

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in a large cohort study (Gazel)

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004214
Article Type:	Research
Date Submitted by the Author:	10-Oct-2013
Complete List of Authors:	descatha, alexis; Université de Versailles St-Quentin-Inserm APHP, Occupational Health Unit-U1018 Carton, Matthieu; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform Medouini, Zakia; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform Dumontier, Christian; Nice University, St Roch hospital, Plastic and Hand Department Roquelaure, Yves; LEEST, LUNAM ; Université d'Angers Goldberg, Marcel; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform Zins, Marie; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Surgery, Rheumatology, Epidemiology
Keywords:	EPIDEMIOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE, Hand & wrist ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in

a large cohort study (Gazel)

Alexis Descatha ^{1,2,3}, Matthieu Carton ^{1,2}, Zakia Mediouni ^{1,2,3}, Christian Dumontier ⁴, Yves Roquelaure ⁵, Marcel Goldberg ^{1,2}, Marie Zins ^{1,2}, Annette Leclerc ^{1,2}

- 1. Univ Versailles St-Quentin, F-78035, Versailles, France;
- 2. Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform, F-94807, Villejuif, France
- 3. AP-HP, Occupational Health Unit/EMS (Samu92), University Hospital of Paris West suburb, Poincaré site, F-92380 Garches, France
- 4. Plastic and Hand Department, Nice University, St Roch hospital, F-06000 Nice, France
- 5. LUNAM University, Laboratory of Ergonomics and Epidemiology in Occupational Health, University of Angers, F-49100 Angers, France

Correspondence and reprints: Dr Alexis Descatha, Inserm U1018, UVSQ, Unité de pathologie professionnelle U1018, CHU Poincaré, 104 bd Poincaré, 92380 Garches, France

Tel: +33 (1) 47 10 77 54; Fax: +33 (1) 47 10 77 68; email: alexis.descatha@uvsq.fr

Short title: work exposure, alcohol intake, smoking and Dupuytren's disease

Counts: 2404 words, 18 references, 4 tables 1 figure

Key words: Dupuytren's disease; cohort study; occupational disease; vibration exposure; risk factor; epidemiology.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ Open and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms) and the Corresponding Author accepts and understands that any supply made under these terms is made by BMJPGL to the Corresponding Author. All articles published in BMJ Open will be made available on an Open Access basis (with authors being asked to pay an open access fee - see http://bmjopen.bmj.com/site/about/resources.xhtml) Access shall be governed by a Creative Commons licence – details as to which creative_commons_licence will be article are set out in our licence referred to above.

No conflict of interest of any kinds (all authors cf.)

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

ABSTRACT

Introduction In view of the debate about biomechanical and toxic factors in Dupuytren's disease, we aimed to describe its relationship with certain occupational factors and alcohol intake and smoking.

Method Subjects in the French GAZEL cohort answered a questionnaire in 2012 included self-reported Dupuytren's disease, such as disabling Dupuytren's disease (including surgery). In 2007, self-assessed lifetime occupational biomechanical exposure was recorded (carrying loads, manipulating a vibrating tool, climbing stairs), as well as alcohol intake, smoking and diabetes mellitus. Analyses were performed on high alcohol intake, smoking and duration of relevant work exposure, stratified by gender for both outcomes.

Results A total of 13,587 subjects answered the questionnaire in 2012 (73.7% of the questionnaire sent) and constituted the sample (10,017 men and 3,570 women, aged from 64 to 73 years; mean age for men 68 years and for women 65 years). Among men age, diabetes, heavy drinking and over 15 years of manipulating a vibrating tool at work were significantly associated with Dupuytren's disease; except for diabetes, the association with these factors was stronger for disabling Dupuytren's disease (or surgery). Among the 3,570 women included, 160 reported Dupuytren's disease (4.5%). The number of cases in the group of women was too low to reach conclusions, although the findings seemed similar for age, diabetes and vibration exposure.

Conclusion In this large French cohort study, Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration. It is likely that the same applied to women.

ARTICLE SUMMARY

- The longitudinal study confirmed that Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration in this large French cohort study, adjusted for age and diabetes.
- Although this is one of the first studies to analyze risk factors for women, the number of cases was too small to draw conclusions, though they appeared similar.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- The study had limitations: self-reported diagnosis, possible residual confounding (genetic factors mainly).
- Strengths of our study came from the longitudinal design, the relatively large size of the cohort, women included.

Dupuytren's disease is characterized by chronic contracture of the (fourth and fifth) fingers of the hand toward the palm, usually accompanied by thickening of the palmar skin.^[1] It has a clear genetic background.^[2–4]

Since its description by Guillaume Dupuytren in 1831 following Henry Cline Sr. and Sir Astley Cooper, there has been controversy regarding biomechanical work exposure which might contribute to the development of this disorder.^[5] An exhaustive review and a metaanalysis was conducted to address this controversy, and concluded that there is good evidence of an association between vibration exposure and Dupuytren's disease.^[6,7] However, recent opinion still considers that occupational exposure, including vibration, is not a risk factor for Dupuytren's disease in manual workers.^[1,8,9] These authors argued there are still conflicting results and that evidence is based only on two longitudinal studies. The roles of alcohol consumption and smoking are also a matter of debate,^[9,10] although one large longitudinal study found a clear relationship between such exposure and Dupuytren's disease.^[11]

We used data from the GAZEL cohort study to describe the prevalence of Dupuytren's disease, and to analyze its association with certain risk factors, including exposure to vibration, alcohol intake and smoking.

METHODS

Population

The GAZEL cohort is made up of employees of Electricité de France (EDF) and Gaz de France (GDF), the French national utility for energy production and distribution. The company employs workers in various trades and of different socioeconomic status. At baseline in 1989, the cohort included 20,625 volunteers and 18,428 followed, men then aged

BMJ Open

In the present study, we included only the subjects who answered the 2012 GAZEL questionnaire (which included a question about Dupuytren's disease).

Potential risk factors

Information on gender and age (at 2012), was collected through the general questionnaire. Occupational risk factors were assessed in the 2007 questionnaire. Data on nine different types of biomechanical exposure were available, including the number of years of exposure during their working lives. In this study of Dupuytren's disease, we analyzed the potential role of manipulating a vibrating tool. As information about forceful activity was not available, carrying loads was considered to be a proxy for forceful work and was also taken into account. Climbing stairs, an irrelevant exposure for Dupuytren's disease, was also used as a 'control exposure' to check the lack of relationship. For these variables, three categories were considered for men based on duration of exposure: i.e. never exposed, exposed but for less than 15 years, and exposed for 15 years or more. In the view of the number of exposed women in the cohort, the exposure for women was only considered as yes or no. In addition, at inception of the cohort in 1989, a 'yes or no' question about manipulating vibrating tools was also available, and computer work was used as control exposure.

Data for alcohol consumption were available for each year since 1992, and three categories were also considered on the basis of the distribution observed. Only heavy drinkers were taken into account based on the results of a previous study:^[13] less than 3 glasses aday of any alcohol, 3 to 4 glasses of wine or beer, and 5 or more glasses of wine/beer or 3 glasses or more of spirits a day. If a subject had increased his alcohol consumption between 1992 and

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

2012, the highest category was taken into consideration. Data on smoking had been collected at inception in 1989 and grouped in three categories and: nonsmoker or former smoker, 1 to 20 cigarettes/cigars or pipes, over 20 cigarettes/cigars or pipes per day. As for alcohol consumption, the highest smoking category was taken into consideration, if the subject had increased consumption during the study period.

Diabetes mellitus was self-reported every year fron 1989.

Outcomes

When assessed in 2012, a specific question on Dupuytren's disease was asked: "1) Have you ever had Dupuytren's disease (thickening of the palmar skin, nodes or contracture of the fourth fingers of the hand)? ; 2) if yes, do you have any limitation from it? 3) Have you had surgery for it?".

We considered two outcomes, i.e. Dupuytren's disease (yes or no) based on the answer to the first question; and a three category variable: no Dupuytren's disease (reference), Dupuytren's disease without surgery and without limitations, Dupuytren's disease with surgery or limitation.

Analyses

Univariate and multivariate analyses were stratified on gender for both outcomes. For the multinomial regression model, all the variables were included, except 'control exposure' variables. Statistical Analysis Software was used for all statistical analyses (SAS, v9.3, SAS Institute Inc, Cary, NC, USA). Associations were considered statistically significant if the p-value was less than 0.05.

RESULTS

The 13 587 subjects who answered the GAZEL questionnaire in 2012 constituted the sample (10,017 men and 3,570 women). The participation rate was 73.7% (18,428 questionnaires sent in 2012). Subjects were aged from 59 to 73 years (mean age 68 years for men and 65 years for women).

Of the 10,017 men included, 839 reported Dupuytren's disease (8.4%), including 342 who reported surgery or limitations (3.4%). Age, diabetes mellitus, heavy drinking and over 15 years of manipulating a vibrating tool at work were significantly associated with self-reported Dupuytren's disease, with a dose-effect relationship (Table 1). Similar results were found when a yes/no question was used at the inception of the cohort in 1989. As expected, none of the 'control exposure' variables were associated with Dupuytren's disease. Reported durations of exposure of carrying loads and smoking habits were not found to be associated with Dupuytren's disease. The associations were stronger when considering disabling Dupuytren's disease (or surgery) than for Dupuytren's disease without reported surgery or disability (Table 2). Figure 1 show a clear dose effect in relation to duration of exposure, with a 5 year step.

Of the 3,570 women included, 160 reported Dupuytren's disease (4.5%), including 78 who reported surgery or limitations (2.2%). Associations were found to be weak and questionable, although age, diabetes and vibration exposure were still significant (Tables 3 and 4); however, only small numbers of women were in the heavy drinking and occupationally exposed groups.

DISCUSSION

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

The study confirmed that Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration in this large French cohort study, adjusted for age and diabetes, whereas smoking habits and other types of occupational exposure were not. Although this is one of the first studies to analyze risk factors for women, the number of cases was too small to draw conclusions, though they appeared similar.

The study had various limitations. The diagnosis was self-reported, without confirmation of any physical examination by a physician. However, Dupuytren's disease is easily diagnosed, with no major differential diagnoses. The lack of confirmation possibly led therefore to an underestimation of the disorder, but this was probably limited considering that the prevalence of this disorder in the study was comparable with information available for the same age category in the general population.^[9] A possible residual confounding effect should also be discussed: information regarding genetic factors, such as family history of Dupuytren's disease, hand trauma, epilepsy and anticonvulsant drug intake, that are considered to be associated with Dupuytren's disease, was not available. However, an association between these factors and vibration exposure and alcohol intake seems unlikely.

One of the strengths of our study is the relatively large size of the cohort. Since we had only one measure of Dupuytren's disease in 2012, i.e. the number of reported cases of Dupuytren's disease, we studied factors associated with prevalent cases. However, assessment of work exposure five years before evaluation of the outcome, and the regular evaluation of alcohol intake and smoking throughout the follow-up period enabled us to be confident about the associations observed, that were confirmed by information collected at inception, i.e. 23 years before.

One important finding was confirmation of the association between alcohol consumption in men with Dupuytren's disease, with a dose-response relationship.^[11,13,14] The association with reported limitations (or surgery) was interesting because this has been described many times by clinicians but never reported in large cohort studies.^[1] Diabetes seemed to be related to the occurrence of Dupuytren's disease and not with limitations in men, but interestingly was associated with limitations in women. Smoking and heavy smoking were not found to be associated with Dupuytren's disease, which was unexpected considering the possible ischemic etiology of Dupuytren's disease and some recent studies.^[11,14] Lack of relationship was possibly due to the limited number of very heavy smokers (61 men and 26 women smoked 2 packs/day or more).

In terms of occupational exposure, only vibration was found to be related to Dupuytren's disease. Previous studies have showed that high cumulative work exposure to vibration (intensity x duration) was associated with Dupuytren's disease.^[13,15–18] Although exposure to vibration during working life was self-reported, it corresponded to specific exposure with a probably low memory effect. Hand-vibration transmitting tools in our cohort were mostly screw tools, common drills and (infrequently) pneumatic drills, where strenuous hand grip increase vibration damage. The role of high levels of vibration exposure is plausible, especially as a result of the local hypoxia and chronic ischemia hypothesized in Dupuytren's contracture.^[4] Similar magnitudes of strength of association found in published studies support the plausibility of a causal relationship.^[7] Carrying loads was studied because, with some tasks, such exposure is associated with manual work, and heavy forceful exposure during the working life was not available in the GAZEL cohort. However, no relationship was found here.

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

ata mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

In addition to the well-established genetic factors, and despite the limitations discussed, this study emphasized the roles of occupational hand-transmitted vibration exposure and alcohol consumption in Dupuytren's disease. The question of compensation in some cases following documented high levels of exposure should be reviewed, as should improvement of working conditions with a view to prevention.

DATA SHARING

There is no additional data available

AUTHORS CONTRIBUTION

All authors contributed significantly to the manuscript and approved the final version. MZ, MC and MG involved in the data collection, improved the analyses, comment the manuscript. AD initiate the work, performed the main analyses and draft the manuscript. ZM, CD and AL discussed the project, improved the analyses, comment the manuscript.

ACKNOWLEDGEMENTS

The authors thank EDF-GDF, especially the Service Général de Médecine de Contrôle and the "Caisse centrale d'action sociale du personnel des industries électrique et gazière." We also wish to thank the "Population-Based Epidemiological Cohorts" Research Platform responsible for the GAZEL Cohort Study.

FOUNDINGS

The GAZEL Cohort Study was funded by EDF-GDF and INSERM and received grants from the "Cohortes Santé TGIR Programme."

COMPETING INTEREST: None to declare.

- 1. Townley WA, Baker R, Sheppard N, Grobbelaar AO. Dupuytren's contracture unfolded. BMJ 2006;332(7538):397-400.
- 2. Gudmundsson KG, Jonsson T, Arngrimsson R. Guillaume Dupuytren and finger contractures. Lancet 2003;362(9378):165-168.
- 3. Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, Franke L, et al. Wnt signaling and Dupuytren's disease. N. Engl. J. Med. 2011;365(4):307-317.
- 4. Dupuytren's Disease and Related Hyperproliferative Disorders Principles, Research, and Clinical Perspectives. Berlin, New York: Springer; 2011.
- 5. Dembe A. Occupation and Disease: How Social Factors Affect the Conception of Work-Related Disorders. Yale, CT: Yale University Press; 1996.
- 6. Liss GM, Stock SR. Can Dupuytren's contracture be work-related?: review of the evidence. Am.J.Ind.Med. 1996;29(5):521-532.
- 7. Descatha A, Jauffret P, Chastang J-F, Roquelaure Y, Leclerc A. Should we consider Dupuytren's contracture as work-related? A review and meta-analysis of an old debate. BMC Musculoskelet. Disord. 2011;12:96.
- 8. Burge PD. Dupuytren's disease. J Bone Jt Surg Br 2004;86(7):1088-1089.
- 9. Hindocha S, McGrouther DA, Bayat A. Epidemiological evaluation of Dupuytren's disease incidence and prevalence rates in relation to etiology. Hand 2009;4(3):256-269.
- 10. Hart MG, Hooper G. Clinical associations of Dupuytren's disease. Postgrad.Med.J. 2005;81(957):425-428.
- Godtfredsen NS, Lucht H, Prescott E, Sorensen TI, Gronbaek M. A prospective study linked both alcohol and tobacco to Dupuytren's disease. J Clin Epidemiol 2004;57(8):858-863.
- 12. Goldberg M, Leclerc A, Bonenfant S, Chastang JF, Schmaus A, Kaniewski N, et al. Cohort profile: the GAZEL Cohort Study. Int J Epidemiol 2007;36(1):32-39.
- 13. Lucas G, Brichet A, Roquelaure Y, Leclerc A, Descatha A. Dupuytren's disease: personal factors and occupational exposure. Am. J. Ind. Med. 2008;51(1):9-15.
- 14. Burke FD, Proud G, Lawson IJ, McGeoch KL, Miles JN. An assessment of the effects of exposure to vibration, smoking, alcohol and diabetes on the prevalence of Dupuytren's disease in 97,537 miners. J Hand Surg Eur 2007;32B(4):400-406.

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

to text

ta mining, Al training, and similar technologies

Protected by copyright, including for uses related

- 15. Chanut JC. [Dupuytren's disease.]. Arch Mal Prof 1963;24:621-625.
- 16. Cocco PL, Frau P, Rapallo M, Casula D. [Occupational exposure to vibration and Dupuytren's disease: a case-controlled study]. Med.Lav. 1987;78(5):386-392.
- 17. Thomas PR, Clarke D. Vibration white finger and Dupuytren's contracture: are they related? Occup Med Lond 1992;42(3):155-158.
- 18. Bovenzi M. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry. Occup.Environ.Med. 1994;51(9):603-611.

Page 13 of 19

1

BMJ Open

1
2 3
3
4
5
6 7
1
ð
9
10
11
12
13
14
15
10
17
18
2 3 4 5 6 7 8 9 10 1 12 3 14 5 16 17 8 9 20 1 22 3 4 5 6 7 8 9 10 1 12 3 14 5 16 17 8 19 20 1 22 3 24 25 26 27 8 9 30 3 1 32 33 34 35 36 37 8 39 20 10 10 10 10 10 10 10 10 10 10 10 10 10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 55
56
57
58
59
60
00

	N (total)	n	%	Odds ratio (univariate analyses)	Odds ratio (multivariate analysis)*
Age ²				1.03 [1.01; 1.06]	1.03 [1.00; 1.06]
Diabetes					
No	8581	692	8.06	1	1
Yes	1436	147	10.24	1.30 [1.08; 1.57]	1.31 [1.07; 1.60]
Smoking habits (pack/day)**					
Non-smoker (or former smoker)	6055	488	8.06	1	1
Smoker < 1	2670	229	8.58	1.07 [0.91; 1.26]	1.05 [0.88; 1.24]
Smoker ≥1	1246	117	9.39	1.18 [0.96; 1.46]	1.05 [0.83; 1.32]
N · 1 · 1 1 · (1 · (1 ·) · · ·					
Drinking habits (glass/day)**	2551	174	(02		
<3	2551	174	6.82	1	1
3or 4 glasses of wine /beer	4864	411	8.45	1.26 [1.05; 1.52]	1.22 [1.01; 1.48]
≥5 glasses of wine/beer or ≥3 glasses of spirits	2577	249	9.66	1.46 [1.19; 1.79]	1.36 [1.10; 1.69]
Carrying loads (assessed in 2007),					
<i>number of years of exposure</i> No	6812	565	8.29	1	1
1 to 15 years	1026	89	8.67	1.05 [0.83; 1.33]	0.95 [0.74; 1.22]
>15 years	1393	129	9.26	1.13 [0.92; 1.38]	0.91 [0.71; 1.16]
Climbing stairs (assessed in 2007),					
<i>number of years of exposure</i> No	7281	618	8.49	1	
1 to 15 years	810	63	7.78	0.91 [0.69; 1.19]	
>15 years	1147	102	8.89	1.05 [0.85; 1.31]	
Manipulating vibrating tools	1147	102	0.09	1.05 [0.05, 1.51]	
(assessed in 2007), number of					
<i>years of exposure</i> No	7630	614	8.05	1	1
1 to 15 years	772	76	9.84	1.25 [0.97; 1.60]	1.25 [0.95; 1.65]
>15 years	781	88	11.27	1.45 [1.15; 1.84]	1.52 [1.15; 2.02]
Carrying loads (assessed in 1989)		- *			
No	8888	737	8.29	1	
Yes	1129	102	9.03	1.10 [0.88; 1.36]	
Manipulating vibrating tools (assessed in 1989)					
No	9278	760	8.19	1	
Yes	739	79	10.69	1.34 [1.05; 1.71]	
Computer work (assessed in 1989)					
No	5270	444	8.43	1	
Yes	4747	395	8.32	0.99 [0.86; 1.14]	

Table 1. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the previous period in men.

Data in bold: p<0.05),* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit

				Dupuytren's disease without				Dupuytren's disease with lin		
	N (total)	n	%	Odds ratio (univariate analyses)	Odds ratio (multivariate analysis)*	n	%	Odds ratio (univariate analyses)	Odds ratio (multivariate analysis)*	
ge ²	10017	496	4.95	1.01 [0.98; 1.04]	1.00 [0.97; 1.04]	343	3.42	1.07 [1.03; 1.11]	1.07 [1.03; 1.11]	
je iabetes	10017	490	4.95	1.01 [0.98, 1.04]	1.00 [0.97, 1.04]	545	5.42	1.07 [1.03; 1.11]	1.07 [1.03; 1.11]	
0	8581	405	4.72	1	1	287	3.34	1	1	
es				1	1					
	1436	91	6.34	1.38 [1.09; 1.74]	1.41 [1.10; 1.82]	56	3.90	1.19 [0.89; 1.60]	1.18 [0.87; 1.59]	
moking habits (pack/day)**	(055	202	4.00	1	1	107	2.24	1		
on-smoker (or former smoker)	6055	292	4.82			196	3.24		1	
noker < 1	2670	132	4.94	1.03 [0.83; 1.27]	1.04 [0.83; 1.30]	97	3.63	1.13 [0.88; 1.45]	1.06 [0.81; 1.37]	
noker ≥ 1	1246	68	5.46	1.15 [0.88; 1.51]	1.06 [0.79; 1.43]	49	3.93	1.23 [0.90; 1.70]	1.04 [0.74; 1.46]	
rinking habits (glass/day)**										
3	2551	103	4.04	1	1	71	2.78	1	1	
or 4 glasses of wine /beer	4864	264	5.43	1.37 [1.08; 1.73]	1.32 [1.03; 1.68]	147	3.02	1.11 [0.83; 1.47]	1.09 [0.81; 1.47]	
5 glasses of wine/beer or \geq 3 glasses of spirits	2577	125	4.85	1.24 [0.95; 1.62]	1.12 [0.84; 1.50]	124	4.81	1.78 [1.32; 2.40]	1.71 [1.25; 2.33]	
arrying loads (assessed in 2007), number										
years of exposure										
0	6812	350	5.14	1	1	215	3.16	1	1	
to 15 years	1026	48	4.68	0.91 [0.67; 1.25]	0.88 [0.63; 1.22]	41	4.00	1.27 [0.90; 1.79]	1.06 [0.73; 1.52]	
15 years	1393	61	4.38	0.86 [0.65; 1.14]	0.79 [0.56; 1.09]	68	4.88	1.56 [1.18; 2.07]	1.08 [0.76; 1.52]	
limbing stairs (assessed in 2007). number								L / J	L / J	
<i>limbing stairs (assessed in 2007), number f years of exposure</i>										
lo	7281	358	4.92	1		260	3.57	1		
to 15 years	810	42	5.19	1.05 [0.75; 1.45]		21	2.59	0.72 [0.46; 1.13]		
15 years	1147	58	5.06	1.03 [0.78; 1.37]		44	3.84	1.08 [0.78; 1.50]		
Is yours Anninulating wibrating tools (assassed in	117/	20	2.00	1.05 [0.70, 1.57]			5.04	1.00 [0.70, 1.00]		
Anipulating vibrating tools (assessed in										
<i>007), number of years of exposure</i> Io	7(20	277	4.0.4	1		227	2 1 1	1	1	
NO 15	7630	377	4.94			237	3.11			
to 15 years	772	38	4.92	1.02 [0.72; 1.43]	1.05 [0.72; 1.52]	38	4.92	1.62 [1.14; 2.30]	1.56 [1.07; 2.29]	
15 years	781	40	5.12	1.07 [0.77; 1.50]	1.20 [0.81; 1.78]	48	6.15	2.05 [1.49; 2.82]	1.98 [1.34; 2.91]	
Carrying loads (assessed in 1989)										
No Yes	8888	437	4.92	1		300	3.38	1		
Yes	1129	59	5.23	1.07 [0.81; 1.42]		43	3.81	1.14 [0.82; 1.58]		
Manipulating vibrating tools (assessed in 1989)										
No	9278	453	4.88	1		307	3.31	1		
(es	739	43	5.82	1.23 [0.89; 1.69]		36	4.87	1.51 [1.06; 2.16]		
Computer work (assessed in 1989)										
C omputer work (assessed in 1989) No Yes	5270	262	4.97	1		182	3.45	1		
(es	4747	234	4.93	0.99 [0.83; 1.19]		161	3.39	0.98 [0.79; 1.22]		
					e (without limitations or sur				anarod with	
			•			•••		mations of surgery, con	ipareu with	
reference class: no Dup	ouytren's	diseas	e) and	available factors assess	ed in the previous period in	men.				
-	•		·							
Data in bold: p<0.05,* n	nodel incl	uded al	l varia	bles shown. **maximum	consumption reached, ² age a	s contin	uous v	ariable. OR associated wi	ith an increase of	
					eensumprismiseueneu, uge u					
one unit										
									14	
		Eor	noor	reciew.only.ehttp://bn	aionon bmi.com/sito/about	- /enuidal	inas.×	httende caracteristic		
'Si	chnoloaie	et velin	nia bas	andiniest IA. pointer, 616	pippenxandi parelaitsashquj	- shinding	aietdo	Protected by convri		
an anhuide.Cair an C	6			. (SBBA) 1	Enseignement Superieu					
l əb əupidgraphiographique de l	202.21 ər	inc no	lmop.ji	nd.neaoimd\\:atth mort	9 January 2014. Downloaded	2 no 412	3-004	02-nagoimd/3611.01 26	bədzildua tarit :nəaO LM	

Page 15 of 19

BMJ Open

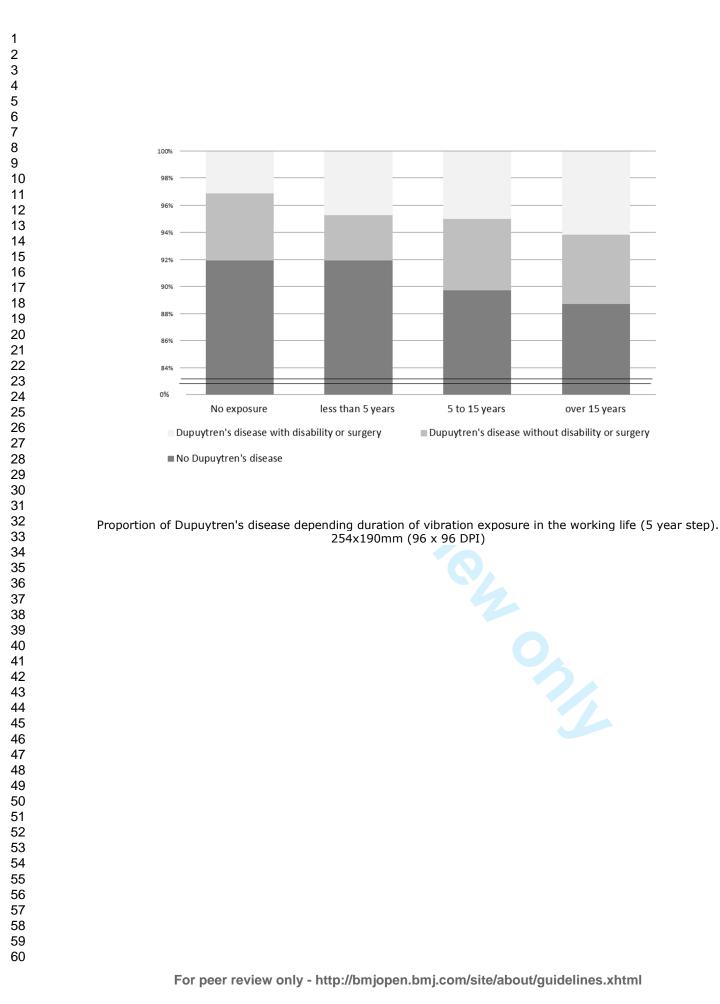

	N (total)	n	%	Odds ratio (univariate analyses)	Odds ratio (multivariate analysis)
Age ²	3570	160	4.48	1.05 [1.01; 1.09]	1.05 [1.01; 1.10]
Diabetes					
No	3252	140	4.31	1	1
Yes	318	20	6.29	1.49 [0.92; 2.42]	1.71 [1.04; 2.81]
Smoking habits (pack/day)**					
Non-smoker (or former smoker)	2626	115	4.38	1	1
Smoker < 1	711	34	4.78	1.10 [0.74; 1.62]	1.16 [0.76; 1.77]
Smoker ≥ 1	187	8	4.28	0.98 [0.47; 2.03]	0.96 [0.43; 2.11]
Drinking habits (glass/day)**					
<3	2423	103	4.25	1	1
3or 4 glasses of wine /beer	843	39	4.63	1.09 [0.75; 1.59]	0.83 [0.54; 1.27]
≥5 glasses of wine/beer or ≥3 glasses of spirits	271	17	6.27	1.51 [0.89; 2.56]	1.17 [0.64; 2.12]
Carrying loads (assessed in 2007)					
No	2995	131	4.37	1	
Yes	151	11	7.28	1.72 [0.91; 3.25]	
Climbing stairs (assessed in 2007)					
No	3024	137	4.53	1	
Yes	116	6	5.17	1.15 [0.50; 2.66]	
Manipulating vibrating tools (assessed in 2007)					
No	3163	142	4.49	1	1
Yes	4	2	50.0	21.28 [2.98; 152.19]	17.17 [2.35; 125.62]
Carrying loads (assessed in 1989)					
No	3433	153	4.46	1	
Yes	137	7	5.11	1.15 [0.53; 2.51]	
Manipulating vibrating tools (assessed in 1989)					
No	3555	159	4.47	1	
Yes	15	1	6.67	1.53 [0.20; 11.67]	
Computer work (assessed in 1989)					
No	885	39	4.41	1	
Yes	2685	121	4.51	1.02 [0.71; 1.48]	

Table 3. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the previous period in women.

Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit

	Dupuytren's disease without limitations or surgery							Dupuytren's disease with limitations or surgery				
	N (total)	n	%	Odds ratio (univariate analyses)	Odds ratio (multivariate analysis)*	n	%	Odds ratio (univariate analyses)	Odds ratio (multivariat analysis)*			
<i>e</i> ²	3570	82	2.30	1.04 [0.98; 1.09]	1.04 [0.98; 1.10]	78	2.18	1.06 [1.01; 1.12]	1.07 [1.01; 1.13]			
abetes												
0	3252	75	2.31	1	1	65	2.00	1	1			
les	318	7	2.20	0.97 [0.45; 2.13]	1.18 [0.53; 2.61]	13	4.09	2.09 [1.14; 3.83]	2.27 [1.22; 4.24]			
Smoking habits (pack/day)**												
Non-smoker (or former smoker)	2626	62	2.36	1	1	53	2.02	1	1			
\mathbf{S} moker < 1	711	16	2.25	0.96 [0.55; 1.67]	0.99 [0.54; 1.82]	18	2.53	1.26 [0.73; 2.16]	1.36 [0.76; 2.41]			
moker ≥1	187	3	1.60	0.68 [0.21; 2.19]	0.78 [0.24; 2.55]	5	2.67	1.32 [0.52; 3.35]	1.15 [0.41; 3.27]			
, Drinking habits (glass/day)**												
2 3 3	2423	51	2.10	1	1	52	2.15	1	1			
or 4 glasses of wine /beer	843	23	2.73	1.30 [0.79; 2.14]	1.06 [0.60; 1.87]	16	1.90	0.89 [0.50; 1.56]	0.63 [0.33; 1.20]			
2^{5} glasses of wine/beer or ≥ 3 glasses of spirits	271	8	2.75	1.43 [0.67; 3.05]	1.30 [0.57; 3.00]	9	3.32	1.58 [0.77; 3.25]	1.04 [0.46; 2.39]			
<i>Limbing stairs (assessed in 2007)</i>	∠/1	0	2.95	1.75 [0.07, 5.05]	1.50 [0.57, 5.00]	7	3.32	1.50 [0.77, 5.25]	1.04 [0.40, 2.37]			
	3024	69	2.28			68	2.25	1				
Y es	116	2	1.72	0.76 [0.18; 3.14]		4	3.45	1.54 [0.55; 4.31]				
Manipulating vibrating tools (assessed		-				•	5.15					
ig 2007) No Yes	3163	70	2.21	1	1	72	2.28	1	1			
J [*] Yes	4	1	25.00	21.57 [1.93; 240.79]	18.69 [1.61; 216.66]	1	25.00	21.00 [1.88; 234.10]	15.87 [1.36; 184.70]			
Carrying loads (assessed in 1989)		•	20.00				20.00					
an ying touus (ussessed in 1707)	3433	78	2.27	1		75	2.18	1				
ğes	137	4	2.92	1.29 [0.47; 3.59]		3	2.19	1.01 [0.31; 3.24]				
Manipulating vibrating tools (assessed	107		,_			J	,					
in 1989) No	3555	81	2.28	1		78	2.19	1				
G es	15	1	6.67	2.99 [0.39; 23.05]		0	0.00	0.00 [0.00; 1]				
Computer work (assessed in 1989)				L /J				L / J				
80	885	20	2.26	1		19	2.15	1				
Yes	2685	62	2.31	1.02 [0.61; 1.70]		59	2.20	1.02 [0.61; 1.73]				
)												
)												
Sable 4. Univariate and multivar	iate ana	lyses	of Dup	uytren's disease (witho	ut limitations or surgery, w	vith limitation	ons or surg	gery, compared to refer	rence class: no			
- Dupuytren's disease) and availab												
4												
Data in bold: p<0.05,* model inclu	ded all v	/ariabl	es show	n, **maximum consum	ption reached, ² age as contir	uous variab	le, OR asso	ociated with an increase of	of one unit			
6				,			-,					
7												
8												
9												
)												
2												
3												
4												
5												
_			_									
6	.səigolo	uqəəi	Finite	២ពុធ សាមរាគមរ សាស្ត្រ ខេត្តាព្រះព	//eppippenxeroi.com/epitede	shquji/guiph	ទុល់ចង់ខ្មែរប្រ	Protected by cop				
7				. (SES)	A) neineque superieur (Al	3						
a nap aupinqua pondua aonaga is		1 0110		oofuuguuodofuug <i>u</i> rdaarii	IOU DODDOULAOG OT (IDD			undefungen und op ne				

48 I ab aupidgraphing as 202, 21 anul. no /mos.imd.naqojmd//:qff mon babed from http://ponloaded from http://www.ary 2013-00-2102-naqojmd/3611.01 as bahalidug fright mon lange de l

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in a

large cohort study (Gazel) =>STROBE Statement

	tem No	Recommendation	YES/NO
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the	
		title or the abstract	Yes
		(b) Provide in the abstract an informative and balanced summary of	
		what was done and what was found	Yes
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	
-		investigation being reported	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	Yes
Methods			
Study design	4	Present key elements of study design early in the paper	Yes
Setting	5	Describe the setting, locations, and relevant dates, including	
0		periods of recruitment, exposure, follow-up, and data collection	Yes
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of	
r un no spundo	Ũ	selection of participants. Describe methods of follow-up	Yes
		(b) For matched studies, give matching criteria and number of	105
		exposed and unexposed	N/A
N7	7		IN/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential	
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	Yes
Data sources/ measureme	ent 8*	For each variable of interest, give sources of data and details of	
		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	Yes
Bias	9	Describe any efforts to address potential sources of bias	Yes
Study size	10	Explain how the study size was arrived at	N/A
			(multipurpos
			cohort)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	
		applicable, describe which groupings were chosen and why	Yes
Statistical methods	12	(a) Describe all statistical methods, including those used to control	
		for confounding	Yes
		(b) Describe any methods used to examine subgroups and	
		interactions	Yes
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(<i>e</i>) Describe any sensitivity analyses	N/A
Dagulta		(c) Describe any sensitivity analyses	14/21
<u>Results</u> Participants	13*	(a) Report numbers of individuals at each stage of study—eg	
i uniorpunto	15	numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	Yes
		(b) Give reasons for non-participation at each stage	No N/A
D		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	
		clinical, social) and information on exposures and potential	Yes

BMJ Open

		confounders	
		(b) Indicate number of participants with missing data for each	
		variable of interest	Yes
		(c) Summarise follow-up time (eg, average and total amount)	Yes
Outcome data	15*	Report numbers of outcome events or summary measures over time	Yes
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	
		adjusted estimates and their precision (eg, 95% confidence	
		interval). Make clear which confounders were adjusted for and why	
		they were included	Yes
		(b) Report category boundaries when continuous variables were	
		categorized	Yes
		(c) If relevant, consider translating estimates of relative risk into	
		absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and	
		interactions, and sensitivity analyses	Yes
Discussion			
Key results	18	Summarise key results with reference to study objectives	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of	
		potential bias or imprecision. Discuss both direction and magnitude	
		of any potential bias	Yes
Interpretation	20	Give a cautious overall interpretation of results considering	
		objectives, limitations, multiplicity of analyses, results from similar	
		studies, and other relevant evidence	Yes
Generalisability	21	Discuss the generalisability (external validity) of the study results	Yes
Other information			
Funding	22	Give the source of funding and the role of the funders for the	
		present study and, if applicable, for the original study on which the	
		present article is based	Yes

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in a large cohort study (Gazel)

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004214.R1
Article Type:	Research
Date Submitted by the Author:	09-Dec-2013
Complete List of Authors:	descatha, alexis; Université de Versailles St-Quentin-Inserm APHP, Occupational Health Unit-U1018 Carton, Matthieu; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform Medouini, Zakia; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform Dumontier, Christian; Nice University, St Roch hospital, Plastic and Hand Department Roquelaure, Yves; LEEST, LUNAM ; Université d'Angers Goldberg, Marcel; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform Zins, Marie; UVSQ Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Surgery, Rheumatology, Epidemiology
Keywords:	EPIDEMIOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE, Hand & wrist ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in

a large cohort study (Gazel)

Alexis Descatha ^{1,2,3}, Matthieu Carton ^{1,2}, Zakia Mediouni ^{1,2,3}, Christian Dumontier ⁴, Yves Roquelaure ⁵, Marcel Goldberg ^{1,2}, Marie Zins ^{1,2}, Annette Leclerc ^{1,2}

- 1. Univ Versailles St-Quentin, F-78035, Versailles, France ;
- 2. Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform, F-94807, Villejuif, France
- 3. AP-HP, Occupational Health Unit/EMS (Samu92), University Hospital of Paris West suburb, Poincaré site, F-92380 Garches, France
- 4. Plastic and Hand Department, Nice University, St Roch hospital, F-06000 Nice, France
- 5. LUNAM University, Laboratory of Ergonomics and Epidemiology in Occupational Health, University of Angers, F-49100 Angers, France

Correspondence and reprints: Dr Alexis Descatha, Inserm U1018, UVSQ, Unité de pathologie professionnelle U1018, CHU Poincaré, 104 bd Poincaré, 92380 Garches, France

Tel: +33 (1) 47 10 77 54; Fax: +33 (1) 47 10 77 68; email: alexis.descatha@uvsq.fr

Short title: work exposure, alcohol intake, smoking and Dupuytren's disease

Counts: 2404 words, 18 references, 4 tables 1 figure

Key words: Dupuytren's disease; cohort study; occupational disease; vibration exposure; risk factor; epidemiology.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ Open and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms) and the Corresponding Author accepts and understands that any supply made under these terms is made by BMJPGL to the Corresponding Author. All articles published in BMJ Open will be made available on an Open Access basis (with authors being asked to pay an open access fee - see http://bmjopen.bmj.com/site/about/resources.xhtml) Access shall be governed by a Creative Commons licence – details as to which creative_commons_licence will apply to the article are set out in our licence forms">http://bmjopen.bmj.com/site/about/resources.xhtml) Access shall be governed by a Creative Commons licence – details as to which creative_commons licence will apply to the article are set out in our licence referred to above.

No conflict of interest of any kinds (all authors cf.)

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

ABSTRACT

 Introduction In view of the debate about biomechanical and toxic factors in Dupuytren's disease, we aimed to describe its relationship with certain occupational factors, alcohol intake and smoking.

Method Subjects in the French GAZEL cohort answered a questionnaire in 2012 including self-reported Dupuytren's disease (yes/no), and as disabling Dupuytren's disease (including surgery). In 2007, self-assessed lifetime occupational biomechanical exposure was recorded (carrying loads, manipulating a vibrating tool, climbing stairs), as well as alcohol intake, smoking and diabetes mellitus. Analyses were performed on high alcohol intake, smoking and duration of relevant work exposure, stratified by gender for both outcomes.

Results A total of 13,587 subjects answered the questionnaire in 2012 (73.7% of the questionnaire sent) and constituted the sample (10,017 men and 3,570 women, aged from 64 to 73 years; mean age for men 68 years and for women 65 years). Among men age, diabetes, heavy drinking and over 15 years of manipulating a vibrating tool at work were significantly associated with Dupuytren's disease; except for diabetes, the association with these factors was stronger for disabling Dupuytren's disease (or surgery). Among the 3,570 women included, 160 reported Dupuytren's disease (4.5%). The number of cases in the group of women was too low to reach conclusions, although the findings seemed similar for age, diabetes and vibration exposure.

Conclusion In this large French cohort study, Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration. It is likely that the same applied to women.

ARTICLE SUMMARY

- The longitudinal study confirmed that Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration in this large French cohort study, after adjustment for age and diabetes.
- Although this is one of the first studies to analyze risk factors for women, the number of cases was too small to draw conclusions, though associations appeared similar to those observed in men.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- The study had limitations: self-reported diagnosis, possible residual confounding (genetic factors mainly).
- Strengths of our study came from the longitudinal design, the relatively large size of the cohort, women included.

Dupuytren's disease is characterized by chronic contracture of the fourth and fifth fingers of the hand toward the palm, usually accompanied by thickening of the palmar skin.^[1] It has a clear genetic background.^[2–4]

Since its description by Guillaume Dupuytren in 1831 following Henry Cline Sr. and Sir Astley Cooper, there has been controversy regarding biomechanical work exposure which might contribute to the development of this disorder.^[5] An exhaustive review and a metaanalysis was conducted to address this controversy, and concluded that there is good evidence of an association between vibration exposure and Dupuytren's disease.^[6,7] However, some authors still consider that occupational exposure, including vibration, is not a risk factor for Dupuytren's disease in manual workers.^[1,8,9] These authors argued there are still conflicting results and that evidence is based only on two longitudinal studies. The role of alcohol consumption and smoking are also a matter of debate,^[9,10] although one large longitudinal study found a clear relationship between such exposure and Dupuytren's disease.^[11] We used data from a large cohort study to describe the prevalence of Dupuytren's disease, and to analyze its association with certain risk factors, including exposure to vibration, alcohol

intake and smoking.

METHODS

Population

The GAZEL cohort is made up of employees of Electricité de France (EDF) and Gaz de France (GDF), the French national utility for energy production and distribution (GAZEL stands for GAZ and ELectricité). The company employs workers in various trades and of different socioeconomic status. At baseline in 1989, the cohort included 20,625 volunteers,

BMJ Open

men then aged 40–50 and women 35–50 years, and 18,428 are still followed up. In January of each year since then, the participants have completed a general self-administered questionnaire about their lifestyle, health, and occupational situation.^[12]

In the present study, we included only the subjects who answered the 2012 GAZEL questionnaire (which included a question about Dupuytren's disease).

Potential risk factors

Information on gender and age (in 2012), was collected through the general questionnaire. Occupational risk factors were assessed in the 2007 questionnaire. Data on nine different types of biomechanical exposure were available, including the number of years of exposure during their working lives (carrying loads, bending trunk, drive a vehicle, kneeling, climbing stairs, climbing ladder, working with arm over the shoulder, carrying load on the shoulder, manipulating a vibrating tool). In this study of Dupuytren's disease, we analyzed the potential role of manipulating a vibrating tool. As information about forceful activity was not available, carrying loads was considered to be a proxy for forceful work and was also taken into account. Climbing stairs, an irrelevant exposure for Dupuytren's disease, was also used as a 'control exposure' to check the lack of relationship. For these variables, three categories were considered for men based on duration of exposure: i.e. never exposed, exposed but for less than 15 years, and exposed for 15 years or more. In view of the number of exposed women in the cohort, the exposure for women was only considered as yes or no. In addition, at inception of the cohort in 1989, a 'yes or no' question about manipulating vibrating tools was also available, and computer work was used as control exposure.

Data for alcohol consumption were available for each year since 1992, and three categories were also considered on the basis of the distribution observed. Only heavy drinkers were taken into account based on the results of a previous study:^[13] less than 3 glasses a day of any

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

alcohol, 3 to 4 glasses of wine or beer, and 5 or more glasses of wine/beer or 3 glasses or more of spirits a day. If a subject had increased his alcohol consumption between 1992 and 2012, the highest category was taken into consideration. Data on smoking had been collected at inception in 1989 and grouped in three categories : nonsmoker or former smoker, 1 to 20 cigarettes/cigars or pipes, over 20 cigarettes/cigars or pipes per day. As for alcohol consumption, the highest alcohol-intake category was taken into consideration if the subject had increased consumption during the study period.

Diabetes mellitus was self-reported every year from 1989.

Outcomes

In 2012, a specific question on Dupuytren's disease was asked: "1) Have you ever had Dupuytren's disease (thickening of the palmar skin, nodes or contracture of the fourth finger of the hand)? ; 2) if yes, do you have any limitations because of it? 3) Have you had surgery for it?".

We considered two outcomes, i.e. Dupuytren's disease (yes or no) based on the answer to the first question; and a three category variable: no Dupuytren's disease (reference), Dupuytren's disease without surgery and without limitations, Dupuytren's disease with surgery or limitations.

Analyses

Univariate and multivariate analyses were stratified on gender for both outcomes. For the multinomial regression model, all the risk factors previously described were included, except 'control exposure' variables. Statistical Analysis Software was used for all statistical analyses

BMJ Open

(SAS, v9.3, SAS Institute Inc, Cary, NC, USA). Associations were considered statistically significant if the p-value was less than 0.05. Odds ratios (OR) and their 95% confidence intervals were computed.

Authorization from the appropriate ethics committee was obtained (« Comité Consultatif National d'Ethique pour les Sciences de la Vie et de la Santé »).

RESULTS

The 13 587 subjects who answered the GAZEL questionnaire in 2012 constituted the sample (10,017 men and 3,570 women). The participation rate was 73.7% (18,428 questionnaires sent in 2012). Subjects were aged from 59 to 73 years (mean age 68 years for men and 65 years for women).

Of the 10,017 men included, 839 reported Dupuytren's disease (8.4%), including 342 who reported surgery or limitations (3.4%). Age, diabetes mellitus, heavy drinking and over 15 years of manipulating a vibrating tool at work were significantly associated with self-reported Dupuytren's disease, with a dose-effect relationship (Table 1). Similar results were found when a yes/no question was used at the inception of the cohort in 1989. As expected, none of the 'control exposure' variables were associated with Dupuytren's disease. Reported durations of exposure to carrying loads and smoking habits were not found to be associated with Dupuytren's disease. The associations were stronger when considering disabling Dupuytren's disease (or surgery) than for Dupuytren's disease without reported surgery or disability (Table 2). Figure 1 show a clear dose effect in relation to duration of exposure, using a 5-year step.

Of the 3,570 women included, 160 reported Dupuytren's disease (4.5%), including 78 who reported surgery or limitations (2.2%). Associations were found to be weak, although age,

diabetes and vibration exposure were still significant (Tables 3 and 4); however, only a small number of women were heavy drinkers or occupationally exposed.

DISCUSSION

The study confirmed that Dupuytren's disease in men is associated with high levels of alcohol consumption and exposure to hand-transmitted vibration in this large French cohort study, after adjustment for age and diabetes, whereas smoking habits and other types of occupational exposure were not. Although this is one of the first studies to analyze risk factors among women, the number of exposed cases was too small to draw any conclusion, although associations appeared similar to those observed in men.

The study had some limitations. The major limitation came from the fact that the diagnosis was self-reported, without any confirmation by physical examination by a physician. In most cases, Dupuytren's disease is easily diagnosed, with no major differential diagnoses, although it might be previous hand trauma, camptodactyly, tendovaginitis stenosans in a fixed flexion position for example. In addition, we considered the 4th digit only.^[14] This lack of confirmation may have led to an underestimation of the prevalence of the disorder but it was probably limited, considering that the prevalence of this disorder in our study was comparable with that observed for the same age category in the general population.^[9,15] A possible residual confounding effect should also be discussed: information regarding genetic factors, such as family history of Dupuytren's disease, hand trauma, epilepsy and anticonvulsant drug intake, that are considered to be associated with Dupuytren's disease, was not available. However, an association between these factors and vibration exposure and alcohol intake seems unlikely.

One of the strengths of our study is the relatively large size of the cohort. Since we had only one measure of Dupuytren's disease in 2012, i.e. the number of reported cases of Dupuytren's disease, we studied factors associated with prevalent cases. However, assessment of work exposure five years before evaluation of the outcome, and the regular evaluation of alcohol intake and smoking throughout the follow-up period enabled us to be confident about the associations observed. Those were confirmed by information collected at inception, i.e. 23 years before.

One important finding was confirmation in a large study of the association between alcohol consumption and Dupuytren's disease among men, with a dose-response relationship.^[11,13,16] Although we might discuss the arbitrary cut off,^[17]the association with reported limitations (or surgery) was a new finding because it has been described by clinicians before, but rarely reported in large cohort studies.^[1,18,19] Diabetes seemed to be related to the occurrence of Dupuytren's disease but not with limitations in men. Interestingly, it was associated with limitations in women. Ever smoking and heavy smoking were not found to be associated with Dupuytren's disease, which was unexpected considering the possible ischemic etiology of Dupuytren's disease, and the contrary findings in some recent studies.^[11,16] Absence of a relationship could be due to thesmall number of very heavy smokers (61 men and 26 women smoked 2 packs/day or more).

In terms of occupational exposure, only vibration was found to be related to Dupuytren's disease. Previous studies have shown that high cumulative occupational exposure to vibration (intensity x duration) was associated with Dupuytren's disease.^[13,20–23] Although exposure to vibration during the working life was self-reported, it corresponded to a very specific

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

 exposure, probably with a low memory effect (workers tend to remember correctly this type of precise exposure). Hand-vibration transmitting tools in our cohort were mostly screw tools, common drills and (infrequently) pneumatic drills, where strenuous hand grip increases vibration damage. The role of high levels of vibration exposure is plausible, especially as a result of the local hypoxia and chronic ischemia hypothesized in Dupuytren's contracture.^[4] Similar figures for the strength of the association found in published studies support the plausibility of a possible causal relationship.^[7] Carrying loads was studied because, with some tasks, such exposure is associated with manual work, and heavy forceful exposure during the working life was not available in the GAZEL cohort. However, no relationship was found here.

In addition to the well-established genetic factors, and despite the limitations discussed, this study emphasized the role of occupational hand-transmitted vibration exposure and alcohol consumption in Dupuytren's disease. The question of compensation in some cases with documented high levels of exposure should be reviewed, as should improvements of working conditions with a view to prevention.

ACKNOWLEDGEMENTS

The authors thank EDF-GDF, especially the Service Général de Médecine de Contrôle and the "Caisse centrale d'action sociale du personnel des industries électrique et gazière." We also wish to thank the "Population-Based Epidemiological Cohorts" Research Platform responsible for the GAZEL Cohort Study.

AUTHORS CONTRIBUTION

All authors contributed significantly to the manuscript and approved the final version. MZ, MC and MG were involved in the data collection, improved the analyses, commented the manuscript. AD initiated the work, performed the main analyses and drafted the manuscript. ZM, CD and AL discussed the project, improved the analyses, commented the manuscript.

FUNDINGS

The GAZEL Cohort Study was funded by EDF-GDF and INSERM and received grants from the "Cohortes Santé TGIR Programme."

COMPETING INTEREST: None to declare.

DATA SHARING

No additional data available

REFERENCES

 1. Townley WA, Baker R, Sheppard N, et al. Dupuytren's contracture unfolded. BMJ 2006;332(7538):397-400.

2. Gudmundsson KG, Jonsson T, Arngrimsson R. Guillaume Dupuytren and finger contractures. Lancet 2003;362(9378):165-168.

3. Dolmans GH, Werker PM, Hennies HC, et al. Wnt signaling and Dupuytren's disease. N. Engl. J. Med. 2011;365(4):307-317.

4. Dupuytren's Disease and Related Hyperproliferative Disorders - Principles, Research, and Clinical Perspectives. Berlin, New York: Springer; 2011.

5. Dembe A. Occupation and Disease: How Social Factors Affect the Conception of Work-Related Disorders. Yale, CT: Yale University Press; 1996.

6. Liss GM, Stock SR. Can Dupuytren's contracture be work-related?: review of the evidence. Am.J.Ind.Med. 1996;29(5):521-532.

7. Descatha A, Jauffret P, Chastang J-F, et al. Should we consider Dupuytren's contracture as work-related? A review and meta-analysis of an old debate. BMC Musculoskelet. Disord. 2011;12:96.

8. Burge PD. Dupuytren's disease. JBone Jt. SurgBr 2004;86(7):1088-1089.

9. Hindocha S, McGrouther DA, Bayat A. Epidemiological evaluation of Dupuytren's disease incidence and prevalence rates in relation to etiology. Hand 2009;4(3):256-269.

10. Hart MG, Hooper G. Clinical associations of Dupuytren's disease. Postgrad.Med.J. 2005;81(957):425-428.

11. Godtfredsen NS, Lucht H, Prescott E, et al. A prospective study linked both alcohol and tobacco to Dupuytren's disease. J ClinEpidemiol 2004;57(8):858-863.

12. Goldberg M, Leclerc A, Bonenfant S, et al. Cohort profile: the GAZEL Cohort Study. IntJ Epidemiol 2007;36(1):32-39.

13. Lucas G, Brichet A, Roquelaure Y, et al. Dupuytren's disease: personal factors and occupational exposure. Am. J. Ind. Med. 2008;51(1):9-15.

14. Rayan GM. Clinical presentation and types of Dupuytren's disease. Hand Clin 1999;15(1):87-96, vii.

BMJ Open

15. Lanting R, Broekstra DC, Werker PMN, et al. A systematic review and meta-analysis on the prevalence of Dupuytren Disease in the general population of western countries. Plast. Reconstr. Surg. 2013;in press

16. Burke FD, Proud G, Lawson IJ, et al. An assessment of the effects of exposure to vibration, smoking, alcohol and diabetes on the prevalence of Dupuytren's disease in 97,537 miners. JHand SurgEurVol 2007;32(4):400-406.

17. International Drinking Guidelines [Internet]. [cité 2013 déc 6];Available from: http://www.icap.org/table/Internationaldrinkingguidelines

18. Weinstein AL, Haddock NT, Sharma S. Dupuytren's disease in the Hispanic population: a 10-year retrospective review. Plast. Reconstr. Surg. 2011;128(6):1251-1256.

19. Lanting R, van den Heuvel ER, Westerink B, et al. Prevalence of Dupuytren disease in The Netherlands. Plast. Reconstr. Surg. 2013;132(2):394-403.

20. Chanut JC. [Dupuytren's disease.]. ArchMal Prof 1963;24:621-625.

21. Cocco PL, Frau P, Rapallo M, et al. [Occupational exposure to vibration and Dupuytren's disease: a case-controlled study]. Med.Lav. 1987;78(5):386-392.

22. Thomas PR, Clarke D. Vibration white finger and Dupuytren's contracture: are they related? OccupMed Lond 1992;42(3):155-158.

23. Bovenzi M. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry. Occup.Environ.Med. 1994;51(9):603-611.

	N (total)	n	%	Odds ratio (univariate analyses, [95% confidence intervals])	Odds ratio (multivariate analysi logistic model, [95% confidence intervals]))*
Age ²				1.03 [1.01; 1.06]	1.03 [1.00; 1.06]
Diabetes					
No	8581	692	8.06	1	1
Yes	1436	147	10.24	1.30 [1.08; 1.57]	1.31 [1.07; 1.60]
Smoking habits (pack/day)**					
Non-smoker (or former smoker)	6055	488	8.06	1	1
Smoker < 1	2670	229	8.58	1.07 [0.91; 1.26]	1.05 [0.88; 1.24]
Smoker ≥1	1246	117	9.39	1.18 [0.96; 1.46]	1.05 [0.83; 1.32]
Drinking habits (glass/day)**					
<3	2551	174	6.82	1	1
3or 4 glasses of wine /beer	4864	411	8.45	1.26 [1.05; 1.52]	1.22 [1.01; 1.48]
≥5 glasses of wine/beer or ≥3 glasses of spirits	2577	249	9.66	1.46 [1.19; 1.79]	1.36 [1.10; 1.69]
Carrying loads (assessed in 2007),					
<i>number of years of exposure</i> No	6812	565	8.29	1	1
1 to 15 years	1026	89	8.67	1.05 [0.83; 1.33]	0.95 [0.74; 1.22]
>15 years	1393	129	9.26	1.13 [0.92; 1.38]	0.91 [0.71; 1.16]
Climbing stairs (assessed in 2007),	1575	12)	9.20	1.15 [0.72, 1.56]	0.91 [0.71, 1.10]
number of years of exposure					
No	7281	618	8.49	1	
1 to 15 years	810	63	7.78	0.91 [0.69; 1.19]	
>15 years	1147	102	8.89	1.05 [0.85; 1.31]	
Manipulating vibrating tools (assessed in 2007), number of					
<i>years of exposure</i> No	7630	614	8.05	1	1
1 to 15 years	772	76	9.84	1.25 [0.97; 1.60]	1.25 [0.95; 1.65]
>15 years	781	88	11.27	1.45 [1.15; 1.84]	1.52 [1.15; 2.02]
Carrying loads (assessed in 1989)					
No	8888	737	8.29	1	
Yes	1129	102	9.03	1.10 [0.88; 1.36]	
Manipulating vibrating tools (assessed in 1989)					
No	9278	760	8.19	1	
Yes	739	79	10.69	1.34 [1.05; 1.71]	
Computer work (assessed in 1989)					
No	5270	444	8.43	1	
Yes	4747	395	8.32	0.99 [0.86; 1.14]	

Table 1. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the previous period in men.

Data in bold: p<0.05, * model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit

BMJ Open

				Dupuytren's disease without lin				Dupuytren's disease with limit		
2 3	N (total)	n	%	Odds ratio (univariate analyses, [95% confidence intervals])	Odds ratio (multivariate analysis logistic model, [95% confidence intervals]))*	n	%	Odds ratio (univariate analyses, [95% confidence intervals])	Odds ratio (multivariate analysis logistic model, [95 confidence intervals]))*	
$\frac{4}{Age^2}$	10017	496	4.95	1.01 [0.98; 1.04]	1.00 [0.97; 1.04]	343	3.42	1.07 [1.03; 1.11]	1.07 [1.03; 1.11]	
Diabetes			• =-							
S No	8581	405	4.72	1	1	287	3.34	1	1	
Yes	1436	91	6.34	1.38 [1.09; 1.74]	1.41 [1.10; 1.82]	56	3.90	1.19 [0.89; 1.60]	1.18 [0.87; 1.59]	
Smoking habits (pack/day)** Non-smoker (or former smoker)	6055	202	1 02	1	1	106	2.24	1	1	
Smoker < 1	6055 2670	292	4.82	1	1	196	3.24	I 1 12 [0 99: 1 45]	I 1 04 [0 91, 1 27]	
OSmoker < 1	2670	132	4.94	1.03 [0.83; 1.27]	1.04 [0.83; 1.30]	97 40	3.63	1.13 [0.88; 1.45]	1.06 [0.81; 1.37]	
1 Drinking habits (glass/day) **	1246	68	5.46	1.15 [0.88; 1.51]	1.06 [0.79; 1.43]	49	3.93	1.23 [0.90; 1.70]	1.04 [0.74; 1.46]	
<1	2551	103	4.04	1	1	71	2.78	1	1	
23 or 4 glasses of wine /beer	4864	264	5.43	1.37 [1.08; 1.73]	1.32 [1.03; 1.68]	147	3.02	1.11 [0.83; 1.47]	1.09 [0.81; 1.47]	
3_{25} glasses of wine/beer or ≥ 3 glasses of spirits	2577	125	4.85	1.24 [0.95; 1.62]	1.12 [0.84; 1.50]	124	4.81	1.78 [1.32; 2.40]	1.71 [1.25; 2.33]	
4Carrying loads (assessed in 2007), number	2011	145	1.05			147	1.01			
Sof years of exposure										
No	6812	350	5.14	1	1	215	3.16	1	1	
No 1 to 15 years	1026	48	4.68	0.91 [0.67; 1.25]	0.88 [0.63; 1.22]	41	4.00	1.27 [0.90; 1.79]	1.06 [0.73; 1.52]	
/>15 years	1393	61	4.38	0.86 [0.65; 1.14]	0.79 [0.56; 1.09]	68	4.88	1.56 [1.18; 2.07]	1.08 [0.76; 1.52]	
Climbing stairs (assessed in 2007), number										
9 of years of exposure										
0 ^{No} 1 to 15 years 1>15 years	7281	358	4.92	1		260	3.57	1		
1 to 15 years	810	42	5.19	1.05 [0.75; 1.45]		21	2.59	0.72 [0.46; 1.13]		
'>15 years	1147	58	5.06	1.03 [0.78; 1.37]		44	3.84	1.08 [0.78; 1.50]		
2 Manipulating vibrating tools (assessed in										
32007), number of years of exposure		•					_			
4 ^{No}	7630	377	4.94	1	1	237	3.11	1	1	
51 to 15 years >15 years 6 Carrying loads (assessed in 1989)	772	38	4.92	1.02 [0.72; 1.43]	1.05 [0.72; 1.52]	38	4.92	1.62 [1.14; 2.30]	1.56 [1.07; 2.29]	
>15 years	781	40	5.12	1.07 [0.77; 1.50]	1.20 [0.81; 1.78]	48	6.15	2.05 [1.49; 2.82]	1.98 [1.34; 2.91]	
Carrying loads (assessed in 1989)	0000	10-	4.00			200				
7 _{No}	8888	437	4.92			300	3.38			
8Yes	1129	59	5.23	1.07 [0.81; 1.42]		43	3.81	1.14 [0.82; 1.58]		
9Manipulating vibrating tools (assessed in										
O(1989)	0279	150	1 00	1		207	2 21	1		
0/989) No 1 _{Yes}	9278 720	453	4.88	1		307	3.31			
I CS 2Commutan work (apparent in 1000)	739	43	5.82	1.23 [0.89; 1.69]		36 <	4.87	1.51 [1.06; 2.16]		
2 Computer work (assessed in 1989)	5270	262	4.07	1		100	2 15			
33No 34Yes	5270 4747	262 234	4.97 4.93	I 0 00 [0 83· 1 10]		182 161	3.45	1 0.98 [0.79, 1.22]		
		234	4.93	0.99 [0.83; 1.19]	• • • • • •		3.39	0.98 [0.79; 1.22]	1 • / 1	
-			•	·	without limitations or surge	•	ith lim	itations or surgery, compa	ared with	
6 reference class: no Dupu	iytren's	diseas	e) and	available factors assessed	in the previous period in m	ien.				
7	-		-							
	odel inch	uded al	l varial	hles shown **maximum co	nsumption reached, ² age as	contin		ariable OR associated with	an increase of	
•	Juer men	uava al		eres shown, muximum ee	insumption reaction, ago as	Contin	1045 V	armore, ore associated with		
9 one unit										
0									15	
0									10	
0										
0										
0 1 2										
0 1 2 3										
40 11 12 13 14										
40 11 12 13 14 15							_			
0 1 2 3 4 5	δομουμο	üfiği te	n je b út	ระอยุชาครปก.ะอยุญชา/สุดธาย	nenxarai panelaitsish quits	nialaa	່ຫຼ _ື ອຊເຮ	Protected by com		

48 I ab aupidaraphide as 3202, 21 anul no /mos.imd.naqoimd//:qiid moil babsolnwold. 102, 2023 at Agence Bibliographique de l

Page	16	of	38
------	----	----	----

	N (total)	n	%	Odds ratio (univariate analyses, [95% confidence intervals])	Odds ratio (multivariate analy logistic model, [95% confidenc intervals]))*
Age ²	3570	160	4.48	1.05 [1.01; 1.09]	1.05 [1.01; 1.10]
Diabetes					
No	3252	140	4.31	1	1
Yes	318	20	6.29	1.49 [0.92; 2.42]	1.71 [1.04; 2.81]
Smoking habits (pack/day)**					
Non-smoker (or former smoker)	2626	115	4.38	1	1
Smoker < 1	711	34	4.78	1.10 [0.74; 1.62]	1.16 [0.76; 1.77]
Smoker ≥ 1	187	8	4.28	0.98 [0.47; 2.03]	0.96 [0.43; 2.11]
Drinking habits (glass/day)**					
<3	2423	103	4.25	1	1
3or 4 glasses of wine /beer	843	39	4.63	1.09 [0.75; 1.59]	0.83 [0.54; 1.27]
≥5 glasses of wine/beer or ≥3 glasses of spirits	271	17	6.27	1.51 [0.89; 2.56]	1.17 [0.64; 2.12]
Carrying loads (assessed in 2007)					
No	2995	131	4.37	1	
Yes	151	11	7.28	1.72 [0.91; 3.25]	
Climbing stairs (assessed in 2007)					
No	3024	137	4.53	1	
Yes	116	6	5.17	1.15 [0.50; 2.66]	
Manipulating vibrating tools (assessed in 2007)					
No	3163	142	4.49	1	1
Yes	4	2	50.0	21.28 [2.98; 152.19]	17.17 [2.35; 125.62]
Carrying loads (assessed in 1989)					
No	3433	153	4.46	1	
Yes	137	7	5.11	1.15 [0.53; 2.51]	
Manipulating vibrating tools (assessed in 1989)					
No	3555	159	4.47	1	
Yes	15	1	6.67	1.53 [0.20; 11.67]	
Computer work (assessed in 1989)					
No	885	39	4.41	1	
	2685	121	4.51	1.02 [0.71; 1.48]	

Table 3. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the previous period in women.

Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, 2 age as continuous variable, OR associated with an increase of one unit

2			D	upuytren's disease without li	mitations or surgery		Dup	uytren's disease with limitatio	ns or surgery
3 4	N (total)	n	%	Odds ratio (univariate analyses, [95% confidence intervals])	Odds ratio (multivariate analysis logistic model, [95% confidence intervals]))*	n	%	Odds ratio (univariate analyses, [95% confidence intervals])	Odds ratio (multivariate analysis logistic model, [95% confidence intervals]))*
5_{Age^2}	3570	82	2.30	1.04 [0.98; 1.09]	1.04 [0.98; 1.10]	78	2.18	1.06 [1.01; 1.12]	1.07 [1.01; 1.13]
6Diabetes									
7 ^{No}	3252	75	2.31	1	1	65	2.00	1	1
8 ^{Yes}	318	7	2.20	0.97 [0.45; 2.13]	1.18 [0.53; 2.61]	13	4.09	2.09 [1.14; 3.83]	2.27 [1.22; 4.24]
o Smoking habits (pack/day)**									
Non-smoker (or former smoker)	2626	62	2.36	1	1	53	2.02	1	1
Smoker < 1	711	16	2.25	0.96 [0.55; 1.67]	0.99 [0.54; 1.82]	18	2.53	1.26 [0.73; 2.16]	1.36 [0.76; 2.41]
Smoker ≥1	187	3	1.60	0.68 [0.21; 2.19]	0.78 [0.24; 2.55]	5	2.67	1.32 [0.52; 3.35]	1.15 [0.41; 3.27]
1 Drinking habits (glass/day)**		-							[,]
13,	2423	51	2.10	1	1	52	2.15	1	1
14 glasses of wine /beer	843	23	2.73	1.30 [0.79; 2.14]	1.06 [0.60; 1.87]	16	1.90	0.89 [0.50; 1.56]	0.63 [0.33; 1.20]
15 glasses of wine/beer or ≥ 3 glasses of spirits	271	8	2.75	1.43 [0.67; 3.05]	1.30 [0.57; 3.00]	9	3.32	1.58 [0.77; 3.25]	1.04 [0.46; 2.39]
16 <i>Glimbing stairs (assessed in 2007)</i>	2/1	0	2.95	1.43 [0.07, 5.05]	1.50 [0.57, 5.00]	9	5.52	1.38 [0.77, 3.23]	1.04 [0.40, 2.39]
1 ³⁰	3024	69	2.28	1		68	2.25	1	
, Xes	116	2	1.72	0.76 [0.18; 3.14]		4	3.45	1.54 [0.55; 4.31]	
18 ^{es} Manipulating vibrating tools (assessed 19 2007)	110	2	1.72			·	5.10	1.51[0.55, 1.51]	
2Qo	3163	70	2.21	1	1	72	2.28	1	1
2Yes	4	1	25.00	21.57 [1.93; 240.79]	18.69 [1.61; 216.66]	1	25.00	21.00 [1.88; 234.10]	15.87 [1.36; 184.70]
26 arrying loads (assessed in 1989)					,				
23° 23°	3433	78	2.27	1		75	2.18	1	
Zyes	137	4	2.92	1.29 [0.47; 3.59]		3	2.19	1.01 [0.31; 3.24]	
2 Manipulating vibrating tools (assessed									
25a 1989)									
280	3555	81	2.28	1		78	2.19	1	
o¥es	15	1	6.67	2.99 [0.39; 23.05]		0	0.00	0.00 [0.00; I]	
26 <i>omputer work (assessed in 1989)</i> 29 _{es}									
2No	885	20	2.26	1		19	2.15	1	
29 _{es} 30	2685	62	2.31	1.02 [0.61; 1.70]		59	2.20	1.02 [0.61; 1.73]	

³ able 4. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared to reference class: no ³⁵ Dupuytren's disease) and available factors assessed in the previous period in women.

 35 ata in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 36

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (BBES) Protected by copytigheing/facheing/fachessig)ated ioderation (מוֹוֹהָוֹיָם, אָלוֹנָהוֹהָשָׁ, אַוֹוֹהָיָם, אָלוֹ

1

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in

a large cohort study (Gazel)

Alexis Descatha^{1,2,3}, Matthieu Carton^{1,2}, Zakia Mediouni^{1,2,3}, Christian Dumontier⁴, Yves Roquelaure ⁵, Marcel Goldberg ^{1,2}, Marie Zins ^{1,2}, Annette Leclerc ^{1,4}

- 1. Univ Versailles St-Ouentin, F-78035, Versailles, France;
- 2. Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, "Population-Based Epidemiological Cohorts" Research Platform, F-94807, Villejuif, France
- 3. AP-HP, Occupational Health Unit/EMS (Samu92), University Hospital of Paris West suburb, Poincaré site, F-92380 Garches, France
- 4. Plastic and Hand Department, Nice University, St Roch hospital, F-06000 Nice, France
- 5. LUNAM University, Laboratory of Ergonomics and Epidemiology in Occupational Health, University of Angers, F-49100 Angers, France

Correspondence and reprints: Dr Alexis Descatha, Inserm U1018, UVSQ, Unité de pathologie professionnelle U1018, CHU Poincaré, 104 bd Poincaré, 92380 Garches, France

Tel: +33 (1) 47 10 77 54; Fax: +33 (1) 47 10 77 68; email: alexis.descatha@uvsq.fr

Short title: work exposure, alcohol intake, smoking and Dupuytren's disease

Counts: 2404 words, 18 references, 4 tables 1 figure

Key words: Dupuytren's disease; cohort study; occupational disease; vibration exposure; risk factor; epidemiology.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ Open and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-forauthors/licence-forms) and the Corresponding Author accepts and understands that any supply made under these terms is made by BMJPGL to the Corresponding Author. All articles published in BMJ Open will be made available on an Open Access basis (with authors being asked to pay an open access fee - see http://bmjopen.bmj.com/site/about/resources.xhtml) Access shall be governed by a Creative Commons licence – details as to which Creative Commons licence will apply to the article are set out in our licence referred to above.

No conflict of interest of any kinds (all authors cf.)

Field Code Changed

Field Code Changed

Field Code Changed Field Code Changed

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ABSTRACT

Introduction In view of the debate about biomechanical and toxic factors in Dupuytren's disease, we aimed to describe its relationship with certain occupational factors<u>a</u> and alcohol intake and smoking.

Method Subjects in the French GAZEL cohort answered a questionnaire in 2012 included including self-reported Dupuytren's disease (yes/no), such and as disabling Dupuytren's disease (including surgery). In 2007, self-assessed lifetime occupational biomechanical exposure was recorded (carrying loads, manipulating a vibrating tool, climbing stairs), as well as alcohol intake, smoking and diabetes mellitus. Analyses were performed on high alcohol intake, smoking and duration of relevant work exposure, stratified by gender for both outcomes.

Results A total of 13,587 subjects answered the questionnaire in 2012 (73.7% of the questionnaire sent) and constituted the sample (10,017 men and 3,570 women, aged from 64 to 73 years; mean age for men 68 years and for women 65 years). Among men age, diabetes, heavy drinking and over 15 years of manipulating a vibrating tool at work were significantly associated with Dupuytren's disease; except for diabetes, the association with these factors was stronger for disabling Dupuytren's disease (or surgery). Among the 3,570 women included, 160 reported Dupuytren's disease (4.5%). The number of cases in the group of women was too low to reach conclusions, although the findings seemed similar for age, diabetes and vibration exposure.

Conclusion In this large French cohort study, Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration. It is likely that the same applied to women.

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

Page 20 of 38

for beer telliew on

ARTICLE SUMMARY

- The longitudinal study confirmed that Dupuytren's disease in men was associated with high levels of alcohol consumption and exposure to hand-transmitted vibration in this large French cohort study, <u>after adjustedment</u> for age and diabetes.
- Although this is one of the first studies to analyze risk factors for women, the number of cases was too small to draw conclusions, though they associations appeared similar to those observed in men.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- The study had limitations: self-reported diagnosis, possible residual confounding (genetic factors mainly).
- Strengths of our study came from the longitudinal design, the relatively large size of the cohort, women included.

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de

Enseignement Super

(ABES)

ata mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

Dupuytren's disease is characterized by chronic contracture of the (fourth and fifth) fingers of the hand toward the palm, usually accompanied by thickening of the palmar skin.^[1] It has a clear genetic background.^[2-4]

Since its description by Guillaume Dupuytren in 1831 following Henry Cline Sr. and Sir Astley Cooper, there has been controversy regarding biomechanical work exposure which might contribute to the development of this disorder.^[5] An exhaustive review and a metaanalysis was conducted to address this controversy, and concluded that there is good evidence of an association between vibration exposure and Dupuytren's disease.^[6,7] However, recent opinionsome authors still considers that occupational exposure, including vibration, is not a risk factor for Dupuytren's disease in manual workers.^[1,8,9] These authors argued there are still conflicting results and that evidence is based only on two longitudinal studies. The roles of alcohol consumption and smoking are also a matter of debate,^[9,10] although one large longitudinal study found a clear relationship between such exposure and Dupuytren's disease.^[11]

We used data from the GAZELa large cohort study to describe the prevalence of Dupuytren's disease, and to analyze its association with certain risk factors, including exposure to vibration, alcohol intake and smoking.

METHODS

Population

The GAZEL cohort is made up of employees of Electricité de France (EDF) and Gaz de France (GDF), the French national utility for energy production and distribution <u>(GAZEL</u> stands for GAZ and ELectricité). The company employs workers in various trades and of

BMJ Open

different socioeconomic status. At baseline in 1989, the cohort included 20,625 volunteers, <u>men then aged 40–50 and women 35–50 years</u>, and 18,428 <u>are still</u> followed <u>up</u>, men then aged 40–50 and women 35–50 years. In January of each year since then, the participants have completed a general self-administered questionnaire about their lifestyle, health, and occupational situation.^[12]

In the present study, we included only the subjects who answered the 2012 GAZEL questionnaire (which included a question about Dupuytren's disease).

Potential risk factors

Information on gender and age (atin 2012), was collected through the general questionnaire. Occupational risk factors were assessed in the 2007 questionnaire. Data on nine different types of biomechanical exposure were available, including the number of years of exposure during their working lives (carrying loads, bending trunk, drive a vehicle, kneeling, climbing stairs, climbing ladder, working with arm over the shoulder, carrying load on the shoulder, manipulating a vibrating tool). In this study of Dupuytren's disease, we analyzed the potential role of manipulating a vibrating tool. As information about forceful activity was not available, carrying loads was considered to be a proxy for forceful work and was also taken into account. Climbing stairs, an irrelevant exposure for Dupuytren's disease, was also used as a 'control exposure' to check the lack of relationship. For these variables, three categories were considered for men based on duration of exposure: i.e. never exposed, exposed but for less than 15 years, and exposed for 15 years or more. In the view of the number of exposed women in the cohort, the exposure for women was only considered as yes or no. In addition, at inception of the cohort in 1989, a 'yes or no' question about manipulating vibrating tools was also available, and computer work was used as control exposure.

Data for alcohol consumption were available for each year since 1992, and three categories were also considered on the basis of the distribution observed. Only heavy drinkers were taken into account based on the results of a previous study:^[13] less than 3 glasses a_day of any alcohol, 3 to 4 glasses of wine or beer, and 5 or more glasses of wine/beer or 3 glasses or more of spirits a day. If a subject had increased his alcohol consumption between 1992 and 2012, the highest category was taken into consideration. Data on smoking had been collected at inception in 1989 and grouped in three categories and: nonsmoker or former smoker, 1 to 20 cigarettes/cigars or pipes, over 20 cigarettes/cigars or pipes per day. As for alcohol consumption, the highest smoking-alcohol-intake_category was taken into consideration₇ if the subject had increased consumption during the study period.

Diabetes mellitus was self-reported every year from 1989.

Outcomes

When assessed in<u>In</u> 2012, a specific question on Dupuytren's disease was asked: "1) Have you ever had Dupuytren's disease (thickening of the palmar skin, nodes or contracture of the fourth fingers of the hand)? ; 2) if yes, do you have any limitations from because of it? 3) Have you had surgery for it?".

We considered two outcomes, i.e. Dupuytren's disease (yes or no) based on the answer to the first question; and a three category variable: no Dupuytren's disease (reference), Dupuytren's disease without surgery and without limitations, Dupuytren's disease with surgery or limitations.

Analyses

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

BMJ Open

Univariate and multivariate analyses were stratified on gender for both outcomes. For the multinomial regression model, all the variables-risk factors previously described were included, except 'control exposure' variables. Statistical Analysis Software was used for all statistical analyses (SAS, v9.3, SAS Institute Inc, Cary, NC, USA). Associations were considered statistically significant if the p-value was less than 0.05-and-confidence interval at 95% with its odds ratio (OR). Odds ratios (OR) and their 95% confidence intervals were computed.

Authorization from the appropriate ethics committee werewas obtained (« Comité Consultatif National d'Ethique pour les Sciences de la Vie et de la Santé »).

RESULTS

The 13 587 subjects who answered the GAZEL questionnaire in 2012 constituted the sample (10,017 men and 3,570 women). The participation rate was 73.7% (18,428 questionnaires sent in 2012). Subjects were aged from 59 to 73 years (mean age 68 years for men and 65 years for women).

Of the 10,017 men included, 839 reported Dupuytren's disease (8.4%), including 342 who reported surgery or limitations (3.4%). Age, diabetes mellitus, heavy drinking and over 15 years of manipulating a vibrating tool at work were significantly associated with self-reported Dupuytren's disease, with a dose-effect relationship (Table 1). Similar results were found when a yes/no question was used at the inception of the cohort in 1989. As expected, none of the 'control exposure' variables were associated with Dupuytren's disease. Reported durations of exposure of to carrying loads and smoking habits were not found to be associated with Dupuytren's disease. The associations were stronger when considering disabling Dupuytren's disease (or surgery) than for Dupuytren's disease without reported surgery or disability (Table **8**

Formatted: English (U.S.)	
Formatted: English (U.S.)	

2). Figure 1 show a clear dose effect in relation to duration of exposure, with using a 5-year step.

Of the 3,570 women included, 160 reported Dupuytren's disease (4.5%), including 78 who reported surgery or limitations (2.2%). Associations were found to be weak-and questionable, although age, diabetes and vibration exposure were still significant (Tables 3 and 4); however, only <u>a</u> small numbers of women were in the heavy drinking and occupationally exposed groups heavy drinkers or occupationally exposed.

DISCUSSION

The study confirmed that Dupuytren's disease in men <u>was-is</u> associated with high levels of alcohol consumption and exposure to hand-transmitted vibration in this large French cohort study, <u>after_adjustedment</u> for age and diabetes, whereas smoking habits and other types of occupational exposure were not. Although this is one of the first studies to analyze risk factors <u>for_among_women</u>, the number of <u>exposed_cases</u> was too small to draw <u>any_conclusions</u>, <u>although they-associations</u> appeared similar to those observed in men.

The study had various <u>some</u> limitations. The <u>major limitation came from the fact that the</u> diagnosis was self-reported, without <u>any</u> confirmation <u>of anyby</u> physical examination by a physician. <u>HoweverIn most cases</u>, Dupuytren's disease is easily diagnosed, with no major differential diagnoses, <u>although it might be previous hand trauma</u>, <u>camptodactyly</u>, <u>tendovaginitis stenosans in a fixed flexion position for example.</u>, <u>Iin addition</u>, <u>of-we also</u> <u>considered the 4th digit only</u>, <u>[14]</u>, <u>The-This</u> lack of confirmation <u>possibly-may have</u> led therefore to an underestimation of <u>the prevalence of</u> the disorder, but <u>this-it</u> was probably limited, considering that the prevalence of this disorder in <u>the-our</u> study was comparable with

Formatted: English (U.S.)

BMJ Open

information availablethat observed for the same age category in the general population [9,15][9] A possible residual confounding effect should also be discussed: information regarding genetic factors, such as family history of Dupuytren's disease, hand trauma, epilepsy and anticonvulsant drug intake, that are considered to be associated with Dupuytren's disease, was not available. However, an association between these factors and vibration exposure and alcohol intake seems unlikely.

One of the strengths of our study is the relatively large size of the cohort. Since we had only one measure of Dupuytren's disease in 2012, i.e. the number of reported cases of Dupuytren's disease, we studied factors associated with prevalent cases. However, assessment of work exposure five years before evaluation of the outcome, and the regular evaluation of alcohol intake and smoking throughout the follow-up period enabled us to be confident about the associations observed.⁵ that-Those_were confirmed by information collected at inception, i.e. 23 years before.

One important finding was confirmation <u>in a large study</u> of the association between alcohol consumption <u>in men withand</u> Dupuytren's disease<u>among men</u>, with a dose-response relationship <u>111,13,16][+1,13,14]</u> <u>Although we might discuss the arbitrary cut off</u> <u>177</u> <u>T</u>the association with reported limitations (or surgery) was <u>interesting a new finding</u> because <u>this it</u> has been described <u>many times</u> by clinicians <u>before</u>, but <u>never rarelyslightly</u> reported in large cohort studies <u>11,18,19][+1]</u> Diabetes seemed to be related to the occurrence of Dupuytren's disease <u>and</u> <u>but</u> not with limitations in men₂₅ <u>but iI</u> neterstingly<u>, it</u> was associated with limitations in women. <u>Ever Ss</u>moking and heavy smoking were not found to be associated with Dupuytren's disease, which was unexpected considering the possible ischemic etiology of Dupuytren's disease_of a disease, and <u>the contrary findings in</u> some recent studies <u>11,16][+1,44]</u> <u>Laek_Absence_of a</u>.

Formatted: English (U.S.) Field Code Changed

Formatted: English (U.S.)

Formatted: English (U.S.)

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: English (U.S.)

Formatted: English (U.S.)

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

relationship was possibly<u>could be</u> due to the<u>limitedsmall</u> number of very heavy smokers (61 men and 26 women smoked 2 packs/day or more).

In terms of occupational exposure, only vibration was found to be related to Dupuytren's disease. Previous studies have <u>showed_shown</u> that high cumulative <u>work_occupational</u> exposure to vibration (intensity x duration) was associated with Dupuytren's disease ^[13,20]_{23[13,15-18]} Although exposure to vibration during the working life was self-reported, it corresponded to a very specific exposure, with a probably with a low memory effect (workers remind welltend to remember correctly this type of precise exposure). Hand-vibration transmitting tools in our cohort were mostly screw tools, common drills and (infrequently) pneumatic drills, where strenuous hand grip increases vibration damage. The role of high levels of vibration exposure is plausible, especially as a result of the local hypoxia and chronic ischemia hypothesized in Dupuytren's contracture.^[4] Similar magnitudes offigures for the strength of the association found in published studies support the plausibility of a possible causal relationship.^[7] Carrying loads was studied because, with some tasks, such exposure is associated with manual work, and heavy forceful exposure during the working life was not available in the GAZEL cohort. However, no relationship was found here.

In addition to the well-established genetic factors, and despite the limitations discussed, this study emphasized the roles of occupational hand-transmitted vibration exposure and alcohol consumption in Dupuytren's disease. The question of compensation in some cases following with documented high levels of exposure should be reviewed, as should improvements of working conditions with a view to prevention.

DATA SHARING

Field Code Changed Formatted: English (U.S.)

AUTHORS CONTRIBUTION

All authors contributed significantly to the manuscript and approved the final version. MZ, MC and MG <u>were</u> involved in the data collection, improved the analyses, comment<u>ed</u> the manuscript. AD initiate<u>d</u> the work, performed the main analyses and draft<u>ed</u> the manuscript. ZM, CD and AL discussed the project, improved the analyses, comment<u>ed</u> the manuscript.

ACKNOWLEDGEMENTS

The authors thank EDF-GDF, especially the Service Général de Médecine de Contrôle and the "Caisse centrale d'action sociale du personnel des industries électrique et gazière." We also wish to thank the "Population-Based Epidemiological Cohorts" Research Platform responsible for the GAZEL Cohort Study.

FOUNDINGS

The GAZEL Cohort Study was funded by EDF-GDF and INSERM and received grants from the "Cohortes Santé TGIR Programme."

COMPETING INTEREST: None to declare.

REFERENCES

1. Townley WA, Baker R, Sheppard N, Grobbelaar AO. Dupuytren's contracture unfolded. BMJ 2006;332(7538):397-400.

2. Gudmundsson KG, Jonsson T, Arngrimsson R. Guillaume Dupuytren and finger contractures. Lancet 2003;362(9378):165-168.

3. Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, Franke L, et al. Wnt signaling and Dupuytren's disease. N. Engl. J. Med. 2011;365(4):307-317.

4. Dupuytren's Disease and Related Hyperproliferative Disorders - Principles, Research, and Clinical Perspectives. Berlin, New York: Springer; 2011.

5. Dembe A. Occupation and Disease: How Social Factors Affect the Conception of Work-Related Disorders. Yale, CT: Yale University Press; 1996.

6. Liss GM, Stock SR. Can Dupuytren's contracture be work-related?: review of the evidence. Am.J.Ind.Med. 1996;29(5):521-532.

7. Descatha A, Jauffret P, Chastang J-F, Roquelaure Y, Leclerc A. Should we consider Dupuytren's contracture as work-related? A review and meta-analysis of an old debate. BMC Musculoskelet. Disord. 2011;12:96.

8. Burge PD. Dupuytren's disease. JBone Jt. SurgBr 2004;86(7):1088-1089.

9. Hindocha S, McGrouther DA, Bayat A. Epidemiological evaluation of Dupuytren's disease incidence and prevalence rates in relation to etiology. Hand 2009;4(3):256-269.

Hart MG, Hooper G. Clinical associations of Dupuytren's disease. Postgrad.Med.J.
 2005;81(957):425-428.

11. Godtfredsen NS, Lucht H, Prescott E, Sorensen TI, Gronbaek M. A prospective study linked both alcohol and tobacco to Dupuytren's disease. J ClinEpidemiol 2004;57(8):858-863.

12. Goldberg M, Leclerc A, Bonenfant S, Chastang JF, Schmaus A, Kaniewski N, et al. Cohort profile: the GAZEL Cohort Study. IntJ Epidemiol 2007;36(1):32-39.

13. Lucas G, Brichet A, Roquelaure Y, Leclerc A, Descatha A. Dupuytren's disease: personal factors and occupational exposure. Am. J. Ind. Med. 2008;51(1):9-15.

14.Rayan GM. Clinical presentation and types of Dupuytren's disease. Hand Clin1999;15(1):87-96, vii.

15. Lanting R, Broekstra DC, Werker PMN, van den Heuvel ER. A systematic review and meta-analysis on the prevalence of Dupuytren Disease in the general population of western countries. Plast. Reconstr. Surg. 2013;in press

16. Burke FD, Proud G, Lawson IJ, McGeoch KL, Miles JN. An assessment of the effects of exposure to vibration, smoking, alcohol and diabetes on the prevalence of Dupuytren's disease in 97,537 miners. JHand SurgEurVol 2007;32(4):400-406.

<u>17.</u> International Drinking Guidelines [Internet]. [cité 2013 déc 6]; Available from: http://www.icap.org/table/Internationaldrinkingguidelines

BMJ Open

18. Weinstein AL, Haddock NT, Sharma S. Dupuytren's disease in the Hispanic population: a 10-year retrospective review. Plast. Reconstr. Surg. 2011;128(6):1251-1256.

<u>19.</u> Lanting R, van den Heuvel ER, Westerink B, Werker PMN. Prevalence of Dupuytren disease in The Netherlands. Plast. Reconstr. Surg. 2013;132(2):394-403.

20. Chanut JC. [Dupuytren's disease.]. ArchMal Prof 1963;24:621-625.

21. Cocco PL, Frau P, Rapallo M, Casula D. [Occupational exposure to vibration and Dupuytren's disease: a case-controlled study]. Med.Lav. 1987;78(5):386-392.

22. Thomas PR, Clarke D. Vibration white finger and Dupuytren's contracture: are they related? OccupMed Lond 1992;42(3):155-158.

23. Bovenzi M. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry. Occup.Environ.Med. 1994;51(9):603-611.

3	2	С	Л	38
				BMJ Open: fi
				rst published as 10.1
				as
	initia, Ar cian	Protected by convright including for uses related to text and data mining. All training and similar technologies	Enseignement Superieur (ABES) .	136/bmjopen-2013-004214 on 29 January 2014. E
				de I

				Odds ratio (univariate analyses,	Odds ratio (multivariate analysis	Formatted: English (U.S.)
0	N (total)	n	%	[95% confidence intervals])	logistic model, [95% confidence intervals]))*	Formatted: English (U.S.)
ge²				1.03 [1.01; 1.06]	1.03 [1.00; 1.06]	Formatted: English (U.S.)
Biabetes						
3°	8581	692	8.06	1	1	
Å ^{es}	1436	147	10.24	1.30 [1.08; 1.57]	1.31 [1.07; 1.60]	
Smoking habits (pack/day)**						
Non-smoker (or former smoker)	6055	488	8.06	1	1	
Smoker < 1	2670	229	8.58	1.07 [0.91; 1.26]	1.05 [0.88; 1.24]	
Smoker ≥1	1246	117	9.39	1.18 [0.96; 1.46]	1.05 [0.83; 1.32]	
9 Prinking habits (glass/day)**						
0 3	2551	174	6.82	1	1	
or 4 glasses of wine /beer	4864	411	8.45	1.26 [1.05; 1.52]	1.22 [1.01; 1.48]	
f glasses of wine/beer or ≥3 glasses of spirits	2577	249	9.66	1.46 [1.19; 1.79]	1.36 [1.10; 1.69]	
glasses of spirits Carrying loads (assessed in 2007),						
Aumber of years of exposure	6812	565	8.29	1	1	
No to 15 years	1026	89	8.67	1.05 [0.83; 1.33]	0.95 [0.74; 1.22]	
6	1393	129	9.26	1.13 [0.92; 1.38]	0.91 [0.71; 1.16]	
>15 years Climbing stairs (assessed in 2007),					k 2 3	
Sumber of years of exposure	7281	618	8.49	1		
No 1 to 15 years	810	63	7.78	0.91 [0.69; 1.19]		
9 1 to 15 years	1147	102	8.89	1.05 [0.85; 1.31]		
1 Manipulating vibrating tools	117/	102	0.07	1.05 [0.05, 1.51]		
Massessed in 2007), number of						
wears of exposure No	7630	614	8.05	1	1	
4 to 15 years	772	76	9.84	1.25 [0.97; 1.60]	1.25 [0.95; 1.65]	
5 15 years	781	88	11.27	1.45 [1.15; 1.84]	1.52 [1.15; 2.02]	
$\hat{o}_{arrying \ loads}$ (assessed in 1989)						
No	8888	737	8.29	1		
8 es	1129	102	9.03	1.10 [0.88; 1.36]		
Manipulating vibrating tools (assessed in 1989)						
No 1	9278	760	8.19	1		
Gassessed in 1989) Assessed in 1989) Yes Computer work (assessed in 1989) No Yes 5	739	79	10.69	1.34 [1.05; 1.71]		
Computer work (assessed in 1989)						
Ro	5270	444	8.43	1		
P es	4747	395	8.32	0.99 [0.86; 1.14]		

Table 1. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed i48he previous period in men.

Bata in bold: p<0.05, * model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one -unit

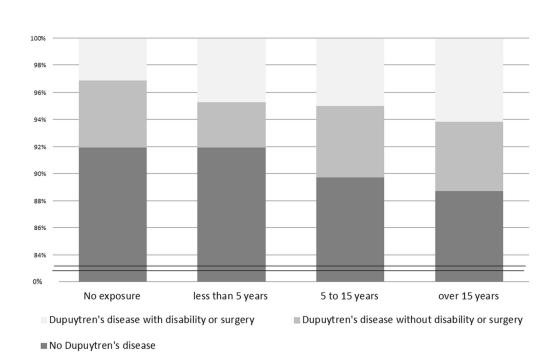
s (high habits (pack/day)** h-smoker (or former smoker) oker ≤ 1 oker ≤											
Image No. No. No. No. Production Productin Production <th></th>											
Image: 1					Dupuytren's disease without lin	nitations or surgery			Dupuytren's disease with limits		
under state			n	%		logistic model, 195% confidence	_n	%		analysis logistic model	
intro intro <th< td=""><td>e²</td><td></td><td>496</td><td>4 95</td><td>(<u></u>,</td><td></td><td>343</td><td>3 42</td><td></td><td>1 200</td><td>• • • · · ·</td></th<>	e ²		496	4 95	(<u></u> ,		343	3 42		1 200	• • • · · ·
The state is dealed in the state is dealed on the state is dealed in the state is d	ibetes				1.01 [0.90, 1.04]	1.00 [0.97, 1.04]			1.07 [1.00, 1.11]	1.07 [1.05, 1.11]	
atting the production of the produ					1 1 38 [1 09· 1 74]	1 1 41 [1 10: 1 82]			1	1 18[0.87:1.50]	Formatted: English (U.S.)
back 1 back 2 back 4 back	s oking habits (pack/day)**	1430	91	0.54	1.36 [1.03, 1.74]	1.41 [1.10, 1.62]	50	3.90	1.19 [0.89, 1.00]	1.10[0.07, 1.39]	Formatted: English (U.S.)
witz - 1 2.4 6.8 5.4 115 100					1	1			1	1	Formatted: English (U.S.)
States states (specified) 33 10 94 10 10 12 12 10 12 10 10 12 10 12 10 10 12 10 12 10											Formatted: English (U.S.)
4 demonstront 4 demonstront 4 demonstront 10 (10 (11 (12 (13 (13 (13 (13 (13 (13 (13 (13 (13 (13	inking habits (glass/day)**					1.00[0.77, 1.10]			1.20 [0.00, 1.00]	1.01[0.71, 1.10]	
planes of vandee or 23 planes of opening basis (32 plane) = 257 12 48 12 (1057, 162) 112 (1061, 150) 124 48 178 [1,23, 2,40] L71 [1,23, 2,40	A glasses of wine /beer				1	1			1	1	
ring in duct is cases to in 2007, number with of query weight of query weight of query in the second of the second of the second of the second of query in the second of											
15 yams 0412 30 5,44 0410 05,123 0,30 0,35 1,27 0,90,173 1 06 0,73,1,53 15 yams 130 6 438 0410 05,123 0,70 0,55 10 1,77 1,06 0,73,1,53 0 0,70 0,55 1,07 1,06 0,73,1,53 0 0,70 0,55 1,12 0,70 0,55 1,13 0,70 0,55 1,13 0,70 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 0,57 1,21 1,51 <td>rrying loads (assessed in 2007), number</td> <td></td> <td></td> <td></td> <td></td> <td>. [,]</td> <td></td> <td></td> <td></td> <td></td> <td></td>	rrying loads (assessed in 2007), number					. [,]					
Spain Ways 139 0 1 4.38 0.86 [0.65; 1.14] 0.79 [0.56; 1.09] 08 4.38 1.26 [1.18; 2.07] 1.08 [0.76; 1.52] Ways 43 35 45 45 35 1 1 1.08 [0.76; 1.52] 1.08 [0.76; 1.52] Spain 1147 58 500 103 [0.75; 1.45] 260 357 1 1 1.01 [0.76; 1.52] Spain 1147 58 500 103 [0.75; 1.45] 267 311 1 1.56 [1.07; 2.29] Spain 722 38 492 1.02 [0.77; 1.52] 237 311 1 1.56 [1.07; 2.29] Spain 722 38 492 1.02 [0.7; 1.52] 38 492 1.66 [1.18; 2.20] 1.56 [1.07; 2.29] Spain 722 38 492 1.02 [0.7; 1.52] 38 492 1.66 [1.04; 2.13] spain 1129 52 1.07 [0.8; 1.42] 300 338 1 miguiding where dig where di					1	1			1	1	
milling side (socksed in 2007), number a) 5 control 733 33 43 54 11 1 12 237 1 b) 5 control 733 33 40 10 10.78 1.59 1 1 1.56 1.07 1.22 237 11 1 1 1.56 1.07 2.22 1.08 1.08 0.78 1.59 1.08 </td <td>o 15 years</td> <td></td>	o 15 years										
b 15 years <u>1147</u> 58 500 105 (035254145] 21 223 0.105 [0.75; 1.45] 21 223 0.105 [0.75; 1.35] 21 21 0.05 (075; 1.30] 21 0.05 (075; 1.30] 21 0	limbing stairs (assessed in 2007), number	1575	01	4.50	0.00 [0.03, 1.14]	0.77[0.50, 1.07]	00	4.00	1.50 [1.10, 2.07]	1.00 [0.70, 1.02]	
5 years 1147 58 50° 103 [0.78; 1.37] 44 3.4 1.08 [0.78; 1.50] 70, majoulating tibering look (assessed in 70, majoulating tibering look (assessed in 71, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20					-				1		
07), mode of years 764 377 4.94 1 1 237 3.11 1 1 1 5 years 772 3.8 4.92 1.02 [0.72; 1.43] 1.05 [0.72; 1.52] 3.8 4.92 1.62 [1.47; 2.29] years 711 40 5.12 1.07 [0.71; 1.62] 1.05 [0.72; 1.52] 3.8 4.92 1.62 [1.47; 2.29] years 112 5 1.07 [0.81; 1.42] 300 3.38 1.14 [0.82; 1.58] years 723 4.33 4.88 1 307 3.31 1.14 [0.82; 1.58] years 723 4.35 4.88 1 307 3.31 1.14 [0.82; 1.58] years 739 4.35 5.82 1.23 [0.89; 1.69] 36 4.87 1.51 [1.06; 2.16] s 727 2.54 4.93 0.99 [0.83; 1.19] 161 3.39 0.98 [0.79; 1.22] s 4747 2.54 4.93 0.99 [0.83; 1.19] 161 3.39 0.98 [0.79; 1.22] s 1.61 1.62 1.09 [0.95; model included all variables shown, **maximum consumption reached, ² age as continuous var	5 vears										
0 15 years 772 38 492 1.02 [0.72; 1.52] 1.28 492 1.62 [1.47; 2.30] 1.56 [1.07; 2.29] rrying loads (assessed in 1989) 8 1129 59 5.23 1.07 [0.77; 1.50] 1.20 [0.81; 1.78] 48 6.15 2.05 [1.49; 2.82] 1.98 [1.34; 2.91] s 1129 59 5.23 1.07 [0.81; 1.42] 43 3.81 1.41 [0.82; 1.58] s 129 59 5.23 1.07 [0.81; 1.42] 43 3.81 1.41 [0.82; 1.58] s 120 262 497 1.29 [0.89; 1.69] 307 3.31 1.51 [1.06; 2.16] mputer work (assessed in 1989) 270 262 497 1.99 [0.83; 1.19] 1.62 307 3.31 1.51 [1.06; 2.16] s 720 262 497 1.99 [0.83; 1.19] 1.62 3.98 [0.79; 1.22] 1.64<	anipulating vibrating tools (assessed in 07), number of years of exposure										
5 years 781 40 5.12 1.07 [0.77; 1.50] 1.20 [0.81; 1.78] 48 6.15 2.06 [1.49; 2.82] 1.98 [1.34; 2.91] "ring loads (assessed in 1989) 437 4.92 1 300 3.38 1 "s 278 4.53 4.88 1 307 3.31 1 1.14 [0.82; 1.58] "inputating tobs (assessed in 1989) 759 4.53 4.88 1.23 [0.98; 1.69] 36 4.57 1.51 [1.06; 2.16] s 779 4.22 4.93 0.99 [0.33; 1.19] 1.82 3.45 1 s 747 2.24 4.93 0.99 [0.33; 1.19] 1.82 3.45 1 s 4.747 2.24 4.93 0.99 [0.33; 1.19] 1.82 3.45 1 reference class: no Dupuytren's disease of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with on increase of one unit 1.61 3.39 0.98 [0.79; 1.22] 1.61	- 15				1	1			1	1	
rrying loads (ascessed in 1980) 8888 437 432 1 300 3.8 1 s 1129 59 5.23 1.07 [0.81; 1.42] 43 3.81 1.14 [0.82; 1.58] mputer work (assessed in 1980) 570 252 4.97 1 307 3.31 1 s 739 43 5.82 1.23 [0.89; 1.69] 36 4.87 1.51 [1.06; 2.16] mputer work (assessed in 1980) 570 252 4.97 1 16 3.39 0.98 [0.79; 1.22] s 4747 234 4.93 0.99 [0.83; 1.19] 161 33.9 0.98 [0.79; 1.22] s 4747 234 4.93 0.99 [0.83; 1.19] 161 30.9 0.98 [0.79; 1.22] s 120 5.43 0.99 [0.83; 1.19] 161 3.9 0.98 [0.79; 1.22] Table 2. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. 16 Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, * age as continuous variable, OR associated with	5 vears				L / J				1 <i>/</i> 1		
s 1129 107 0.81; 1.42 300 3.38 1.14 [0.82; 1.58] mipulating vibrating tools (assessed in 1989) 2278 4.53 4.88 1 307 3.31 1.14 [0.82; 1.58] s 2270 262 4.97 0.90 [0.83; 1.19] 36 4.87 1.51 [1.06; 2.16] mputer work (assessed in 1989) 2270 262 4.97 0.90 [0.83; 1.19] 182 3.45 1 s 4.477 234 4.93 0.99 [0.83; 1.19] 182 3.45 1 s 4.477 234 4.93 0.99 [0.83; 1.19] 182 3.45 1 s 1.01 variate and multivariate analyses of Dupuyterns's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. 10 Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16 ***********************************	rrying loads (assessed in 1989)					[,]					
imputating vibrating tools (assessed in 1989) 5 0278 453 4.88 1 1 279 43 458 1.23 [0.89; 1.69] 3 6 4.87 1.51 [1.06; 2.16] mputer work (assessed in 1989) 2 62 497 1 1 61 3.39 0.98 [0.79; 1.22] Table 2. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16 SejBojouu;291 JEffuire Built Buil					1						
s 36 4.87 1.51 [1.06; 2.16] mputer work (assessed in 1989) 5270 262 4.97 1 4747 234 4.93 0.99 [0.83; 1.19] 161 3.39 0.98 [0.79; 1.22] Table 2. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16 Sep60pouyoe Jefgluge pour Obinyte (A) (* Obiting / Sepipare A) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	nipulating vibrating tools (assessed in	112)	59	5.25	1.07 [0.01, 1.42]		45	5.81	1.14 [0.02, 1.50]		
mputer work (assessed in 1989) 5270 262 4.97 1 182 3.45 1 s 5270 263 4.93 0.99 [0.83; 1.19] 161 3.39 0.98 [0.79; 1.22] Table 2. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16 ***********************************					1				1		
s 1210 202 4.93 0.99 [0.83; 1.19] 161 3.33 0.98 [0.79; 1.22] Table 2. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit		739	43	5.82	1.23 [0.89; 1.69]		36	4.87	1.51 [1.06; 2.16]		
s 4747 234 4.93 0.99 [0.83; 1.19] 161 3.39 0.98 [0.79; 1.22] Table 2. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared with reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16 Sej6ojouujoaj, Epüüps püü "Büŋuk 2014" (Büŋuk 2014") Colspan="4">Colspan="4) (assessed in 1989)	5270	262	4.97	1		182	3.45	1		
reference class: no Dupuytren's disease) and available factors assessed in the previous period in men. Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16 sejBojouujoa, Equipered Signife and the previous period in men. (SERP) inequeding jueueubjesug		4747	234	4.93	0.99 [0.83; 1.19]		161	3.39	0.98 [0.79; 1.22]		
Data in bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR associated with an increase of one unit 16	Table 2. Univariate and	l multiva	riate a	nalyse	s of Dupuytren's disease (without limitations or surg	ery, w	ith lim	iitations or surgery, compa	ared with	
Protected by copyrights/ing/ing/ing/ing/ing/ing/ing/ing/ing/ing	reference class: no Dup	uytren's	disease	e) and	available factors assessed	in the previous period in n	ien.				
Protected by copyrights/ing/ing/ing/ing/ing/ing/ing/ing/ing/ing					11 1				· · · · · · · · · · · · · · · · · · ·		
Protected by comyrights/ing/ma/fani	-	nodel incl	uded al	l varial	bles shown, **maximum co	onsumption reached, ² age as	contin	uous v	ariable, OR associated with	an increase of	
Enseigneur (ABES) . Protected by copyright <u>aning and terres</u> signed to the second of	one unit										
. (S∃BA) nienente indente inden										16	
. (S∃BA) nienente indente inden											
. (S∃BA) nienente indente inden											
. (S∃BA) nijnjequ8 inemengiesn∃											
. (S∃BA) nienente indente inden											
. (S∃BA) nienente indente inden											
. (S∃BA) nienente indente inden											
. (S∃BA) nienente indente inden											
. (S∃BA) nienente indente inden				_							
Enseignement Superieur (BBES) .		.səil	Bolonn	r tech	slimizebna opnimient A	,enigini, (enebi ene uxenci	cete	estes:	sydetiqniculariy	Protected by cop	
			_ (. (S38A) inerieur (S38A)	ement	piəsu	3		

Page 34 of 38

Network Network Network Network Permetted Table 1000 4.48 Loss (Lable ratio (unityrint analyse Loss conductor Lables) Add traffs (unityrint analyse Lables) Add traffs (unityrint analyse	ting habits (pack/day)** smoker (or former smoker) er < 1 er ≥ 1 <i>sing habits (glass/day)</i> ** glasses of wine /beer asses of wine/beer or ≥ 3 es of spirits	3570 3252 318 2626 711 187 2423	160 140 20 115 34	4.48 4.31 6.29 4.38 4.78	[<u>95% confidence intervals</u>]) 1.05 [1.01; 1.09] 1 1.49 [0.92; 2.42] 1	logistic model, [95% confidence intervals]))* 1.05 [1.01; 1.10]	Formatted: English (U.S.) Formatted: English (U.S.)
Differentiation Differentiation Differentiation Differentiation 100 4.48 1.05 1.01 ; 1.10] Permatted: Englab (0.5). 1322 40 4.31 1 1 322 40 4.31 1 1 318 0 0.20 1.09 [0.02; 2.42] 1.71 [1.04; 2.01] sing holds: (pack/day 2**	ting habits (pack/day)** smoker (or former smoker) er < 1 er ≥ 1 <i>sing habits (glass/day)</i> ** glasses of wine /beer asses of wine/beer or ≥ 3 es of spirits	3570 3252 318 2626 711 187 2423	160 140 20 115 34	4.48 4.31 6.29 4.38 4.78	[<u>95% confidence intervals</u>]) 1.05 [1.01; 1.09] 1 1.49 [0.92; 2.42] 1	logistic model, [95% confidence intervals]))* 1.05 [1.01; 1.10]	Formatted: English (U.S.) Formatted: English (U.S.)
1 1	ting habits (pack/day)** smoker (or former smoker) er < 1 er ≥ 1 <i>sing habits (glass/day)</i> ** glasses of wine /beer asses of wine/beer or ≥ 3 es of spirits	3252 318 2626 711 187 2423	140 20 115 34	4.31 6.29 4.38 4.78	1 1.49 [0.92; 2.42] 1	1.05 [1.01; 1.10]	Formatted: English (U.S.)
We have a set of the set of	ting habits (pack/day)** smoker (or former smoker) er < 1 er ≥ 1 <i>sing habits (glass/day)</i> ** glasses of wine /beer asses of wine/beer or ≥ 3 es of spirits	318 2626 711 187 2423	20 115 34	6.29 4.38 4.78	1.49 0.92; 2.42] 1		
NameSineSineSineSineSineSineSinesineSineSineSineSineSineSineSinestandar (advision)SineSineSineSineSineSinestandar (advision)SineSineSineSineSineSi	smoker (or former smoker) er < 1 er ≥ 1 glasses of wine /beer asses of wine/beer or ≥ 3 es of spirits	318 2626 711 187 2423	20 115 34	6.29 4.38 4.78	1.49 0.92; 2.42] 1		
Ain plantic forek-faulty** Instrume to the fault of the fault	smoker (or former smoker) er < 1 er ≥1 glasses of wine /beer asses of wine/beer or ≥3 es of spirits	2626 711 187 2423	115 34	4.38 4.78	1	1.71 [1.04; 2.81]	
same for (or former smoke)2629154.38111kar < 1	smoker (or former smoker) er < 1 er ≥1 glasses of wine /beer asses of wine/beer or ≥3 es of spirits	711 187 2423	34	4.78			
ket <1 11 34 4.78 1.01 0.74; 1.62] 1.16 (0.76; 1.77) ket <1 13 8 4.28 0.98 (0.47; 2.03] 0.96 (0.43; 2.11] king kabis 242.3 103 4.25 1 1 stass of wine beer 843 39 4.63 1.09 [0.75; 1.59] 0.83 [0.54; 1.27] lasses of wine beer 843 39 4.63 1.09 [0.75; 1.59] 0.83 [0.54; 1.27] lasses of wine beer 843 39 4.63 1.09 [0.75; 1.59] 0.83 [0.54; 1.27] lasses of wine beer 843 13 4.37 1 1 1.05 [0.64; 2.12] sing laads (casessed in set of set of 10 1 7.28 1.72 [0.91; 3.25] 1.17 [0.64; 2.12] ping satis (casessed in set of set of 10 1 1.15 [0.50; 2.66] 1 1 sing laads (casessed in set of set of 200) 3.16 1.15 [0.50; 2.51] 1 1.17 [2.35; 12.562] sing laads (casessed in set of 200) 1.33 0.447 1.35 [0.20; 11.67] 1 sing laads (casessed in set of 100 set of	er < 1 er ≥1 ing habits (glass/day)** glasses of wine /beer asses of wine/beer or ≥3 es of spirits	711 187 2423	34	4.78			
km2 1 187 8 4.28 0.98 [0.47; 2.03] 0.96 [0.43; 2.11] king katis (gauxidu)** is glass of wine beer 243 103 4.25 1 I is glass of wine beer 243 103 4.65 1.09 [0.75; 1.59] 0.83 [0.54; 1.27] is glass of wine beer 271 17 6.27 1.51 [0.89; 2.56] 1.17 [0.64; 2.12] set of wine beer 2995 131 4.37 1 glass of wine beer 2995 131 4.37 1 glass of wine beer 2995 131 4.37 1 glass of wine beer 3024 137 1.51 0.90; 2.66] ging daux (gaussed in beer of wine ber of	er ≥1 sing habits (glass/day)** glasses of wine /beer asses of wine/beer or ≥3 rs of spirits	187 2423			1.10 [0.74; 1.62]	1	
A state is a set of wine from the set of wine fro	<i>ing habits (glass/day)**</i> glasses of wine /beer asses of wine/beer or ≥3 es of spirits	2423	8	4.28			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	glasses of wine /beer asses of wine/beer or ≥3 es of spirits				0.98 [0.47; 2.03]	0.96 [0.43; 2.11]	
t g hasses of wine heer 843 39 4.63 1.09 [0.75, 1.59] 0.83 [0.54, 1.27] hasses of wine heer or ≥ 3 271 17 6.27 1.51 [0.89, 2.66] 1.17 [0.64; 2.12] sing fouds (assessed in momentation of the second o	asses of wine/beer or ≥ 3 es of spirits						
hasses of wine/beer or ≥ 3 271 17 6.27 1.51 [0.89; 2.56] 1.17 [0.64; 2.12] ping loads (assessed in provide the second in the	asses of wine/beer or ≥ 3 es of spirits	843	103	4.25	1	1	
ises of spirits ying loads (assessed in) 130 131 4.37 1 172 [091; 3.25] thing stairs (assessed in) 16 3024 137 4.53 1 16 3024 137 4.53 1 16 3024 137 15 0 302 1 15 0 302 1 15 0 1 15 0 1 1 1 1 1 1 1 1 1 1 1 1 1	es of spirits		39	4.63	1.09 [0.75; 1.59]	0.83 [0.54; 1.27]	
	ing loads (assessed in	271	17	6.27	1.51 [0.89; 2.56]	1.17 [0.64; 2.12]	
2995 131 4.37 1 151 11 7.28 1.72 [0.91; 3.25] 100 137 4.53 1 116 6 5.17 1.15 [0.50; 2.66] 116 6 5.17 1.15 [0.50; 2.66] 116 6 5.17 1.15 [0.50; 2.66] 116 6 5.17 1.15 [0.50; 2.66] 117 14 1 1 116 6 5.17 1.15 [0.50; 2.66] 117 14 2 1 1 116 6 5.17 1.15 [0.50; 2.66] 1 117 7.3 5.00 21.28 [2.98; 152.19] 17.17 [2.35; 125.62] 118 153 1.53 1.50 1.50 1.50 119 137 7 5.11 1.53 [0.50; 2.51] 1.53 1.53 110 1.53 1.53 [0.20; 11.67] 1.53 1.53 1.53 1.53 110 1.55 1.53 1.02 [0.71; 1.48] 1.02 [0.71; 1.48] 1.02 [0.71; 1.48]	3						
bing stairs (assessed in) 10 10 10 10 10 10 10 10 10 10 10 10 10		2995	131	4.37	1		
bing stairs (assessed in) 10 10 10 10 10 10 10 10 10 10 10 10 10							
injulating vibrating tools 3163 142 4.49 1 1 ying loads (assessed in or seesed in 1000 models) 1 12.28 [2.98; 152.19] 17.17 [2.35; 125.62] ying loads (assessed in 1000 models) 3163 4.46 1 ipulating vibrating tools 5.11 1.15 [0.53; 2.51] 1 seed in 1980 3555 159 4.47 1 15 1 6.67 1.53 [0.20; 11.67] 1 puter work (assessed in 1000 models) 355 159 4.41 1 2685 121 4.51 1.02 [0.71; 1.48] 1	ing stairs (assessed in						
injulating vibrating tools 3163 142 4.49 1 1 ying loads (assessed in or seesed in 1000 models) 1 12.28 [2.98; 152.19] 17.17 [2.35; 125.62] ying loads (assessed in 1000 models) 3163 4.46 1 ipulating vibrating tools 5.11 1.15 [0.53; 2.51] 1 seed in 1980 3555 159 4.47 1 15 1 6.67 1.53 [0.20; 11.67] 1 puter work (assessed in 1000 models) 355 159 4.41 1 2685 121 4.51 1.02 [0.71; 1.48] 1		3024	137	4.53	1		
3163 142 4.49 1 1 4 2 50.0 21.28 [2.98; 152.19] 17.17 [2.35; 125.62] ying loads (assessed in 9		116	6	5.17	1.15 [0.50; 2.66]		
4 2 50.0 21.28 [2.98; 152.19] 17.17 [2.35; 125.62] ying loads (assessed in 3433 153 4.46 1 137 7 5.11 1.15 [0.53; 2.51] igulating vibrating tools essed in 1989) 555 159 4.47 15 1.59 4.47 1 16 1.0 6.67 1.53 [0.20; 11.67] puter work (assessed in 2685 121 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]	pulating vibrating tools sed in 2007)						
ying loads (assessed in 3433 153 4.46 1 137 7 5.11 1.15 [0.53; 2.51] injulating vibrating tools essed in 1989) 3555 159 4.47 1 15 1 6.67 1.53 [0.20; 11.67] puter work (assessed in 885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]		3163	142	4.49	1	1	
3433 153 4.46 1 137 7 5.11 1.15 [0.53; 2.51] special in 1989) 3555 159 4.47 1 15 1 6.67 1.53 [0.20; 11.67] special in 1989 885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]	ing loads (assessed in	4	2	50.0	21.28 [2.98; 152.19]	17.17 [2.35; 125.62]	
137 7 5.11 1.15 [0.53; 2.51] spead in 1989) 3555 159 4.47 1 15 1 6.67 1.53 [0.20; 11.67] spead in 1989 885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48] 1		3433	153	4 46			
hipulating vibrating tools esseed in 1989) 3555 159 4.47 1 15 1 6.67 1.53 [0.20; 11.67] puter work (assessed in 885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]					1 15 [0 53: 2 51]		
15 1 6.67 1.53 [0.20; 11.67] 885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]	oulating vibrating tools (sed in 1989)	10,	,	5.11			
puter work (assessed in 885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]		3555	159	4.47	1		
885 39 4.41 1 2685 121 4.51 1.02 [0.71; 1.48]		15	1	6.67	1.53 [0.20; 11.67]		
2685 121 4.51 1.02 [0.71; 1.48]	uter work (assessed in						
				4.41			
3. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the		2685	121	4.51	1.02 [0.71; 1.48]		
3. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the							
3. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the							
3. Univariate and multivariate analyses of Dupuytren's disease (yes versus no) and available factors assessed in the							
	3. Univariate and m	ultivariate	analyses of	Dupuvtren's o	disease (yes versus no) and avai	lable factors assessed in the	
	hold n < 0.05 * 1	al included -	ll voriables	hour **	imum concurrentian marked ?	a as continuous verichle OD	
	ted with an increase	of one unit	all variables s	snown, **max	imum consumption reached, - age	e as continuous variable, OK	
n bold: $p<0.05$,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR	teu with an increase v						
n bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR ated with an increase of one unit							
n bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR ated with an increase of one unit							
n bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR ated with an increase of one unit						17	
ated with an increase of one unit						17	
n bold: p<0.05,* model included all variables shown, **maximum consumption reached, ² age as continuous variable, OR ated with an increase of one unit 17							
ated with an increase of one unit							
ated with an increase of one unit							
ated with an increase of one unit							
ated with an increase of one unit							
ated with an increase of one unit							
ated with an increase of one unit							
ed with an increase of one unit		-				om/site/about/guidelines.»	1.4.1

1	
2	
3	

_	
ヶ	


6			I	Dupuytren's disease without li	mitations or surgery		Dup	uytren's disease with limitatio	ons or surgery		
7	Ν	n	%	Odds ratio (univariate	Odds ratio (multivariate analysis	_ <u>n</u>	%	Odds ratio (univariate	Odds ratio (multivariate _ 🛧		Formatted: English (U.S.)
8	(total)			analyses <u>, [95% confidence</u> intervals])	logistic model, <u>[95% confidence</u> intervals]))*			analyses, <u>[95% confidence</u> intervals])	analysis_logistic_model_[95% confidence intervals]))*	2-	Formatted: English (U.S.)
	3570	82	2.30	1.04 [0.98; 1.09]	1.04 [0.98; 1.10]	78	2.18	1.06 [1.01; 1.12]	1.07 [1.01; 1.13]	Mr.	
9 ⁴ ge ² Diabetes	3370	02	2.30	1.04 [0.98, 1.09]	1.04 [0.98, 1.10]	/0	2.10	1.00 [1.01; 1.12]	1.07 [1.01; 1.13]	WV V	Formatted Table
Diabetes 110	3252	75	2.31	1	1	65	2.00	1	1	- 11.1	Formatted: English (U.S.)
1 ⁴⁴ Smoking habits (pack/day) ** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	318	7	2.20	0.97 [0.45; 2.13]	1.18 [0.53; 2.61]	13	4.09	2.09 [1.14; 3.83]	2.27 [1.22; 4.24]	- 11	
Smoking habits (pack/day)**										A N	Formatted: English (U.S.)
12 Non-smoker (or former smoker)	2626	62	2.36	1	1	53	2.02	1	1		Formatted: English (U.S.)
1 Shoker < 1	711	16	2.30	0.96 [0.55; 1.67]	0.99 [0.54; 1.82]	18	2.02	1.26 [0.73; 2.16]	1.36 [0.76; 2.41]		Formatted: English (U.S.)
1 ^S poker≥1	187	3	1.60	0.68 [0.21; 2.19]	0.78 [0.24; 2.55]	5	2.67	1.32 [0.52; 3.35]	1.15 [0.41; 3.27]		
14 Drinking habits (glass/day)**	107	5	1.00	0.00 [0.21, 2.17]	0.10 [0.2 1, 2.00]	5	2.07	1.52 [0.52, 5.56]			
Drinking habits (glass/day)**	2423	51	2.10	1		52	2.15	1	1		
136 4 glasses of wine /beer	843	23	2.10	1.30 [0.79; 2.14]	1.06 [0.60; 1.87]	16	1.90	0.89 [0.50; 1.56]	0.63 [0.33; 1.20]		
A≥5 glasses of wine/beer or ≥3 glasses of spirits	271	8	2.95	1.43 [0.67; 3.05]	1.30 [0.57; 3.00]	9	3.32	1.58 [0.77; 3.25]	1.04 [0.46; 2.39]		
Climbing stairs (assessed in 2007)	2/1	0	2.75	1.45 [0.07, 5.05]	1.50 [0.57, 5.00]	,	5.52	1.56 [0.77, 5.25]	1.04 [0.40, 2.57]		
18	3024	69	2.28	1		68	2.25	1			
AVes	116	2	1.72	0.76 [0.18; 3.14]		4	3.45	1.54 [0.55; 4.31]			
1958 Manipulating vibrating tools (assessed											
202007)											
2 ^{No} 2 _{Yes}	3163	70	2.21	1	1	72	2.28	1	1		
	4	1	25.00	21.57 [1.93; 240.79]	18.69 [1.61; 216.66]	1	25.00	21.00 [1.88; 234.10]	15.87 [1.36; 184.70]		
<u>22</u> arrying loads (assessed in 1989)											
23 s	3433	78	2.27	1		75	2.18	1			
	137	4	2.92	1.29 [0.47; 3.59]		3	2.19	1.01 [0.31; 3.24]			
24 anipulating vibrating tools (assessed											
2 ⁱⁿ 1989)	2555	0.1	2.20			70	2.10				
_™0 266s	3555 15	81	2.28 6.67	2.99 [0.39; 23.05]		78	2.19 0.00	0.00 [0.00; 1]			
$\angle 0^{S}$	15	1	0.07	2.99 [0.39, 23.03]		0	0.00	0.00 [0.00, 1]			
Computer work (assessed in 1989)	885	20	2.26	1		19	2.15	1			
28 ^s	2685	62	2.20	1.02 [0.61; 1.70]		59	2.13	1.02 [0.61; 1.73]			
	2005	02	2.51	1.02 [0.01, 1.70]			2.20	1.02 [0.01, 1.75]		•	
29											

3Pable 4. Univariate and multivariate analyses of Dupuytren's disease (without limitations or surgery, with limitations or surgery, compared to reference class: no Bupuytren's disease) and available factors assessed in the previous period in women.

Bata in bold: p<0.05,* model included all variables shown, **maximum consumption reached, 2 age as continuous variable, OR associated with an increase of one unit

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Proportion of Dupuytren's disease depending duration of vibration exposure in the working life (5 year step). 119x90mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Association between work exposure, alcohol intake, smoking and Dupuytren's disease in a

large cohort study (Gazel) =>STROBE Statement

Iten No		Recommendation	YES/NO
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the	
		title or the abstract	Yes
		(b) Provide in the abstract an informative and balanced summary of	
		what was done and what was found	Yes
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	
		investigation being reported	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	Yes
Methods			
Study design	4	Present key elements of study design early in the paper	Yes
Setting	5	Describe the setting, locations, and relevant dates, including	
C		periods of recruitment, exposure, follow-up, and data collection	Yes
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	
n i Fin in		selection of participants. Describe methods of follow-up	Yes
		(b) For matched studies, give matching criteria and number of	
		exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential	1,711
v anabies	/	confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	Yes
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of	105
Data sources/ measurement	. 0	methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	Yes
Bias	9	Describe any efforts to address potential sources of bias	Yes
Study size	10	Explain how the study size was arrived at	N/A
Study Size	10	Explain now the study size was arrived at	(multipurpos
			cohort)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	conorty
		applicable, describe which groupings were chosen and why	Yes
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control	
		for confounding	Yes
		(b) Describe any methods used to examine subgroups and	105
		interactions	Yes
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(<i>e</i>) Describe any sensitivity analyses	N/A
 D		(e) Describe any sensitivity analyses	11/71
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg	
i unicipanto	15	numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	Yes
		(b) Give reasons for non-participation at each stage	No
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	- · · · · · · · · · · · · · · · · · · ·	1N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	Yes

BMJ Open: first published as 10.1136/bmjopen-2013-004214 on 29 January 2014. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
3
4
ว 6
7
2 3 4 5 6 7 8
9 10
11
12
13
14 15
16
17
18
$5 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 30 \\ 13 \\ 33 \\ 34 \\ 35 \\ 37 \\ 82 \\ 37 \\ 82 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
21
22
23
24 25
26
27
28 20
30
31
32
33 34
35
36
37
39
40
41 42
42 43
44
45
46 47
47 48
49
50
51 52
53
54
55
56 57
57 58
59
60

		confounders	
		(b) Indicate number of participants with missing data for each	
		variable of interest	Yes
		(c) Summarise follow-up time (eg, average and total amount)	Yes
Outcome data	15*	Report numbers of outcome events or summary measures over time	Yes
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	
		adjusted estimates and their precision (eg, 95% confidence	
		interval). Make clear which confounders were adjusted for and why	
		they were included	Yes
		(b) Report category boundaries when continuous variables were	
		categorized	Yes
		(c) If relevant, consider translating estimates of relative risk into	
		absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done-eg analyses of subgroups and	
		interactions, and sensitivity analyses	Yes
Discussion			
Key results	18	Summarise key results with reference to study objectives	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of	
		potential bias or imprecision. Discuss both direction and magnitude	
		of any potential bias	Yes
Interpretation	20	Give a cautious overall interpretation of results considering	
		objectives, limitations, multiplicity of analyses, results from similar	
		studies, and other relevant evidence	Yes
Generalisability	21	Discuss the generalisability (external validity) of the study results	Yes
Other information			
Funding	22	Give the source of funding and the role of the funders for the	
		present study and, if applicable, for the original study on which the	
		present article is based	Yes

BMJ Open

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.