compression like
20	osteophytes, discs, and ossified PLL. KAZUO et al. ⁷ and Mamoru et al. ⁸ think
21	that ACDF and ACCF are both widely used anterior methods for CSM especially
22	with two levels. And patients with two-adjacent-level CSM often can be seen in

1		
2		
3		
4	1	clinical practice, while controversies still exist between ACCF and ACDF for
5		
6	2	patients with two-adjacent-level CSM when comparing perioperative, clinical,
7	2	patients with two-aujacent-itver Com when comparing perioperative, ennical,
8		
9	3	radiographic and complications outcomes. This meta-analysis is to compare the
10		
11	4	efficacy and safety of ACCF and ACDF for patients with two-adjacent-level
12		n na se
13	5	CSM
14	5	CSM.
15		
16	6	
17		
18 19	7	
20	0	
20 21	8	
22		
23	9	Materials and Methods
24		
25	10	Search Strategy
26	10	Source Strategy
27		
28	11	We searched electronic databases including PubMed (1966-2013), Cochrane
29		
30	12	Central Register of Controlled Trials (Issue 9, 2013), ScienceDirect (1985-2013),
31		
32	13	CNKI(1996-2013), WANFANG DATA(1997-2013), CQVIP(1996-2013). The
33	15	CINKI(1990-2013), WANFANO DAIA(1997-2013), $CQVIF(1990-2013)$. The
34		
35	14	keywords used for the search were: "cervical spondylosis myelopathy", "anterior
36		
37	15	cervical discectomy and fusion", "anterior cervical corpectomy and fusion", "two
38 39		······································
40	16	laval(a)" or "air ala laval")
40	16	level(s)", or "single-level").
42		
43	17	
44		Eligibility Criteria
45	18	Eligibility Criteria
46		J J L L
47	10	Culture for the last on We through a line of the first first of the COP
48	19	Criteria for inclusion: We identified all comparative studies of adopting ACCF
49		
50	20	and ACDF to treat two-adjacent-level cervical spondylosis, searched reference
51		
52	21	lists of articles, and included studies to identify other potentially eligible studies.
53 54	Δ1	ists of articles, and included studies to luciting other potentially engine studies.
54 55		
55 56	22	1) ACCF with tatanium mesh, cage or autologous ilium bone grafting, ACDF
56 57		
58	23	with interbody cage devices or autologous ilium bone grafting, moreover the two
59		5
60		5
-		

1	surgeries both used anterior cervical plate and screw fixation. 2) All patients
2	included with a confirmed CSM at two adjacent segments that recommended
3	surgical intervention. 3) The trials have been followed up for more than 12
4	months.
5	Criteria exclusion: 1) The studies did not meet the inclusion criteria. 2) Do not
6	extract the data what we compare. 3) The number of samples was less than 30
7	cases. 4) The patients evaluated come from the same hospital.
8	
9	Data Extraction
10	Two reviewers independently extracted data using a standardized form. 1) Basic
11	characteristics, including published year, study design, inclusion/exclusion criteria,
12	age, sex, enrolled number, and follow-up rate. 2) Intraoperative outcomes, consisting
13	of hospital stays, bleeding amounts, operation times. 3) Clinical outcomes, including
14	Japanese Orthopedic Association scores(JOA), Visual Analog Scale scores(VAS) for
15	neck and arm pain. 4) Radiologic outcomes, such as cervical lordosis for total
16	cervical and fused segment, total cervical range of motion, segmental range of motion,
17	graft collapse, segmental height, fusion rate, degeneration of the adjacent-level. 4)
18	complications, including short term and long term complications.
19	
20	Risk of Bias Assessment
21	Two reviewers independently evaluated the quality assessment of included
22	studies. Three randomized studies ⁹⁻¹¹ was assessed with the Cochrane Handbook
	6

Page 33 of 65

1	for Systematic Reviews of Interventions, six non-randomized studies ¹²⁻¹⁷ was
2	evaluated according to the methodological index for non-randomized
3	studies(MINORS) criteria, an established method for evaluating non-RCTs. ¹⁸
4	
5	Statistical Analysis
6	We performed all meta-analysis with the Review Manager 5.2 software (Cochrane
7	Collaboration, Oxford, UK). For continuous outcomes, means and standard deviations
8	were pooled to generate a standardised mean difference (SMD), and 95% confidence
9	intervals (CI) were generated. In study of Kim 2012, ¹⁷ we used a formula to get a
10	combined mean and standard deviation (SD). ¹⁹ For dichotomous outcomes, the risk
11	ratio (RR) and 95% CI were assessed. A probability of $P < 0.05$ was considered to be
12	statistically significant. Assessment for statistical heterogeneity was calculated using
13	the chi-square and I-square tests. When the test for heterogeneity was $P < 0.1$ or $I^2 >$
14	50% indicated very high heterogeneity. The source of heterogeneity was investigated
15	by subgroup analysis and sensitivity analysis. Fixed effects model was used for data
16	with homogeneity, while a random effects model was used for data with high
17	heterogeneity.
18	
19	Results
20	Literature Search

Page 34 of 65

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1	A total of 606 potential reports were retrieved with the search strategy(Fig. 1). 597
2	reports were excluded according to our inclusion criteria. No additional studies were
3	obtained after reference review. Finally nine studies were selected and analyzed. ⁹⁻¹⁷

Risk of bias assessment

For three randomized studies,⁹⁻¹¹ two studies are randomized controlled trials,⁹ ¹¹ one of which did not provide the information of allocation concealment. One study is a quasi-RCT, in which patients were allocated according to sequence of hospitalization.¹⁰ Due to the informed consent right of procedures between patients and doctors, it was impossible to perform blinding of participants and personnel. All of the three studies did not reported blinding of outcome assessment. No patients were lost to follow-up except for Liu et al.,¹¹ in which eight patients were excluded, since the missing data was small in number, which also balances in both arms, we considered it as low risk of bias of incomplete outcome data addressed. In the three trials, the outcomes were provided in detail, we regarded them as low risk of bias of selective reporting. Owing to insufficient information to assess whether an important risk of bias existed in a number of trials, we argued all trials had unclear risk of bias towards other potential sources of bias. The methodological quality assessment was summarized in Table 1a. For six non-randomized studies,¹²⁻¹⁷ according to the modified MINORS criteria,¹⁸ all of them did not report the unbiased assessment of the study endpoint, the same to the item of prospective calculation of the study size. With

1	
2	
1	
4	
5	
2 3 4 5 6 7 8	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	
20	
20	
29	
30	
31	
32	
33 34 35 36 37	
34	
35	
36	
00 27	
31	
-38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	
00	

1 regard to prospective collection of data, three studies did not report the relevant information.^{13 15 17} Only one study reported the follow up rate.¹⁴ The other eight 2 items were all reported definitely. In summary, scores ranged from 16 to 18, with 3 a median value of 16.5. The methodological quality assessment was summarized 4 5 in Table 1b. 6 7 Demographic Characteristics The demographic characteristics of the studies included are presented in Table 2. A 8 9 total of 631 patients with male to female ratio of 1.38:1 were included: 270 underwent anterior cervical corpectomy and fusion(ACCF) procedures, and 361 were treated by 10 the anterior cervical discectomy and fusion(ACDF) approach, the two surgeries used 11 12 various grafts, including autografts, allografts, and cage and/or plate systems. The 13 mean age was 55.1 years. The average duration of follow-up ranged from 18.9 to 43.2 months. Statistically similar baseline characteristics were observed between the ACCF 14 15 and ACDF groups(Table 3). 16 17 Hospital Stay Details regarding hospital stay were available in three papers(Table S1),9 11 16 18 statistical heterogeneity was absent in these studies ($I^2 = 0\%$; P = 0.69). The pooled 19

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

20 estimate revealed statistically insignificant difference (SMD=0.18, 95% CI: [-0.15,

21 0.51], P = 0.28)(Fig. 2).

22

23 Bleeding Amounts

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2	
3 4 5	
5 6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21 22	
23 24	
25 26	
27 28	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 132 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 36 \\ 7 \\ 38 \\ 36 \\ 38 \\ 36 \\ 37 \\ 38 \\ 36 \\ 38 \\ 36 \\ 37 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 37 \\ 38 \\ 36 \\ 38 \\ 36 \\ 37 \\ 38 \\ 36 \\ 30 \\ 38 \\ 36 \\ 38 \\ 36 \\ 37 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 36 \\ 38 \\ 38$	
31 32 33	
34 35	
36 37	
39	
40 41 42	
42 43 44	
45 46	
47 48	
49 50	
51 52	
53 54 55	
55 56 57	
58 59	
60	

1	Relevant data was documented in four articles(Table S1), ^{9-11 16} all the trials showed
2	ACDF significantly reduced intraoperative bleeding amounts. Pooling of relevant data
3	also showed statistically significant difference between the two groups $(SMD = 1.14,$
4	95% CI: [0.74, 1.53], <i>P</i> =0.002). Significant heterogeneity was detected (I ² =89%;
5	P <0.00001) from a subgroup analysis(Fig.2b). And the sensitivity analysis
6	confirmed the stability of bleeding amounts outcomes(Fig.S1).
7	
8	Operative Time
9	Four trials reported significant decreased surgical time in the ACDF(Table S1).9-11
10	¹⁶ Overall, the standardised mean difference was 1.13 (95% CI: [0.82, 1.45],
11	P < 0.00001) in favor of the ACDF group. There was obvious evidence for
12	statistically significant heterogeneity ($I^2 = 54\%$; $P= 0.009$) from a subgroup
12 13	statistically significant heterogeneity ($I^2 = 54\%$; $P= 0.009$) from a subgroup analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of
13	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of
13 14	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of
13 14 15	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2).
13 14 15 16	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2).
13 14 15 16 17	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2). JOA Three studies reported JOA score(Table S2), ^{9 11 16} the pooled estimate revealed
 13 14 15 16 17 18 	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2). JOA Three studies reported JOA score(Table S2), ^{9 11 16} the pooled estimate revealed statistically insignificant difference (SMD=0.14, 95% CI: [-0.19, 0.47], <i>P</i> = 0.41) with
 13 14 15 16 17 18 19 	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2). JOA Three studies reported JOA score(Table S2), ^{9 11 16} the pooled estimate revealed statistically insignificant difference (SMD=0.14, 95% CI: [-0.19, 0.47], <i>P</i> = 0.41) with
 13 14 15 16 17 18 19 20 	analysis(Fig.3). Furthermore, the sensitivity analysis confirmed the stability of operative time outcomes(Fig.S2). JOA Three studies reported JOA score(Table S2), ^{9 11 16} the pooled estimate revealed statistically insignificant difference (SMD=0.14, 95% CI: [-0.19, 0.47], P = 0.41) with low heterogeneity(I ² = 12%)(Fig. 4a).

BMJ Open

	1	data from the two relevant studies did not reveal any significant difference(SMD=0.13,
	2	95% CI: [-0.15,0.41], $P=0.36$) with low heterogeneity($I^2 = 45\%$)(Fig. 4b).
	3	
	4	Arm VAS
	5	Relevant data was documented in three articles(Table S2). ^{9 14 16} There was no
	6	significant difference between the two treatment groups(SMD=-0.15, 95%CI
	7	=[-0.43,0.13]; $P = 0.28$) with low heterogeneity ($I^2 = 4\%$)(Fig. 4c).
	8	
	9	C2-C7 Cobb
	10	Five studies reported the C2-C7 Cobb at final follow-up (Table S3a), ^{9 12 14 16 17} the
	11	available data demonstrated low heterogeneity ($I^2 = 8\%$), and ACCF had a significant
	12	lower cobb than ACDF(SMD= -0.32, 95% CI: [-0.53,-0.10], <i>P</i> = 0.004)(Fig. 5a).
	13	
	14	Fusion Cobb
	15	There studies reported the fusion Cobb at final follow-up (Table S3a), ^{11 12 15} the
	16	available data demonstrated no heterogeneity($I^2 = 0\%$), and ACCF had a significant
	17	lower cobb than ACDF(SMD= -0.50, 95% CI: [-0.75,-0.24], <i>P</i> =0.0001)(Fig. 5b).
	18	
	19	Total cervical ROM
2	20	Two studies reported the data of total cervical ROM at the final follow-up(Table
2	21	S3b), ⁹¹⁶ the other two studies demonstrated that there was no significant difference in
2	22	total cervical ROM between the two groups(SMD= -0.02, 95% CI: [-0.42,0.37],

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

P=0.90) with no heterogeneity($I^2 = 0\%$)(Fig. 5c). Fusion ROM Two studies reported fusion ROM at the last follow-up(Table S3b),⁹¹⁶ there was no significant difference in fusion ROM between the two groups(SMD= -0.05, 95% CI: [-0.45, 0.35], P=0.80) with low heterogeneity($I^2 = 20\%$)(Fig. 5d). Fused segment height Five studies reported the data of fused segment height at final follow-up(Table S3b),^{9 11 14 16 17} we exclude three studies because of the different method to measure the fused segment height,^{11 16 17} the pooled results demonstrated that ACCF had a significant lower height of fused segment than ACDF(SMD= -0.68, 95% CI: [-1.03, -0.34]) with high heterogeneity ($I^2 = 76\%$)(Fig. 6a). Graft collapse Two studies reported graft collapse at last follow-up(Table S3c),^{12 15} showing that there was a significant reduction in graft collapse for ACDF(SMD=0.40, 95% CI: [0.06, 0.75], P=0.02) with moderate heterogeneity (I² = 68%)(Fig. 6b), no significant clinical heterogeneity and methodological heterogeneity are found, we consider that there exit a statistical heterogeneity, so we also pooled the two studies. Fusion rate

BMJ Open

1	Six studies reported fusion rate at last follow-up(Table S3c), ^{9 10 14-17} there was no
2	significant in fusion rate between the two groups(RR=1.00, 95% CI: [0.97,1.04],
3	$P=0.79$) with no heterogeneity($I^2 = 0\%$)(Fig. 7a).
4	
5	Degeneration
6	Three studies reported degeneration of the adjacent-level to the fusion(Table S3c), ⁹
7	¹⁴ ¹⁵ showing that there was no significant difference in degeneration of the
8	adjacent-level to the fusion between the two groups(RR=1.31, 95% CI: [0.44,3.93],
9	$P=0.63$) with no heterogeneity($I^2=0\%$)(Fig. 7b).
10	
11	Complications
12	Data regarding complications were provided in eight studies(Table S4).9-11 13-17
13	There was no significant difference between ACCF and ACDF groups according to
14	individual and pooled data(RR=1.25, 95%CI = $[0.74, 2.13]$; P= 0.40). Statistical
15	heterogeneity was absent in these studies ($I^2 = 0\%$; $P = 0.52$)(Fig. 7c).
16	
17	Discussion
18	Although most studies included in this analysis reported consistent results, ⁹⁻¹⁷ the
19	pooled estimates should be explained with caution. With regard to operative
20	outcomes, hospital stay was similar in both groups, less blood loss and shorter
21	operative time was observed in ACDF than in ACCF. ACDF required less
22	exposure of the spinal cord than corpectomy did as we know, ² which caused less
	13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

ו ר
2
ა ⊿
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
20
20 21
∠ I 22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 44
45
45 46
40 47
48
49 50
50
51
52
53
54
55
56
57
58
59
60

1

1 damage to the spinal column, accordingly, ACDF might decrease the blood loss than ACCF. In terms of ACCF, what must be done is a 15 to 19-mm anterior midline 2 trough in the vertebral body down to the posterior longitudinal ligament or dura, with 3 removal of the cephalad and caudad discs,² which would not only cost longer time to 4 5 be removed, but also spend more time to obtain a graft material fitting the trough, consequently ACDF had a significant reduction about operative time. 6 7 In our meta analysis, JOA scores, VAS for neck and arm pain both significantly improved in each group without significant differences between two groups. The 8 9 results suggested that both have a talent to be effective on treating two-adjacent-level CSM, and improve the patients' neurologic function, quality of 10 life and disability. The similar outcome was achieved between ACDF and ACCF for 11 multilevel cervical spondylosis by Shamji et al.³ and Jiang et al.⁴. 12 13 Total cervical ROM, fusion ROM, fusion rate, and adjacent-level ossification yielded no significant differences between the two groups. Concerning the high fusion 14 rate in the two groups, it may be related to the following factors: 1) the use of poly 15 ether ether ketone (PEEK) cage or titanium meshes packed with autogenous tricortical 16 bone and fixed—screw titanium plate or Atlantis plate fixation.⁹⁻¹⁷ 2) The fixation 17 18 system provides a stably biomechanical environment which greatly promote bone healing. 3) Bone healing is a process of creeping substitution,²⁰ and the distance of 19 creeping substitution for single-level ACCF and two-level ACDF are both short. We 20 21 believed that the high fusion rate effectively reduced the range of motion no matter of total cervical or fused segment. Eck et al. demonstrated that significantly greater 22

adjacent level disc pressures was achieved after cervical fusion.²¹ The normal degenerative process plays a major role through impaired nutrition, loss of viable cells, matrix protein modification, and matrix failure.²² This normal aging process, in combination with the increased mechanical pressures, may synergistically hasten the process of degeneration. While it has not been conclusively demonstrated.²³

For C2-C7 Cobb, ACDF had a significantly greater lordosis angle than ACCF not only at the immediate postoperative but also at the final follow-up, the same to the fusion Cobb at the last follow-up. The reasons may be associated with the following two factors: 1) Single-level ACCF removes both the vertebral body and two discs while two-level ACDF just take out the two discs,² as a result ACDF allows the construction after surgery more like a normal spinal column. We can draw a conclusion carefully that the loss of Cobb is less in ACDF. In other words, ACDF preserve the sagittal alignment somewhat than ACCF does. 2) Eck et al. reported that each of the involved joints contributes to the total ROM.²¹ With fusion, the contribution of one joint to ROM is reduced.

In terms of fused segment height, ACCF has a significant reduction than ACDF both at immediate postoperative and at the last follow-up. With ACDF, screws placed in the intervening segment and two caudal end plates synergistically share the load of the construct. In contrast, with a single-level corpectomy, screws are only at the cranial and caudal vertebral segments and the caudal end plate bears the full load of the construct,¹² additionally the graft contact area is less for ACCF than **for ACDF**, which results in the higher shear stress for ACCF. These reasons might hasten the

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

process that the grafts are absorbed into the cover plate of adjacent vertebral body
 leading to a significant subsidence of treated segment in ACCF especially at the
 anterior and caudal portion.

4 Concerning complications, data shows that there is no significant difference 5 between the two groups and the incidence are low in each group. This result suggests 6 that both of the two treatments are safe.

The methodological quality assessment should be considered, which identified several limitations to the clinical evidence base. Only nine studies met the pre-defined eligibility criteria, which meaned all results were based on only 631 patients, what's worse, there were just three studies reported on randomization. All randomized studies had poor concealment of randomization, including selection and allocation bias. It is inevitable for patients or operators to have no knowledge to the surgical procedures because of informed consent, as a result of allowing further measurement and expectation bias. Four outcomes (bleeding amounts, operative time, fused segment height and graft collapse) have a high heterogeneity. Wu et al. summarized a method to deal with the heterogeneity in meta-analysis.²⁴ For bleeding amounts, we think that there exit a methodological heterogeneity because of different research types. From the sensitivity analysis(Fig.S1), we can easily learn that the result of Jia 2012¹⁶ has a significantly heterogeneity which should be removed. And we owe the heterogeneity to the operative ability of surgeons, and the subgroup SMD and 95%CI were adopted to represent the outcomes of bleeding amounts because of the clinical homogeneity, the results of

Page 43 of 65

BMJ Open

1	subgroup analysis about bleeding amounts was showed in Fig.2b. About
2	operative time, we think that there also exit a methodological heterogeneity
3	because of different research types. From the sensitivity analysis(Fig.S2), we can
4	easily learn that the result that ACDF has shorter operative time will not be
5	reversed regardless of which study was removed. So we owe the heterogeneity to
6	the operative ability of surgeons, and the total SMD and 95%CI were adopted to
7	represent the outcomes of operative time because of the clinical homogeneity, the
8	results of subgroup analysis about operative time was showed in Fig.3. As to
9	fused segment height, there exit a clinical heterogeneity, Oh et al. ⁹ and
10	Burkhardt et al. ¹⁴ define the fused segment height as the distance between the
11	midlines of involved cranial vertebral bodies and caudal vertebral bodies. Jia et
12	al. ¹⁶ did not describe the method to measure the fused segment height. While Liu
13	et al. ¹¹ and Kim et al. ¹⁷ reported the anterior and posterior height of involved
14	vertebral bodies. In summary, for fused segment height, we pooled the data of
15	Oh et al. ⁹ and Burkhardt et al. ¹⁴ , the outcome is displayed in Fig.6a. With regard
16	to graft collapse, no significant clinical heterogeneity and methodological
17	heterogeneity are found, we consider that there exit a statistical heterogeneity, so
18	we also pooled the two studies. ^{12 15} The result is showed in Fig.6b. Not all the
19	included studies had consistent baselines characteristics between the ACCF and
20	ACDF groups. Therefore, larger randomized controlled trials with high quality are
21	still needed in the future.
22	

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1 Conclusion

2	Based on this meta-analysis, we could not draw any firm conclusions regarding the
3	superiority of one treatment over the other, but ACDF has some advantages such as
4	less blood loss, shorter operative time, greater cervical lordosis both total
5	cervical and fused segment, higher segmental height, and less graft subsidence.
6	These information give surgeons a preliminary understanding of the difference
7	between the two surgeries to treat two-adjacent-level CSM and will be helpful to
8	clinical surgeons for choosing the surgeries to treat the patients with
9	two-adjacent-level CSM. Further high-quality RCT and longer follow-up duration
10	are needed to assess the two treatments.

12 Acknowledgement

This work is supported by Department of Health of Zhejiang Province, Backbone of Talent Project (2012RCB037); and Department of Science and Technology of Wenzhou, Wenzhou Science and Technology Project (Y20120073). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

20 Conceived and designed the experiments: ZYH AMW WFN. Performed the 21 experiments: ZYH AMW WFN. Analyzed the data: ZYH AMW. Contributed 22 reagents/materials/analysis tools: QLL TL KYW HZX. Wrote the paper: ZYH AMW.

1	
2	Data sharing statement
3	No additional data are available.
4	
5	Figure Legends
6	Fig.1: The search strategy for our meta-analysis.
7	Fig.2: Perioperative parameters, a: Forest plot and tabulated data for hospital
8	stay, b: Forest plot and tabulated data for bleeding amounts.
9	Fig.3: Perioperative parameters, Forest plot and tabulated data for operative
10	time.
11	Fig.4: Clinical parameters, a: Forest plot and tabulated data for JOA, b: Forest
12	plot and tabulated data for neck VAS, c: Forest plot and tabulated data for arm
13	VAS.
14	Fig.5: Radiologic parameters, a: Forest plot and tabulated data for C2-C7 Cobb
15	b: Forest plot and tabulated data for fusion Cobb, c: Forest plot and tabulated
16	data for total cervical ROM. d: Forest plot and tabulated data for fusion ROM.
17	Fig.6: Radiologic parameters, a: Forest plot and tabulated data for fused
18	segment height, b: Forest plot and tabulated data for graft collapse.
19	Fig.7: a: Forest plot and tabulated data for fusion rate, b: Forest plot and
20	tabulated data for degeneration of the adjacent-level, c: Forest plot and
21	tabulated data for complications.
22	Fig.S1: The sensitive analysis for bleeding amounts.

1	Fig.	S2: The sensitive analysis for operative time.
2		
3		
4	Refe	erence
5	1.	Joseph T. King J, M.D., M.S.C.E., Kathleen A. McGinnis, M.S., Mark S.
6		Roberts, M.D., M.P.P. QUALITY OF LIFE ASSESSMENT WITH THE
7		MEDICAL OUTCOMES STUDY SHORT FORM-36 AMONG PATIENTS
8		WITH CERVICAL SPONDYLOTIC MYELOPATHY. NEUROSURGERY
9		2003; 52 (1):113-21.
10	2.	Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic
11		myelopathy. The Journal of bone and joint surgery. American volume
12		2006; 88 (7):1619-40.
13	3.	Shamji MF, Massicotte EM, Traynelis VC, et al. Comparison of anterio
14		surgical options for the treatment of multilevel cervical spondylotic
15		myelopathy: a systematic review. Spine 2013;38(22 Suppl 1):S195-209.
16	4.	Jiang SD, Jiang LS, Dai LY. Anterior cervical discectomy and fusion versu
17		anterior cervical corpectomy and fusion for multilevel cervica
18		spondylosis: a systematic review. Archives of orthopaedic and trauma
19 20	_	surgery 2012;132(2):155-61.
20 21	5.	Chang WC, Tsou HK, Chen WS, et al. Preliminary comparison o radiolucent cages containing either autogenous cancellous bone o
21 22		hydroxyapatite graft in multilevel cervical fusion. Journal of clinica
22		neuroscience : official journal of the Neurosurgical Society of Australasia
23		2009;16(6):793-6.
25	6.	Lu J, Wu X, Li Y, et al. Surgical results of anterior corpectomy in the age
26		patients with cervical myelopathy. European spine journal : officia
27		publication of the European Spine Society, the European Spina
28		Deformity Society, and the European Section of the Cervical Spin
29		Research Society 2008;17(1):129-35.
30	7.	KAZUO YONENOBU M, TAKESHI FUJI, MD, KEIRO ONO, MD, et al
31		Choice of Surgical Treatment for Multisegmental Cervical Spondylotic
32		Myelopathy. CERVICAL SPONDYLOTIC MYELOPATHY
33		1985;10(8):710-16.
34	8.	Mamoru Kawakami MTT, MD; Hiroshi Iwasaki, MD; Munehito Yoshida,
35		MD; et al. A Comparative Study of Surgical Approaches for Cervical
36		Compressive Myelopathy. CLINICAL ORTHOPAEDICS AND
37	0	RELATED RESEARCH 2000;381:129-36.
38	9.	Min Chul Oh M, Ho Yeol Zhang, MD, Jeong Yoon Park, MD, et al.
39 40		Two-Level Anterior Cervical Discectomy versus one-level corpectomy in
40	10.	cervical spondylotic myelopathy. Spine 2009;34(7):692-96. You-Lai Yu W-CG, Bing Xin. The comparison of therapeutic eff icacy
41 42	10.	between two operative methods for the treatment of two-adjacent-leve
42 43		CSM. Medical College Journal of Qiqihaer 2007;28(23):2821-23.

BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Enseignement Superieur (ABES)	BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique d
--	-------------------------------	--

1 11.	Yong Liu LC, Yong Gu, Yun Xu, et al. Comparison of two anterior
2	decompression bone fusion treatments plus titanium plate implantation
3	for two-level cervical spondylotic myelopathy. Journal of Clinical
4	Rehabilitative Tissue Engineering Research 2011;15(4):597-601.
5 12.	Park Y, Maeda T, Cho W, et al. Comparison of anterior cervical fusion
6	after two-level discectomy or single-level corpectomy: sagittal alignment,
7	cervical lordosis, graft collapse, and adjacent-level ossification. The spine
8	journal : official journal of the North American Spine Society
9	2010;10(3):193-9.
10 13 .	Jeffrey C. Wang PWM, Kevin K. Endow, and Rick B. Delamarter.
11	Comparison of Fusion Rates Between Single-Level Cervical. Journal of Springl Disorders 2001;14(2):222-25
12	Spinal Disorders 2001;14(3):222-25.
13 14.	Burkhardt JK, Mannion AF, Marbacher S, et al. A comparativ
14 15	effectiveness study of patient-rated and radiographic outcome after types of decompression with fusion for spondylotic myelopathy: anterio
13 16	cervical discectomy versus corpectomy. Neurosurgical focu
10	2013;35(1):E4.
18 15.	Feng-Bin Yu D-YC, Xin-Wei Wang, Xiao-Wei Liu. Radiographic
10 10	comparison of anterior cervical fusion after two-level discectomy or
20	single-level corpectomy for two-level cervical spondylotic myelopathy.
21	National Medical Journal of China 2012;92(37):2636-40.
22 16.	Xiao-Lin Jia Z-JT, Fu-Bin Yang, et al. Comparision between single-leve
23	cervical corpectomy and two-level discectomy in two-adjacent-leve
24	cervical spondylotic myelopathy. Orthopedic Journal of China
25	2012;20(21):1931-34.
26 17.	Kim MK, Kim SM, Jeon KM, et al. Radiographic Comparison of Fou
27	Anterior Fusion Methods in Two Level Cervical Disc Diseases : Autograf
28	Plate Fixation versus Cage Plate Fixation versus Stand-Alone Cag
29	Fusion versus Corpectomy and Plate Fixation. Journal of Korea
30	Neurosurgical Society 2012;51(3):135-40.
31 18.	KAREM SLIM EN, DAMIEN FORESTIER, FABRICE
32	KWIATKOWSKI, et al. Methodological index for non-randomized
33	studies (minors): development and validation of a new instrument. ANZ
34	J. Surg. 2003;73(9):712-16.
35 19.	Jia-Hong Yin Z-HZ, Jin Chen. On the Combined Calculation of the
36 27	Average, the Standard Deviation and the Passing Rate of Various Small Samples. JOURNAL OF ZHAOTONG TEACHER'S COLLEG
37 38	2010;32(5):61-64.
38 39 20 .	Isaksson H, Wilson W, van Donkelaar CC, et al. Comparison of
39 20.40	biophysical stimuli for mechano-regulation of tissue differentiation during
40 41	fracture healing. Journal of biomechanics 2006;39(8):1507-16.
42 21 .	Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effec
	of cervical spine fusion on adjacent-level intradiscal pressure and
43	
43 44	segmental motion. Spine 2002;27(22):2431-4.

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\35\\36\\3\end{array}$	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 	

1	22.	Joseph A. Buckwalter, MD). Spine U	pdate Aging	and Degeneration of t
2		Human Intervertebral D	isc. Spine	1995;20(11)	:1307-14.
3	23.	Hwang SH, Kayanja M, M	lilks RA, e	et al. Biomec	hanical comparison o
4		adjacent segmental motio	n after vei	ntral cervica	l fixation with varying
5		angles of lordosis. The spi	•		urnal of the North
6		American Spine Society 2			
7	24.	Tai-xiang Wu G-jL, Jing L			
8		Published Systematic Rev	iews. Chi	nese J Evide	nce-Based Medicine
9		2005;5(1):51-58.			
0 1					
2					
2 3					
<i>3</i> 4					
- 5					
6					
7	Table	1a. Risk of bias assessment of rar	ndomized stu	udies.	
	Risk	of bias assessment	Oh 2009	Yu 2007	Liu 2011
	Rande	om sequence generation	Unclear	High risk	Low risk
			risk		
	Alloc	ation concealment	Unclear	Unclear	Unclear
			risk	risk	risk
	Blind	ing of participants and personnel	High risk	High risk	High risk
	Blind	ing of outcome assessment	Unclear	Unclear	Unclear
			risk	risk	risk
		nplete outcome data	Low risk	Low risk	Low risk
		tive reporting	Low risk	Low risk	Low risk
	Other	sources of bias	Unclear	Unclear	Unclear
			risk	risk	risk
8					
9					
0 1					
2					
3					
4					
5					
6					
7					
8					
9					
0					
1					
2					
			22		
			22		

34 35 36 37 38 39 40 41 42 43 44 54 67 48 9 50 51 52 34 55 67 58 59 60

Methodological item for	Park	Wang	Burkh-	Yu	Jia	Kim
non-randomized studies	2010	2001	ardt	2012	2012	2012
			2013			
1.A clearly stated aim	2	2	2	2	2	2
2.Inclusion of consecutive	2	2	2	2	2	2
patients						
3.Prospective collection of data	2	0	2	0	2	0
4.Endpoints appropriate to the	2	2	2	2	2	2
aim of the study						
5. Unbiased assessment of the	0	0	0	0	0	0
study endpoint						
6. Follow-up period appropriate	2	2	2	2	2	2
to the aim of the study						
7. Loss to follow up less than	0	0	1	0	0	0
5%						
8. Prospective calculation of	0	0	0	0	0	0
the study size						
9. An adequate control group	2	2	2	2	2	2
10. Contemporary groups	2	2	2	2	2	2
11. Baseline equivalence of	2	2	2	2	2	2
groups						
12. Adequate statistical	2	2	2	2	2	2
analyses						

- 3
- 4

5 **Table 2** Characteristics of the studies included in the meta-analysis.

Year ^{ref}	Design	Samp	le size	Mean ag	ge (years)	Gende	er(M/F)	Mean follow-u	p time(months)
		ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
2009 ⁶	Retro	17	14	55.12	52.64	16/15		27.33	24.9
2010 ⁷	Retro	52	45	$49.4{\pm}8.7$	$49.3\!\pm\!9.7$	30/22	17/28	$23.3\!\pm\!6.6$	$25.7\!\pm\!6.2$
2001 ⁸	Retro	20	32	51.5(17-80)		27/25		43.2(24-84)	
2013 ⁹	Retro	38	80	60.3 ± 11.1	$60.9{\pm}9.9$	25/13	41/39	20.4 ± 13.7	
2012^{10}	Retro	48	62	59.3±6.8(49	-75)	65/45		32±4.2(24-60)	
2007 ¹¹	Quasi-RCT	20	20	$53.1{\pm}8.98$	$52.75 {\pm} 7.81$	14/6	15/5	NA	
2012 ¹²	Retro	36	31	$48.83 \!\pm\! 8.12$	$49.12{\pm}7.65$	21/15	17/14	$28.96 {\pm} 13.21$	$26.81 \!\pm\! 11.02$
2012 ¹³	RCT	23	23	$54.4\!\pm\!10.9$	$56.5\!\pm\!9.2$	18/5	16/7	31(25-53)	29(26-48)
2012 ¹⁴	Retro	16	54	$58{\pm}8.6$	$56.7{\pm}10.2$	13/3	31/23	20 ± 11.9	18.6 ± 11.5

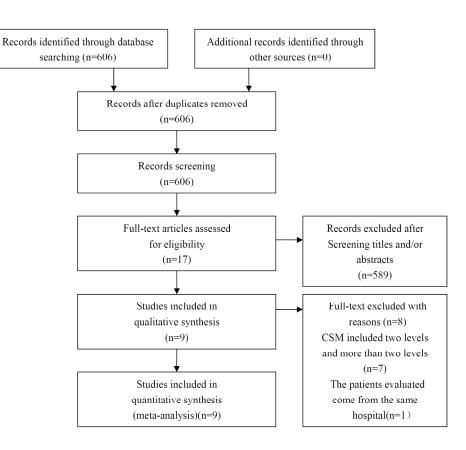
6 Retro meant Retrospective, Mean age was described as mean±SD or mean or mean (range) of all patients in the

7 study or mean±SD of all patients in the study, Gender was described as M/F or M/F of all patients in the study,

8 Mean follow-up time was presented as mean±SD or mean (range) or mean±SD of all patients in the study, RCT=

9 randomized control trial, SD= standard deviation, ACCF= anterior cervical corpectomy and fusion, ACDF=

10 anterior cervical discectomy and fusion, NA= not available.


Table 3 Comparison of baseline characteristics between the ACCE and ACDE groups

Characteristic	Oh	Park	Wang	Burkhardt	Yu	Yu	Jia	Liu	Kim
	2009	2010	2001	2013	2012	2007	2012	2011	2012
Mean age	*	*	*	*	*	*	*	*	*
Gender	*	*	*	*	*	*	*	*	*
Follow-up	*	*	*	*	*	*	*	*	*
Preoperative JOA	*	NA	NA	NA	NA	*	*	*	NA
Preoperative neck VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative arm VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative sagittal alignment	NA	*	NA	NA	*	NA	NA	NA	NA
Preoperative C2-C7 Cobb	*	*	NA	*	NA	NA	*	NA	*
Preoperative fused segment height	*	NA	NA	*	NA	NA	NA	*	*
Preoperative total cervical ROM	*	NA	NA	NA	NA	NA	0.02	NA	NA
Preoperative fused segment ROM	*	NA	NA	NA	NA	NA	0.01	NA	NA

JOA= Japanese Orthopedic Association scores, VAS= Visual Analog Scale scores. ROM= range of motion, NA=

not available, * Statistically insignificant (P>0.05). Page 51 of 65

BMJ Open

176x157mm (300 x 300 DPI)

Page 52 of 65

Fig.2a hospital stay

	AC	CCF		A	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Jia 2012	11.11 8	8.52	36	10.79	7.74	31	46.8%	0.04 [-0.44, 0.52]	
Liu 2011	12.2	2.7	23	11.2	2.6	23	31.7%	0.37 [-0.21, 0.95]	
Oh 2009	16.82	7.7	17	15.14	8.5	14	21.5%	0.20 [-0.51, 0.91]	
Total (95% CI)			76			68	100.0%	0.18 [-0.15, 0.51]	•
Heterogeneity: Chi ² = Test for overall effect:				; I ² = 0%	6			_	-1 -0.5 0 0.5 1 ACCF ACDF

Fig.2b bleeding amounts

	4	ACCF		1	ACDF		:	Std. Mean Difference	Ste	d. Mean Difference	9
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV. Fixed, 95% CI	
1.1 bleeding amour	nts of AC	DF>110	ml								
Oh 2009	778.8	644.3	17	306.43	151.1	14	21.9%	0.94 [0.19, 1.69]			
Liu 2011	263	130.4	23	148.3	71.3	23	31.9%	1.07 [0.45, 1.69]			
Yu 2007	306.75	74.63	20	207.5	65.86	20	25.4%	1.38 [0.69, 2.08]			
Subtotal (95% CI)			60			57	79.1%	1.14 [0.74, 1.53]		•	
Heterogeneity: Chi ² =	0.78, df =	2 (P = 0).68); l ^a	² = 0%							
Test for overall effect:	Z = 5.64 (P < 0.0	0001)								
1.2 bleeding amour	nts of AC	DF<110	ml								
Jia 2012	279.93	63.21		102.21	31.71	31	20.9%	3.43 [2.67, 4.20]			-
Subtotal (95% CI)			36			31	20.9%	3.43 [2.67, 4.20]		· ·	
Heterogeneity: Not ap	plicable										
Test for overall effect:	Z = 8.76 ((P < 0.0	0001)								
Total (95% CI)			96			88	100.0%	1.62 [1.26, 1.97]		•	
Heterogeneity: Chi ² = 3	28.02, df :	= 3 (P <	0.000	01); l² = 8	39%			-	-4	-2 0 2	+
Test for overall effect:	Z = 9.02 (P < 0.0	0001)						-4	ACCF ACDF	4

209x162mm (300 x 300 DPI)

Fig.3 Operative Time

	4	ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI	IV. Fixed, 95% CI
1.1 operative time o	f ACCF<	200min							
Jia 2012	141.23	63.21	36	97.37	17.72	31	39.4%	0.90 [0.40, 1.41]	
Liu 2011	190.9	61.4	23	139.9	12.7	23	25.7%	1.13 [0.50, 1.76]	
Yu 2007	110.4	18.16	20	91.8	19.43	20	23.2%	0.97 [0.31, 1.63]	
Subtotal (95% CI)			79			74	88.2%	0.99 [0.65, 1.33]	•
Heterogeneity: Chi ² = 0	.31, df =	2 (P = 0).86); l ²	= 0%					
Test for overall effect: 2	2 = 5.73 (P < 0.0	0001)						
1.2 operative time o	f ACCE S	200mi							
				4 4 0 7 4	44.5		44.00/	0.04 (4.04. 0.47)	
Oh 2009 Subtotal (95% CI)	210	6	17 17	140.71	44.5	14 14	11.8% 11.8%		
Heterogeneity: Not app	licoblo					14	11.070	2.24 [1.51, 5.17]	
o , , , ,		D . 0 0	0004)						
Test for overall effect: 2	2 = 4.74 (P < 0.0	0001)						
Total (95% CI)			96			88	100.0%	1.13 [0.82, 1.45]	•
Heterogeneity: Chi ² = 6	.52, df =	3 (P = 0	0.09); l ²	= 54%					-2 -1 0 1 2
Test for overall effect: 2	z = 7.01 (P < 0.0	0001)						ACCE ACDE
Test for subaroup differ	rences: C	2hi² = 6.3	21. df =	1 (P = 0).01). I²	= 83.99	6		AUGI AUDE

209x107mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Study or Subgroup	/ Mean		Total	/ Mean		Total	Weight	Std. Mean Difference IV. Fixed, 95% CI	Std. Mean Difference IV. Fixed, 95% CI
Jia 2012	15.32	1.54	36	15.01	1.76	31	46.8%	0.19 [-0.30, 0.67]	
Liu 2011	14.1	1.4	23	13.6	1.2	23	31.8%	0.38 [-0.21, 0.96]	
Oh 2009	14.72	1.7	17	15.25	1.5	14	21.4%	-0.32 [-1.03, 0.39]	
Total (95% CI)			76			68	100.0%	0.14 [-0.19, 0.47]	• • • •
Heterogeneity: Chi ² = Test for overall effect:); I ² = 12	2%				-2 -1 0 1 2 ACCF ACDF

Fig.4b neck VAS

	1	ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	0.9	3.1	38	1.3	3.2	80	51.9%	-0.13 [-0.51, 0.26]	
Jia 2012	3.62	2.01	36	2.81	1.33	31	32.7%	0.46 [-0.02, 0.95]	
Oh 2009	3.63	2.3	17	2.93	2.5	14	15.3%	0.29 [-0.43, 1.00]	
Total (95% CI)			91			125	100.0%	0.13 [-0.15, 0.41]	•
Heterogeneity: Chi ² = Test for overall effect:				; I ² = 45	5%			-	-2 -1 0 1 2 ACCF ACDF

Fig.4c arm VAS

		ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	1.4	3.2	38	2.4	2.7	80	51.1%	-0.35 [-0.74, 0.04]	
Jia 2012	2.51	1.43	36	2.35	1.69	31	33.5%	0.10 [-0.38, 0.58]	
Oh 2009	2.63	2.7	17	2.79	2.3	14	15.4%	-0.06 [-0.77, 0.65]	
Total (95% CI)			91			125	100.0%	-0.15 [-0.43, 0.13]	•
Heterogeneity: Chi ² = Test for overall effec); I² = 49	6				-2 -1 0 1 2 ACCF ACDF

209x171mm (300 x 300 DPI)

		ACCF		/	ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	9.7	7.7	38	13.6	8.6	80	29.6%	-0.47 [-0.86, -0.07]	
Jia 2012	20.26	10.26	36	22.08	9.78	31	19.5%	-0.18 [-0.66, 0.30]	
Kim 2012	15.7	8.6	16	16.7	8.5	54	14.5%	-0.12 [-0.67, 0.44]	
Oh 2009	14.59	10.6	17	23.43	7.4	14	8.1%	-0.93 [-1.67, -0.18]	
Park 2010	9.6	9.1	52	11.2	8.5	45	28.3%	-0.18 [-0.58, 0.22]	
Total (95% CI)			159			224	100.0%	-0.32 [-0.53, -0.10]	•
Heterogeneity: Chi2 :	= 4.35, df :	= 4 (P =	0.36);	l² = 8%				-	
Test for overall effec	t: Z = 2.90	(P = 0.	004)						-1 -0.5 0 0.5 1 ACCF ACDF

Fig.5b fusion Cobb

	AC	CCF	A	CDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV. Fixed, 95% CI
Liu 2011	6.9	2.5 23	8.8	2.7	23	17.7%	-0.72 [-1.32, -0.12]	
Park 2010	2.5	5.9 52	4.4	5.7	45	39.3%	-0.32 [-0.73, 0.08]	
Yu 2012	4.4	4.9 48	7.5	5.9	62	43.0%	-0.56 [-0.95, -0.18]	
Total (95% CI)		123			130	100.0%	-0.50 [-0.75, -0.24]	•
Heterogeneity: Chi ² = Test for overall effec			· · ·	0%				-1 -0.5 0 0.5 1 ACCF ACDF

Fig.5c Total cervical ROM

		ACCF			ACDF			Std. Mean Difference		Std. Me	an Dif	ference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fi	<u>xed, 9</u>	5% CI	
Jia 2012	27.98	12.94	36	29.19	10.33	31	68.5%	-0.10 [-0.58, 0.38]		-			
Oh 2009	30.23	15.1	17	28.13	13.4	14	31.5%	0.14 [-0.57, 0.85]		-			
Total (95% CI)			53			45	100.0%	-0.02 [-0.42, 0.37]			\blacklozenge		
Heterogeneity: Chi ^z =				I ^z = 0%					-2	-1	0	1	2
Test for overall effect:	Z = 0.12	(P = 0.	90)							AC	CF AC	DF	

Fig.5d fusion ROM

		ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Jia 2012	3.39	3.01	36	4.01	2.93	31	68.6%	-0.21 [-0.69, 0.28]	
Oh 2009	5.12	4.8	17	3.88	3.4	14	31.4%	0.29 [-0.43, 1.00]	
Total (95% CI)			53			45	100.0%	-0.05 [-0.45, 0.35]	•
Heterogeneity: Chi ² = 1.26, df = 1 (P = 0.26); $I^2 = 20\%$ Test for overall effect: Z = 0.25 (P = 0.80)									-2 -1 0 1 2 ACCF ACDF

209x247mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

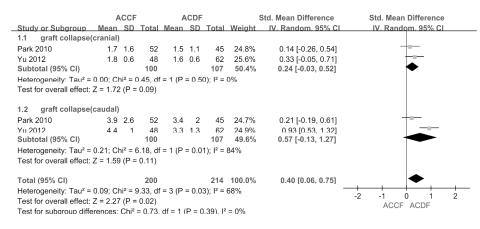
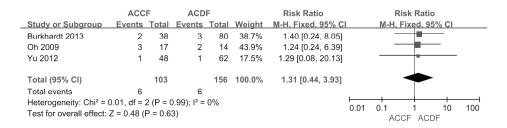

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Fig.6a fused segment height

	A	CCF		А	CDF		:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	37.3	4.3	38	39.9	4.3	80	78.6%	-0.60 [-0.99, -0.21]	
Oh 2009	49.9	5	17	56	7	14	21.4%	-0.99 [-1.75, -0.24]	
Total (95% CI)			55			94	100.0%	-0.68 [-1.03, -0.34]	•
Heterogeneity: Chi ² = 0.82, df = 1 (P = 0.37); I ² = 0%								-	-2 -1 0 1 2
Test for overall effect: Z = 3.84 (P = 0.0001)								ACCF ACDF	

Fig.6b graft collapse


209x170mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig.7a fusion rate

	ACC	F	ACD	F		Risk Ratio		R	isk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		М-Н,	Fixed, 95	% CI	
Burkhardt 2013	36	38	78	80	25.4%	0.97 [0.89, 1.06]					
Jia 2012	36	36	31	31	17.1%	1.00 [0.94, 1.06]			+		
Kim 2012	16	16	48	54	11.6%	1.10 [0.97, 1.25]					
Oh 2009	17	17	14	14	8.0%	1.00 [0.88, 1.13]			+		
Yu 2007	20	20	20	20	10.4%	1.00 [0.91, 1.10]			-		
Yu 2012	48	48	62	62	27.6%	1.00 [0.96, 1.04]			ŧ		
Total (95% CI)		175		261	100.0%	1.00 [0.97, 1.04]			•		
Total events	173		253								
Heterogeneity: Chi ² = 2	Heterogeneity: Chi² = 2.70, df = 5 (P = 0.75); l² = 0%						⊢ 0.5	0.7	1	1.5	2
Test for overall effect:	Test for overall effect: $Z = 0.27$ (P = 0.79)						0.5		CF ACD		2

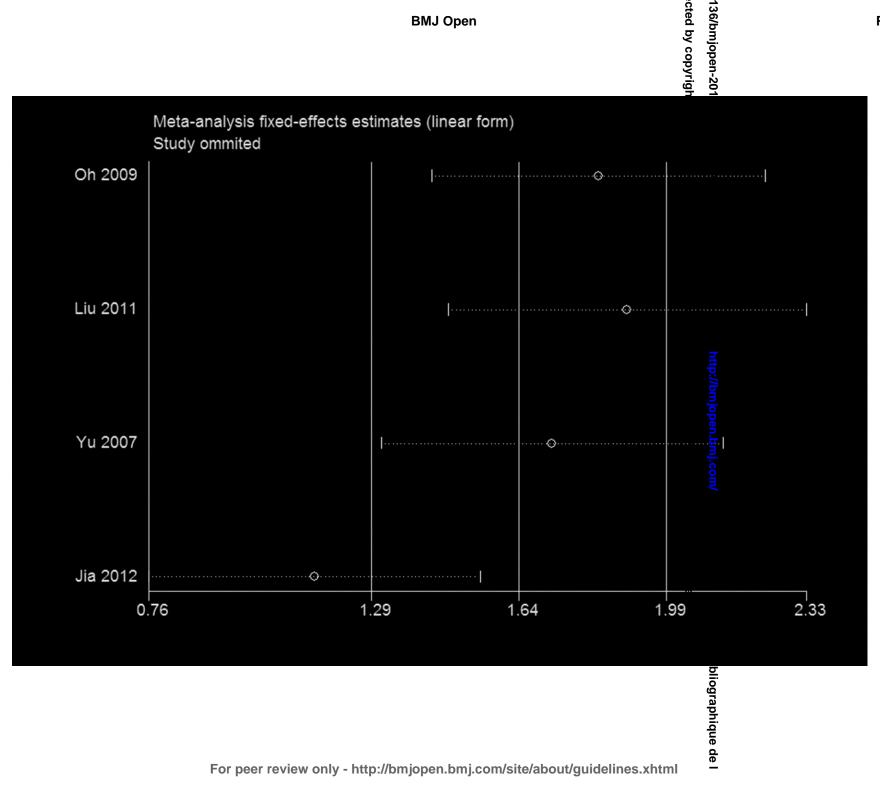
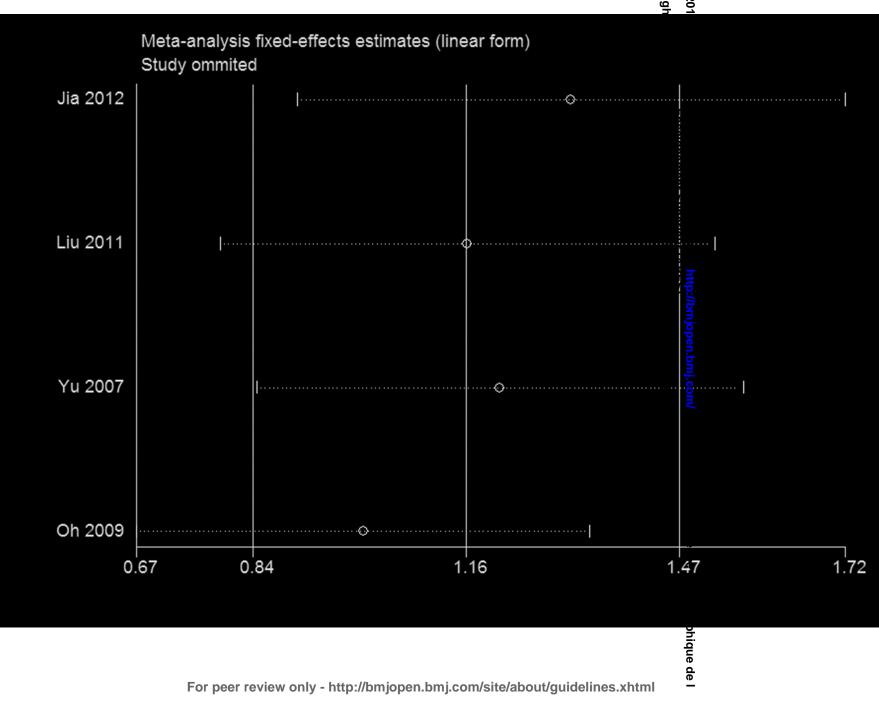

Fig.7b degeneration of the adjacent-level

Fig.7c Complications


	ACC	F	ACD	F		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl		
Burkhardt 2013	3	31	14	68	39.3%	0.47 [0.15, 1.52]			
Jia 2012	3	36	2	31	9.6%	1.29 [0.23, 7.24]			
Kim 2012	3	16	10	54	20.5%	1.01 [0.32, 3.24]			
Liu 2011	5	23	4	23	17.9%	1.25 [0.38, 4.07]			
Oh 2009	3	17	0	14	2.4%	5.83 [0.33, 104.22]			
Wang 2001	1	20	0	32	1.7%	4.71 [0.20, 110.40]			
Yu 2007	3	20	1	20	4.5%	3.00 [0.34, 26.45]			
Yu 2012	3	48	1	62	3.9%	3.88 [0.42, 36.09]		-	
Total (95% CI)		211		304	100.0%	1.25 [0.74, 2.13]	•		
Total events	24		32						
Heterogeneity: Chi ² = 6	Heterogeneity: Chi ² = 6.19, df = 7 (P = 0.52); l ² = 0%							100	
Test for overall effect:	Test for overall effect: $Z = 0.83$ (P = 0.40)						0.01 0.1 1 10 1 ACCF ACDF		

209x244mm (300 x 300 DPI)

Page 59 of 65

cted by copyrigh 136/bmjopen-20

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Study	Hospital	stay(days)	Bleeding	amounts(ml)	Operative	time(min)	
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	
Oh 2009	$16.82 {\pm} 7.7$	$15.14{\pm}8.5$	$777.8 {\pm} 644.3$	$306.43 \!\pm\! 151.1$	$210{\pm}6$	140.71 ± 44.5	
Park 2010	Ν	JA	Ν	IA	N	A	
Wang 2001	Ν	JA	Ν	IA	NA		
Burkhardt	NA		Ν	IA	NA		
2013							
Yu 2012	Ν	JA	Ν	IA	NA		
Yu 2007	Ν	JA	$306.75 \!\pm\! 74.63$	$207.5 \!\pm\! 65.86$	$110.4 \!\pm\! 18.16$	$91.8 {\pm} 19.43$	
Jia 2012	$11.11\!\pm\!8.52$	10.79 ± 7.74	$279.93 \!\pm\! 63.21$	$102.21 \!\pm\! 31.71$	$141.23 \!\pm\! 63.21$	$97.37 \!\pm\! 17.72$	
Liu 2011	$12.2{\pm}2.7$	$11.2{\pm}2.6$	$263.0 \!\pm\! 130.4$	148.3 ± 71.3	$190.9{\pm}61.4$	139.9 ± 12.7	
Kim 2012	Ν	ĮΑ	Ν	IA	N	A	

Table S1 Perioperative outcomes of included studies.

NA=not available, ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion.

Table S2 Clinical outcomes of included studies.

Study	Postoperative	JOA at last	Postoperativ	e neck VAS	Postoperative	e arm VAS
	visit					
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	14.72 ± 1.7	15.25 ± 1.5	$3.63{\pm}2.3$	$2.93\!\pm\!2.5$	$2.63{\pm}2.7$	$2.79\!\pm\!2.3$
Park 2010	NA		NA		NA	
Wang 2001	NA		NA		NA	
Burkhardt 2013	NA		$0.9{\pm}3.1$	$1.3{\pm}3.2$	1.4 ± 3.2	$2.4{\pm}2.7$
Yu 2012	NA		NA		NA	
Yu 2007	NA		NA		NA	
Jia 2012	$15.32{\pm}1.54$	$15.01 \!\pm\! 1.76$	$3.62{\pm}2.01$	$2.81\!\pm\!1.33$	2.51 ± 1.43	$2.35 \!\pm\! 1.69$
Liu 2011	14.1 ± 1.4	$13.6\!\pm\!1.2$	NA		NA	
Kim 2012	NA		NA		NA	

NA= not available, JOA=Japanese Orthopedic Association scores, VAS= Visual Analog Scale scores. ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, * the study just reported the data at the sixth month of postoperative.

 Table S3a
 Postoperative radiologic outcomes of included studies.

Study	sagittal a	alignment	C2-C7	Cobb	fusion Cobb)
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	NA		$14.59\!\pm\!10.6$	$23.43\!\pm\!7.4$	NA	
Park 2010	32L	30L	$9.6{\pm}9.1$	$11.2 {\pm} 8.5$	$2.5\!\pm\!5.9$	$4.4\!\pm\!5.7$
Wang 2001	NA		NA		NA	
Burkhardt	NA		$9.7{\pm}7.7$	$13.6{\pm}8.6$	NA	
2013						
Yu 2012	36L	47L	NA		$4.4\!\pm\!4.9$	$7.5\!\pm\!5.9$
Yu 2007	NA		NA		NA	
Jia 2012	NA		$20.26 {\pm} 10.26$	$22.08{\pm}9.78$	NA	

BMJ Open

Liu 2011	NA	NA		$6.9{\pm}2.5$	$8.8{\pm}2.7$
Kim 2012	NA	$15.7 {\pm} 8.6$	$16.7\!\pm\!8.5$	5.8/4.6	6.8/6.8

ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

Table S3b	Postoperative radiologic outcomes of included studies.

Study	total cerv	rical ROM	fusio	n ROM	fused segm	ent height
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	30.23 ± 15.1	$28.13 \!\pm\! 13.4$	$5.12{\pm}4.8$	$3.88{\pm}3.4$	49.9 ± 5	56.0 ± 7
Park 2010	NA		NA		NA	
Wang	NA		NA		NA	
2001						
Burkhardt	NA		NA		37.3±4.3	39.9 ± 4.3
2013						
Yu 2012	NA		NA		NA	
Yu 2007	NA		NA		NA	
Jia 2012	27.98 ± 12.94	$29.19 \!\pm\! 10.33$	$3.39{\pm}3.01$	$4.01\!\pm\!2.93$	$53.11 \!\pm\! 1.90$	$55.55 \!\pm\! 1.84$
Liu 2011	NA		NA		$56.4 {\pm} 2.4$	56.1 ± 2.2
Kim 2012	33.5	26.8	NA		55.1 ± 3.9	55.4 ± 3.8

ACCF=anterior cervical corpectomy and fusion, ACDF=anterior cervical discectomy and fusion, NA=not available,ROM=range of motion.

Table S3c Postoperative radiologic	outcomes of included studies.
------------------------------------	-------------------------------

Study	graft c	ollapse	fusion rate		degen	eration ^a		
	ACCF(An/Po/Cr/Ca)	ACDF(An/Po/Cr/Ca)	ACCF	ACDF	ACCH	ACCF ACDF		
Oh 2009	NA		100%	100%	3	2		
Park 2010	$5.0{\pm}2.9/3.5{\pm}2.5/1.7{\pm}1.6/3.9{\pm}2.6$	$4.2{\pm}2.6/3.0{\pm}2.4/1.5{\pm}1.1/3.4{\pm}2.0$	NA		NA			
Wang	NA		NA		NA			
2001								
Burkhardt	NA		94.7%	97.5%	2	3		
2013								
Yu 2012	$3.7 \pm 1.3 / 5.2 \pm 2.2 / 1.8 \pm 0.6 / 4.4 \pm 1.0$	$2.9{\pm}1.2/3.6{\pm}2.3/1.6{\pm}0.6/3.3{\pm}1.3$	100%	100%	1	1		
Yu 2007	NA		100%	100%	NA			
Jia 2012	NA		100%	100%	NA			
Liu 2011	NA		NA		NA			
Kim 2012	NA		100%	88.9%	NA			

a degeneration means degeneration of the adjacent-level to the fusion. An= anterior, Po= posterior, Cr= cranial, Ca= caudal, ACCF= anterior cervical corpectomy and fusion, ACCF= anterior cervical discectomy and fusion, NA= not available.

Table S4 Complications including short term and long term.				
Study	Complications			
	ACCF	ACDF		
Oh 2009	3	0		
Park 2010	NA			
Wang 2001	1	0		
Burkhardt 2013	3	14		
Yu 2012	3	1		
Yu 2007	3	1		
Jia 2012	3	2		
Liu 2011	5	4		
Kim 2012	3	10		

ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

Page 63 of 65

PRISMA 2009 Checklist

Section/topic	#	Checklist item	The section that contains each item e#
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page, Page 1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2-3
INTRODUCTION	_		
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 4-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	No
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Fig. 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 5-6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 6
Risk of bias in individual	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was	Page 6-7

PRISMA 2009 Checklist

Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	Page 7
		Page 1 of 2	
Section/topic	#	Checklist item	The section that contains each item e#
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 7
RESULTS	-		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 7, Fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 9
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 8, Table 1
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 9, Table 3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 9-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 8
DISCUSSION	-		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 13-15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 15-17
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 17-18
o 9 I əb əupidqsıpoildiB əorəp 2 9	-	first published as 10.51136/md.neqoimd//:cfind monded from http://www.com/or 16.201. 20 first published as 10.136/bmjopen-2013-001587 on 16.1017 2014. Downloaded from http://wigiog.com/on/or CE3BA) . Protected by comytightering for bases เอดอ์เออ์เออ์ เอนอุตาล์ เล่นกุญญา, Alusting, ภูมิอุญาร for ond	:n9q0 LM8

Page 65 of 65

BRIS MAR

1

PRISMA 2009 Checklist

2 3	
	JNDING
4 FU 5 Fur 7	nding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the Page 18 systematic review.
8 9 <i>Fron</i> 10 doi∵1	m: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e100009 :10.1371/journal.pmed1000097
11	For more information, visit: <u>www.prisma-statement.org</u> .
12	Page 2 of 2
13	Page 2 of 2
14 15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25 26	
20 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44 45	
46	Protected by comprishing the users is a substantion that is the substance of
47	. (SEBA) neinent Superieur (BEBS) .
	I ab aupidgrapoildig apresent as 202, 01 anul no lmop. [md.naqo[md/l;ghth mont babsolnwol.4102 vlul, 31 no 182400-2102-naqo[md/3611.01 as badziduq frist inaqo LMB
40	

BMJ Open

BMJ Open

Comparison of Two Anterior Fusion Methods in Two level Cervical Spondylosis Myelopathy: A Meta-Analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004581.R2
Article Type:	Research
Date Submitted by the Author:	21-Jun-2014
Complete List of Authors:	Huang, Zhe-Yu; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Wu, Ai-Min; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Li, Qing-Long; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Lei, Tao; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Wang, Kang-Yi; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery Xu, Hua-Zi; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery ni, wenfei; Second Affiliated Hospital of Wenzhou university, Department of Orthopedics Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Surgery
Keywords:	Spine < ORTHOPAEDIC & TRAUMA SURGERY, Orthopaedic & trauma surgery < SURGERY, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

BMJ Open

1	
2	
3	
4	Title: Comparison of Two Anterior Fusion Methods in Two-level Cervical
5	
6	Spondylosis Myelopathy: A Meta-Analysis
7	
8	
9	
10	Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD;
11	
12	Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD.
13	All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated
14	Hospital of Wenzhou university, Wenzhou, China.
15	Postal code: 325027
16	
17	Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of
18	China.
19	
20	First author: Zhe-Yu Huang MD
21 22	E-mail: <u>huangzheyu2011@gmail.com</u>
23	
23	Phone number: +86 0577 88002814
25	
26	Second author: Ai-Min Wu MD
27	E-mail: <u>aiminwu@163.com</u>
28	
29	
30	Third author: Qing-Long Li MD
31	E-mail: <u>18367853350@163.com</u>
32	Third author: Qing-Long Li MD E-mail: 18367853350@163.com Forth author: Tao Lei MD E-mail: leitao4317@126.com Fifth author: Kang-Yi Wang MD E-mail: wangkangyi1989@163.com
33	Forth author: Tao Lei MD
34	
35	E-mail: <u>leitao4317@126.com</u>
36	
37	Fifth author: Kang-Yi Wang MD
38	E-mail: wangkangyi1989@163.com
39	E main <u>wangkangynyoy(a)tostoon</u>
40	
41	Sixth author: Hua-Zi Xu MD
42	E-mail: spine-xu@163.com
43	
44	Seventh author and Corresponding author: Wen-Fei Ni MD PhD
45	
46	E-mail: wenfeini@yeah.net
47	Phone number: +86 0577 88002814
48	Fax number: +86 0577 88002823
49	
50	
51	
52 53	Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;
54	The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical
55	University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic
56	of China.
57	
58	
59	
60	

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

Keywords: Cervical spondylosis myelopathy; Anterior cervical discectomy and fusion; Anterior cervical corpectomy and fusion.

Word count: 3766

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of anterior cervical corpectomy and fusion (ACCF) and anterior cervical discectomy and fusion (ACDF) for treating two-adjacent-level cervical spondylosis myelopathy (CSM). DESIGN: A meta-analysis of the two anterior fusion methods was conducted. The electronic databases of PubMed, Cochrane Central Register of Controlled Trials, ScienceDirect, CNKI, WANFANG DATA, and CQVIP were searched. Quality assessment of the included studies was evaluated using the Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies criteria. Pooled risk ratios of dichotomous outcomes and standardized mean differences (SMDs) of continuous outcomes were generated. Using the chi-squared and I-squared tests, the statistical heterogeneity was assessed. Subgroup and sensitivity analyses were also performed.

PARTICIPANTS: Nine eligible trials with a total of 631 patients and a male-to-female ratio of 1.38:1 were included in this meta-analysis.

INCLUSION CRITERIA: Randomized controlled trials (RCTs) and nonrandomized controlled trials that adopted ACCF and ACDF to treat two-adjacent-level CSM were included.

RESULTS: No significant differences were identified between the two groups regarding hospital stay, Japanese Orthopedic Association (JOA) score, visual analog scale (VAS) scores for neck and arm pain, total cervical range of motion (ROM), fusion ROM, fusion rate, adjacent-level ossification, and complications. While ACDF had significantly less bleeding (SMD = 1.14, 95% CI: [0.74, 1.53]); a shorter operation time (SMD = 1.13, 95% CI: [0.82, 1.45]); greater cervical lordosis, both total cervical (SMD = -2.95, 95% CI: [-4.79, -1.12]) and fused segment (SMD = -2.24, 95% CI: [-3.31, -1.17]); higher segmental height (SMD = -0.68, 95% CI: [-1.03, -0.34]); and less graft subsidence (SMD = 0.40, 95% CI: [0.06,0.75]) compared to ACCF.

CONCLUSIONS: The results suggested that ACDF has more advantages compared to ACCF. However, additional high-quality RCTs and a longer follow-up duration are needed.

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Article summary

Strengths and limitations of this study

1) According to our study, ACCF and ACDF are both effective and safe for treating CSM. 2) ACDF has more advantages than ACCF in some aspects. 3) The trials included in our study are not high-quality RCTs and do not have a long enough follow-up duration. 4) The number of studies used in the meta-analysis is small (nine studies). In fact, for most of the outcomes, fewer than five studies were used in the meta-analyses. 5) The pathological processes of patients are not always the same.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

Cervical spondylosis is a common disease and a progressive degenerative process of the cervical spine that results in loss of disc height and formation of osteophytes. When it develops into cervical spondylosis myelopathy (CSM), motion abnormalities and sensory disturbances will follow, resulting in a reduced quality of life for the patients.¹ Surgical intervention is recommended for these patients with severe symptoms.²

The choice between an anterior, posterior, or combined approach for decompression is based primarily on (1) the sagittal alignment of the spinal column, (2) the extent of disease, (3) the location of the abnormal compression, (4) the presence of preoperative neck pain, and (5) previous operations.²

Shamji *et al.*³ and Jiang *et al.*⁴ have reviewed the efficacy and safety of anterior procedures for patients with multilevel CSM, covering patients with two-adjacent-level CSM. Furthermore, the work by Chang *et al.*⁵ supports that anterior cervical discectomy and fusion (ACDF) is the treatment of choice for cervical disc herniation and spondylotic radiculopathy or myelopathy. In addition, Lu *et al.*⁶ have shown that anterior cervical corpectomy and fusion (ACCF) is an effective surgical procedure for the treatment of multilevel cervical myelopathy because it can remove almost all osteophytes, discs, and ossification of posterior longitudinal ligament pathology that cause spinal cord compression. Kazuo *et al.*⁷ and Mamoru *et al.*⁸ have shown that ACDF and ACCF are both widely used anterior methods for

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

CSM, especially with two levels. Although patients with two-adjacent-level CSM are often seen in clinical practice, controversies still exist between ACCF and ACDF for treating these patients. Therefore, the aim of this meta-analysis was to compare the efficacy and safety of ACCF and ACDF for patients with two-adjacent-level CSM by assessing the perioperative, clinical, and radiological outcomes as well as complications.

Materials and Methods

Search Strategy

The electronic databases including PubMed (1966–2013), Cochrane Central Register of Controlled Trials (Issue 9, 2013), ScienceDirect (1985–2013), CNKI (1996–2013), WANFANG DATA (1997–2013), and CQVIP (1996–2013) were searched. The keywords used for the search were as follows: "cervical spondylosis myelopathy," "anterior cervical discectomy and fusion," "anterior cervical corpectomy and fusion," "two level(s)," and "single-level."

Eligibility Criteria

All comparative studies that adopted ACCF and ACDF to treat two-adjacent-level cervical spondylosis were identified, and the reference lists of identified articles were searched to identify other potentially eligible studies. Criteria for inclusion were as follows: 1) ACCF with titanium mesh, cage, or autologous ilium bone grafting; ACDF with interbody cage devices or autologous ilium bone grafting;

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

and the two surgeries both used anterior cervical plate and screw fixation. 2) All patients included had a confirmed CSM at two adjacent segments, and surgical intervention was recommended. 3) The trials were followed up for more than 12 months.

Criteria for exclusion: 1) The studies did not meet the inclusion criteria. 2) The intraoperative outcome data (length of hospital stay, amount of bleeding, and operation time), clinical outcomes (Japanese Orthopedic Association (JOA) score and visual analog scale (VAS) score for neck and arm pain), radiological outcomes (cervical lordosis for total cervical and fused segments, total cervical range of motion (ROM), segmental ROM, graft collapse, segmental height, fusion rate, and degeneration of the adjacent-level), or complications (short-term and long-term complications) were not reported. 3) The number of samples was less than 30 cases. 4) The patients evaluated were treated at the same hospital.

Data Extraction

Two reviewers independently extracted the data using a standardized form, which covered the following items: 1) basic characteristics, including the year of publication, study design, inclusion/exclusion criteria, age, sex, enrolled number, and follow-up rate; 2) intraoperative outcomes, consisting of length of hospital stay, amount of bleeding, and operation time; 3) clinical outcomes, including JOA score and VAS score for neck and arm pain; 4) radiological outcomes, such as cervical lordosis for total cervical and fused segments, total cervical ROM, segmental ROM,

BMJ Open

graft collapse, segmental height, fusion rate, degeneration of the adjacent level; and 5) complications, including short-term and long-term complications.

Risk of Bias Assessment

Two reviewers independently evaluated the quality of the included studies. Three randomized studies⁹⁻¹¹ were assessed with the Cochrane Handbook for Systematic Review of Interventions, and six nonrandomized studies¹²⁻¹⁷ were evaluated according to the methodological index for nonrandomized studies (MINORS) criteria, an established method for evaluating non-RCTs.¹⁸

Statistical Analysis

All meta-analyses were performed with Review Manager 5.2 software (Cochrane Collaboration, Oxford, UK). For continuous outcomes, means and standard deviations were pooled to generate a standardized mean difference (SMD), and 95% confidence intervals (CIs) were generated. According to the study by Kim,¹⁷ a formula was used to obtain a combined mean and standard deviation (SD).¹⁹ For dichotomous outcomes, the risk ratio (RR) and 95% CI were assessed. A probability of P < 0.05was considered to be statistically significant. Assessment for statistical heterogeneity was calculated using the chi-squared and I-squared tests. When the test for heterogeneity was P < 0.1 or $I^2 > 50\%$, the data were considered very heterogeneous. The source of heterogeneity was investigated by subgroup analysis and sensitivity analysis. A fixed effects model was used for homogeneous data, and a random effects

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

model was used for data with high heterogeneity. As for the data with significant methodological heterogeneity, sensitivity analysis was adopted to find the source of the heterogeneity. With regard to the data with significant clinical heterogeneity, subgroup analyses were applied to identify the source of the heterogeneity.

Results

Literature Search

A total of 606 potential reports were retrieved with the search strategy (Fig. 1). Of these, 597 reports were excluded because they did not fit our inclusion criteria. No additional studies were obtained after reference review. Finally, nine studies were selected and analyzed.⁹⁻¹⁷

Risk of bias assessment

For three randomized studies,⁹⁻¹¹ two studies were RCTs,^{9,11} one of which did not provide information regarding allocation concealment. One study was a quasi-RCT, in which patients were allocated according to their sequence of hospitalization.¹⁰ Due to the informed consent rights between patients and doctors, it was impossible to blind all participants and personnel. None of these three studies reported blinding of outcome assessment. No patients were lost to follow-up, except for eight patients who were excluded from the study by Liu *et al.*¹¹ due to missing data. Thus, there was a low risk of bias due to incomplete outcome data. In these three trials, the outcomes were provided in detail and there was a low risk of bias due to

selective reporting. Owing to insufficient information to assess whether an important risk of bias existed in a number of trials, it was hypothesized that all trials had an unclear risk of bias towards other potential sources of bias. The methodological quality assessment is summarized in Table 1a. For six nonrandomized studies,¹²⁻¹⁷ according to the modified MINORS criteria,¹⁸ none of them reported an unbiased assessment of the study endpoint or a prospective calculation of the study size. With regard to the prospective collection of data, three studies did not report the relevant information.^{13,15,17} Only one study reported the follow-up rate.¹⁴ The other eight items were all specifically reported. In summary, scores ranged from 16 to 18, with a median value of 16.5. The methodological quality assessment is summarized in Table 1b.

Demographic characteristics

The demographic characteristics of the patients included in the selected studies are presented in Table 2. A total of 631 patients, with a male-to-female ratio of 1.38:1, were included. Of these, 270 underwent ACCF procedures and 361 were treated by the ACDF approach; the two surgeries used various grafts, including autografts, allografts, and cage and/or plate systems. The mean age of the patients was 55.1 years old. The average duration of follow-up ranged from 18.9 to 43.2 months. Statistically similar baseline characteristics were observed between the ACCF and ACDF groups (Table 3).

Hospital Stay

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Details regarding hospital stay were available in three papers (Table S1),^{9,11,16} and statistical heterogeneity was absent in these studies ($I^2 = 0\%$; P = 0.69). The pooled estimate revealed a statistically insignificant difference (SMD = 0.18, 95% CI: [-0.15, 0.51], P = 0.28) (Fig. 2).

Bleeding Amount

Relevant data regarding the bleeding amount were documented in four articles (Table S1),^{9-11,16} and all the trials showed that the ACDF approach had significantly reduced intraoperative bleeding amounts compared to the ACCF procedure. Pooling of relevant data also showed a statistically significant difference between the two groups (SMD = 1.14, 95% CI: [0.74, 1.53], P = 0.002). Significant heterogeneity was detected (I² = 89%; P < 0.00001) (Fig. 2b). In addition, sensitivity analysis confirmed the stability of bleeding amount outcomes (Fig. S1).

Operation Time

Four trials reported a significantly shorter surgical time in the ACDF group compared to the ACCF group (Table S1).^{9-11,16} Overall, the SMD was 1.13 (95% CI: [0.82, 1.45], P < 0.00001) in favor of the ACDF group. There was obvious evidence of statistically significant heterogeneity ($I^2 = 54\%$; P = 0.009), according to subgroup analysis (Fig. 3). Furthermore, sensitivity analysis confirmed the stability of operation time outcomes (Fig. S2).

JOA

Three studies reported the JOA score (Table S2),^{9,11,16} and the pooled estimate revealed a statistically insignificant difference (SMD = 0.14, 95% CI: [-0.19, 0.47], P=0.41), with low heterogeneity (I² = 12%) (Fig. 4a).

Neck VAS

Three studies reported a postoperative neck VAS score (Table S2),^{9,14,16} and the pooled data from the two relevant studies did not reveal any significant difference (SMD=0.13, 95% CI: [-0.15, 0.41], P = 0.36), with low heterogeneity ($I^2 = 45\%$) (Fig. 4b).

Arm VAS

Relevant VAS data were documented in three articles (Table S2).^{9,14,16} There was no significant difference between the two treatment groups (SMD = -0.15, 95%CI = [-0.43, 0.13]; P = 0.28), with low heterogeneity (I² = 4%) (Fig. 4c).

C2-C7 Cobb

Five studies reported the C2-C7 Cobb at the final follow-up (Table S3a), 9,12,14,16,17 the available data demonstrated low heterogeneity (I² = 8%), and the ACCF group had a significantly lower Cobb than the ACDF group (SMD = -0.32, 95% CI: [-0.53, -0.10], P = 0.004) (Fig. 5a).

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

Fusion Cobb

Three studies reported the fusion Cobb at the final follow-up (Table S3a),^{11,12,15} the available data demonstrated no heterogeneity ($I^2 = 0\%$), and the ACCF group had a significantly lower Cobb than the ACDF group (SMD = -0.50, 95% CI: [-0.75, -0.24], *P* = 0.0001) (Fig. 5b).

Total cervical ROM

Two studies reported the total cervical ROM data at the final follow-up (Table S3b),^{9,16} and the other two studies demonstrated that there was no significant difference in total cervical ROM between the two groups (SMD = -0.02, 95% CI: [-0.42, 0.37], P = 0.90), with no heterogeneity (I² = 0%) (Fig. 5c).

Fusion ROM

Two studies reported fusion ROM at the last follow-up (Table S3b),^{9,16} and there was no significant difference in fusion ROM between the two groups (SMD = -0.05, 95% CI: [-0.45, 0.35], P = 0.80), with low heterogeneity ($I^2 = 20\%$) (Fig. 5d).

Fused segment height

Five studies reported the fused segment height data at the final follow-up (Table S3b);^{9,11,14,16,17} however, data from three studies were excluded from this analysis because of the different methods used to measure the fused segment height.^{11,16,17} The pooled results demonstrated that the ACCF group had a significantly

BMJ Open

lower fused segment height than the ACDF group (SMD = -0.68, 95% CI: [-1.03, -0.34]), with high heterogeneity (I² = 76%) (Fig. 6a).

Graft collapse

Two studies reported graft collapse at the last follow-up (Table S3c),^{12,15} showing that there was a significant reduction in graft collapse for the ACDF group (SMD = 0.40, 95% CI: [0.06, 0.75], P = 0.02), with moderate heterogeneity (I² = 68%) (Fig. 6b). No significant clinical heterogeneity or methodological heterogeneity was found; however, statistical heterogeneity likely exists, so the data from the two studies were pooled.

Fusion rate

Six studies reported the fusion rate at the last follow-up (Table S3c),^{9,10,14-17} and there was no significant difference in the fusion rate between the two groups (RR = 1.00, 95% CI: [0.97, 1.04], P = 0.79), with no heterogeneity ($I^2 = 0\%$) (Fig. 7a).

Degeneration

Three studies reported degeneration of the level adjacent to the fusion (Table S3c),^{9,14,15} showing that there was no significant difference in degeneration of the level adjacent to the fusion between the two groups (RR = 1.31, 95% CI: [0.44, 3.93], P = 0.63), with no heterogeneity (I² = 0%) (Fig. 7b).

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Complications

Data regarding complications were provided in eight studies (Table S4).^{9-11,13-17} There was no significant difference between the ACCF and ACDF groups according to individual and pooled data (RR = 1.25, 95%CI = [0.74, 2.13]; P = 0.40). Statistical heterogeneity was absent in these studies (I² = 0%; P = 0.52) (Fig. 7c).

Discussion

Although most studies included in this analysis reported consistent results,⁹⁻¹⁷ the pooled estimates should be explained with caution. With regard to the operative outcomes, the length of hospital stay was similar in both groups, and less blood loss and a shorter operation time were observed in the ACDF group than in the ACCF group. ACDF requires less exposure of the spinal cord than does corpectomy;² therefore, less damage to the spinal column occurs. Accordingly, ACDF might result in less blood loss than ACCF. In terms of ACCF, a 15 to 19-mm anterior midline trough should be performed in the vertebral body down to the posterior longitudinal ligament or dura, with removal of the cephalad and caudad dises,² which would require more time to be removed, similarly it will cost more time to obtain a graft material to fit the trough. Consequently, ACDF had a significantly shorter operation time.

In our meta-analysis, JOA scores as well as VAS scores for neck and arm pain both significantly improved in each group, without significant differences between the two groups. These results suggest that both procedures effectively treat Page 15 of 66

BMJ Open

two-adjacent-level CSM and improve the patients' neurological function, quality of life, and disability. Similar outcomes were achieved for both ACDF and ACCF in the treatment of multilevel cervical spondylosis by Shamji *et al.*³ and Jiang *et al.*⁴

Total cervical ROM, fusion ROM, fusion rate, and adjacent-level ossification vielded no significant differences between the two groups. Concerning the high fusion rate in the two groups, it may be related to the following factors: 1) the use of a polyether ether ketone (PEEK) cage or titanium mesh packed with autogenous tricortical bone and fixed by titanium plates and screws or by Atlantis plate fixation;⁹⁻¹⁷ 2) the fixation system provides a stable biomechanical environment, which greatly promotes bone healing; and 3) bone healing is a process of creeping substitution,²⁰ and the distance of creeping substitution for single-level ACCF and two-level ACDF are both short. The high fusion rate effectively reduced the total cervical and fused segment ROM. For example, Eck et al. demonstrated that a significantly greater adjacent level disc pressure was achieved after cervical fusion.²¹ In addition, the normal degenerative process plays a major role through impaired nutrition, loss of viable cells, matrix protein modification, and matrix failure.²² This normal aging process, in combination with increased mechanical pressures, may synergistically hasten the degeneration process, although it has not been conclusively demonstrated.23

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

For C2-C7 Cobb, ACDF had a significantly greater lordosis angle than ACCF, not only immediately postoperation but also at the final follow-up. Similar results were found for the fusion Cobb at the last follow-up. The reasons may be associated

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

with the following two factors: 1) Single-level ACCF removes both the vertebral body and two discs, while two-level ACDF just takes out the two discs;² as a result, ACDF allows the construction of an almost normal spinal column after surgery. Thus, the loss of Cobb is less common in ACDF. In other words, ACDF preserves the sagittal alignment somewhat better than does ACCF. 2) Eck *et al.* have reported that each of the involved joints contributes to the total ROM.²¹ With fusion, the contribution of one joint to ROM is reduced.

In terms of the fused segment height, ACCF causes a significant reduction compared to ACDF, both immediately postoperative and at the last follow-up. With ACDF, screws placed in the intervening segment and two caudal end plates synergistically share the load of the construct. In contrast, with a single-level corpectomy, screws are only at the cranial and caudal vertebral segments and the caudal end plate bears the full load of the construct.¹² Additionally, the graft contact area is less for ACCF than for ACDF, which results in a higher shear stress for ACCF. These reasons might hasten the graft absorption process into the cover plate of the adjacent vertebral body, leading to a significant subsidence of the treated segment in ACCF, especially at the anterior and caudal positions.

Concerning complications, the data show that there is no significant difference between the two groups and that the incidence of complications is low in each group. This result suggests that both of the two treatments are safe.

The methodological quality assessment should be considered, which identified several limitations of the clinical evidence. Only nine studies met the predefined

eligibility criteria, meaning that all the results were based on only 631 patients. More importantly, there were only three studies that were randomized. All randomized studies had poor concealment of randomization, including selection and allocation bias. Due to informed consent requirements, patients and operators had knowledge regarding the surgical procedures, thus allowing further measurement and expectation bias. Four outcomes (bleeding amount, operation time, fused segment height, and graft collapse) had a high heterogeneity. Wu et al. have summarized a method to deal with heterogeneity in meta-analysis.²⁴ For the bleeding amount, it was reasonable to perform sensitivity analysis (Fig. S1) because of the different research types. As shown in Fig. S1, the results of Jia 2012¹⁶ have significant heterogeneity, which should be removed. The bleeding amount results are shown in Fig. 2b. Regarding the operation time, sensitivity analysis was performed analyze the data because of the different research types. As shown by the sensitivity analysis results (Fig. S2), ACDF had a shorter operation time that could not be reversed regardless of which study was removed. Therefore, the heterogeneity did not come from the methodological heterogeneity. Accordingly, there probably exists clinical heterogeneity. Due to the strict eligibility criteria, the patient data had a good homogeneity; thus, the heterogeneity was due to the ability of the surgeons. The subgroup analysis results regarding operation time are shown in Fig. 3. As for the fused segment height, clinical heterogeneity existed. Oh et al.⁹ and Burkhardt et al.¹⁴ have defined the fused segment height as the distance between the midlines of the involved cranial vertebral bodies and the caudal vertebral bodies. In contrast, Jia et al.¹⁶ did not describe the method to BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

measure the fused segment height. Meanwhile, Liu *et al.*¹¹ and Kim *et al.*¹⁷ reported the anterior and posterior heights of the involved vertebral bodies. In summary, for the fused segment height, we pooled the data of Oh *et al.*⁹ and Burkhardt *et al.*,¹⁴ and the outcome is displayed in Fig. 6a. With regard to graft collapse, as the two literature examples are both retrospective studies, it is believed that no methodological heterogeneity existed. Regarding the clinical heterogeneity, the patient data had a good homogeneity due to the strict eligibility criteria and the fact that the methods of measuring the graft collapse were the same. As a result, no significant clinical heterogeneity likely existed, so the studies were pooled. Not all of the included studies had consistent baseline characteristics between the ACCF and ACDF groups. Therefore, larger randomized controlled trials with high quality are still needed in the future to compare the two surgeries.

Conclusion

Based on this meta-analysis that compared ACDF and ACCF to treat two-adjacent-level CSM, ACDF has some advantages such as less blood loss, a shorter operation time, greater cervical lordosis both in the total cervical and fused segments, a higher segmental height, and less graft subsidence. However, no significant differences in JOA, VAS, ROM, or complications were found. This information will provide surgeons a preliminary understanding of the differences between the two surgeries to treat two-adjacent-level CSM and will be helpful to

clinical surgeons for choosing which surgical method to treat patients with two-adjacent-level CSM. Further high-quality RCTs and longer follow-up durations are needed to assess these two treatments.

Acknowledgement

This work was supported by the Department of Health of Zhejiang Province, Backbone of Talent Project (2012RCB037); and the Department of Science and Technology of Wenzhou, Wenzhou Science and Technology Project (Y20120073). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Medjaden Bioscience for assisting in the preparation of this manuscript.

Author Contributions

Conceived and designed the review: ZYH, AMW, and WFN. Performed the review: ZYH, AMW, and WFN. Analyzed the data: ZYH and AMW. Contributed reagents/materials/analysis tools: QLL, TL, KYW, and HZX. Wrote the paper: ZYH and AMW.

Competing Interests

None

Data sharing statement

No additional data are available.

Refe	erence
1.	Joseph T. King J, M.D., M.S.C.E., Kathleen A. McGinnis, M.S., et al. Quality of life assessment with the medical outcomes study short form-36 among patients with cervical spondylotic myelopathy. neurosurgery 2003;52(1):113-21.
2.	Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. The Journal of bone and joint surgery. American volume 2006;88(7):1619-40.
3.	Shamji MF, Massicotte EM, Traynelis VC, <i>et al.</i> Comparison of anterior surgical options for the treatment of multilevel cervical spondylotic myelopathy: a systematic review. Spine 2013;38(22 Suppl 1):S195-209.
4.	Jiang SD, Jiang LS, Dai LY. Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion for multilevel cervical spondylosis: a systematic review. Archives of orthopaedic and trauma surgery 2012;132(2):155-61.
5.	Chang WC, Tsou HK, Chen WS, <i>et al.</i> Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion. Journal of clinical neuroscience 2009;16(6):793-6.
6.	Lu J, Wu X, Li Y, <i>et al.</i> Surgical results of anterior corpectomy in the aged patients with cervical myelopathy. European spine journal 2008;17(1):129-35.
7.	Kazuo Yonenobu M, Takeshi Fuji, MD, Keiro Ono, MD, <i>et al.</i> Choice of Surgical Treatment for Multisegmental Cervical Spondylotic Myelopathy. Spine 1985;10(8):710-16.
8.	Mamoru Kawakami MTT, MD; Hiroshi Iwasaki, MD; Munehito Yoshida, MD; <i>et al.</i> A Comparative Study of Surgical Approaches for Cervical Compressive Myelopathy. clinical orthopaedics and related research 2000;381:129-36.
9.	Min Chul Oh M, Ho Yeol Zhang, MD, Jeong Yoon Park, MD, <i>et al.</i> Two-Level Anterior Cervical Discectomy versus one-level corpectomy in cervical spondylotic myelopathy. Spine 2009;34(7):692-96.
10.	You-Lai Yu W-CG, Bing Xin. The comparison of therapeutic eff icacy between two operative methods for the treatment of two-adjacent-level CSM. Medical College Journal of Qiqihaer 2007;28(23):2821-23.
11.	Yong Liu LC, Yong Gu, Yun Xu, <i>et al.</i> Comparison of two anterior decompression bone fusion treatments plus titanium plate implantation for two-level cervical spondylotic myelopathy. Journal of Clinical Rehabilitative Tissue Engineering Research 2011;15(4):597-601.
12.	Park Y, Maeda T, Cho W, <i>et al.</i> Comparison of anterior cervical fusion after two-level discectomy or single-level corpectomy: sagittal alignment, cervical lordosis, graft collapse, and adjacent-level ossification. The spine journal : official journal of the North American Spine Society 2010;10(3):193-9.
13.	Jeffrey C. Wang PWM, Kevin K. Endow, and Rick B. Delamarter. A Comparison of Fusion Rates Between Single-Level Cervical. Journal of Spinal Disorders 2001;14(3):222-25.

14. Burkhardt JK, Mannion AF, Marbacher S, *et al.* A comparative effectiveness study of patient-rated and radiographic outcome after 2 types of decompression with fusion for spondylotic myelopathy: anterior cervical discectomy versus corpectomy. Neurosurgical focus 2013;35(1):E4.

- 15. Feng-Bin Yu D-YC, Xin-Wei Wang, Xiao-Wei Liu. Radiographic comparison of anterior cervical fusion after two-level discectomy or single-level corpectomy for two-level cervical spondylotic myelopathy. National Medical Journal of China 2012;92(37):2636-40.
- 16. Xiao-Lin Jia Z-JT, Fu-Bin Yang, *et al.* Comparision between single-level cervical corpectomy and two-level discectomy in two-adjacent-level cervical spondylotic myelopathy. Orthopedic Journal of China 2012;20(21):1931-34.
- 17. Kim MK, Kim SM, Jeon KM, *et al.* Radiographic Comparison of Four Anterior Fusion Methods in Two Level Cervical Disc Diseases : Autograft Plate Fixation versus Cage Plate Fixation versus Stand-Alone Cage Fusion versus Corpectomy and Plate Fixation. Journal of Korean Neurosurgical Society 2012;51(3):135-40.
- Karem Slim, Emile Nini, Damien Forestier, *et al.* Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J. Surg. 2003;73(9):712-16.
- Jia-Hong Yin Z-HZ, Jin Chen. On the Combined Calculation of the Average, the Standard Deviation and the Passing Rate of Various Small Samples. Journal of zhaotong teacher's college 2010;32(5):61-64.
- Isaksson H, Wilson W, van Donkelaar CC, *et al.* Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of biomechanics 2006;39(8):1507-16.
- 21. Eck JC, Humphreys SC, Lim TH, *et al.* Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 2002;27(22):2431-4.
- 22. Joseph A. Buckwalter, MD. Spine Update Aging and Degeneration of the Human Intervertebral Disc. Spine 1995;20(11):1307-14.
- Hwang SH, Kayanja M, Milks RA, *et al.* Biomechanical comparison of adjacent segmental motion after ventral cervical fixation with varying angles of lordosis. The spine journal : official journal of the North American Spine Society 2007;7(2):216-21.
- 24. Tai-xiang Wu G-jL, Jing Li. Some Risk of Affecting the Quality of Published Systematic Reviews. Chinese J Evidence-Based Medicine 2005;5(1):51-58.

Table 1a. Risk of bias assessment of randomized studies.
--

Risk of bias assessment	Oh 2009	Yu 2007	Liu 2011
Random sequence generation	Unclear	High risk	Low risk
	risk		
Allocation concealment	Unclear	Unclear	Unclear
	risk	risk	risk
Blinding of participants and personnel	High risk	High risk	High risk
Blinding of outcome assessment	Unclear	Unclear	Unclear
	risk	risk	risk
Incomplete outcome data	Low risk	Low risk	Low risk
Selective reporting	Low risk	Low risk	Low risk
Other sources of bias	Unclear	Unclear	Unclear
	risk	risk	risk

Table 1b. Quality assessment of non-randomized studies.

Methodological item for	Park	Wang	Burkh-	Yu	Jia	Kim
non-randomized studies	2010	2001	ardt	2012	2012	2012
			2013			
1.A clearly stated aim	2	2	2	2	2	2
2.Inclusion of consecutive	2	2	2	2	2	2
patients						
3.Prospective collection of data	2	0	2	0	2	0
4.Endpoints appropriate to the	2	2	2	2	2	2
aim of the study						
5. Unbiased assessment of the	0	0	0	0	0	0
study endpoint						
6. Follow-up period appropriate	2	2	2	2	2	2
to the aim of the study						
7. Loss to follow up less than	0	0	1	0	0	0
5%						
8. Prospective calculation of	0	0	0	0	0	0
the study size						
9. An adequate control group	2	2	2	2	2	2
10. Contemporary groups	2	2	2	2	2	2
11. Baseline equivalence of	2	2	2	2	2	2
groups						
12. Adequate statistical	2	2	2	2	2	2
analyses						

<u>15)</u>	BMJ Open: first published as 10.1136/bmjopen- Protected by copy
-	BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Year ^{ref}	Design	Samp	le size	Mean ag	Gender(M/F)		Mean follow-up time(months)		
		ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
2009 ⁹	RCT	17	14	55.12	52.64	16/15		27.33	24.9
2007^{10}	Quasi-RCT	20	20	$53.1\!\pm\!8.98$	$52.75 {\pm} 7.81$	14/6	15/5	NA	
201111	RCT	23	23	$54.4{\pm}10.9$	$56.5\!\pm\!9.2$	18/5	16/7	31(25-53)	29(26-48)
2010 ¹²	Retro	52	45	$49.4{\pm}8.7$	$49.3\!\pm\!9.7$	30/22	17/28	$23.3\!\pm\!6.6$	$25.7\!\pm\!6.2$
200113	Retro	20	32	51.5(17-80)		27/25		43.2(24-84)	
2013 ¹⁴	Retro	38	80	60.3 ± 11.1	$60.9{\pm}9.9$	25/13	41/39	$20.4 {\pm} 13.7$	
2012 ¹⁵	Retro	48	62	59.3±6.8(49	-75)	65/45		32±4.2(24-60))
2012 ¹⁶	Retro	36	31	$48.83 \!\pm\! 8.12$	$49.12{\pm}7.65$	21/15	17/14	$28.96{\pm}13.21$	$26.81 \!\pm\! 11.02$
2012 ¹⁷	Retro	16	54	$58{\pm}8.6$	$56.7 {\pm} 10.2$	13/3	31/23	20 ± 11.9	18.6 ± 11.5

Retro meant Retrospective, Mean age was described as mean \pm SD or mean or mean (range) of all patients in the study or mean \pm SD of all patients in the study, Gender was described as M/F or M/F of all patients in the study, Mean follow-up time was presented as mean \pm SD or mean (range) or mean \pm SD of all patients in the study, RCT= randomized control trial, SD= standard deviation, ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

-					e 1				
Characteristic	Oh	Park	Wang	Burkhardt	Yu	Yu	Jia	Liu	Kim
	2009	2010	2001	2013	2012	2007	2012	2011	2012
Mean age	*	*	*	*	*	*	*	*	*
Gender	*	*	*	*	*	*	*	*	*
Follow-up	*	*	*	*	*	*	*	*	*
Preoperative JOA	*	NA	NA	NA	NA	*	*	*	NA
Preoperative neck VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative arm VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative sagittal	NA	*	NA	NA	*	NA	NA	NA	NA
alignment									
Preoperative C2-C7 Cobb	*	*	NA	*	NA	NA	*	NA	*
Preoperative fused segment	*	NA	NA	*	NA	NA	NA	*	*
height									
Preoperative total cervical	*	NA	NA	NA	NA	NA	0.02	NA	NA
ROM									
Preoperative fused segment	*	NA	NA	NA	NA	NA	0.01	NA	NA
ROM									

JOA= Japanese Orthopedic Association scores, VAS= Visual Analog Scale scores. ROM= range of motion, NA= not available, * Statistically insignificant (P>0.05).

Figure Legends

Fig. 1: The search strategy for our meta-analysis and reasons for exclusion.

Fig. 2: Perioperative parameters. a: Forest plot and tabulated data for length of hospital stay; no significant difference between the two types of surgery was observed.b: Forest plot and tabulated data for bleeding amount; the ACDF group had significantly less intraoperative bleeding than the ACCF group.

Fig. 3: Perioperative parameters. Forest plot and tabulated data for operation time; the ACDF group had a significantly shorter surgical time compared to the ACCF group.

Fig. 4: Clinical parameters. a: Forest plot and tabulated data for JOA; b: Forest plot and tabulated data for neck VAS; c: Forest plot and tabulated data for arm VAS. There were no significant differences in these parameters between the two types of surgery.

Fig. 5: Radiological parameters. a: Forest plot and tabulated data for C2-C7 Cobb; b: Forest plot and tabulated data for fusion Cobb; c: Forest plot and tabulated data for total cervical ROM; d: Forest plot and tabulated data for fusion ROM. The ACCF group had a significantly lower Cobb than the ACDF group. There was no significant difference in the cervical or fusion ROM between the two types of surgery.

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

ur (ABES) . data mining, Al training, and similar technologies.

Protected by copyright, including for uses related to text and

Fig. 6: Radiological parameters. a: Forest plot and tabulated data for the fused segment height; the ACCF group had a significantly lower fused segment height than the ACDF group. b: Forest plot and tabulated data for graft collapse; the ACDF group had a significantly lower graft collapse than the ACCF group.

Fig. 7: a: Forest plot and tabulated data for fusion rate; b: Forest plot and tabulated data for degeneration of the adjacent level; c: Forest plot and tabulated data for complications. There was no significant difference in any of these parameters between the two types of surgery.

Fig. S1: The sensitivity analysis for bleeding amounts. Significant heterogeneity was found between the four studies.

Fig. S2: The sensitivity analysis for operation time. No significant heterogeneity was found between the four studies.

1	
1	
2	
3	Title: Comparison of Two Anterior Fusion Matheds in Two loval Convigal
4	Title: Comparison of Two Anterior Fusion Methods in Two-level Cervical
5	
6	Spondylosis Myelopathy: A Meta-Analysis
7	spondflobis mjelopunij. I milu jsis
8	
9	
10	
11	Authors: Zhe-Yu Huang MD; Ai-Min Wu MD; Qing-Long Li MD; Tao Lei MD;
12	Kang-Yi Wang MD; Hua-Zi Xu MD; Wen-Fei Ni MD PhD.
13	All authors affiliation: The Department of Orthopedics Surgery, Second Affiliated
14	Hospital of Wenzhou university, Wenzhou, China.
15	Postal code: 325027
16	
17	Address: 109# XueYuan Western Road, Wenzhou, Zhejiang, People's Republic of
18	China.
19	
20	
21	First author: Zhe-Yu Huang MD
22	E-mail: huangzheyu2011@gmail.com
23	
24	Phone number: +86 0577 88002814
25	
	Second author: Ai-Min Wu MD
26	
27	E-mail: <u>aiminwu@163.com</u>
28	
29	Third author: Qing-Long Li MD
30	
31	E-mail: <u>18367853350@163.com</u>
32	
33	Forth author: Tao Lei MD
34	
35	E-mail: <u>leitao4317@126.com</u>
36	
37	Fifth author: Kang-Yi Wang MD
38	
39	E-mail: wangkangyi1989@163.com
40	
4.4	Sixth author: Hua-Zi Xu MD
41	E-mail: <u>spine-xu@163.com</u> Seventh author and Corresponding author: Wen-Fei Ni MD PhD
42	E-mail: <u>spine-xu(<i>a</i>)163.com</u>
43	
44	Seventh author and Corresponding author: Wen-Fei Ni MD PhD
	E - 1 - C : O - 1 - C
46	E-mail: wenfeini@yeah.net
47	Phone number: +86 0577 88002814
48	Fax number: +86 0577 88002823
49	Fax humber: +60 0377 00002025
50	
51	
52	Address correspondence and reprint requests to: Wen-Fei Ni MD PhD;
53	
54	The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical
55	University, Zhejiang Spinal Research Center, Wenzhou, Zhejiang, People's Republic
56	of China.
	or online.
57	
58	
59	
60	

Keywords: Cervical spondylosis myelopathy; Anterior cervical discectomy and fusion; Anterior cervical corpectomy and fusion.

Word count: 3766

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of anterior cervical corpectomy and fusion (ACCF) and anterior cervical discectomy and fusion (ACDF) for treating two-adjacent-level cervical spondylosis myelopathy (CSM).

DESIGN: A meta-analysis of the two anterior fusion methods was conducted. The electronic databases of PubMed, Cochrane Central Register of Controlled Trials, ScienceDirect, CNKI, WANFANG DATA, and CQVIP were searched. Quality assessment of the included studies was evaluated using the Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies criteria. Pooled risk ratios of dichotomous outcomes and standardized mean differences (SMDs) of continuous outcomes were generated. Using the chi-squared and I-squared tests, the statistical heterogeneity was assessed. Subgroup and sensitivity analyses were also performed.

PARTICIPANTS: Nine eligible trials with a total of 631 patients and a male-to-female ratio of 1.38:1 were included in this meta-analysis.

INCLUSION CRITERIA: Randomized controlled trials (RCTs) and nonrandomized controlled trials that adopted ACCF and ACDF to treat two-adjacent-level CSM were included.

RESULTS: No significant differences were identified between the two groups regarding hospital stay, Japanese Orthopedic Association (JOA) score, visual analog scale (VAS) scores for neck and arm pain, total cervical range of motion (ROM), fusion ROM, fusion rate, adjacent-level ossification, and complications. While ACDF had significantly less bleeding (SMD = 1.14, 95% CI: [0.74, 1.53]); a shorter operation time (SMD = 1.13, 95% CI: [0.82, 1.45]); greater cervical lordosis, both total cervical (SMD = -2.95, 95% CI: [-4.79, -1.12]) and fused segment (SMD = -2.24, 95% CI: [-3.31, -1.17]); higher segmental height (SMD = -0.68, 95% CI: [-1.03, -0.34]); and less graft subsidence (SMD = 0.40, 95% CI: [0.06, 0.75]) compared to ACCF.

CONCLUSIONS: The results suggested that ACDF has more advantages compared to ACCF. However, additional high-quality RCTs and a longer follow-up duration are needed.

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Article summary

Strengths and limitations of this study

1) According to our study, ACCF and ACDF are both effective and safe for treating CSM. 2) ACDF has more advantages than ACCF in some aspects. 3) The trials included in our study are not high-quality RCTs and do not have a long enough follow-up duration. 4) The number of studies used in the meta-analysis is small (nine studies). In fact, for most of the outcomes, fewer than five studies were used in the meta-analyses. 5) The pathological processes of patients are not always the same.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

6

Introduction

Cervical spondylosis is a common disease and a progressive degenerative process of the cervical spine that results in loss of disc height and formation of osteophytes. When it develops into cervical spondylosis myelopathy (CSM), motion abnormalities and sensory disturbances will follow, resulting in a reduced quality of life for the patients.¹ Surgical intervention is recommended for these patients with severe symptoms.²

The choice between an anterior, posterior, or combined approach for decompression is based primarily on (1) the sagittal alignment of the spinal column, (2) the extent of disease, (3) the location of the abnormal compression, (4) the presence of preoperative neck pain, and (5) previous operations.²

Shamji *et al.*³ and Jiang *et al.*⁴ have reviewed the efficacy and safety of anterior procedures for patients with multilevel CSM, covering patients with two-adjacent-level CSM. Furthermore, the work by Chang *et al.*⁵ supports that anterior cervical discectomy and fusion (ACDF) is the treatment of choice for cervical disc herniation and spondylotic radiculopathy or myelopathy. In addition, Lu *et al.*⁶ have shown that anterior cervical corpectomy and fusion (ACCF) is an effective surgical procedure for the treatment of multilevel cervical myelopathy because it can remove almost all osteophytes, discs, and ossification of posterior longitudinal ligament pathology that cause spinal cord compression. Kazuo *et al.*⁷ and Mamoru *et al.*⁸ have shown that ACDF and ACCF are both widely used anterior methods for

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

CSM, especially with two levels. Although patients with two-adjacent-level CSM are often seen in clinical practice, controversies still exist between ACCF and ACDF for treating these patients. Therefore, the aim of this meta-analysis was to compare the efficacy and safety of ACCF and ACDF for patients with two-adjacent-level CSM by assessing the perioperative, clinical, and radiological outcomes as well as complications.

Materials and Methods

Search Strategy

The electronic databases including PubMed (1966–2013), Cochrane Central Register of Controlled Trials (Issue 9, 2013), ScienceDirect (1985–2013), CNKI (1996–2013), WANFANG DATA (1997–2013), and CQVIP (1996–2013) were searched. The keywords used for the search were as follows: "cervical spondylosis myelopathy," "anterior cervical discectomy and fusion," "anterior cervical corpectomy and fusion," "two level(s)," and "single-level."

Eligibility Criteria

All comparative studies that adopted ACCF and ACDF to treat two-adjacent-level cervical spondylosis were identified, and the reference lists of identified articles were searched to identify other potentially eligible studies. Criteria for inclusion were as follows: 1) ACCF with titanium mesh, cage, or autologous ilium bone grafting; ACDF with interbody cage devices or autologous ilium bone grafting;

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

and the two surgeries both used anterior cervical plate and screw fixation. 2) All patients included had a confirmed CSM at two adjacent segments, and surgical intervention was recommended. 3) The trials were followed up for more than 12 months.

Criteria for exclusion: 1) The studies did not meet the inclusion criteria. 2) The intraoperative outcome data (length of hospital stay, amount of bleeding, and operation time), clinical outcomes (Japanese Orthopedic Association (JOA) score and visual analog scale (VAS) score for neck and arm pain), radiological outcomes (cervical lordosis for total cervical and fused segments, total cervical range of motion (ROM), segmental ROM, graft collapse, segmental height, fusion rate, and degeneration of the adjacent-level), or complications (short-term and long-term complications) were not reported. 3) The number of samples was less than 30 cases. 4) The patients evaluated were treated at the same hospital.

Data Extraction

Two reviewers independently extracted the data using a standardized form, which covered the following items: 1) basic characteristics, including the year of publication, study design, inclusion/exclusion criteria, age, sex, enrolled number, and follow-up rate; 2) intraoperative outcomes, consisting of length of hospital stay, amount of bleeding, and operation time; 3) clinical outcomes, including JOA score and VAS score for neck and arm pain; 4) radiological outcomes, such as cervical lordosis for total cervical and fused segments, total cervical ROM, segmental ROM,

BMJ Open

graft collapse, segmental height, fusion rate, degeneration of the adjacent level; and 5) complications, including short-term and long-term complications.

Risk of Bias Assessment

Two reviewers independently evaluated the quality of the included studies. Three randomized studies⁹⁻¹¹ were assessed with the Cochrane Handbook for Systematic Review of Interventions, and six nonrandomized studies¹²⁻¹⁷ were evaluated according to the methodological index for nonrandomized studies (MINORS) criteria, an established method for evaluating non-RCTs.¹⁸

Statistical Analysis

All meta-analyses were performed with Review Manager 5.2 software (Cochrane Collaboration, Oxford, UK). For continuous outcomes, means and standard deviations were pooled to generate a standardized mean difference (SMD), and 95% confidence intervals (CIs) were generated. According to the study by Kim,¹⁷ a formula was used to obtain a combined mean and standard deviation (SD).¹⁹ For dichotomous outcomes, the risk ratio (RR) and 95% CI were assessed. A probability of P < 0.05was considered to be statistically significant. Assessment for statistical heterogeneity was calculated using the chi-squared and I-squared tests. When the test for heterogeneity was P < 0.1 or $I^2 > 50\%$, the data were considered very heterogeneous. The source of heterogeneity was investigated by subgroup analysis and sensitivity analysis. A fixed effects model was used for homogeneous data, and a random effects

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text and

model was used for data with high heterogeneity. As for the data with significant methodological heterogeneity, sensitivity analysis was adopted to find the source of the heterogeneity. With regard to the data with significant clinical heterogeneity, subgroup analyses were applied to identify the source of the heterogeneity.

Results

Literature Search

A total of 606 potential reports were retrieved with the search strategy (Fig. 1). Of these, 597 reports were excluded because they did not fit our inclusion criteria. No additional studies were obtained after reference review. Finally, nine studies were selected and analyzed.9-17

Risk of bias assessment

For three randomized studies,⁹⁻¹¹ two studies were RCTs,^{9,11} one of which did not provide information regarding allocation concealment. One study was a quasi-RCT, in which patients were allocated according to their sequence of hospitalization.¹⁰ Due to the informed consent rights between patients and doctors, it was impossible to blind all participants and personnel. None of these three studies reported blinding of outcome assessment. No patients were lost to follow-up, except for eight patients who were excluded from the study by Liu *et al.*¹¹ due to missing data. Thus, there was a low risk of bias due to incomplete outcome data. In these three trials, the outcomes were provided in detail and there was a low risk of bias due to

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

selective reporting. Owing to insufficient information to assess whether an important risk of bias existed in a number of trials, it was hypothesized that all trials had an unclear risk of bias towards other potential sources of bias. The methodological quality assessment is summarized in Table 1a. For six nonrandomized studies,¹²⁻¹⁷ according to the modified MINORS criteria,¹⁸ none of them reported an unbiased assessment of the study endpoint or a prospective calculation of the study size. With regard to the prospective collection of data, three studies did not report the relevant information.^{13,15,17} Only one study reported the follow-up rate.¹⁴ The other eight items were all specifically reported. In summary, scores ranged from 16 to 18, with a median value of 16.5. The methodological quality assessment is summarized in Table 1b.

Demographic characteristics

The demographic characteristics of the patients included in the selected studies are presented in Table 2. A total of 631 patients, with a male-to-female ratio of 1.38:1, were included. Of these, 270 underwent ACCF procedures and 361 were treated by the ACDF approach; the two surgeries used various grafts, including autografts, allografts, and cage and/or plate systems. The mean age of the patients was 55.1 years old. The average duration of follow-up ranged from 18.9 to 43.2 months. Statistically similar baseline characteristics were observed between the ACCF and ACDF groups (Table 3).

Hospital Stay

Details regarding hospital stay were available in three papers (Table S1),^{9,11,16} and statistical heterogeneity was absent in these studies ($I^2 = 0\%$; P = 0.69). The pooled estimate revealed a statistically insignificant difference (SMD = 0.18, 95% CI: [-0.15, 0.51], P = 0.28) (Fig. 2).

Bleeding Amount

Relevant data regarding the bleeding amount were documented in four articles (Table S1),^{9-11,16} and all the trials showed that the ACDF approach had significantly reduced intraoperative bleeding amounts compared to the ACCF procedure. Pooling of relevant data also showed a statistically significant difference between the two groups (SMD = 1.14, 95% CI: [0.74, 1.53], P = 0.002). Significant heterogeneity was detected (I² = 89%; P < 0.00001) (Fig. 2b). In addition, sensitivity analysis confirmed the stability of bleeding amount outcomes (Fig. S1).

Operation Time

Four trials reported a significantly shorter surgical time in the ACDF group compared to the ACCF group (Table S1).^{9-11,16} Overall, the SMD was 1.13 (95% CI: [0.82, 1.45], P < 0.00001) in favor of the ACDF group. There was obvious evidence of statistically significant heterogeneity ($I^2 = 54\%$; P = 0.009), according to subgroup analysis (Fig. 3). Furthermore, sensitivity analysis confirmed the stability of operation time outcomes (Fig. S2).

JOA

Three studies reported the JOA score (Table S2),^{9,11,16} and the pooled estimate revealed a statistically insignificant difference (SMD = 0.14, 95% CI: [-0.19, 0.47], P=0.41), with low heterogeneity ($I^2 = 12\%$) (Fig. 4a).

Neck VAS

Three studies reported a postoperative neck VAS score (Table S2),^{9,14,16} and the pooled data from the two relevant studies did not reveal any significant difference (SMD=0.13, 95% CI: [-0.15, 0.41], P = 0.36), with low heterogeneity ($I^2 = 45\%$) (Fig. 4b).

Arm VAS

Relevant VAS data were documented in three articles (Table S2).^{9,14,16} There was no significant difference between the two treatment groups (SMD = -0.15, 95%CI = [-0.43, 0.13]; P = 0.28), with low heterogeneity ($I^2 = 4\%$) (Fig. 4c).

C2-C7 Cobb

Five studies reported the C2-C7 Cobb at the final follow-up (Table S3a), 9,12,14,16,17 the available data demonstrated low heterogeneity (I² = 8%), and the ACCF group had a significantly lower Cobb than the ACDF group (SMD = -0.32, 95% CI: [-0.53, -0.10], P = 0.004) (Fig. 5a).

Protected by copyright, including for uses related to text

Fusion Cobb

Three studies reported the fusion Cobb at the final follow-up (Table S3a),^{11,12,15} the available data demonstrated no heterogeneity ($I^2 = 0\%$), and the ACCF group had a significantly lower Cobb than the ACDF group (SMD = -0.50, 95% CI: [-0.75, -0.24], *P* = 0.0001) (Fig. 5b).

Total cervical ROM

Two studies reported the total cervical ROM data at the final follow-up (Table S3b),^{9,16} and the other two studies demonstrated that there was no significant difference in total cervical ROM between the two groups (SMD = -0.02, 95% CI: [-0.42, 0.37], P = 0.90), with no heterogeneity ($I^2 = 0\%$) (Fig. 5c).

Fusion ROM

Two studies reported fusion ROM at the last follow-up (Table S3b),^{9,16} and there was no significant difference in fusion ROM between the two groups (SMD = -0.05, 95% CI: [-0.45, 0.35], P = 0.80), with low heterogeneity ($I^2 = 20\%$) (Fig. 5d).

Fused segment height

Five studies reported the fused segment height data at the final follow-up (Table S3b);^{9,11,14,16,17} however, data from three studies were excluded from this analysis because of the different methods used to measure the fused segment height.^{11,16,17} The pooled results demonstrated that the ACCF group had a significantly

BMJ Open

lower fused segment height than the ACDF group (SMD = -0.68, 95% CI: [-1.03, -0.34]), with high heterogeneity (I² = 76%) (Fig. 6a).

Graft collapse

Two studies reported graft collapse at the last follow-up (Table S3c),^{12,15} showing that there was a significant reduction in graft collapse for the ACDF group (SMD = 0.40, 95% CI: [0.06, 0.75], P = 0.02), with moderate heterogeneity (I² = 68%) (Fig. 6b). No significant clinical heterogeneity or methodological heterogeneity was found; however, statistical heterogeneity likely exists, so the data from the two studies were pooled.

Fusion rate

Six studies reported the fusion rate at the last follow-up (Table S3c),^{9,10,14-17} and there was no significant difference in the fusion rate between the two groups (RR = 1.00, 95% CI: [0.97, 1.04], P = 0.79), with no heterogeneity ($I^2 = 0\%$) (Fig. 7a).

Degeneration

Three studies reported degeneration of the level adjacent to the fusion (Table S3c),^{9,14,15} showing that there was no significant difference in degeneration of the level adjacent to the fusion between the two groups (RR = 1.31, 95% CI: [0.44, 3.93], P = 0.63), with no heterogeneity (I² = 0%) (Fig. 7b).

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Complications

Data regarding complications were provided in eight studies (Table S4).^{9-11,13-17} There was no significant difference between the ACCF and ACDF groups according to individual and pooled data (RR = 1.25, 95%CI = [0.74, 2.13]; P = 0.40). Statistical heterogeneity was absent in these studies (I² = 0%; P = 0.52) (Fig. 7c).

Discussion

Although most studies included in this analysis reported consistent results,⁹⁻¹⁷ the pooled estimates should be explained with caution. With regard to the operative outcomes, the length of hospital stay was similar in both groups, and less blood loss and a shorter operation time were observed in the ACDF group than in the ACCF group. ACDF requires less exposure of the spinal cord than does corpectomy;² therefore, less damage to the spinal column occurs. Accordingly, ACDF might result in less blood loss than ACCF. In terms of ACCF, a 15 to 19-mm anterior midline trough should be performed in the vertebral body down to the posterior longitudinal ligament or dura, with removal of the cephalad and caudad dises,² which would require more time to be removed, similarly it will cost more time to obtain a graft material to fit the trough. Consequently, ACDF had a significantly shorter operation time.

In our meta-analysis, JOA scores as well as VAS scores for neck and arm pain both significantly improved in each group, without significant differences between the two groups. These results suggest that both procedures effectively treat Page 41 of 66

BMJ Open

two-adjacent-level CSM and improve the patients' neurological function, quality of life, and disability. Similar outcomes were achieved for both ACDF and ACCF in the treatment of multilevel cervical spondylosis by Shamji *et al.*³ and Jiang *et al.*⁴

Total cervical ROM, fusion ROM, fusion rate, and adjacent-level ossification vielded no significant differences between the two groups. Concerning the high fusion rate in the two groups, it may be related to the following factors: 1) the use of a polyether ether ketone (PEEK) cage or titanium mesh packed with autogenous tricortical bone and fixed by titanium plates and screws or by Atlantis plate fixation;⁹⁻¹⁷ 2) the fixation system provides a stable biomechanical environment, which greatly promotes bone healing; and 3) bone healing is a process of creeping substitution,²⁰ and the distance of creeping substitution for single-level ACCF and two-level ACDF are both short. The high fusion rate effectively reduced the total cervical and fused segment ROM. For example, Eck et al. demonstrated that a significantly greater adjacent level disc pressure was achieved after cervical fusion.²¹ In addition, the normal degenerative process plays a major role through impaired nutrition, loss of viable cells, matrix protein modification, and matrix failure.²² This normal aging process, in combination with increased mechanical pressures, may synergistically hasten the degeneration process, although it has not been conclusively demonstrated.23

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

For C2-C7 Cobb, ACDF had a significantly greater lordosis angle than ACCF, not only immediately postoperation but also at the final follow-up. Similar results were found for the fusion Cobb at the last follow-up. The reasons may be associated

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

with the following two factors: 1) Single-level ACCF removes both the vertebral body and two discs, while two-level ACDF just takes out the two discs;² as a result, ACDF allows the construction of an almost normal spinal column after surgery. Thus, the loss of Cobb is less common in ACDF. In other words, ACDF preserves the sagittal alignment somewhat better than does ACCF. 2) Eck *et al.* have reported that each of the involved joints contributes to the total ROM.²¹ With fusion, the contribution of one joint to ROM is reduced.

In terms of the fused segment height, ACCF causes a significant reduction compared to ACDF, both immediately postoperative and at the last follow-up. With ACDF, screws placed in the intervening segment and two caudal end plates synergistically share the load of the construct. In contrast, with a single-level corpectomy, screws are only at the cranial and caudal vertebral segments and the caudal end plate bears the full load of the construct.¹² Additionally, the graft contact area is less for ACCF than for ACDF, which results in a higher shear stress for ACCF. These reasons might hasten the graft absorption process into the cover plate of the adjacent vertebral body, leading to a significant subsidence of the treated segment in ACCF, especially at the anterior and caudal positions.

Concerning complications, the data show that there is no significant difference between the two groups and that the incidence of complications is low in each group. This result suggests that both of the two treatments are safe.

The methodological quality assessment should be considered, which identified several limitations of the clinical evidence. Only nine studies met the predefined

eligibility criteria, meaning that all the results were based on only 631 patients. More importantly, there were only three studies that were randomized. All randomized studies had poor concealment of randomization, including selection and allocation bias. Due to informed consent requirements, patients and operators had knowledge regarding the surgical procedures, thus allowing further measurement and expectation bias. Four outcomes (bleeding amount, operation time, fused segment height, and graft collapse) had a high heterogeneity. Wu et al. have summarized a method to deal with heterogeneity in meta-analysis.²⁴ For the bleeding amount, it was reasonable to perform sensitivity analysis (Fig. S1) because of the different research types. As shown in Fig. S1, the results of Jia 2012¹⁶ have significant heterogeneity, which should be removed. The bleeding amount results are shown in Fig. 2b. Regarding the operation time, sensitivity analysis was performed analyze the data because of the different research types. As shown by the sensitivity analysis results (Fig. S2), ACDF had a shorter operation time that could not be reversed regardless of which study was removed. Therefore, the heterogeneity did not come from the methodological heterogeneity. Accordingly, there probably exists clinical heterogeneity. Due to the strict eligibility criteria, the patient data had a good homogeneity; thus, the heterogeneity was due to the ability of the surgeons. The subgroup analysis results regarding operation time are shown in Fig. 3. As for the fused segment height, clinical heterogeneity existed. Oh et al.⁹ and Burkhardt et al.¹⁴ have defined the fused segment height as the distance between the midlines of the involved cranial vertebral bodies and the caudal vertebral bodies. In contrast, Jia et al.¹⁶ did not describe the method to

BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

measure the fused segment height. Meanwhile, Liu *et al.*¹¹ and Kim *et al.*¹⁷ reported the anterior and posterior heights of the involved vertebral bodies. In summary, for the fused segment height, we pooled the data of Oh *et al.*⁹ and Burkhardt *et al.*,¹⁴ and the outcome is displayed in Fig. 6a. With regard to graft collapse, as the two literature examples are both retrospective studies, it is believed that no methodological heterogeneity existed. Regarding the clinical heterogeneity, the patient data had a good homogeneity due to the strict eligibility criteria and the fact that the methods of measuring the graft collapse were the same. As a result, no significant clinical heterogeneity likely existed, so the studies were pooled. Not all of the included studies had consistent baseline characteristics between the ACCF and ACDF groups. Therefore, larger randomized controlled trials with high quality are still needed in the future to compare the two surgeries.

Conclusion

Based on this meta-analysis that compared ACDF and ACCF to treat two-adjacent-level CSM, ACDF has some advantages such as less blood loss, a shorter operation time, greater cervical lordosis both in the total cervical and fused segments, a higher segmental height, and less graft subsidence. However, no significant differences in JOA, VAS, ROM, or complications were found. This information will provide surgeons a preliminary understanding of the differences between the two surgeries to treat two-adjacent-level CSM and will be helpful to

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

clinical surgeons for choosing which surgical method to treat patients with two-adjacent-level CSM. Further high-quality RCTs and longer follow-up durations are needed to assess these two treatments.

Acknowledgement

This work was supported by the Department of Health of Zhejiang Province, Backbone of Talent Project (2012RCB037); and the Department of Science and Technology of Wenzhou, Wenzhou Science and Technology Project (Y20120073). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Medjaden Bioscience for assisting in the preparation of this manuscript.

Author Contributions

Conceived and designed the review: ZYH, AMW, and WFN. Performed the review: ZYH, AMW, and WFN. Analyzed the data: ZYH and AMW. Contributed reagents/materials/analysis tools: QLL, TL, KYW, and HZX. Wrote the paper: ZYH and AMW.

Data sharing statement

No additional data are available.

Figure Legends

Fig. 1: The search strategy for our meta-analysis and reasons for exclusion.

Fig. 2: Perioperative parameters. a: Forest plot and tabulated data for length of hospital stay; no significant difference between the two types of surgery was observed.b: Forest plot and tabulated data for bleeding amount; the ACDF group had significantly less intraoperative bleeding than the ACCF group.

Fig. 3: Perioperative parameters. Forest plot and tabulated data for operation time; the ACDF group had a significantly shorter surgical time compared to the ACCF group.

Fig. 4: Clinical parameters. a: Forest plot and tabulated data for JOA; b: Forest plot and tabulated data for neck VAS; c: Forest plot and tabulated data for arm VAS. There were no significant differences in these parameters between the two types of surgery.

Fig. 5: Radiological parameters. a: Forest plot and tabulated data for C2-C7 Cobb; b: Forest plot and tabulated data for fusion Cobb; c: Forest plot and tabulated data for total cervical ROM; d: Forest plot and tabulated data for fusion ROM. The ACCF group had a significantly lower Cobb than the ACDF group. There was no significant difference in the cervical or fusion ROM between the two types of surgery.

Fig. 6: Radiological parameters. a: Forest plot and tabulated data for the fused segment height; the ACCF group had a significantly lower fused segment height than the ACDF group. b: Forest plot and tabulated data for graft collapse; the ACDF group had a significantly lower graft collapse than the ACCF group.

Fig. 7: a: Forest plot and tabulated data for fusion rate; b: Forest plot and tabulated data for degeneration of the adjacent level; c: Forest plot and tabulated data for complications. There was no significant difference in any of these parameters between the two types of surgery.

Fig. S1: The sensitivity analysis for bleeding amounts. Significant heterogeneity was found between the four studies.

Fig. S2: The sensitivity analysis for operation time. No significant heterogeneity was found between the four studies.

Reference

- Joseph T. King J, M.D., M.S.C.E., Kathleen A. McGinnis, M.S., Mark S. Roberts, M.D., M.P.P. Quality of life assessment with the medical outcomes study short form-36 among patients with cervical spondylotic myelopathy. neurosurgery 2003;52(1):113-21.
- 2. Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. The Journal of bone and joint surgery. American volume 2006;88(7):1619-40.
- 3. Shamji MF, Massicotte EM, Traynelis VC, *et al.* Comparison of anterior surgical options for the treatment of multilevel cervical spondylotic myelopathy: a systematic review. Spine 2013;38(22 Suppl 1):S195-209.

4.	Jiang SD, Jiang LS, Dai LY. Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion for multilevel cervical spondylosis: a systematic review. Archives of orthopaedic and trauma surgery 2012;132(2):155-61.
5.	Chang WC, Tsou HK, Chen WS, <i>et al.</i> Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion. Journal of clinical neuroscience 2009;16(6):793-6.
6.	Lu J, Wu X, Li Y, <i>et al.</i> Surgical results of anterior corpectomy in the aged patients with cervical myelopathy. European spine journal 2008;17(1):129-35.
7.	Kazuo Yonenobu M, Takeshi Fuji, MD, Keiro Ono, MD, <i>et al.</i> Choice of Surgical Treatment for Multisegmental Cervical Spondylotic Myelopathy. Spine 1985;10(8):710-16.
8.	Mamoru Kawakami MTT, MD; Hiroshi Iwasaki, MD; Munehito Yoshida, MD; <i>et al.</i> A Comparative Study of Surgical Approaches for Cervical Compressive Myelopathy. clinical orthopaedics and related research 2000;381:129-36.
9.	Min Chul Oh M, Ho Yeol Zhang, MD, Jeong Yoon Park, MD, <i>et al.</i> Two-Level Anterior Cervical Discectomy versus one-level corpectomy in cervical spondylotic myelopathy. Spine 2009;34(7):692-96.
10.	You-Lai Yu W-CG, Bing Xin. The comparison of therapeutic eff icacy between two operative methods for the treatment of two-adjacent-level CSM. Medical College Journal of Qiqihaer 2007;28(23):2821-23.
11.	Yong Liu LC, Yong Gu, Yun Xu, <i>et al.</i> Comparison of two anterior decompression bone fusion treatments plus titanium plate implantation for two-level cervical spondylotic myelopathy. Journal of Clinical Rehabilitative Tissue Engineering Research 2011;15(4):597-601.
12.	Park Y, Maeda T, Cho W, <i>et al.</i> Comparison of anterior cervical fusion after two-level discectomy or single-level corpectomy: sagittal alignment, cervical lordosis, graft collapse, and adjacent-level ossification. The spine journal : official journal of the North American Spine Society 2010;10(3):193-9.
13.	Jeffrey C. Wang PWM, Kevin K. Endow, and Rick B. Delamarter. A Comparison of Fusion Rates Between Single-Level Cervical. Journal of Spinal Disorders 2001;14(3):222-25.
14.	Burkhardt JK, Mannion AF, Marbacher S, <i>et al.</i> A comparative effectiveness study of patient-rated and radiographic outcome after 2 types of decompression with fusion for spondylotic myelopathy: anterior cervical discectomy versus corpectomy. Neurosurgical focus 2013;35(1):E4.
15.	
16.	Xiao-Lin Jia Z-JT, Fu-Bin Yang, <i>et al.</i> Comparision between single-level cervical corpectomy and two-level discectomy in two-adjacent-level cervical spondylotic myelopathy. Orthopedic Journal of China 2012;20(21):1931-34.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

17. Kim MK, Kim SM, Jeon KM, *et al.* Radiographic Comparison of Four Anterior Fusion Methods in Two Level Cervical Disc Diseases : Autograft Plate Fixation versus Cage Plate Fixation versus Stand-Alone Cage Fusion versus Corpectomy and Plate Fixation. Journal of Korean Neurosurgical Society 2012;51(3):135-40.

- Karem Slim, Emile Nini, Damien Forestier, *et al.* Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J. Surg. 2003;73(9):712-16.
- 19. Jia-Hong Yin Z-HZ, Jin Chen. On the Combined Calculation of the Average, the Standard Deviation and the Passing Rate of Various Small Samples. Journal of zhaotong teacher's college 2010;32(5):61-64.
- Isaksson H, Wilson W, van Donkelaar CC, *et al.* Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of biomechanics 2006;39(8):1507-16.
- 21. Eck JC, Humphreys SC, Lim TH, *et al.* Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 2002;27(22):2431-4.
- 22. Joseph A. Buckwalter, MD. Spine Update Aging and Degeneration of the Human Intervertebral Disc. Spine 1995;20(11):1307-14.
- 23. Hwang SH, Kayanja M, Milks RA, *et al.* Biomechanical comparison of adjacent segmental motion after ventral cervical fixation with varying angles of lordosis. The spine journal : official journal of the North American Spine Society 2007;7(2):216-21.
- 24. Tai-xiang Wu G-jL, Jing Li. Some Risk of Affecting the Quality of Published Systematic Reviews. Chinese J Evidence-Based Medicine 2005;5(1):51-58.

Risk of bias assessment	Oh 2009	Yu 2007 🧹	Liu 2011
Random sequence generation	Unclear	High risk	Low risk
	risk		
Allocation concealment	Unclear	Unclear	Unclear
	risk	risk	risk
Blinding of participants and personnel	High risk	High risk	High risk
Blinding of outcome assessment	Unclear	Unclear	Unclear
	risk	risk	risk
Incomplete outcome data	Low risk	Low risk	Low risk
Selective reporting	Low risk	Low risk	Low risk
Other sources of bias	Unclear	Unclear	Unclear
	risk	risk	risk

 Table 1a. Risk of bias assessment of randomized studies.

Methodological item for	Park	Wang	Burkh-	Yu	Jia	Kim	
non-randomized studies 2	2010	2001	ardt 2013	2012	2012	2012	
1.A clearly stated aim	2	2	2	2	2	2	
2.Inclusion of consecutive patients	2	2	2	2	2	2	
3.Prospective collection of data	2	0	2	0	2	0	
4.Endpoints appropriate to the aim of the study	2	2	2	2	2	2	
5. Unbiased assessment of the study endpoint	0	0	0	0	0	0	
6. Follow-up period appropriate to the aim of the study	2	2	2	2	2	2	
7. Loss to follow up less than 5%	0	0	1	0	0	0	
8. Prospective calculation of the study size	0	0	0	0	0	0	
9. An adequate control group	2	2	2	2	2	2	
10. Contemporary groups	2	2	2	2	2	2	
11. Baseline equivalence of groups	2	2	2	2	2	2	
12. Adequate statistical analyses	2	2	2	2	2	2	
			0				

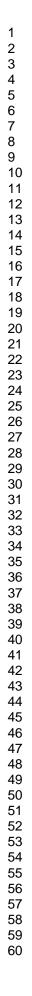
Table 2 Characteristics of the studies included in the meta-analysis.

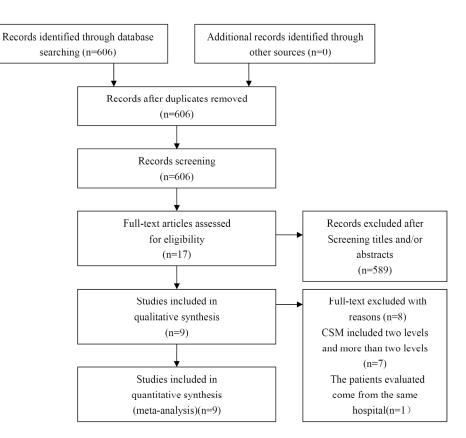
Year ^{ref}	Design	Samp	le size	Mean ag	ge (years)	Gende	er(M/F)	Mean follow-u	p time(months)
		ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
2009 ⁹	RCT	17	14	55.12	52.64	16/15		27.33	24.9
200710	Quasi-RCT	20	20	$53.1\!\pm\!8.98$	$52.75{\scriptstyle\pm}7.81$	14/6	15/5	NA	
2011 ¹¹	RCT	23	23	$54.4\!\pm\!10.9$	$56.5\!\pm\!9.2$	18/5	16/7	31(25-53)	29(26-48)
201012	Retro	52	45	$49.4{\pm}8.7$	$49.3\!\pm\!9.7$	30/22	17/28	23.3 ± 6.6	$25.7\!\pm\!6.2$
200113	Retro	20	32	51.5(17-80)		27/25		43.2(24-84)	
201314	Retro	38	80	60.3 ± 11.1	$60.9{\pm}9.9$	25/13	41/39	$20.4\!\pm\!13.7$	
201215	Retro	48	62	59.3±6.8(49	-75)	65/45		32±4.2(24-60))
201216	Retro	36	31	$48.83 \!\pm\! 8.12$	$49.12{\pm}7.65$	21/15	17/14	$28.96{\pm}13.21$	$26.81 \!\pm\! 11.02$
201217	Retro	16	54	58±8.6	$56.7{\pm}10.2$	13/3	31/23	$20{\pm}11.9$	$18.6 {\pm} 11.5$

Retro meant Retrospective, Mean age was described as mean±SD or mean or mean (range) of all patients in the study or mean±SD of all patients in the study, Gender was described as M/F or M/F of all patients in the study, Mean follow-up time was presented as mean ±SD or mean (range) or mean ±SD of all patients in the study, RCT= randomized control trial, SD= standard deviation, ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

Table 3 Comparison of baseline characteristics between the ACCE and ACDE groups

Characteristic	Oh	Park	Wang	Burkhardt	Yu	Yu	Jia	Liu	Kim
	2009	2010	2001	2013	2012	2007	2012	2011	2012
Mean age	*	*	*	*	*	*	*	*	*
Gender	*	*	*	*	*	*	*	*	*
Follow-up	*	*	*	*	*	*	*	*	*
Preoperative JOA	*	NA	NA	NA	NA	*	*	*	NA
Preoperative neck VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative arm VAS	*	NA	NA	*	NA	NA	*	NA	NA
Preoperative sagittal	NA	*	NA	NA	*	NA	NA	NA	NA
alignment									
Preoperative C2-C7 Cobb	*	*	NA	*	NA	NA	*	NA	*
Preoperative fused segment	*	NA	NA	*	NA	NA	NA	*	*
height									
Preoperative total cervical	*	NA	NA	NA	NA	NA	0.02	NA	NA
ROM									
Preoperative fused segment	*	NA	NA	NA	NA	NA	0.01	NA	NA
ROM									


JOA= Japanese Orthopedic Association scores, VAS= Visual Analog Scale scores. ROM= range of motion, NA= 5).


BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

not available, * Statistically insignificant (P>0.05).

Page 52 of 66

176x157mm (300 x 300 DPI)

	А	CCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Jia 2012	11.11	8.52	36	10.79	7.74	31	46.8%	0.04 [-0.44, 0.52]	
Liu 2011	12.2	2.7	23	11.2	2.6	23	31.7%	0.37 [-0.21, 0.95]	
Oh 2009	16.82	7.7	17	15.14	8.5	14	21.5%	0.20 [-0.51, 0.91]	
Total (95% CI)			76			68	100.0%	0.18 [-0.15, 0.51]	•
Heterogeneity: Chi ² = Test for overall effect:				; I ² = 0%	%				-1 -0.5 0 0.5 1 ACCF ACDF

Fig.2b bleeding amounts

Fig.2a hospital stay

		ACCF			ACDF			Std. Mean Difference		Std. M	ean Diffe	erence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Ra	ndom, 9	5% CI	
Liu 2011	263	130.4	23	148.3	71.3	23	40.3%	1.07 [0.45, 1.69]				-	
Oh 2009	778.8	644.3	17	306.43	151.1	14	27.7%	0.94 [0.19, 1.69]				-	
Yu 2007	306.75	74.63	20	207.5	65.86	20	32.1%	1.38 [0.69, 2.08]			-	-	
Total (95% CI)			60			57	100.0%	1.14 [0.74, 1.53]			•	•	
Heterogeneity: Tau ²				(P = 0.6	8); I² = (0%		-	-4	-2	0	2	4
est for overall effect: Z = 5.64 (P < 0.00001)										AC	CF ACI	DF	

209x120mm (300 x 300 DPI)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Fig.3 Operative Time

		ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI	IV, Fixed, 95% CI
1.1 operative time of	of ACCF<	200mir							
Jia 2012	141.23	63.21	36	97.37	17.72	31	39.4%	0.90 [0.40, 1.41]	
Liu 2011	190.9	61.4	23	139.9	12.7	23	25.7%	1.13 [0.50, 1.76]	
Yu 2007	110.4	18.16	20	91.8	19.43	20	23.2%	0.97 [0.31, 1.63]	
Subtotal (95% CI)			79			74	88.2%	0.99 [0.65, 1.33]	•
Heterogeneity: Chi ² =	0.31, df =	2 (P = 0	0.86); l ²	= 0%					
Test for overall effect:	Z = 5.73	(P < 0.0	0001)						
1.2 operative time of	of ACCF	>200mi	n						
Oh 2009	210	6	17	140.71	44.5	14	11.8%	2.24 [1.31, 3.17]	
Subtotal (95% CI)			17			14	11.8%	2.24 [1.31, 3.17]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 4.74	(P < 0.0	0001)						
Total (95% CI)			96			88	100.0%	1.13 [0.82, 1.45]	•
Heterogeneity: Chi ² =	6.52, df =	3 (P = 0	0.09); l ²	= 54%				_	-2 -1 0 1 2
Test for overall effect:	Z = 7.01	(P < 0.0	0001)						ACCE ACDE
Test for subaroup diffe	erences: (Chi² = 6.	21. df =	1 (P = ().01). I ²	= 83.9	%		ACCE ACDE

209x107mm (300 x 300 DPI)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

	A	ACCF		A	CDF			Std. Mean Difference		Std. Mea	n Differ	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fi	ed, 95%	6 CI	
Jia 2012	15.32	1.54	36	15.01	1.76	31	46.8%	0.19 [-0.30, 0.67]					
Liu 2011	14.1	1.4	23	13.6	1.2	23	31.8%	0.38 [-0.21, 0.96]					
Oh 2009	14.72	1.7	17	15.25	1.5	14	21.4%	-0.32 [-1.03, 0.39]			+		
Total (95% CI)			76			68	100.0%	0.14 [-0.19, 0.47]			+		
Heterogeneity: Chi ² = 2	2.27, df :	= 2 (P	= 0.32)	; I ² = 12	%				-2	-1	0	1	2
Test for overall effect:	Z = 0.83	(P = ().41)						2	ACC	FACD	F	2

Fig.4b neck VAS

		ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Burkhardt 2013	0.9	3.1	38	1.3	3.2	80	51.9%	-0.13 [-0.51, 0.26]	
Jia 2012	3.62	2.01	36	2.81	1.33	31	32.7%	0.46 [-0.02, 0.95]	
Oh 2009	3.63	2.3	17	2.93	2.5	14	15.3%	0.29 [-0.43, 1.00]	
Total (95% CI)			91			125	100.0%	0.13 [-0.15, 0.41]	•
Heterogeneity: Chi² = Test for overall effect:				; I ² = 45	5%			-	-2 -1 0 1 2 ACCF ACDF

Fig.4c arm VAS

	/	ACCF		4	CDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	1.4	3.2	38	2.4	2.7	80	51.1%	-0.35 [-0.74, 0.04]	
Jia 2012	2.51	1.43	36	2.35	1.69	31	33.5%	0.10 [-0.38, 0.58]	
Oh 2009	2.63	2.7	17	2.79	2.3	14	15.4%	-0.06 [-0.77, 0.65]	
Total (95% CI)			91			125	100.0%	-0.15 [-0.43, 0.13]	•
Heterogeneity: Chi ² = Test for overall effect:); I² = 4%	6				-2 -1 0 1 2 ACCF ACDF

209x171mm (300 x 300 DPI)

Fig.5a C2-C7 Cobb

		ACCF			ACDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	o Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Burkhardt 2013	9.7	7.7	38	13.6	8.6	80	29.6%	-0.47 [-0.86, -0.07]	
Jia 2012	20.26	10.26	36	22.08	9.78	31	19.5%	-0.18 [-0.66, 0.30]	
Kim 2012	15.7	8.6	16	16.7	8.5	54	14.5%	-0.12 [-0.67, 0.44]	
Oh 2009	14.59	10.6	17	23.43	7.4	14	8.1%	-0.93 [-1.67, -0.18]	
Park 2010	9.6	9.1	52	11.2	8.5	45	28.3%	-0.18 [-0.58, 0.22]	
Total (95% CI)			159			224	100.0%	-0.32 [-0.53, -0.10]	•
Heterogeneity: Chi ²	= 4.35, df	= 4 (P =	0.36);	l² = 8%					
Test for overall effe			· · ·						-1 -0.5 0 0.5 1
									ACCF ACDF

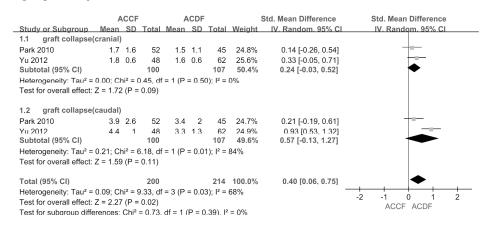
Fig.5b fusion Cobb

	AC	CF	A	CDF			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean S	SD Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI	IV, Fixed, 95% CI
Liu 2011	6.9 2	2.5 23	8.8	2.7	23	17.7%	-0.72 [-1.32, -0.12]	
Park 2010	2.5 5	5.9 52	4.4	5.7	45	39.3%	-0.32 [-0.73, 0.08]	
Yu 2012	4.4 4	4.9 48	7.5	5.9	62	43.0%	-0.56 [-0.95, -0.18]	
Total (95% CI)		123			130	100.0%	-0.50 [-0.75, -0.24]	•
Heterogeneity: Chi ² =	1.34, df =	2 (P = 0.5	1); I ² = 0	%			-	-1 -0.5 0 0.5 1
Test for overall effect:	Z = 3.86 ($P = 0.000^{\circ}$	1)					ACCF ACDF

Fig.5c Total cervical ROM

		ACCF			ACDF			Std. Mean Difference		Std. Me	an Diff	erence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI		IV, F	xed, 9	5% CI	
Jia 2012	27.98	12.94	36	29.19	10.33	31	68.5%	-0.10 [-0.58, 0.38]		-	-		
Oh 2009	30.23	15.1	17	28.13	13.4	14	31.5%	0.14 [-0.57, 0.85]		-			
Total (95% CI)			53			45	100.0%	-0.02 [-0.42, 0.37]			\blacklozenge		
Heterogeneity: Chi ^z =				I ^z = 0%					-2	-1	0	1	2
Test for overall effect:	Z = 0.12	(P = 0.	90)							AC	CF AC	DF	

Fig.5d fusion ROM


		ACCF			ACDF			Std. Mean Difference		Std. Me	ean Dif	ference	e
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI		IV, F	ixed, 9	5% CI	
Jia 2012	3.39	3.01	36	4.01	2.93	31	68.6%	-0.21 [-0.69, 0.28]		-	-		
Oh 2009	5.12	4.8	17	3.88	3.4	14	31.4%	0.29 [-0.43, 1.00]					
Total (95% CI)			53			45	100.0%	-0.05 [-0.45, 0.35]			\blacklozenge		
Heterogeneity: Chi ² = Test for overall effect); I² = 20)%			-	-2	-1 AC	0 CF AC	1 DDF	2

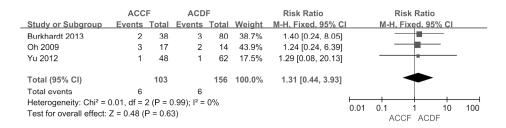
209x247mm (300 x 300 DPI)

Fig.6a fused segment height

	Д	CCF		А	CDF			Std. Mean Difference	Std. Mean	Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed	I, 95% CI
Burkhardt 2013	37.3	4.3	38	39.9	4.3	80	78.6%	-0.60 [-0.99, -0.21]		
Oh 2009	49.9	5	17	56	7	14	21.4%	-0.99 [-1.75, -0.24]		
Total (95% CI)			55			94	100.0%	-0.68 [-1.03, -0.34]	•	
Heterogeneity: Chi ² = 0.82, df = 1 (P = 0.37); l ² = 0% Test for overall effect: Z = 3.84 (P = 0.0001)									-2 -1 C	
		· · ·		.,					ACCF	ACDF

Fig.6b graft collapse

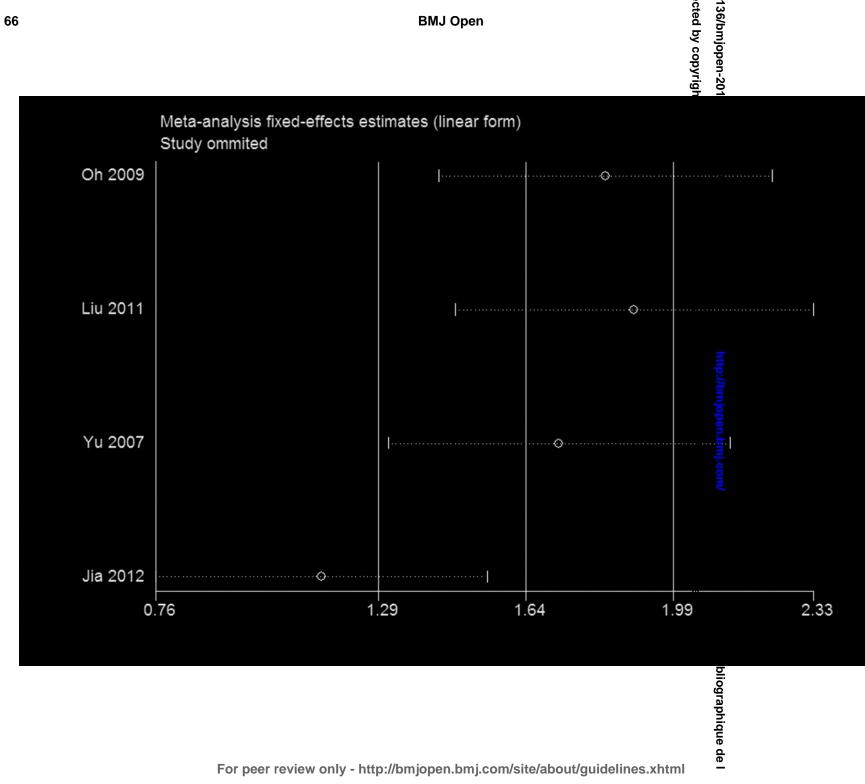
209x170mm (300 x 300 DPI)


BMJ Open: first published as 10.1136/bmjopen-2013-004581 on 16 July 2014. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Fig.7a fusion rate

	ACCF		ACD	F		Risk Ratio		Risk Ratio		
Study or Subgroup	Events .	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95%	CI	
Burkhardt 2013	36	38	78	80	25.4%	0.97 [0.89, 1.06]				
Jia 2012	36	36	31	31	17.1%	1.00 [0.94, 1.06]		+		
Kim 2012	16	16	48	54	11.6%	1.10 [0.97, 1.25]				
Oh 2009	17	17	14	14	8.0%	1.00 [0.88, 1.13]				
Yu 2007	20	20	20	20	10.4%	1.00 [0.91, 1.10]				
Yu 2012	48	48	62	62	27.6%	1.00 [0.96, 1.04]		†		
Total (95% CI)		175		261	100.0%	1.00 [0.97, 1.04]		•		
Total events	173		253							
Heterogeneity: Chi ² =	2.70, df = 5	(P = 0	0.75); l² =	0%			0.5	0.7 1	1.5	2
Test for overall effect:	Z = 0.27 (P	= 0.79	9)				0.5	ACCF ACDF	1.5	2


Fig.7b degeneration of the adjacent-level

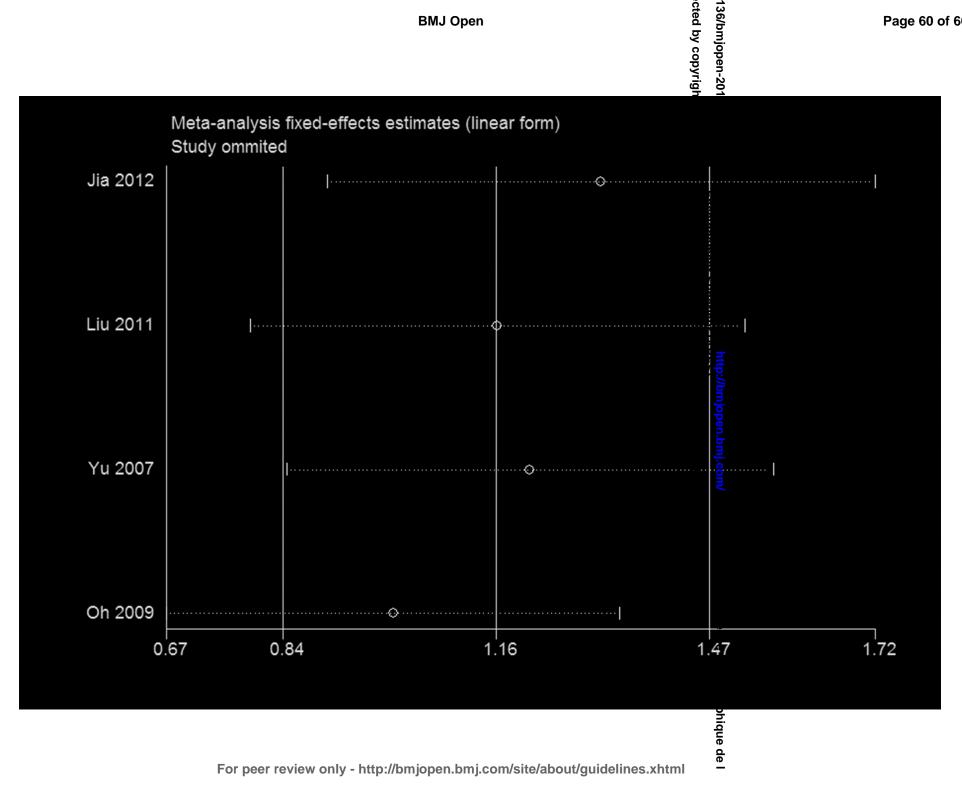


Fig.7c Complications

	ACC	F	ACD	F		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Burkhardt 2013	3	31	14	68	39.3%	0.47 [0.15, 1.52]	
Jia 2012	3	36	2	31	9.6%	1.29 [0.23, 7.24]	
Kim 2012	3	16	10	54	20.5%	1.01 [0.32, 3.24]	
Liu 2011	5	23	4	23	17.9%	1.25 [0.38, 4.07]	
Oh 2009	3	17	0	14	2.4%	5.83 [0.33, 104.22]	
Wang 2001	1	20	0	32	1.7%	4.71 [0.20, 110.40]	
Yu 2007	3	20	1	20	4.5%	3.00 [0.34, 26.45]	
Yu 2012	3	48	1	62	3.9%	3.88 [0.42, 36.09]	
Total (95% CI)		211		304	100.0%	1.25 [0.74, 2.13]	•
Total events	24		32				
Heterogeneity: Chi ² = 6	6.19, df =	7 (P = 0).52); l² =	0%			
Test for overall effect: 2	Z = 0.83 (P = 0.4	0)				0.01 0.1 1 10 100 ACCF ACDF

209x244mm (300 x 300 DPI)

Study	Hospital	stay(days)	Bleeding	amounts(ml)	Operative	time(min)	
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF	
Oh 2009	$16.82{\pm}7.7$	$15.14{\pm}8.5$	$777.8 {\pm} 644.3$	$306.43 \!\pm\! 151.1$	210 ± 6	140.71 ± 44.5	
Park 2010	N	IA	N	IA	NA		
Wang 2001	N	IA	N	IA	NA		
Burkhardt	N	NA		IA	N	A	
2013							
Yu 2012	N	IA	N	IA	N	A	
Yu 2007	N	IA	$306.75 \!\pm\! 74.63$	$207.5 \!\pm\! 65.86$	110.4 ± 18.16	91.8 ± 19.43	
Jia 2012	$11.11\!\pm\!8.52$	10.79 ± 7.74	$279.93 \!\pm\! 63.21$	$102.21 \!\pm\! 31.71$	$141.23 \!\pm\! 63.21$	$97.37 \!\pm\! 17.72$	
Liu 2011	$12.2 {\pm} 2.7$	$11.2 {\pm} 2.6$	$263.0 {\pm} 130.4$	148.3 ± 71.3	$190.9 {\pm} 61.4$	139.9 ± 12.7	
Kim 2012	N	IA	Ň	IA	NA		

Table S1 Perioperative outcomes of included studies.

NA=not available, ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion.

 Table S2 Clinical outcomes of included studies.

Study	Postoperative	JOA at last	Postoperativ	e neck VAS	Postoperative	e arm VAS
	visit					
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	14.72 ± 1.7	15.25 ± 1.5	$3.63{\pm}2.3$	$2.93\!\pm\!2.5$	$2.63{\pm}2.7$	$2.79\!\pm\!2.3$
Park 2010	NA		NA		NA	
Wang 2001	NA		NA		NA	
Burkhardt 2013	NA		$0.9{\pm}3.1$	$1.3{\pm}3.2$	1.4 ± 3.2	$2.4{\pm}2.7$
Yu 2012	NA		NA		NA	
Yu 2007	NA		NA		NA	
Jia 2012	$15.32{\pm}1.54$	$15.01 \!\pm\! 1.76$	$3.62{\pm}2.01$	$2.81\!\pm\!1.33$	2.51 ± 1.43	$2.35 \!\pm\! 1.69$
Liu 2011	14.1 ± 1.4	$13.6\!\pm\!1.2$	NA		NA	
Kim 2012	NA		NA		NA	

NA= not available, JOA=Japanese Orthopedic Association scores, VAS= Visual Analog Scale scores. ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, * the study just reported the data at the sixth month of postoperative.

 Table S3a
 Postoperative radiologic outcomes of included studies.

Study	sagittal a	alignment	C2-C7	Cobb	fusion Cobb)
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	NA		$14.59{\pm}10.6$	$23.43\!\pm\!7.4$	NA	
Park 2010	32L	30L	$9.6{\pm}9.1$	$11.2 {\pm} 8.5$	$2.5\!\pm\!5.9$	$4.4\!\pm\!5.7$
Wang 2001	NA		NA		NA	
Burkhardt	NA		$9.7{\pm}7.7$	$13.6{\pm}8.6$	NA	
2013						
Yu 2012	36L	47L	NA		$4.4\!\pm\!4.9$	$7.5\!\pm\!5.9$
Yu 2007	NA		NA		NA	
Jia 2012	NA		20.26 ± 10.26	$22.08 \!\pm\! 9.78$	NA	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Liu 2011	NA	NA		$6.9{\pm}2.5$	$8.8{\pm}2.7$
Kim 2012	NA	15.7 ± 8.6	$16.7\!\pm\!8.5$	5.8/4.6	6.8/6.8

ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

Table S3b	Postoperative radiologic outcomes of included studies.
-----------	--

Study	total cerv	rical ROM	fusio	n ROM	fused segme	ent height
	ACCF	ACDF	ACCF	ACDF	ACCF	ACDF
Oh 2009	30.23 ± 15.1	$28.13 \!\pm\! 13.4$	$5.12{\pm}4.8$	$3.88{\pm}3.4$	$49.9\!\pm\!5$	56.0 ± 7
Park 2010	NA		NA		NA	
Wang	NA		NA		NA	
2001						
Burkhardt	NA		NA		37.3 ± 4.3	$39.9 {\pm} 4.3$
2013						
Yu 2012	NA		NA		NA	
Yu 2007	NA		NA		NA	
Jia 2012	27.98 ± 12.94	$29.19 \!\pm\! 10.33$	$3.39{\pm}3.01$	$4.01\!\pm\!2.93$	$53.11 \!\pm\! 1.90$	$55.55 \!\pm\! 1.84$
Liu 2011	NA		NA		$56.4 {\pm} 2.4$	$56.1 {\pm} 2.2$
Kim 2012	33.5	26.8	NA		$55.1\!\pm\!3.9$	55.4 ± 3.8

ACCF=anterior cervical corpectomy and fusion, ACDF=anterior cervical discectomy and fusion, NA=not available,ROM=range of motion.

Study	graft c	fusio	on rate	degeneration ^a		
	ACCF(An/Po/Cr/Ca)	ACDF(An/Po/Cr/Ca)	ACCF ACDF		ACCF ACDF	
Oh 2009	NA		100%	100%	3	2
Park 2010	$5.0{\pm}2.9/3.5{\pm}2.5/1.7{\pm}1.6/3.9{\pm}2.6$	$4.2{\pm}2.6/3.0{\pm}2.4/1.5{\pm}1.1/3.4{\pm}2.0$	NA		NA	
Wang	NA		NA		NA	
2001						
Burkhardt	NA		94.7%	97.5%	2	3
2013						
Yu 2012	$3.7 \pm 1.3 / 5.2 \pm 2.2 / 1.8 \pm 0.6 / 4.4 \pm 1.0$	$2.9{\pm}1.2/3.6{\pm}2.3/1.6{\pm}0.6/3.3{\pm}1.3$	100%	100%	1	1
Yu 2007	NA		100%	100%	NA	
Jia 2012	NA		100%	100%	NA	
Liu 2011	NA		NA		NA	
Kim 2012	NA		100%	88.9%	NA	

a degeneration means degeneration of the adjacent-level to the fusion. An= anterior, Po= posterior, Cr= cranial, Ca= caudal, ACCF= anterior cervical corpectomy and fusion, ACCF= anterior cervical discectomy and fusion, NA= not available.

Study	Compli	cations	
	ACCF	ACDF	
Oh 2009	3	0	
Park 2010	NA		
Wang 2001	1	0	
Burkhardt 2013	3	14	
Yu 2012	3	1	
Yu 2007	3	1	
Jia 2012	3	2	
Liu 2011	5	4	
Kim 2012	3	10	

ACCF= anterior cervical corpectomy and fusion, ACDF= anterior cervical discectomy and fusion, NA= not available.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

PRISMA 2009 Checklist

Section/topic	_#	Checklist item	The section that contains each item e#	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page, Page 1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2-3	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 4-5	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	No	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 5	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 5	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Fig. 1	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 5-6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 7	

Page 65 of 66

BMJ Open

PRISMA 2009 Checklist

Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	Page 7-8
	-	Page 1 of 2	
Section/topic	#	Checklist item	The section that contains each item e#
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 8
RESULTS	-		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 8, Fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 9
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 8-9, Table 1
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 9, Table 3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 10-14
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 8
DISCUSSION	-		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 14-16
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 16-18
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 18-19

PRISMA 2009 Checklist

4 F	FUNDING				
6 F 7	unding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	le 19	
10 d 11 12 13 14 15 16 17 18 19 20 21 22 23	<i>rom:</i> Moher D, Liberati A, Tetzlaff oi:10.1371/journal.pmed1000097	J, Altm	systematic review. nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): For more information, visit: www.prisma-statement.org. Page 2 of 2 Page 2 of 2	e1000097.	
24 25 26 27 28 29 30 31					
32 33 34 35 36 37 38 39					
40 41 42 43 44 45 46		.səibo	Protected by copyrightening/គ្នាទាន់ទាន់ទាន់ទាន់ទាន់ទោះទោះទោះទោះទោះទោះ នោះទោះ នោះទោះ នោះទោះ នោះទោះ នេះ នោះទោះ ន		
47 48 ⊿0	h əb əupidqsזפסיפא א פוטויספר	ts 22(02 ,01 anuL no \moɔ.[md.nəqoįmd\/:qiif moil babsolnwol. 410 2014. Downloaded from http://diagonalogen.bai.com/ Enseignement Superieur (BEBA) . ماليه المعالية المعال	BW1 O	