

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A meta-analysis and network analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-093072
Article Type:	Original research
Date Submitted by the Author:	30-Aug-2024
Complete List of Authors:	yang, zhan; West China Women's and Children's Hospital,
Keywords:	Risk Factors, Meta-Analysis, Network Meta-Analysis

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A meta-analysis and network analysis

Short title: Risk factors for SSI after hysterectomy

†Yin Liu¹ MSc, †Yihao Liu² PhD, Jinlin Wu³ PhD, *Zhan Yang⁴ MSc

- 1. Nosocomial Infection Management Department, West China Second University
 Hospital, Sichuan University; Key Laboratory of Birth Defects and Related
 Diseases of Women and Children (Sichuan University), Ministry of Education,
 Chengdu, Sichuan, China
- 2. School of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- 3. Medical Department, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- 4. Medical Department, West China Second University Hospital, Sichuan University; Medical Department, Sichuan Children's Hospital (Sichuan Children's Medical Center); Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China

† These authors contributed equally to the current work

*Authors for correspondence:

Zhan Yang, Medical Department, West China Second University Hospital, Sichuan University; Medical Department, Sichuan Children's Hospital (Sichuan Children's Medical Center); Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China 1369051705@qq.com

Conflict of Interest: The authors declare that they have no conflict of interest

Funding: The researchers of this study did not receive or use any funding

Contributors: Conceptualization: Yin Liu and Zhan Yang, Methodology: Yihao Liu, Software: Yin Liu and Yihao Liu, Validation: Yihao Liu, Zhan Yang and Jinlin Wu, Writing - Original Draft: Yihao Liu and Yin Liu, Writing - Review & Editing: Zhan Yang and Jinlin Wu.

Data Sharing: All relevant data are within the manuscript and its Supporting information files.

Reviewers' names: Shengtao Zhou shengtaozhou@scu.edu.cn; Shu Zhou zhoushu-1109@163.com; Zhiyong Zong zongzhiyong@amail.com; Yayi Hu yayihu@sina.com.

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A meta-analysis and network analysis

Abstract

Background: Surgical site infections (SSI) after hysterectomy constitute significant postoperative complications, affecting patient recovery and healthcare costs. Despite known risk factors, comprehensive quantitative reviews synthesising these risks are needed.

Method: The current study conducted a quantitative systematic review with meta-analysis and network analysis to identify and summarise risk factors for SSI following hysterectomy. After searching in Pubmed, Medline, Embase, Web of Science, and Cochrane Central Register of Controlled Trials and screened with PRISMA procedure, 14 retrospective observational studies were identified, encompassing 2,887 SSI positive and 150,106 negative cases post-hysterectomy, under 11 risk factors. Meta-analysis was restricted to factors with sufficient data synchronisation, including blood transfusion, tumour presence, obesity, diabetes, and tobacco use.

Findings: Blood transfusion emerged as the largest risk factor (OR = 2.55), followed by tumour presence (OR = 2.23), obesity (OR = 1.79), diabetes (OR = 1.70), and tobacco use (OR = 1.43). The ORs varied by incision type. Network analysis revealed that vaginal and laparoscopic hysterectomies had significantly lower SSI risk (59% and 55%, respectively) compared to abdominal hysterectomies.

Interpretations: The study establishes blood transfusion, tumour presence, obesity, diabetes, and tobacco use as significant risk factors for SSI after hysterectomy, with variations in risk evident across different incision types. The findings also suggest vaginal and laparoscopic hysterectomies as preferable alternatives to abdominal hysterectomy in mitigating SSI risk. Future research should aim for more granular data to untangle the interplay between comorbidities and further elucidate the differential risk across SSI types.

- Keywords: Hysterectomy; Surgical Site Infections; Risk Factors; Meta-analysis;
- 30 Network Analysis

Introduction

Hysterectomy is an optional treatment for leiomyoma, endometriosis, abnormal bleeding, benign ovarian neoplasms, pelvic organ prolapse, and gynecologic cancer ¹. Epidemiological research estimated that the lifetime prevalence of hysterectomy surgery is approximately 2.36 ‰ in Germany, 1.43‰ in the US ^{2,3}, 0.8‰ in China ⁴, and 0.42 ‰ in the UK ² among the female population, depending on waitlist queuing time of different regions ². Among patients who had hysterectomies, 2.1% are estimated to develop surgical site infections (SSI) worldwide ⁵, which has been one of the most common complications after hysterectomy surgery ⁶. Considering these figures were estimated based on the whole female population, the number of individuals potentially requiring hysterectomy is substantial.

The risk factors of hysterectomy SSI were evident in different reports, yet the results were diverse between different studies. Accordingly, one of the most recent studies suggested that the risk factors include age, body mass index (BMI), smoking, and diabetes ⁷. One study from Spain only considered obesity and inadequate prophylaxis as meaningful indicators ⁸, whereas another study from the UK also suggested that the operative time should be considered an independent risk factor ⁹. The evidence seemed diverse, isolated and lack of quantitative power. Consequently, the current study aims to summarise the results of risk factors of hysterectomy SSI through a quantitative approach.

Study Registration

The protocol of the current study was registered and reviewed by the PROSPERO International Prospective Register of Systematic Reviews (No. CRD42023411668). The protocol is available at:

https://www.crd.york.ac.uk/PROSPERO/export details pdf.php

Search Strategy

The data was extracted from published empirical study reports retrieved from the databases, including Pubmed (central), Medline (Ovid), Embase (Ovid), Web of Science, and Cochrane Central Register of Controlled Trials. The search terms followed the standard PICO guideline (population, intervention, comparator, outcome) and were adapted according to Medical Subject Headings (MeSH) terms ¹⁰. The search was conducted upon the completion of study registration.

Eligibility criteria

The inclusion criteria were 1) population: female participants who had post-hysterectomy SSI incisions; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI incisions; 4) outcomes: the number of participants exposed and not exposed to the risk factors of SSI incisions. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Study screening and data extraction

The report articles were retrieved in RIS format and managed with Endnote (Bld13966, EndNote X9.3.3, 2023). The screening process followed the PRISMA guidelines ¹¹. Two independent reviewers conducted the screening process. Initially, they removed all duplicate articles. Then, articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. Data from the selected articles was subsequently extracted.

Risk of bias assessment

Two reviewers independently scored the studies using the Newcastle-Ottawa quality assessment (NOS) ^{12,13}. NOS is a validated, easy-to-use scale containing 8 items organised into three dimensions: selection, comparability, and

exposure/outcome, which has been endorsed for use in systematic reviews of non-randomised studies by The Cochrane Collaboration ¹³. Studies rated 0-2 as poor quality, 3-5 as fair quality, and 6–9 as good/high quality.

Data synthesis

Data synthesis requires at least four sets of data according to the general conduct suggested by the Cochrane Handbook ¹⁴. The effect size of each identified risk factor will be pooled in a quantitative meta-analysis using STATA v18. The risk factors were expected to be reported as binary data about whether or not the patients were exposed to the risk factor and were infected. Consequently, odds ratios (ORs) would be calculated as the effect size with the following formula:

$$OR = \frac{a}{b} \div \frac{c}{d}$$

Where a represents cases exposed to the risk factor and infected, b represents those exposed but not infected, c represents unexposed but infected, and d represents unexposed and uninfected cases. And the LogOR is the natural log of the OR.

Statistical Analysis Plan

The meta-analysis was conducted with STATA v18. Only risk factors reported in over 4 datasets were synthesised into meta-analysis. A random effect model meta-analysis with the restricted maximum likelihood method was used to evaluate the pooled ORs (LogORs). The heterogeneity was also assessed with the random effects model, where heterogeneity I^2 is considered moderate when $I^2 > 50\%$ and high when $I^2 > 75\%$ ¹⁴. Sensitivity analysis was conducted using the Leave-one-out approach by omitting one dataset each time and evaluating the pooled effect sizes. Egger's test and funnel plots were used to assess potential publication bias.

The pooled effect sizes were also entered into subgroup analysis based on the incision types (superficial, deep, organ space) with available datasets. BMI was entered into the meta-regression analysis with pooled effect sizes of diabetes to explore the relationship between obesity and diabetes and its influence on SSI risk prediction.

Finally, a Bayesian network model was conducted with R and WinBugs to determine the risk of SSI between three surgery types (abdominal, vaginal, and laparoscopic). The Bayesian network model offers a probabilistic graphical

framework that represents and analyses the probabilistic relationships among binominal variables ¹⁵. The model fit of the Bayesian network was evaluated with the Deviance Information Criterion (DIC), where a lower DIC indicates a better-fitting model.

	<i>-</i>
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	

118	Results
-----	---------

Systematic review

Initially, searching the keywords in PubMed, Medline (Ovid), Embase (Ovid), Web of Science, and the Cochrane Central Register of Controlled Trials produced 3821 records. Fourteen studies met the inclusion criteria after screening based on the PRISMA guidelines. The PRISMA procedure is shown in Figure 1.

Figure 1 The PRISMA Flow

All identified studies were retrospective observations to record the case numbers of SSI incisions after hysterectomy surgeries with or without the occurrence of each risk factor. In total, 152993 female patients (age: 47.53±8.29) who underwent hysterectomy were included in the current 14 studies, of whom 2887 had SSI incisions in different types, and 150106 had no SSI incisions taken as controls. The details of all studies are described in Table 1.

//bmjopen-2024-093072 o d by copyright, including

Table 1 Study Summary Table 2 Study Summary

Author & Year	Sample Origin	N	SSI +	Age (±SD)	Surgery Method	Age RF	Anti- microbia l	Blood Loss	Blood Transfusion	BMI	Diabetes	J for uses rela	Surgery Duration	Tobacco Use	Tumour	Wound Cleanness
Molina- Cabrillana 2008	2000-2004 Hospital Universitario Materno-Infantil de Canarias, Sapin	1540	72	54.00 (±12.90)	abdominal & vaginal	Age >60	Y/N	NR	NR	NR	Y/N	gnement Su elated to tex	3 D ≥P75	NR	Y/N	Clean- contaminated vs Contaminated /dirty
Olsen 2009	2003-2005 CDC Prevention Epicenter Program hospitals, USA	820	66	51.70 (±17.78)	abdominal & vaginal	Mean	NR	NR	NR	Mean	Y/N	perieur (AB t and data m	Mean	Y/N	Y/N	NR
Lake 2013	2005-2009 ACS- NSQIP, USA	13822	375	NR	abdominal & vaginal & laparoscopic	Age >80	NR	NR	Y/N	BMI≥30 (Obesity)	Y/N	gnement Superieur (ABES) 30 % at 30 gnement Superieur (ABES) 30 gnement Su	≥P75	Y/N	Y/N	Clean vs Clean- contaminated vs Contaminated vs Dirty
Savage 2013	2007-2010 University of Iowa Hospitals and Clinics, USA	1104	126	54.53 (±13.66)	abdominal	Mean	Mean	NR	Median	BMI≥30 (Obesity)	Y/N	ing, a∕nd si	Mean	NR	Y/N	NR
Coleman 2014	1999-2012 Johns Hopkins Medical Institution, USA	77	17	42.56 (±5.93)	abdominal & vaginal & laparoscopic	Mean	NR	>250ml; ≥451ml	Y/N	Median	Y/N	BM 30 (Obesity)	NR	Y/N	NR	NR
Mahdi 2014	2005-2011 ACS- NSQIP, USA	28366	296	NR	laparoscopic	Age >60, 70 & 80	NR	NR	>4 units of packed red blood cells	BMI≥30 (Obesity)	Y/N	BM© 30 C (Ob Gity)	>60 min, 180 min	Y/N	NR	NR
Pop-Vicas 2014	2012-2015 University of Wisconsin Hospitals, USA	1531	52	58.27 (±12.31)	abdominal & vaginal & laparoscopic	Mean	Y/N	Median*	NR	NR	NR	NR 9	Mean	Y/N	Y/N	NR
												ם הוויטנו מקוווקעפי עפ				
								7				ק קמק מק				

//bmjopen-2024-0930 d by copyright, includ

Uppal 2015	2012-2015 MSQC, USA	21358	441	48.10 (±11.70)	abdominal & vaginal & laparoscopic	Median	Y/N	Median	NR	BMI≥30 (Obesity)	NR	ding 30 on 4 (Obsor u	Mean	Y/N	Y/N	NR
Morgan 2016	2012-2014 MSQC, USA	16548	315	NR	abdominal	Age >50	NR	Mean	Y/N	BMI≥30 (Obesity)	Y/N	Emseig BMesseig Obsie	Mean	Y/N	Y/N	NR
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	1164	94	67.46 (±10.23)	abdominal & vaginal & laparoscopic	Mean	NR	Median	NR	Mean	Y/N	e 2025. Downlo seignement Su serelated to tex	Mean	Y/N	NR	NR
Till 2017	2012-2015 MSQC, USA	18255	329	NR	abdominal & vaginal & laparoscopic		NR	≥250ml	NR	BMI≥30 (Obesity)	Y/N	. Downloaded from I ment Supe⊜eBr (AB ed≝o text and Bata m	Mean	Y/N	Y/N	NR
Brown 2019	2012-2014 ACS- NSQIP, USA	46755	445	45.95 (±1.51)	laparoscopic	Mean	NR	NR	Y/N	Mean	Y/N	nttp://b ES) · ninings	Mean Mean >180 min	Y/N	NR	Clean vs Clean- contaminated vs Contaminated vs Dirty
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	1559	71	48.28 (±11.39)	laparoscopic	Mean	NA	NR	Y/N	Mean	Y/N	en.bmj.co iinin∯, an	Mean	Y/N	NR	NR
Wang 2022	2012-2022 Two Grade A Tertiary Hospitals, China	94	188	47.70 (±10.87)	abdominal	Age >50	Y/N	≥500ml	NR	Mean	Y/N	mjopen.bmj.com/ on June 7, 202 Al trainin∯, and≶imilar technolo	>180 min	NR	Y/N	Clinicians determined Class II vs Class III
Overall		152993		47.53 (±8.29)								ne 7, 2025 technolog			CCT	

Note. The content under each risk factor was how these studies presented their data. The detailed case numbers are Table 3; SSI+ refers to SSI-positive cases; ACS-NSQIP refers to the American College of Surgeons National Surgical Quality Improvement Program; MSQC refers to the Michigan Surgical Quality Collaborative; NR refers to not reported; NA refers to not applicable; Y/N refers to reported in Yes or No; Median*: the median reported in this study did not include IQR to estimate its variance; P75 refers to the 75th percentile.

Among these studies, seven only reported infection cases in mixed three incision types (superficial, deep or organ space) ^{8,16-21}, two only reported in mixed two incision places (deep or organ space) ^{22,23}, one study reported each incision types separately ²⁴ and one study reported superficial and organ space incisions separately ²⁵, one study reported superficial incision independently but mixed deep or organ space incisions ²⁶, one study reported deep incision independently but mixed superficial or deep incisions ⁵, one study reported only organ space incisions ²⁷. Since it requires at least four datasets to conduct meta-analyses ¹⁴, the studies reported cases in independent incision types were combined into three mixed incision types (superficial, deep or organ space) to synthesise with those only reported the mixed incision types. The NOS risk of bias assessment rated three studies scored 6 ^{8,19,24}, seven scored 7 ^{5,16-18,21,23,27}, two scored 8 ^{20,25}, and the other two scored 9 ^{22,26}. All 14 studies are ranked as good/high quality and were included in the following review.

Among the 14 studies, there were 11 risk factors identified in total, including age, antimicrobial, blood loss, blood transfusion, BMI, diabetes (both type I or type II), obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, antimicrobial and blood loss were reported in less than four datasets. Wound cleanness and age were reported in different classification standards. Only 5 factors reported in more than 4 datasets are available for quantitative analysis, including blood transfusion, diabetes, obesity, tobacco use, and tumour. Age, high BMI, and surgery duration reported continued data and thus could not be directly synthesised.

Meta-analyses

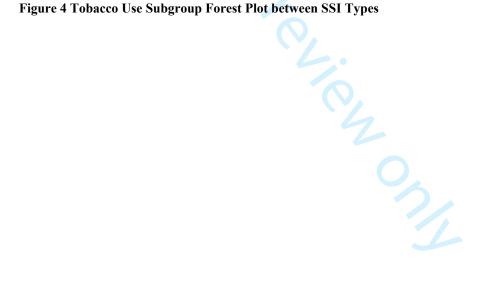
BMJ Open

BMJ op revealed significant overall logORs of blood transfusion (logOR = .94, OR = 2.55, p < .001), obesity (logOR = .58, OR = 1.79, p < .001), diabetes $(\log OR = .53, OR = 1.70, p < .001)$, tobacco use $(\log OR = .36, OR = 1.43, p < .001)$, but not tumour $(\log OR = .36, OR = 1.36, p = .362)$, as the risk factors for SSI infections. However, after removing each dataset one at a time, leave-one-out sensitivat analysis on all risk factors suggested no changes except for tumour, where one dataset changed the results 8. Further analysis with publication \$\frac{8}{8}\sqrt{8}\sqrt{8}\suggested no publication bias in all factors. However, as shown in Figure 2A, the funnel plot suggested three outlier datasets 8,20,24. One bord taset was decided to be kept 20, and the other two were excluded from the analysis 8,24.

Table 2 Summary of Meta-analyses

		Case N	lumber			Meta	a-analy	sis	CI	Heter	ogeneity T	Γest	t Legve-	one-out itivity	Egge	r's Pub	licatio	n Bias
Risk Factor	RF+ SSI+	RF+ SSI-	RF- SSI+	RF- SSI-	LogOR	OR	SE	Z	p	12	Q (df)	p	∰we <mark>st</mark> Løg ⊝ R	Highest LogOR	β	SE	Z	р
Blood Transfusion	39	998	1075	62830	.94	2.55	.17	5.57	<.001	0.00%	.17 (3)	.983	nd sir	.96	.09	1.08	.08	.934
Tumour	226	3924	769	44733	.80	2.23	.09	8.80	<.001	0.00%	1.34 (4)	.850	mil _{.70} Ju	.86	.05	.81	.06	.950
Obesity	720	28717	531	36398	.58	1.79	.12	5.07	<.001	67.56%	11.58 (4)	.020	r tec	.66	1.79	7.60	1.12	.263
Diabetes	229	5330	1314	62893	.53	1.70	.15	3.50	<.001	64.07%	21.13 (7)	<.001	h.44,7	.64	-1.21	.89	-1.35	.178
Tobacco Use	340	13645	938	54500	.36	1.43	.07	5.54	<.001	0.00%	5.78 (5)	.330	ol.32 20	.43	.76	.73	.91	.363

Note. The presenting data of the tumour was after exclusions of outliers. RF+ refers to exposure to the risk factor, RF-grefus to no exposure to the risk factor, SSI+ refers to SSI incision positive, and SSI- refers to SSI incision negative.


Figure 2 The Funnel Plots

After exclusion, data from the tumour was entered into meta-analysis again and reported a significant pooled effect size predicting SSI infections (logOR = .80, OR = 2.23, p < .001), and, as shown in Figure 2B, there were no outliers. As shown in Figure 3A, 3B, and 3C, the estimation of heterogeneity suggested that the chance of inconsistent distribution of the pooled logORs was not significant in blood transfusion datasets ($I^2 = 0\%$, $Q_{(3)} = .17$, p = .983), tumour ($I^2 = 0\%$, $Q_{(4)} = 1.34$, p = .850) or tobacco use ($I^2 = 0\%$, $Q_{(5)} = 5.78$, p = .330). However, Figure 3D and Figure 4E suggested significant moderate heterogeneity in obesity ($I^2 = 67.56\%$, $Q_{(4)} = 11.58$, p < .001) and diabetes datasets ($I^2 = 64.07\%$, $Q_{(7)} = 21.13$, p < .001). These results suggested that blood transfusion, tumour, tobacco use, obesity, and diabetes were significant risk factors predicting post-hysterectomy SSI. Patients who underwent blood transfusion had a 155% increased likelihood of experiencing post-hysterectomy SSI. Similarly, individuals with tumours had a 123% increased risk, obese individuals 79%, diabetics 70%, and tobacco users 43%.

Figure 3 The Forest Plots for Each Risk Factor

Note. RF+ refers to cases exposed to the risk factor; RF- refers to cases not exposed to the risk factor; SSI+ refers to SSI positive cases; SSI- refers to SSI negative cases;

Subgroup analysis between studies reporting different incision types (mixed superficial or deep or organ space vs. mixed deep or organ space) was conducted among tobacco use and diabetes, for they obtained more than 4 datasets under each subgroup. The difference was whether they included superficial incisions. Table 3 shows a significant group difference in pooled ORs between mixed superficial & deep & organ space cases and mixed deep or organ space among tobacco use, $Q_{(1)} = 11.59$, p < .001, but not among diabetes, $Q_{(1)} = .71$, p = .400. The impact of tobacco use on the risk of SSI varied significantly depending on the type of SSI. While tobacco use was associated with a 143% increased risk for combined superficial, deep, and organ space SSIs, this risk escalated to a 272% increase when considering only deep and organ space SSIs. This suggests that the influence of smoking may be more pronounced for deep and organ space infections than superficial ones. Given the observed discrepancy in risk between the combined three types of SSIs and the combined two types (deep or organ space) for tobacco use, it is plausible that other risk factors might also exhibit differential effects across various SSI categories.

Continuous BMI data was incorporated into a meta-regression analysis alongside the ORs of diabetes to evaluate the relationship between obesity and diabetes. Given the absence of group differences or heterogeneity discrepancies across SSI types in the effect sizes associated with diabetes, datasets from both SSI types (though not originating from identical studies) were incorporated into the meta-regression. The results suggested that BMI did not significantly predict the ORs of diabetes (β = .001, SE = .08, t = .02, p = .989). While this does not suggest that BMI (or obesity) is not correlated with the incidence of diabetes, it does affirm that high BMI did not affect the outcomes in this particular analysis.

Bayesian Network Analysis

The infected and non-infected case numbers under each surgery method (abdominal, vaginal, laparoscopic) were analysed with a Bayesian network model to determine whether vaginal and laparoscopic surgeries had a lower SSI risk than abdominal surgeries. The Bayesian network model exhibited a DIC of 111.5. Compared to abdominal surgeries, vaginal surgeries reduced the risk of developing SSI by 59% (logOR = -.90, OR = .41, 95%CI [0.33, 0.67]) and laparoscopic surgeries by 55% (logOR = -.80, OR = .45, 95%CI [0.37, 0.67]). However, the latter two did not distinguish from each other (logOR = -.1, OR = .9, 95%CI [0.72, 1.21]). These results suggest that conducting the hysterectomy with the vaginal or laparoscopic methods is respectively safer than the abdominal method in terms of SSI risk.

222 Discussion

The current study conducted a quantitative systematic review with meta-analysis and network analysis to summarise the evidence of risk factors of SSI incisions after hysterectomy surgeries. To our knowledge, this is the first quantitative review of the topic. In total, 14 retrospective observations studies were identified with 2887 SSI positive and 150106 negative cases under 11 risk factors, including age, antimicrobial, blood loss, blood transfusion, high BMI, diabetes, obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, only 5 were available for meta-analysis synchronisation. Among which, blood transfusion, tumour, obesity, diabetes, and tobacco use were factors that significantly increased the risk of SSI. The estimated ORs also seemed to vary between different incision types (superficial, deep, or organ space). Apart from risk factors, Bayesian network analysis also suggested that conducting vaginal or laparoscopic hysterectomies induced a significantly lower risk of SSI infection than abdominal surgeries. The details of the quantitative analysis are discussed as follows.

The largest risk factor of SSI incision is blood transfusion (OR = 2.55), with a 155% increased likelihood of SSI incisions. Blood transfusion has always been identified as a major source of post-surgical infections ^{28,29}. Administrative errors, such as bacterial contamination in platelet products, are believed responsible for infections induced by blood transfusion ²⁸. These issues are related to the healthcare service environment and beyond the current paper's discussion. Instead, the need for blood transfusion deserves further elaboration from the patients' site. For example, obese patients are found to bleed more, where blood loss was reported to be positively correlated with BMI ^{30,31}. This is because obese patients have larger surface areas of subcutaneous fat, resulting in more tissue fluid for drainage, blood loss, and a further

reduction in haematocrit. Consequently, it is reasonable to presume that part of the blood transfusion OR was potentially attributed to obesity. However, the current study could not provide evidence to support this hypothesis by estimating the quantitative relationship between blood transfusion and BMI because only two studies reported both blood transfusion and continuous BMI data ^{22,23}. These are not sufficient to provide a valid meta-regression analysis. Apart from obesity, severe abnormal uterine bleeding and cancer-related anaemia are also important reasons that patients require extra blood transfusion. However, none of the included studies attempted to isolate these factors, nor did they report preoperative haemoglobin. Consequently, we could not address whether blood transfusion was an independent factor or it was attributed to other factors such as obesity, severe abnormal uterine bleeding, cancer-related anaemia, preoperative haemoglobin or whether its estimated ORs were inflated. Future studies should consider reporting more comprehensive data to precisely estimate the ORs for blood transfusion as the SSI incision risk factor.

Likewise, one may argue that obesity and diabetes are comorbid, where obesity-induced insulin resistance is one of the major sources of type 2 diabetes 32 . This might explain the moderate heterogeneity of the ORs in obesity (OR = 1.79, I^2 = 67.56%) and diabetes (OR = 1.70, I^2 = 64.07%). This is, in fact, a methodological issue, where all studies directly counted the case number that was exposed and not exposed to the specific risk factors, but none attempted to distinguish whether the case was exposed to multiple risk factors. That is, one might suffer from obesity or diabetes or both, and the case would be counted in each risk factor respectively when they suffer from both. Consequently, the estimated ORs were not solely attributed to one risk factor and might be overestimated. Hypothetically, in the current case, the heterogeneity of the ORs in obesity and diabetes was moderate because some studies included more

patients suffering from both obesity and diabetes and reported higher ORs than those with fewer such patients. As a result, although both obesity and diabetes are significant risk factors, their estimated ORs should be considered cautiously and require further clarification in future studies by reporting cases separately.

To further address this issue, the current study conducted a meta-regression analysis to investigate whether BMI predicts the ORs of diabetes. The analysis found no significant relationship between continuous BMI values and the ORs of diabetes. Notably, the absence of a significant predictive relationship between BMI and the OR for diabetes does not imply that these two factors were unrelated or that obesity does not influence the estimation of OR for diabetes. On the one hand, the absence of a significant predictive relationship might arise from including both type I and type II diabetes in the studies, with type I diabetes having less direct relevance to obesity. On the other hand, the estimation of ORs may still have been elevated due to the repeated counting of cases exposed to multiple risk factors. Instead, this result might be interpreted as the pathologies of obesity and diabetes are relatively independent in the context of SSI risk.

Apart from obesity and diabetes, the second-largest risk factor was tumour (OR = 2.23), with a 123% increased likelihood of SSI incisions. The immune system in patients afflicted with malignant tumours was generally compromised ³³. This impairment in the primary immune function directly results from the tumour's pervasive influence on the natural defence mechanisms. Furthermore, the standard therapeutic interventions for tumours, including surgery, chemotherapy, and radiotherapy, also contribute to the weakened immune state ³⁴.

Tobacco use was the last risk factor (OR = 1.43), with a 43% increased likelihood of SSI incisions. Nicotine and carbon monoxide, two primary agents produced in tobacco use, contribute to the constriction of peripheral blood vessels. This vasoconstriction reduces the oxygen supply to tissues, vital for cellular function and healing processes ³⁵. Consequently, this oxygen deficit can precipitate the formation of microthrombi, which are small clots that can impair blood flow and further hinder tissue repair and regeneration.

However, the estimated ORs of tobacco use seemed to vary between incision types. A subgroup comparison was conducted between studies that reported all mixed SSI incisions and those that only reported deep or organ space incisions for tobacco use and diabetes, where only these two risk factors were reported repeatedly in distinguishing between SSI incision types. Significant subgroup differences were observed exclusively in the context of tobacco use. Specifically, tobacco use was associated with a 43% increased risk for superficial, deep, or organ space SSIs. This risk escalated to a 172% increase when focusing solely on deep or organ space SSIs. The pronounced impact of tobacco use appears more substantial in increasing the risk of deep or organ space infections compared to superficial ones. This discrepancy may also be attributed to tobacco-induced vasoconstriction. The vascular system supporting superficial cells, such as those in the skin, is more prosperous than the vasculature of deep and organ space cells. Consequently, cells in deeper tissues and organ spaces are more vulnerable to oxygen supply alterations exacerbated by tobacco use. However, this was merely a hypothetical explanation without solid evidence, which requires further investigation.

Finally, the current Bayesian model revealed a significant reduction in SSI incision risk with vaginal and laparoscopic hysterectomies compared to the abdominal

approach, with decreases of 59% and 55% respectively. This is the first quantitative evidence of their superiority in reducing SSI incidence. Abdominal hysterectomy, though designed to prevent bladder damage by opening the peritoneal reflection and mobilising the bladder, increases postoperative infection risks due to larger incisions and greater abdominal exposure ³⁶. In contrast, laparoscopic methods, utilising smaller incisions and camera systems, minimise air exposure and use electrocoagulation for cutting and hemostasis, thereby reducing pelvic-abdominal disturbances and promoting a stable internal environment ³⁷. While total laparoscopic hysterectomy demands high skill levels, vaginal hysterectomy offers a simpler approach to uterine manipulation, albeit with a slight increase in urinary system infection risks from metal cannula introduction ³⁸. Although each technique has distinct risk-benefit profiles, the current results provided straightforward evidence of SSI incision risk, comparing the techniques to reference individual patient needs and surgical goals.

There are four limitations in the current study. First, the included studies did not differentiate cases based on the number of risk factors present, counting each instance for all identified risks. This approach likely inflated the ORs, particularly for comorbid conditions like patients with severe abnormal uterine bleeding or cancer-related anaemia and obesity and diabetes. Second, there was no distinction between Type I and Type II diabetes in the studies, potentially contributing to moderate heterogeneity in the pooled OR estimates. Therefore, the estimated ORs for obesity and diabetes as risk factors for SSIs should be interpreted cautiously. Thirdly, since none of the studies isolated patients with severe abnormal uterine bleeding, suffered from cancer-related anaemia, or reported pre-operative HbA1, it is unclear whether these factors also inflated the estimation ORs for blood transfusion, and thus, they

should be interpreted cautiously as well. Lastly, few studies specified the types of SSI incisions (superficial, deep, or organ space). Given that our analysis indicates variation in tobacco use ORs across different SSI types, it is crucial to ascertain if similar variations apply to other risk factors. Addressing these issues in future research, with more detailed data reporting, is essential for a clearer understanding of the risk factors for SSIs. Future studies should report more comprehensive data to address these limitations.

In summary, the current study conducted a quantitative systematic review with meta-analysis and network analysis of the risk factors of SSI incisions after hysterectomy surgeries. In total, 11 risk factors were mentioned, whereas only blood transfusion, tumour, obesity, diabetes, and tobacco use had sufficient data to be entered into meta-analysis and yield statistical significance. With limited available data, the ORs of tobacco use seemed to vary between different SSI incision types, suggesting potential diversity in other risk factors. Finally, a Bayesian network model compared the risk of SSI incisions between vaginal and laparoscopic and abdominal hysterectomy approaches. This approach offers valuable insights into the varying risks associated with each surgical method.

- **Conflict of Interest:** The authors declare that they have no conflict of interest
- Funding: The researchers of this study did not receive or use any funding
- **Data Sharing:** All relevant data are within the manuscript and its Supporting information files.

366 Reference

1. Wright JD, Ananth CV, Lewin SN, et al. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. *JAMA* 2013; **309**(7):

369 689-98.

- 370 2. Mukhopadhaya N, Manyonda I. The hysterectomy story in the United 371 Kingdom. *Journal of mid-life health* 2013; **4**(1): 40.
- 372 3. OECD. OECD Health Data 2003. Ottawa, 2004.
- 4. Liu F, Pan Y, Liang Y, et al. The epidemiological profile of hysterectomy in rural Chinese women: a population-based study. *BMJ open* 2017; **7**(6): e015351.
- 5. Morgan DM, Swenson CW, Streifel KM, et al. Surgical site infection following hysterectomy: adjusted rankings in a regional collaborative. *American Journal of Obstetrics and Gynecology* 2016; **214**(2): 259. e1-. e8.
- 378 6. Shi L, Gu Q, Zhang F, et al. Predictive factors of surgical site infection after hysterectomy for endometrial carcinoma: a retrospective analysis. *BMC Surg* 2021; 380 **21**(1): 1-7.
- 7. Chen I, Choudhry AJ, Schramm D, et al. Type of pelvic disease as a risk
 factor for surgical site Infectionin women undergoing hysterectomy. *Journal of Minimally Invasive Gynecology* 2019; 26(6): 1149-56.
- 8. Molina-Cabrillana J, Valle-Morales L, Hernandez-Vera J, López-Carrió I, Garcia-Hernandez J, Bolaños-Rivero M. Surveillance and risk factors on hysterectomy wound infection rate in Gran Canaria, Spain. *European Journal of Obstetrics & Gynecology and Reproductive Biology* 2008; **136**(2): 232-8.
- 9. Pakzad R, Safiri S. Incidence and risk factors for surgical site infection posthysterectomy in a tertiary care center: methodologic issues. *American Journal of Infection Control* 2017; **45**(5): 580-1.
- 391 10. Bramer WM, De Jonge GB, Rethlefsen ML, Mast F, Kleijnen J. A systematic 392 approach to searching: an efficient and complete method to develop literature 393 searches. *Journal of the Medical Library Association: JMLA* 2018; **106**(4): 531.
- 11. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Systematic reviews* 2021; **10**(1): 1-11.
- Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford; 2000.
- Nasser M. New standards for systematic reviews incorporate population health sciences. *American Journal of Public Health* 2020; **110**(6): 753.
- Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons; 2019.
- 403 15. Hu D, O'Connor AM, Wang C, Sargeant JM, Winder CB. How to conduct a 404 Bayesian network meta-analysis. *Frontiers in veterinary science* 2020; 7: 271.
- 405 16. Savage MW, Pottinger JM, Chiang H-Y, Yohnke KR, Bowdler NC, Herwaldt 406 LA. Surgical site infections and cellulitis after abdominal hysterectomy. *American Journal of Obstetrics and Gynecology* 2013; **209**(2): 108. e1-. e10.
- 408 17. Coleman JS, Green I, Scheib S, Sewell C, Lee JM-H, Anderson J. Surgical site infections after hysterectomy among HIV-infected women in the HAART era: a single institution's experience from 1999–2012. *American journal of obstetrics and*
- 411 gynecology 2014; **210**(2): 117. e1-. e7.
- 412 18. Mahdi H, Goodrich S, Lockhart D, DeBernardo R, Moslemi-Kebria M.
- 413 Predictors of surgical site infection in women undergoing hysterectomy for benign
- 414 gynecologic disease: a multicenter analysis using the national surgical quality

- improvement program data. *Journal of minimally invasive gynecology* 2014; **21**(5):
- 416 901-9.

4

5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31 32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47 48

49

50

51

52

53

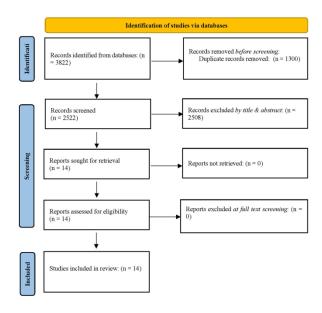
54 55

56

57

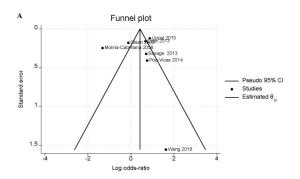
58

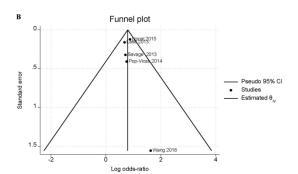
59


60

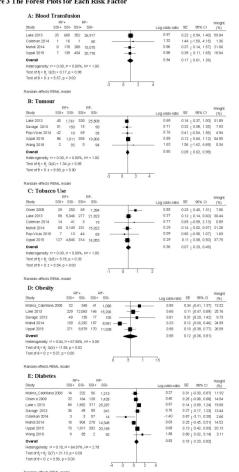
- 417 19. Pop-Vicas A, Musuuza JS, Schmitz M, Al-Niaimi A, Safdar N. Incidence and
- 418 risk factors for surgical site infection post-hysterectomy in a tertiary care center.
- 419 American Journal of Infection Control 2017; **45**(3): 284-7.
- 420 20. Uppal S, Harris J, Al-Niaimi A, et al. Prophylactic antibiotic choice and risk
- of surgical site infection after hysterectomy. *Obstetrics and gynecology* 2016; **127**(2):
- 422 321.
- 423 21. Wang D, Chen Y, Deng J, et al. A Retrospective Study from 2 Tertiary
- 424 Hospitals in China to Evaluate the Risk Factors for Surgical Site Infections After
- 425 Abdominal Hysterectomy in 188 Patients. Medical Science Monitor: International
- 426 *Medical Journal of Experimental and Clinical Research* 2022; **28**: e936198-1.
- 427 22. Brown O, Geynisman-Tan J, Gillingham A, et al. Minimizing risks in
- 428 minimally invasive surgery: rates of surgical site infection across subtypes of
- laparoscopic hysterectomy. Journal of Minimally Invasive Gynecology 2020; 27(6):
- 430 1370-6. e1.
- 431 23. Tsuzuki Y, Hirata T, Tsuzuki S, Wada S, Tamakoshi A. Risk factors of
- 432 vaginal cuff infection in women undergoing laparoscopic hysterectomy for benign
- 433 gynecological diseases. *J Obstet Gynaecol Res* 2021; **47**(4): 1502-9.
- 434 24. Olsen MA, Higham-Kessler J, Yokoe DS, et al. Developing a risk
- stratification model for surgical site infection after abdominal hysterectomy. *Infect*
- 436 *Control Hosp Epidemiol* 2009; **30**(11): 1077-83.
- 437 25. Tuomi T, Pasanen A, Leminen A, Bützow R, Loukovaara M. Incidence of and
- 438 risk factors for surgical site infections in women undergoing hysterectomy for
- 439 endometrial carcinoma. Acta obstetricia et gynecologica Scandinavica 2016; 95(4):
- 440 480-5.
- 441 26. Lake AG, McPencow AM, Dick-Biascoechea MA, Martin DK, Erekson EA.
- 442 Surgical site infection after hysterectomy. American journal of obstetrics and
- 443 *gynecology* 2013; **209**(5): 490. e1-. e9.
- 444 27. Till SR, Morgan DM, Bazzi AA, et al. Reducing surgical site infections after
- 445 hysterectomy: metronidazole plus cefazolin compared with cephalosporin alone.
- 446 American Journal of Obstetrics and Gynecology 2017; 217(2): 187. e1-. e11.
- 447 28. Goodnough LT. Risks of blood transfusion. Crit Care Med 2003; 31(12):
- 448 S678-S86.
- 449 29. Carson JL. Blood transfusion and risk of infection: new convincing evidence?
- 450 *JAMA* 2014; **311**(13): 1293-4.
- 451 30. Tjeertes EE, Hoeks SS, Beks SS, Valentijn T, Hoofwijk AA, Stolker RJR.
- 452 Obesity-a risk factor for postoperative complications in general surgery? BMC
- 453 *Anesthesiol* 2015; **15**(1): 1-7.
- Bowditch M, Villar R. Do obese patients bleed more? A prospective study of
- 455 blood loss at total hip replacement. Ann R Coll Surg Engl 1999; **81**(3): 198.
- 456 32. Verma S, Hussain ME. Obesity and diabetes: an update. *Diabetes & Metabolic*
- 457 *Syndrome: Clinical Research & Reviews* 2017; **11**(1): 73-9.
- 458 33. De Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune
- 459 system during cancer development. *Nature reviews cancer* 2006; **6**(1): 24-37.
- 460 34. Shaked Y. Balancing efficacy of and host immune responses to cancer
- therapy: the yin and yang effects. *Nature reviews Clinical oncology* 2016; **13**(10):
- 462 611-26.
- 463 35. Sørensen LT. Wound healing and infection in surgery: the pathophysiological
- impact of smoking, smoking cessation, and nicotine replacement therapy: a systematic

- 465 review. Ann Surg 2012; **255**(6): 1069-79.
- 466 36. Hilton P, Monaghan JM. Opening and closing the abdominal cavity. Bonney's
- *Gynaecological Surgery* 2018: 33.
- 468 37. Lu I. Smart knives: controlled cutting schemes to enable advanced endoscopic
- 469 surgery: UCL (University College London); 2011.
- 470 38. Moen MD, Richter HE. Vaginal hysterectomy: past, present, and future.

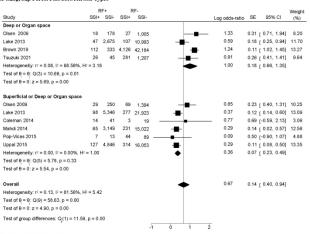

International urogynecology journal 2014; **25**: 1161-5.



209x297mm (300 x 300 DPI)


Figure 2 The Funnel Plots

210x294mm (300 x 300 DPI)



Random-effects Risk, model
Note, RF+ refers to cases exposed to the risk factor; RF- refers to cases not exposed to the risk factor; SSI+ refers to SSI
positive cases; SSI- refers to SSI negative cases;

210x297mm (200 x 200 DPI)

Figure 1 Tobacco Use Subgroup Forest Plot between SSI Types

297x210mm (200 x 200 DPI)

Contents

	Search Terms	2
Embase (Ovid) Search Strategy Web of Science Search Strategy Cochrane Library Search Strategy Risk of Bias Assessment NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CAS CONTROL STUDIES) Selection Comparability Exposure 1 NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHOR STUDIES) SELECTION 1 Comparability 1 Selection 1 Comparability 1 Comparability 1 Comparability 1 Comparability 1 Comparability 1 Outcome 1 PRISMA Flow 1	Pubmed (Central) Search Strategy	2
Web of Science Search Strategy	Medline (Ovid) Search Strategy	4
Cochrane Library Search Strategy	Embase (Ovid) Search Strategy	6
Risk of Bias Assessment	Web of Science Search Strategy	8
NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CAS CONTROL STUDIES)	Cochrane Library Search Strategy	10
CONTROL STUDIES) 1 Selection 1 Comparability 1 Exposure 1 NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHOR' STUDIES) 1 Selection 1 Comparability 1 Outcome 1 PRISMA Flow 1	Risk of Bias Assessment	12
Comparability 1 Exposure 1 NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHOR'S TUDIES) 1 Selection 1 Comparability 1 Outcome 1 PRISMA Flow 1		
Exposure 1 NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHOR' STUDIES) 1 Selection 1 Comparability 1 Outcome 1 PRISMA Flow 1	Selection	12
NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHOR'STUDIES) 1 Selection 1 Comparability 1 Outcome 1 PRISMA Flow 1		
STUDIES) 1 Selection 1 Comparability 1 Outcome 1 PRISMA Flow 1	Exposure	12
Comparability 1 Outcome 1 PRISMA Flow 1		
Comparability 1 Outcome 1 PRISMA Flow 1	STUDIES)	14
Outcome1 PRISMA Flow1	Selection	14
PRISMA Flow	Comparability	14
	Outcome	14
		16

 Search Terms

Pubmed (Central) Search Strategy

Framework Item	Target	Search term
Population P	Patients who have undergone hysterectomy (no	hysterectomy mesh term: #1
	restriction to age)	
Intervention	Hysterectomy (No restriction on the surgery	hysterectomy mesh term: #1
	type, e.g. laparoscopy)	
Comparator	RCT, case-control, cross-sectional or	RCT, case-control, cross-sectional,
	longitudinal design	longitudinal, observational, cohort and
		prospective study mesh term: #2 OR #3
		OR #4 OR #5 OR #6 OR #7 OR #8
Outcome	Risk of infection	Infection mesh term: #10

step	code	results
#1	((((((((((((((((((((((((((((((((((((((53,350
#2	((Clinical Trials, Randomized) OR (Trials, Randomized Clinical)) OR (Controlled Clinical Trials, Randomized)	742,997
#3	((((((((((((((((((((((((((((((((((((((1,122,672
#4	((((((((((((((((((((((((((((((((((((((339,768
#5	((((((((((((((((((((((((((((((((((((((1,589,628

	Matched)) OR (Case-Control Study, Matched)) OR (Matched Case Control Studies)) OR (Matched Case-Control Study)) OR (Studies, Matched Case-Control)) OR (Study, Matched Case-Control)	
#6	((Prospective Study) OR (Studies, Prospective)) OR (Study, Prospective)	904,417
#7	((((((((((((((((((((((((((((((((((((((<u>3,150,416</u>
#8	Observational Study	205,618
#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	4,994,412
#10	((((Infection and Infestation) OR (Infestation and Infection)) OR (Infections and Infestations)) OR (Infestations and Infections)) OR (Infection)	4003846
#11	#1 AND #9 AND #10	<u>1,758</u>
#12	The year 2000 - Current	<u>1,198</u>
#13	English	<u>1,096</u>

The results are hyperlinked in each column

prospective study mesh term with

Infection mesh term with Medline code

Medline code

Medline (Ovid) Search Strategy

Framework Item	Target	Search term
Population P	Patients who have undergone hysterectomy (no	Hysterectomy mesh term with Medline
	restriction to age)	code
Intervention	Hysterectomy (No restriction on the surgery	Hysterectomy mesh term with Medline
	type, e.g. laparoscopy)	code
Comparator	RCT, case-control, cross-sectional or	RCT, case-control, cross-sectional,
	longitudinal design	longitudinal, observational, cohort and

Risk of infection

Outcome

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	52599
2	hysterectomies. ti,ab,mp.	3423
3	hysterectomy, Vaginal. ti,ab,mp.	3235
4	hysterectomies, Vaginal. ti,ab,mp.	9
5	vaginal hysterectomies. ti,ab,mp.	437
6	vaginal hysterectomy. ti,ab,mp.	3593
7	Colpohysterectomy. ti,ab,mp.	84
8	Colpohysterectomies. ti,ab,mp.	8
9	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8	53278
Group 2	Intervention	
10	hysterectomy. ti,ab,mp.	52599
11	hysterectomies. ti,ab,mp.	3423
12	hysterectomy, Vaginal. ti,ab,mp.	3235
13	hysterectomies, Vaginal. ti,ab,mp.	9
14	vaginal hysterectomies. ti,ab,mp.	437
15	vaginal hysterectomy. ti,ab,mp.	3593
16	Colpohysterectomy. ti,ab,mp.	84
17	Colpohysterectomies. ti,ab,mp.	8
18	10 or 11 or 12 or 13 or 14 or 15 or 16 or 17	53278
Group 3	Comparator	
19	Cross-sectional. ti,ab,mp.	632818
20	Longitudinal. ti,ab,mp.	377935
21	Prospective study. ti,ab,mp.	159216
22	Cohort study. ti,ab,mp.	274386
23	Observational study. ti,ab,mp.	199248
24	Randomized control study. ti,ab,mp.	937
25	Case-Control Studies. ti,ab,mp.	338463
26	19 or 21 or 22 or 23 or 24 or 25	1494518
Group 4	Outcome	
27	Infections. ti,ab,mp.	1470008
28	"Infection and Infestation". ti,ab,mp.	86
29	"Infestation and Infection". ti,ab,mp.	51
30	"Infections and Infestations". ti,ab,mp.	311

31	"Infestations and Infections". ti,ab,mp.	28
32	Infection. ti,ab,mp.	1418735
33	27 or 28 or 29 or 30 or 31 or 32	2279134
Combined	9 and 18 and 26 and 33	407
Limited to English only	9 and 18 and 26 and 33	384
The year 2000 to present	9 and 18 and 26 and 33	337

Results link:

vidweb.c.,
pep7EBCDrA https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=5SYIqKO2Gpep7EBCDrAGLmKZrFtVAMXrv0wx7zAaFQsQRH5DCIC 4ESMKrqhH2tOv1

Framework Item

Population

Intervention

Comparator

Outcome

type, e.g. laparoscopy)

longitudinal design

Risk of infection

case-control,

RCT,

cross-sectional,

Embase (Ovid) Search Strategy

cross-sectional

Embase (Ovia) scaren strategy					
Target Search term					
Patients who have undergone hysterectomy (no	Hysterectomy mesh term with Embase				
restriction to age)	code				
Hysterectomy (No restriction on the surgery	Hysterectomy mesh term with Embase				

RCT,

Embase code

case-control,

longitudinal, observational, cohort and

prospective study mesh term with

Infection mesh term with Embase code

	Term searched	Results			
Group 1	Population				
1	hysterectomy. ti,ab,mp.	93767			
2	hysterectomies. ti,ab,mp. 6284				
3	hysterectomy, Vaginal. ti,ab,mp. 392				
4	trachelectomy. ti,ab,mp.	19			
5	hysterectomies, Vaginal. ti,ab,mp.	758			
6	vaginal hysterectomies. ti,ab,mp.	8954			
7	vaginal hysterectomy. ti,ab,mp.	83			
8	Colpohysterectomy. ti,ab,mp.	5			
9	Colpohysterectomies. ti,ab,mp.	94170			
10	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9	93767			
Group 2	Intervention				
11	hysterectomy. ti,ab,mp.	93767			
12	hysterectomies. ti,ab,mp.	6284			
13	hysterectomy, Vaginal. ti,ab,mp.	392			
14	trachelectomy. ti,ab,mp. 19				
15	hysterectomies, Vaginal. ti,ab,mp.	758			
16	vaginal hysterectomies. ti,ab,mp.	8954			
17	vaginal hysterectomy. ti,ab,mp.	83			
18	Colpohysterectomy. ti,ab,mp.	5			
19	Colpohysterectomies. ti,ab,mp.	94170			
20	11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19	93767			
Group 3	Comparator				
21	Cross-sectional. ti,ab,mp.	765496			
22	Longitudinal. ti,ab,mp.	475332			
23	Prospective study. ti,ab,mp.	899849			
24	Cohort study. ti,ab,mp.	405571			
25	Observational study. ti,ab,mp.	342074			
26	Randomized control study. ti,ab,mp.	1628			
27	Case-Control Studies. ti,ab,mp.	27610			
28	21 or 22 or 23 or 24 or 25 or 26 or 27	2146419			
Group 4	Outcome				
29	Infections. ti,ab,mp.	835857			
30	"Infection and Infestation". ti,ab,mp.	107			

31	"Infestation and Infection". ti,ab,mp.	55
32	"Infections and Infestations". ti,ab,mp.	807
33	"Infestations and Infections". ti,ab,mp.	49
34	Infection. ti,ab,mp.	2763568
35	29 or 30 or 31 or 32 or 33 or 34	2991465
Combined	10 and 20 and 28 and 35	1510
Limited to English only	10 and 20 and 28 and 35	1468
The year 2000 to present	10 and 20 and 28 and 35	1419

Results link:

idweb.cgi?...
i0adXj9ZUf4Uz. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=79TCxxCp1oN0adXj9ZUf4UzOGz44m8xhcwT9pEsrMoJkpSIjfY4IktYO 5RKZbvU7

Web of Science Search Strategy

Framework Item	Target	Search term		
Population P	Patients who have undergone hysterectomy (no	Hysterectomy mesh term with the web		
	restriction to age)	of science code: #1		
Intervention	Hysterectomy (No restriction on the surgery	Hysterectomy mesh term with the web		
	type, e.g. laparoscopy)	of science code: #1		
Comparator	RCT, case-control, cross-sectional or longitudinal design	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh terms with the web of science code: #2, #3, #4, #5, #6, #7, #8		
Outcome	Risk of infection	Infection mesh term with the web of science code: #10		

step	code	results
#1	TS= (hysterectomy* OR hysterectomies* OR hysterectomy, vaginal* OR hysterectomies, vaginal OR vaginal hysterectomies* OR vaginal hysterectomy* OR colpohysterectomy* OR colpohysterectomies*)	40974
#2	TS= (Clinical Trials, Randomized* OR Trials, Randomized Clinical* OR Controlled Clinical Trials, Randomized*)	357993
#3	TS= (Longitudinal Study* OR Studies, Longitudinal* OR Study, Longitudinal* OR Tuskegee Syphilis Study* OR Syphilis Studies, Tuskegee* OR Syphilis Study, Tuskegee* OR Tuskegee Syphilis Studies* OR Jackson Heart Study* OR Heart Studies, Jackson* OR Heart Study, Jackson* OR Jackson Heart Studies* OR Studies, Jackson Heart* OR California Teachers Study* OR California Teachers Studies* OR Studies, California Teachers* OR Study, California Teachers* OR Teachers Studies, California* OR Teachers Study, California* OR Bogalusa Heart Study* OR Bogalusa Heart Studies, Bogalusa Heart Study, Bogalusa* OR Studies, Bogalusa Heart* OR Study, Bogalusa Heart* OR Framingham Heart Study* OR Framingham Heart Studies* OR Heart Study, Framingham* OR Longitudinal Survey* OR Longitudinal Surveys* OR Survey, Longitudinal* OR Surveys, Longitudinal*)	<u>389252</u>
#4	TS= (Case-Control Study* OR Studies, Case-Control* OR Study, Case-Control* OR Case-Comparison Studies* OR Case-Comparison Studies* OR Case-Comparison Study* OR Studies, Case-Comparison* OR Study, Case-Comparison* OR Case-Compeer Studies* OR Studies, Case-Compeer* OR Case-Referrent Studies* OR Case-Referrent Studies* OR Case-Referrent Study* OR Studies, Case-Referrent* OR Study, Case-Referrent* OR Case-Referent Studies* OR Case-Referent Study* OR Studies, Case-Referent* OR Study, Case-Referent* OR Case-Base Studies* OR Case Base Studies* OR Studies, Case-Base* OR Case Control Studies* OR Case Control Study* OR Studies, Case-Base* OR Case Control Studies* OR Case-Control Studies, Case-Control Studies* OR Case-Control Study, Nested* OR Nested Case-Control Study* OR Studies, Natched Case-Control Studies* OR Case-Control Studies, Matched* OR Case-Control Study, Matched* OR Matched Case Control Studies* OR Matched Case Control Studies* OR Matched Case-Control Studies, Matched* OR Case-Control Study* OR Studies, Matched Case-Control* OR Study, Matched Case-Control*)	742023
#5	TS=(Cross Sectional Studies* OR Cross-Sectional Study * OR Studies, Cross-Sectional * OR Study, Cross-Sectional * OR Surveys, Disease Frequency * OR Disease Frequency Survey * OR Survey, Disease Frequency * OR Analysis, Cross-Sectional * OR Analyses, Cross-Sectional * OR Analysis, Cross Sectional * OR Cross-Sectional Analyses * OR Cross-Sectional Analysis	<u>1164085</u>

	* OR Analyses, Cross Sectional * OR Cross Sectional Analyses * OR Cross-Sectional Survey * OR Cross-Sectional Survey * OR Survey, Cross-Sectional * OR Surveys, Cross-Sectional * OR Disease Frequency Surveys * OR Prevalence Studies * OR Prevalence Study * OR Studies, Prevalence * OR Study, Prevalence*)	
#6	TS= (Prospective Study* OR Studies, Prospective* OR Study, Prospective*)	<u>721432</u>
#7	TS= (Cohort Study* OR Studies, Cohort * OR Study, Cohort * OR Concurrent Studies * OR Studies, Concurrent * OR Concurrent Study * OR Study, Concurrent * OR Closed Cohort Studies * OR Cohort Studies, Closed * OR Closed Cohort Study * OR Cohort Study, Closed * OR Study, Closed Cohort * OR Studies, Closed Cohort * OR Birth Cohort Studies * OR Birth Cohort Studies * OR Birth Cohort Studies, Birth * OR Cohort Study, Birth * OR Studies, Birth Cohort * OR Study, Birth Cohort * OR Analysis, Cohort * OR Analyses, Cohort * OR Cohort Analyses * OR Cohort Analysis * OR Historical Cohort Studies, Historical * OR Cohort Study, Historical * OR Study, Historical * OR Studies, Historical Cohort * OR Incidence Study * OR Studies, Incidence * OR Study, Incidence*)	<u>1333108</u>
#8	TS= (Observational study *)	<u>234254</u>
#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	<u>3887063</u>
#10	TS= (Infections* OR Infection and Infestation * OR Infestation and Infection * OR Infections and Infections * OR Infections and Infections * OR Infections * OR Infection *)	<u>1895911</u>
#11	#1 AND #9 AND #10	<u>853</u>
#12	The year 2000 – current; English	<u>726</u>

The results are hyperlinked in each column 700 J

Cochrane Library Search Strategy

Framework Item	Target	Search term
Population	Patients who have undergone hysterectomy (no	Hysterectomy Cochrane search
	restriction to age)	manager
		Hysterectomy with Cochrane code
		based on mesh term: #1
Intervention	Hysterectomy (No restriction on the surgery	Hysterectomy with Cochrane code
	type, e.g. laparoscopy)	based on mesh term
Comparator	RCT, case-control, cross-sectional or	RCT, case-control, cross-sectional,
	longitudinal design	longitudinal, observational, cohort and
		prospective study with Cochrane code
		based on mesh term:
Outcome	Risk of infection	Hysterectomy with Cochrane code
		based on mesh term

step	code	results
#1	(hysterectomy):ti,ab,kw OR (hysterectomies):ti,ab,kw OR (hysterectomy, Vaginal):ti,ab,kw OR (hysterectomies, Vaginal):ti,ab,kw OR (vaginal hysterectomy):ti,ab,kw OR (vaginal hysterectomy):ti,ab,kw OR (Colpohysterectomy):ti,ab,kw OR (Colpohysterectomies):ti,ab,kw	8202
#2	(Clinical Trials, Randomized):ti,ab,kw OR (Trials, Randomized Clinical):ti,ab,kw OR (Controlled Clinical Trials, Randomized):ti,ab,kw	154945
#3	(Longitudinal Study):ti,ab,kw OR (Studies, Longitudinal):ti,ab,kw OR (Study, Longitudinal):ti,ab,kw OR (Tuskegee Syphilis Study):ti,ab,kw OR (Syphilis Studies, Tuskegee):ti,ab,kw OR (Syphilis Study, Tuskegee):ti,ab,kw OR (Tuskegee Syphilis Studies):ti,ab,kw OR (Jackson Heart Study):ti,ab,kw OR (Heart Studies, Jackson):ti,ab,kw OR (Heart Study, Jackson):ti,ab,kw OR (Jackson Heart Studies):ti,ab,kw OR (Studies, Jackson Heart):ti,ab,kw OR (California Teachers Study):ti,ab,kw OR (California Teachers Studies):ti,ab,kw OR (Studies, California Teachers):ti,ab,kw OR (Teachers Studies, California):ti,ab,kw OR (Teachers Study):ti,ab,kw OR (Bogalusa Heart Study):ti,ab,kw OR (Bogalusa Heart Studies):ti,ab,kw OR (Studies, Bogalusa):ti,ab,kw OR (Study, Bogalusa):ti,ab,kw OR (Studies, Bogalusa Heart):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Heart Studies, Framingham):ti,ab,kw OR (Heart Studies, Framingham):ti,ab,kw OR (Longitudinal Survey):ti,ab,kw OR (Survey, Longitudinal):ti,ab,kw	23544
#4	(Case-Control Study):ti,ab,kw OR (Studies, Case-Control):ti,ab,kw OR (Study, Case-Control):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Studies, Case-Referrent):ti,ab,kw OR (Study, Case-Referrent):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Studies, Case-Base):ti,ab,kw OR (Studies, Case-Control Studies):ti,ab,kw OR (Studies, Nested):ti,ab,kw OR (Study, Nested Case-Control Study):ti,ab,kw OR (Studies, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Study, Nested Case-Control):ti,a	33557

243

#13

The year 2000 - current; English

1 2 3

4

5

Studies, Matched):ti,ab,kw OR (Case-Control Study, Matched):ti,ab,kw OR (Matched Case Control Studies):ti,ab,kw OR (Matched Case-Control Study):ti,ab,kw OR (Studies, Matched Case-Control):ti,ab,kw OR (Study, Matched Case-Control):ti,ab,kw #5 (Cross Sectional Studies):ti,ab,kw OR (Cross-Sectional Study):ti,ab,kw OR (Studies, Cross-Sectional):ti,ab,kw OR (Study, Cross-Sectional):ti,ab,kw OR (Surveys, Disease Frequency):ti,ab,kw OR (Disease Frequency Survey):ti,ab,kw OR (Survey, Disease Frequency):ti,ab,kw OR (Analysis, Cross-Sectional):ti,ab,kw OR (Analyses, Cross-Sectional):ti,ab,kw OR (Analysis, Cross Sectional):ti,ab,kw OR (Cross-Sectional Analyses):ti,ab,kw OR (Cross-Sectional Analysis):ti,ab,kw OR (Cross Sectional 54133 Analysis);ti.ab.kw OR (Analyses, Cross Sectional);ti.ab.kw OR (Cross Sectional Analyses):ti,ab,kw OR (Cross-Sectional Survey):ti,ab,kw OR (Cross Sectional Survey):ti,ab,kw OR (Cross-Sectional Surveys):ti,ab,kw OR (Survey, Cross-Sectional):ti,ab,kw OR (Surveys, Cross-Sectional):ti,ab,kw OR (Disease Frequency Surveys):ti,ab,kw OR (Prevalence Studies):ti,ab,kw OR (Prevalence Study):ti,ab,kw OR (Studies, Prevalence):ti,ab,kw OR (Study, Prevalence):ti,ab,kw #6 (Prospective Study):ti,ab,kw OR (Studies, Prospective):ti,ab,kw OR (Study, 233446 Prospective):ti,ab,kw #7 (Cohort Study):ti.ab.kw OR (Studies, Cohort):ti.ab.kw OR (Study, Cohort):ti.ab.kw OR (Concurrent Studies):ti,ab,kw OR (Studies, Concurrent):ti,ab,kw OR (Concurrent Study):ti,ab,kw OR (Study, Concurrent):ti,ab,kw OR (Closed Cohort Studies):ti,ab,kw OR (Cohort Studies, Closed):ti,ab,kw OR (Closed Cohort Study):ti,ab,kw OR (Cohort Study, Closed):ti,ab,kw OR (Study, Closed Cohort):ti,ab,kw OR (Studies, Closed Cohort):ti,ab,kw OR (Birth Cohort Studies):ti,ab,kw OR (Birth Cohort Study):ti,ab,kw OR (Cohort Studies, Birth):ti,ab,kw OR (Cohort Study, Birth):ti,ab,kw OR (Studies, 184886 Birth Cohort):ti,ab,kw OR (Study, Birth Cohort):ti,ab,kw OR (Analysis, Cohort):ti,ab,kw OR (Analyses, Cohort):ti,ab,kw OR (Cohort Analyses):ti,ab,kw OR (Cohort Analysis):ti,ab,kw OR (Historical Cohort Studies):ti,ab,kw OR (Cohort Studies, Historical):ti,ab,kw OR (Cohort Study, Historical):ti,ab,kw OR (Historical Cohort Study):ti,ab,kw OR (Study, Historical Cohort):ti,ab,kw OR (Studies, Historical Cohort):ti,ab,kw OR (Incidence Studies):ti,ab,kw OR (Incidence Study):ti,ab,kw OR (Studies, Incidence):ti,ab,kw OR (Study, Incidence):ti,ab,kw 20328 #8 (Observational Study):ti,ab,kw #9 (Infection and Infestation):ti,ab,kw OR (Infection and Infestation):ti,ab,kw OR (Infections and Infestations):ti,ab,kw OR (Infestations and Infections):ti,ab,kw OR 102985 (Infection):ti,ab,kw #10 #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 552677 #11 #1 AND #9 AND #10 382 #12 Trials 377

Risk of Bias Assessment

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CASE

CONTROL STUDIES)

■	lectior	٠
170	-	ı

Selection
1) Is the case definition adequate?
a) yes, with independent validation \square
b) yes, e.g. record linkage or based on self-reports
c) no description
2) Representativeness of the cases
a) consecutive or obviously representative series of cases \Box
b) potential for selection biases or not stated
3) Selection of Controls
a) community controls □
b) hospital controls
c) no description
4) Definition of Controls
a) no history of disease (endpoint)
b) no description of source
Comparability
1) Comparability of cases and controls on the basis of the design or analysis
a) study controls for (Select the most important factor.)
b) study controls for any additional factor (This criteria could be modified to indicate specific control for a second important factor.)
Exposure
1) Ascertainment of exposure
a) secure record (e.g. surgical records) \Box
b) structured interview where blind to case/control status $\hfill\Box$
c) interview not blinded to case/control status
d) written self-report or medical record only
e) no description

- a) yes \square
- b) no

3) Non-response rate

- a) same rate for both groups \Box
- b) non-respondents described
- c) rate different and no designation

Table 1 Risk of Bias Assessment with NOS Case-control Study Scale

Author & Year	Sel	ection	(Comparabilit	y E	xposu	re	Total score
Olsen 2009	1 1	1	0	2	1	1	0	6
Lake 2013	1 1	1	1	2	1	1	1	9
Savage 2013	1 1	1	0	2	1	1	0	7
Pop-Vicas 2014	0 1	1	0	2	0	1	1	6
Morgan 2016	1 1	1	0	2	0	1	1	7
Wang 2022	1 1	1	0	2	1	1	0	7

c) self-report

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHORT STUDIES)

Select	tion	
1) Re	presentativeness of the exposed cohort	
comm	a) truly representative of the average nunity $\hfill\Box$	(describe) in the
	b) somewhat representative of the average	in the community
	c) selected group of users e.g. nurses, volunteers	
	d) no description of the derivation of the cohort	
2) Sel	ection of the non-exposed cohort	
	a) drawn from the same community as the exposed cohort \Box	
	b) drawn from a different source	
	c) no description of the derivation of the non-exposed cohort	
3) Asc	certainment of exposure	
	a) secure record (e.g. surgical records) □	
	b) structured interview □	
	c) written self-report	
	d) no description	
4) De	monstration that outcome of interest was not present at sta	rt of study
	a) yes \square	
	b) no	
Comp	parability	
1) Co	mparability of cohorts on the basis of the design or analysi	S
	a) study controls for (select the most import	ant factor) \square
indica	b) study controls for any additional factor ☐ (This criteria control for a second important factor.)	ould be modified to
Outco	ome	
1) Ass	sessment of outcome	
	a) independent blind assessment \square	
	h) record linkage □	

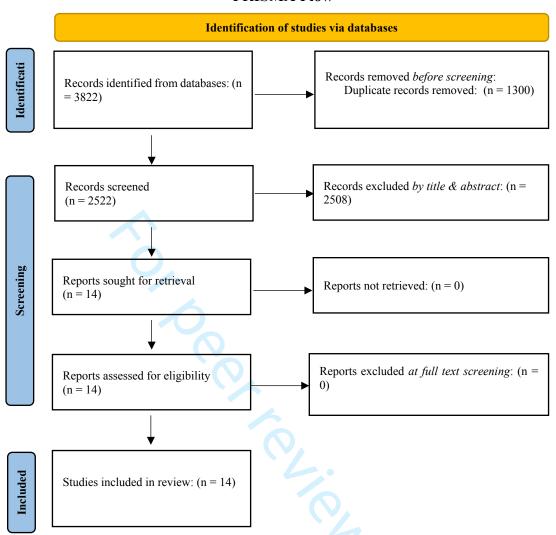
 d) no description

2) Was follow-up long enough for outcomes to occur

- a) yes (select an adequate follow-up period for outcome of interest) \Box
- b) no

3) Adequacy of follow-up of cohorts

- a) complete follow-up all subjects accounted for \Box
- b) subjects lost to follow-up unlikely to introduce bias small number lost > % (select an adequate %) follow up, or description provided of those lost) □
- c) follow up rate < % (select an adequate %) and no description of those lost
 - d) no statement


Table 2 Risk of Bias Assessment with NOS Cohort Study Scale

Author & Year		Sele	Selection		Comparability	E	xposu	Total score	
Molina-Cabrillana 2008	0	1	1	0	2	1	1	0	6
Coleman 2014	1	1	1	0	2	1	0	1	7
Mahdi 2014	1	1	1	0	2	1	1	0	7
Uppal 2015	1	1	1	0	2	1	1	1	8
Tuomi 2016	1	1	1	0	2	1	1	1	8
Till 2017	1	1	1	0	2	0	1	1	7
Brown 2019	1	1	1	1	2	1	1	1	9
Tsuzuki 2021	1	1	1	0	2	1	1	0	7

Table 3 Study Summary

Author & Year		Sele	ction		Comparability	E	xposui	·e	Total score
Molina-Cabrillana 2008#	0	1	1	0	2	1	1	0	6
Olsen 2009*	1	1	1	0	2	1	1	0	6
Lake 2013*	1	1	1	1	2	1	1	1	9
Savage 2013*	1	1	1	0	2	1	1	0	7
Coleman 2014#	1	1	1	0	2	1	0	1	7
Mahdi 2014#	1	1	1	0	2	1	1	0	7
Pop-Vicas 2014*	0	1	1	0	2	0	1	1	6
Uppal 2015#	1	1	1	0	2	1	1	1	8
Morgan 2016*	1	1	1	0	2	0	1	1	7
Tuomi 2016#	1	1	1	0	2	1	1	1	8
Till 2017#	1	1	1	0	2	0	1	1	7
Brown 2019#	1	1	1	1	2	1	1	1	9
Tsuzuki 2021#	1	1	1	0	2	1	1	0	7
Wang 2022*	1	1	1	0	2	1	1	0	7

Note. *means this study was assessed through the items for case-control studies. # means this study was assessed through the items for cohort studies.

BMJ Open

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A systematic review, meta-analysis and network analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-093072.R1
Article Type:	Original research
Date Submitted by the Author:	04-Dec-2024
Complete List of Authors:	liu, yin; West China Women's and Children's Hospital, Nosocomial Infection Management Department; Sichuan University West China Second University Hospital Key Laboratory of Birth Defects and Related Diseases of Women and Children liu, yihao; University of Exeter, School of Psychology, Faculty of Health and Life Sciences yang, zhan; West China Women's and Children's Hospital, Medical Department; Sichuan Children's Hospital (Sichuan Children's Medical Center), Medical Department; Sichuan University West China Second University Hospital Key Laboratory of Birth Defects and Related Diseases of Women and Children wu, jinlin; West China Women's and Children's Hospital, medical department li, juan; West China Women's and Children's Hospital, Nosocomial Infection Management Department
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Risk Factors, Network Meta-Analysis, Meta-Analysis

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A systematic review, meta-analysis and network analysis

Abstract

Objective: Surgical site infections (SSI) after hysterectomy constitute significant postoperative complications, affecting patient recovery and healthcare costs. We conducted a systematic review of risk factors for SSI in patients undergoing hysterectomy.

Design: The current study conducted a systematic review with meta-analysis and network analysis to identify and summarise risk factors for SSI following hysterectomy.

Data sources: Pubmed, Medline, Embase, Web of Science, and Cochrane Central Register of Controlled Trials were searched through 1 November 2023.

Eligibility criteria: The inclusion criteria were 1) population: female participants who had post-hysterectomy SSI; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI; 4) outcomes: the number of participants exposed and not exposed to the risk factors of SSI. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Data extraction and synthesis: Two reviewers conducted the screening process independently. Initially, removed all duplicate articles. Then, articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. Data from the selected articles was subsequently extracted.

Results: Blood transfusion emerged as the largest risk factor (OR = 2.55, 95%CI [0.61, 1.26]), followed by tumour presence (OR = 2.23, 95%CI [0.62, 0.98]), obesity (OR = 1.79, 95%CI [0.36, 0.81]), diabetes (OR = 1.70, 95%CI [0.23, 0.82]), and tobacco use (OR = 1.43, 95%CI [0.23, 0.49]). The ORs varied by incision type. Network analysis revealed that vaginal and laparoscopic hysterectomies had significantly lower SSI risk (59% and 55%, respectively) compared to abdominal hysterectomies.

Conclusion: The study establishes blood transfusion, tumour presence,

obesity, diabetes, and tobacco use as significant risk factors for SSI after
hysterectomy, with variations in risk evident across different incision types. The
findings also suggest vaginal and laparoscopic hysterectomies as preferable
alternatives to abdominal hysterectomy in mitigating SSI risk. Future research should
aim for more granular data to untangle the interplay between comorbidities and
further elucidate the differential risk across SSI types.

Keywords: Hysterectomy; Surgical Site Infections; Risk Factors; Meta-analysis; Network Analysis

Strengths and limitations of this study

- 1. The current systematic review synthesised evidence on odds ratios of risk factors for post-hysterectomy SSI and applied Bayesian network analysis to compare SSI risks among three commonly used hysterectomy approaches.
- 2. The current systematic review included 152993 patients who underwent hysterectomy, including 2887 who had post-hysterectomy SSI.
- 3. The major limitation was that we found the case numbers exposed to each risk factor were counted respectively, such that the odds ratios were not solely attributed to a single risk factor and might be overestimated.

50 Introduction

Hysterectomy is a very common procedure in which the uterus is surgically removed, and it is an optional treatment for leiomyoma, endometriosis, abnormal bleeding, benign ovarian neoplasms, pelvic organ prolapse, and gynecologic cancer ¹. Epidemiological research estimated that the lifetime prevalence of hysterectomy surgery is approximately 236/100,0000 in Germany, 143/100,0000 in the US ^{2,3}, 80/100,0000 in China ⁴, and 42/100,0000 in the UK ² among the female population, depending on waitlist queuing time of different regions ². Among patients who had hysterectomies, 2.1% are estimated to develop surgical site infections (SSI) worldwide 5, which has been one of the most common complications after hysterectomy surgery ⁶. According to CDC, SSI is an infection that develops in the portion of the body where the operation was performed. It might be superficial, affecting simply the skin, or more serious, involving tissues beneath the skin, organs, or implanted material. The currently accepted risk factors of hysterectomy SSI are age, body mass index (BMI), smoking, and diabetes 7. However, many studies have shown different results, one study from Spain only considered obesity and inadequate prophylaxis as meaningful indicators 8, whereas another study from the UK also suggested that the operative time should be considered an independent risk factor 9. The evidence from current research appears to be diverse, isolated, and lacking in quantitative power. Consequently, the current study aims to summarise the results of risk factors of hysterectomy SSI through a quantitative approach.

71	Me	thoc
/ I	IVIE	ι

Study Registration

73 The protocol of the current study was registered and reviewed by the 74 PROSPERO International Prospective Register of Systematic Reviews (No.

- 75 CRD42023411668). The protocol is available at:
- 76 https://www.crd.york.ac.uk/PROSPERO/export details pdf.php

The Patient and Public Involvement statement

78 None

Search Strategy

The data was extracted from published empirical study reports retrieved from the databases, including Pubmed (central), Medline (Ovid), Embase (Ovid), Web of Science, and Cochrane Central Register of Controlled Trials. The search terms followed the standard PICO guideline (population, intervention, comparator, outcome) and were adapted according to Medical Subject Headings (MeSH) terms ¹⁰. The search was conducted upon the completion of study registration.

Eligibility criteria

The inclusion criteria were 1) population: female participants who had post-hysterectomy SSI; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI; 4) outcomes: SSI. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Study screening and data extraction

The report articles were retrieved in RIS format and managed with Endnote (Bld13966, EndNote X9.3.3, 2023). The screening process followed the PRISMA guidelines ¹¹. Tworeviewers conducted the screening process independently. Initially, they removed all duplicate articles. Then, articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. Data from the selected articles was subsequently extracted.

Risk of bias assessment

Two reviewers independently scored the studies using the Newcastle-Ottawa quality assessment (NOS) ^{12,13}. NOS is a validated, easy-to-use scale containing 8

items organised into three dimensions: selection, comparability, and exposure/outcome, which has been endorsed for use in systematic reviews of non-randomised studies by The Cochrane Collaboration ¹³. Studies rated 0-2 as poor quality, 3-5 as fair quality, and 6–9 as good/high quality.

Data synthesis

Data synthesis requires at least four sets of data according to the general conduct suggested by the Cochrane Handbook ¹⁴. The effect size of each identified risk factor will be pooled in a quantitative meta-analysis using STATA v18. The risk factors were expected to be reported as binary data about whether or not the patients were exposed to the risk factor and were infected. Consequently, odds ratios (ORs) would be calculated as the effect size with the following formula:

$$OR = \frac{a}{b} \div \frac{c}{d}$$

Where a represents cases exposed to the risk factor and infected, b represents those exposed but not infected, c represents unexposed but infected, and d represents unexposed and uninfected cases. And the LogOR is the natural log of the OR.

Statistical Analysis Plan

The meta-analysis was conducted with STATA v18. Only risk factors reported in over 4 datasets were synthesised into meta-analysis. A random effect model meta-analysis with the restricted maximum likelihood method was used to evaluate the pooled ORs (LogORs). The heterogeneity was also assessed with the random effects model, where heterogeneity I^2 is considered moderate when $I^2 > 50\%$ and high when $I^2 > 75\%$ ¹⁴. Sensitivity analysis was conducted using the Leave-one-out approach by omitting one dataset each time and evaluating the pooled effect sizes. Egger's test and funnel plots were used to assess potential publication bias.

The pooled effect sizes were also entered into subgroup analysis based on the SSI types (superficial, deep, organ space) with available datasets. BMI was entered into the meta-regression analysis with pooled effect sizes of diabetes to explore the relationship between obesity and diabetes and its influence on SSI risk prediction.

Finally, a Bayesian network model was conducted with R and WinBugs to determine the risk of SSI between three surgery types (abdominal, vaginal, and laparoscopic). The Bayesian network model offers a probabilistic graphical

framework that represents and analyses the probabilistic relationships among binominal variables ¹⁵. The model fit of the Bayesian network was evaluated with the Deviance Information Criterion (DIC), where a lower DIC indicates a better-fitting model.

Results

138	
139	Systematic review

Initially, searching the keywords in PubMed, Medline (Ovid), Embase (Ovid), Web of Science, and the Cochrane Central Register of Controlled Trials produced 3821 records. Fourteen studies met the inclusion criteria after screening based on the PRISMA guidelines. The PRISMA procedure is shown in Figure 1.

Figure 1 The PRISMA Flow

All identified studies were retrospective observations to record the case numbers of SSI after hysterectomy surgeries with or without the occurrence of each risk factor. In total, 152993 female patients (age: 47.53±8.29) who underwent hysterectomy were included in the current 14 studies, of whom 2887 had SSI in different types, and 150106 had no SSI taken as controls. The details of all studies are described in Table 1 (More detailed information can be found at supplymentary material 1).

Table 1 Study Summary

			BMJ Open		/bmjopen-2024-093072 on d by copyright, including f		
Table 1 Study Sum	mary				93072 on 4 cluding for		
Author & Year	Sample Origin	Surgery Method	Blood Transfusion	Diabetes	Obesity	Tobacco Use	Tumour
Molina-Cabrillana 2008	2000-2004 Hospital Universitario Materno-Infantil de Canarias, Sapin	abdominal & vaginal	NR	Y/N	ne 202 nseigr es fela	NR	Y/N
Olsen 2009	2003-2005 CDC Prevention Epicenter Program hospitals, USA	abdominal & vaginal	NR	Y/N	9 2025. Downloaded f seignement Superieu s felateo∯o textand d BMI≥30	Y/N	Y/N
Lake 2013	2005-2009 ACS-NSQIP, USA	abdominal & vaginal & laparoscopic	Y/N	Y/N	exuments) BMI≥307(derical BMI>307(derical BMI	Y/N	Y/N
Savage 2013	2007-2010 University of Iowa Hospitals and Clinics, USA	abdominal	Median	Y/N	d from eur (Al d data	NR	Y/N
Coleman 2014	1999-2012 Johns Hopkins Medical Institution, USA	abdominal & vaginal & laparoscopic	Y/N	Y/N	BMI≥30 to be before the best property)	Y/N	NR
Mahdi 2014	2005-2011 ACS-NSQIP, USA	laparoscopic	>4 units of packed red blood cells	Y/N	BMI>30 Pobesty)	Y/N	NR
Pop-Vicas 2014	2012-2015 University of Wisconsin Hospitals, USA	abdominal & vaginal & laparoscopic	NR	NR	trainft, anobeany) BMI≥30 trainfty) BMI≥30 trainfty	Y/N	Y/N
Uppal 2015	2012-2015 MSQC, USA	abdominal & vaginal & laparoscopic	NR	NR	<u>vi</u> . –	Y/N	Y/N
Morgan 2016	2012-2014 MSQC, USA	abdominal	Y/N	Y/N	BMI≥30 Obesity)	Y/N	Y/N
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	abdominal & vaginal & laparoscopic	NR	Y/N	June 7, 20½5 at Ag lar technologies BMI≥30es BMI≥30es	Y/N	NR
Till 2017	2012-2015 MSQC, USA	abdominal & vaginal & laparoscopic	NR	Y/N	BMI≥30 g Obe rs ty)	Y/N	Y/N
Brown 2019	2012-2014 ACS-NSQIP, USA	laparoscopic	Y/N	Y/N	at Ag ies _N R	Y/N	NR
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	laparoscopic	Y/N	Y/N	NR CE BI	Y/N	NR
			8		Bibliographique de l		

 Page 10 of 45

Among these studies, seven only reported infection cases in mixed three SSI types (superficial, deep or organ space) ^{8,16-21}, two only reported in mixed two SSI (deep or organ space) ^{22,23}, one study reported each SSI types separately ²⁴ and one study reported superficial and organ space SSIs separately ²⁵, one study reported superficial SSI independently but mixed deep or organ space SSIs ²⁶, one study reported deep SSI independently but mixed superficial or deep SSIs ⁵, one study reported only organ space SSIs ²⁷. Since it requires at least four datasets to conduct meta-analyses ¹⁴, the studies reported cases in independent SSI types were combined into three mixed SSI types (superficial, deep or organ space) to synthesise with those only reported the mixed SSI types. The NOS risk of bias assessment rated three studies scored 6 ^{8,19,24}, seven scored 7 ^{5,16-18,21,23,27}, two scored 8 ^{20,25}, and the other two scored 9 ^{22,26}. All 14 studies are ranked as good/high quality and were included in the following review.

Among the 14 studies, there were 11 risk factors identified in total, including age, antimicrobial, blood loss, blood transfusion, BMI, diabetes (both type I or type II), obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, antimicrobial and blood loss were reported in less than four datasets. Wound cleanness and age were reported in different classification standards. Only 5 factors reported in more than 4 datasets are available for quantitative analysis, including blood transfusion, diabetes, obesity, tobacco use, and tumour. Age, high BMI, and surgery duration reported continued data and thus could not be directly synthesised.

d by copyright, including

Meta-analyses

//bmjopen-2024-093072 on The identified risk factors with sufficient datasets were entered into meta-analyses respectively. As shown in Table 2, pooled effect sizes revealed significant overall logORs of blood transfusion (logOR = .94, OR = 2.55, p < .001, 95%CI [0.8 a d .26]), obesity (logOR = .58, OR = 1.79, p <.001, 95%CI [0.36, 0.81]), diabetes (logOR = .53, OR = 1.70, p <.001, 95%CI [0.23, 0.82]), t <.001, 95%CI [0.23, 0.49]), but not tumour (logOR = .30, OR = 1.36, p = .362, 95%CI [0.62, 0.98]) & sethe risk factors for SSI infections. However, after removing each dataset one at a time, leave-one-out sensitivity analysis on all risk fat suggested no changes except for tumour, where one dataset changed the results 8. Further analysis with publication bias suggested no publication bias in all factors. However, as shown in Figure 2A, the funnel plot suggested three outlier datasets 8,20,24. One border dataset was decided be kept 20, and the other two were excluded from the analysis 8,24.

Table 2 Summary of Meta-analyses

D'al-Easter	Meta-analysis		Hetero	geneity Test	Leave-one-o	out Segisitivity	Egger's Publication Bias	
Risk Factor -	OR	p	I^2	р	lowest LogOR	Highest LogOR	p	
Blood Transfusion	2.55	<.001	0.00%	.983	.88	ons o	.934	
Tumour	2.23	<.001	0.00%	.850	.70	n& Maila	.950	
Obesity	1.79	<.001	67.56%	.020	.54	. tec	.263	
Diabetes	1.70	<.001	64.07%	<.001	.44	h .64	.178	
Tobacco Use	1.43	<.001	0.00%	.330	.32	20 <u>2</u> 5	.363	

Note. The presenting data of the tumour was after exclusions of outliers. RF+ refers to exposure to the risk factor, RF-\$\overline{\pi}\eta\$ to no exposure to the risk factor, SSI+ Agence Bibliographique de refers to SSI positive, and SSI- refers to SSI negative.

Figure 2 The Funnel Plots

After exclusion, data from the tumour was entered into meta-analysis again and reported a significant pooled effect size predicting SSI infections (logOR = .80, OR = 2.23, p < .001), and, as shown in Figure 2B, there were no outliers. As shown in Figure 3A, 3B, and 3C, the estimation of heterogeneity suggested that the chance of inconsistent distribution of the pooled logORs was not significant in blood transfusion datasets ($I^2 = 0\%$, $Q_{(3)} = .17$, p = .983), tumour ($I^2 = 0\%$, $Q_{(4)} = 1.34$, p = .850) or tobacco use ($I^2 = 0\%$, $Q_{(5)} = 5.78$, p = .330). However, Figure 3D and Figure 3E suggested significant moderate heterogeneity in obesity ($I^2 = 67.56\%$, $Q_{(4)} = 11.58$, p < .001) and diabetes datasets ($I^2 = 64.07\%$, $Q_{(7)} = 21.13$, p < .001). These results suggested that blood transfusion, tumour, tobacco use, obesity, and diabetes were significant risk factors predicting post-hysterectomy SSI. Patients who underwent blood transfusion had a 155% increased likelihood of experiencing post-hysterectomy SSI. Similarly, individuals with tumours had a 123% increased risk, obese individuals 79%, diabetics 70%, and tobacco users 43%.

Figure 3 The Forest Plots for Each Risk Factor

Subgroup analysis between studies reporting different SSI types (mixed superficial or deep or organ space vs. mixed deep or organ space) was conducted among tobacco use and diabetes, for they obtained more than 4 datasets under each subgroup. The difference was whether they included superficial SSI. A significant group difference in pooled ORs between mixed superficial & deep & organ space cases and mixed deep or organ space among tobacco use, $Q_{(1)} = 11.59$, p <.001, but not among diabetes, $Q_{(1)} = .71$, p = .400.The impact of tobacco use on the risk of SSI varied significantly depending on the type of SSI, see supplymentary material Table 2. As shown in Figure 4, while tobacco use was associated with a 143% increased risk for combined superficial, deep, and organ space SSIs, this risk escalated to a 272% increase when considering only deep and organ space SSIs. This suggests that the influence of smoking may be more pronounced for deep and organ space infections than superficial ones. Given the observed discrepancy in risk between the combined

Figure 4 Tobacco Use Subgroup Forest Plot between SSI Types

Continuous BMI data was incorporated into a meta-regression analysis alongside the ORs of diabetes to evaluate the relationship between obesity and diabetes. Given the absence of group differences or heterogeneity discrepancies across SSI types in the effect sizes associated with diabetes, datasets from both SSI types (though not originating from identical studies) were incorporated into the meta-regression. The results suggested that BMI did not significantly predict the ORs of diabetes (β = .001, SE = .08, t = .02, p = .989). While this does not suggest that BMI (or obesity) is not correlated with the incidence of diabetes, it does affirm that high BMI did not affect the outcomes in this particular analysis.

Bayesian Network Analysis

The infected and non-infected case numbers under each surgery method (abdominal, vaginal, laparoscopic) were analysed with a Bayesian network model to determine whether vaginal and laparoscopic surgeries had a lower SSI risk than abdominal surgeries, see Figure 5. The Bayesian network model exhibited a DIC of 111.5. Compared to abdominal surgeries, vaginal surgeries reduced the risk of developing SSI by 59% (logOR = -.90, OR = .41, 95%CI [0.33, 0.67]) and laparoscopic surgeries by 55% (logOR = -.80, OR = .45, 95%CI [0.37, 0.67]). However, the latter two did not distinguish from each other (logOR = -.1, OR = .9, 95%CI [0.72, 1.21]). These results suggest that conducting the hysterectomy with the vaginal or laparoscopic methods is respectively safer than the abdominal method in terms of SSI risk.

Figure 5 Bayesian network analysis

244 Discussion

 The current study conducted a systematic review with meta-analysis and network analysis to summarise the evidence of risk factors of SSI after hysterectomy surgeries. To our knowledge, this is the first quantitative review of the topic. In total, 14 retrospective observations studies were identified with 2887 SSI positive and 150106 negative cases under 11 risk factors, including age, antimicrobial, blood loss, blood transfusion, high BMI, diabetes, obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, only 5 were available for meta-analysis synchronisation. Among which, blood transfusion, tumour, obesity, diabetes, and tobacco use were factors that significantly increased the risk of SSI. The estimated ORs also seemed to vary between different SSI types (superficial, deep, or organ space). Apart from risk factors, Bayesian network analysis also suggested that conducting vaginal or laparoscopic hysterectomies induced a significantly lower risk of SSI infection than abdominal surgeries. The details of the quantitative analysis are discussed as follows.

The largest risk factor of SSI is blood transfusion (OR = 2.55), with a 155% increased likelihood of SSI. Blood transfusion has always been identified as a major source of post-surgical infections ^{28,29}. Administrative errors, such as bacterial contamination in platelet products, are believed responsible for infections induced by blood transfusion ²⁸. These issues are related to the healthcare service environment and beyond the current paper's discussion. Instead, the need for blood transfusion deserves further elaboration from the patients' site. For example, blood loss was reported to be positively correlated with BMI ^{30,31}. Apart from obesity, severe abnormal uterine bleeding and cancer-related anaemia are also important reasons that patients require extra blood transfusion. However, none of the included studies attempted to isolate these factors, nor did they report preoperative haemoglobin. Consequently, we could not address whether blood transfusion was an independent factor or it was attributed to other factors such as obesity, severe abnormal uterine bleeding, cancer-related anaemia, preoperative haemoglobin or whether its estimated ORs were inflated. Future studies should consider reporting more comprehensive data to precisely estimate the ORs for blood transfusion as the SSI risk factor.

Likewise, one may argue that obesity and diabetes are comorbid, where obesity-induced insulin resistance is one of the major sources of type 2 diabetes 32 . This might explain the moderate heterogeneity of the ORs in obesity (OR = 1.79, $I^2 = 67.56\%$)

and diabetes (OR = 1.70, $I^2 = 64.07\%$). This is, in fact, a methodological issue, where all studies directly counted the case number that was exposed and not exposed to the specific risk factors, but none attempted to distinguish whether the case was exposed to multiple risk factors. That is, one might suffer from obesity or diabetes or both, and the case would be counted in each risk factor respectively when they suffer from both. Consequently, the estimated ORs were not solely attributed to one risk factor and might be overestimated. Hypothetically, in the current case, the heterogeneity of the ORs in obesity and diabetes was moderate because some studies included more patients suffering from both obesity and diabetes and reported higher ORs than those with fewer such patients. As a result, although both obesity and diabetes are significant risk factors, their estimated ORs should be considered cautiously and require further clarification in future studies by reporting cases separately.

To further address this issue, the current study conducted a meta-regression analysis to investigate whether BMI predicts the ORs of diabetes. The analysis found no significant relationship between continuous BMI values and the ORs of diabetes. Notably, the absence of a significant predictive relationship between BMI and the OR for diabetes does not imply that these two factors were unrelated or that obesity does not influence the estimation of OR for diabetes. On the one hand, the absence of a significant predictive relationship might arise from including both type I and type II diabetes in the studies, with type I diabetes having less direct relevance to obesity. On the other hand, the estimation of ORs may still have been elevated due to the repeated counting of cases exposed to multiple risk factors. Instead, this result might be interpreted as the pathologies of obesity and diabetes are relatively independent in the context of SSI risk.

Apart from obesity and diabetes, the second-largest risk factor was tumour (OR = 2.23), with a 123% increased likelihood of SSI. The immune system in patients afflicted with malignant tumours was generally compromised ³³. This impairment in the primary immune function directly results from the tumour's pervasive influence on the natural defence mechanisms. Furthermore, the standard therapeutic interventions for tumours, including surgery, chemotherapy, and radiotherapy, also contribute to the weakened immune state ³⁴.

Tobacco use was the last risk factor (OR = 1.43), with a 43% increased likelihood of SSI. Nicotine and carbon monoxide, two primary agents produced in tobacco use, contribute to the constriction of peripheral blood vessels. This vasoconstriction reduces the oxygen supply to tissues, vital for cellular function and healing processes ³⁵. Consequently, this oxygen deficit can precipitate the formation of microthrombi, which are small clots that can impair blood flow and further hinder tissue repair and regeneration.

However, the estimated ORs of tobacco use seemed to vary between SSI types. A subgroup comparison was conducted between studies that reported all mixed SSI and those that only reported deep or organ space SSI for tobacco use and diabetes, where only these two risk factors were reported repeatedly in distinguishing between SSI types. Significant subgroup differences were observed exclusively in the context of tobacco use. Specifically, tobacco use was associated with a 43% increased risk for superficial, deep, or organ space SSIs. This risk escalated to a 172% increase when focusing solely on deep or organ space SSIs. The pronounced impact of tobacco use appears more substantial in increasing the risk of deep or organ space infections compared to superficial ones. This discrepancy may also be attributed to tobacco-induced vasoconstriction. The vascular system supporting superficial cells, such as those in the skin, is more prosperous than the vasculature of deep and organ space cells. Consequently, cells in deeper tissues and organ spaces are more vulnerable to oxygen supply alterations exacerbated by tobacco use. However, this was merely a hypothetical explanation without solid evidence, which requires further investigation.

Finally, the current Bayesian model revealed a significant reduction in SSI risk with vaginal and laparoscopic hysterectomies compared to the abdominal approach, with decreases of 59% and 55% respectively. Abdominal hysterectomy, though designed to prevent bladder damage by opening the peritoneal reflection and mobilising the bladder, increases postoperative infection risks due to larger incisions and greater abdominal exposure ³⁶. In contrast, laparoscopic methods, utilising smaller incisions and camera systems, minimise air exposure and use electrocoagulation for cutting and hemostasis, thereby reducing pelvic-abdominal disturbances and promoting a stable internal environment ³⁷. While total laparoscopic hysterectomy demands high skill levels, vaginal hysterectomy offers a simpler approach to uterine manipulation, albeit with a slight increase in urinary system

 infection risks from metal cannula introduction ³⁸. Although each technique has distinct risk-benefit profiles, the current results provided straightforward evidence of SSI risk, comparing the techniques to reference individual patient needs and surgical goals.

There are five limitations in the current study. First, some procedures performed in conjunction with hysterectomy can also affect SSI, but this was not explored in this paper. Second, the included studies did not differentiate cases based on the number of risk factors present, counting each instance for all identified risks. This approach likely inflated the ORs, particularly for comorbid conditions like patients with severe abnormal uterine bleeding or cancer-related anaemia and obesity and diabetes. Thirdly, there was no distinction between Type I and Type II diabetes in the studies, potentially contributing to moderate heterogeneity in the pooled OR estimates. Therefore, the estimated ORs for obesity and diabetes as risk factors for SSIs should be interpreted cautiously. Then, since none of the studies isolated patients with severe abnormal uterine bleeding, suffered from cancer-related anaemia, or reported preoperative HbA1, it is unclear whether these factors also inflated the estimation ORs for blood transfusion, and thus, they should be interpreted cautiously as well. Lastly, few studies specified the types of SSI (superficial, deep, or organ space). Given that our analysis indicates variation in tobacco use ORs across different SSI types, it is crucial to ascertain if similar variations apply to other risk factors. Addressing these issues in future research, with more detailed data reporting, is essential for a clearer understanding of the risk factors for SSIs. Future studies should report more comprehensive data to address these limitations.

In summary, the current study conducted a systematic review with meta-analysis and network analysis of the risk factors of SSI after hysterectomy surgeries. In total, 11 risk factors were mentioned, whereas only blood transfusion, tumour, obesity, diabetes, and tobacco use had sufficient data to be entered into meta-analysis and yield statistical significance. With limited available data, the ORs of tobacco use seemed to vary between different SSI types, suggesting potential diversity in other risk factors. Finally, a Bayesian network model compared the risk of SSI between vaginal and laparoscopic and abdominal hysterectomy approaches. This approach offers valuable insights into the varying risks associated with each surgical method.

373	Conflict of Interest: The authors declare that they have no conflict of interest
374	Funding: The researchers of this study did not receive or use any funding
375 376	Data Sharing: All relevant data are within the manuscript and its Supporting information files.
377	Contributor Information
378	Liu, yin, Email: 2471669869@qq.com
379	liu, yihao, Email: yl531@exeter.ac.uk.
380	yang, zhan, Email: 614958117@qq.com.
381	wu, jinlin, Email: 1369051705@qq.com.
382	li, juan, Email: 364256183@qq.com.
383 384 385	liu, yihao and yang, zhan contributed equally to this paper. yang, zhan is the guarantor.
386	
387	
388	

389 Reference

Wright JD, Ananth CV, Lewin SN, et al. Robotically assisted vs laparoscopic

hysterectomy among women with benign gynecologic disease. *JAMA* 2013; **309**(7):

392 689-98.

- 393 2. Mukhopadhaya N, Manyonda I. The hysterectomy story in the United 394 Kingdom. *Journal of mid-life health* 2013; **4**(1): 40.
- 395 3. OECD. OECD Health Data 2003. Ottawa, 2004.
- 4. Liu F, Pan Y, Liang Y, et al. The epidemiological profile of hysterectomy in rural Chinese women: a population-based study. *BMJ open* 2017; **7**(6): e015351.
- 5. Morgan DM, Swenson CW, Streifel KM, et al. Surgical site infection following hysterectomy: adjusted rankings in a regional collaborative. *American Journal of Obstetrics and Gynecology* 2016; **214**(2): 259. e1-. e8.
- 401 6. Shi L, Gu Q, Zhang F, et al. Predictive factors of surgical site infection after hysterectomy for endometrial carcinoma: a retrospective analysis. *BMC Surg* 2021; 403 **21**(1): 1-7.
- 404 7. Chen I, Choudhry AJ, Schramm D, et al. Type of pelvic disease as a risk 405 factor for surgical site Infectionin women undergoing hysterectomy. *Journal of Minimally Invasive Gynecology* 2019; **26**(6): 1149-56.
- 8. Molina-Cabrillana J, Valle-Morales L, Hernandez-Vera J, López-Carrió I, Garcia-Hernandez J, Bolaños-Rivero M. Surveillance and risk factors on hysterectomy wound infection rate in Gran Canaria, Spain. *European Journal of Obstetrics & Gynecology and Reproductive Biology* 2008; **136**(2): 232-8.
- 9. Pakzad R, Safiri S. Incidence and risk factors for surgical site infection posthysterectomy in a tertiary care center: methodologic issues. *American Journal of Infection Control* 2017; **45**(5): 580-1.
- 414 10. Bramer WM, De Jonge GB, Rethlefsen ML, Mast F, Kleijnen J. A systematic 415 approach to searching: an efficient and complete method to develop literature 416 searches. *Journal of the Medical Library Association: JMLA* 2018; **106**(4): 531.
- 11. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Systematic reviews* 2021; **10**(1): 1-11.
- 420 12. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford; 2000.
- 13. Nasser M. New standards for systematic reviews incorporate population health sciences. *American Journal of Public Health* 2020; **110**(6): 753.
- Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons; 2019.
- Hu D, O'Connor AM, Wang C, Sargeant JM, Winder CB. How to conduct a Bayesian network meta-analysis. *Frontiers in veterinary science* 2020; 7: 271.
- 428 16. Savage MW, Pottinger JM, Chiang H-Y, Yohnke KR, Bowdler NC, Herwaldt LA. Surgical site infections and cellulitis after abdominal hysterectomy. *American*

Journal of Obstetrics and Gynecology 2013; **209**(2): 108. e1-. e10.

- 431 17. Coleman JS, Green I, Scheib S, Sewell C, Lee JM-H, Anderson J. Surgical site 432 infections after hysterectomy among HIV-infected women in the HAART era: a 433 single institution's experience from 1999–2012. *American journal of obstetrics and*
- *gynecology* 2014; **210**(2): 117. e1-. e7.
- 435 18. Mahdi H, Goodrich S, Lockhart D, DeBernardo R, Moslemi-Kebria M.
- 436 Predictors of surgical site infection in women undergoing hysterectomy for benign
- 437 gynecologic disease: a multicenter analysis using the national surgical quality

439 901-9.

1 2 3

4

5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31 32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47 48

49

50

51

52

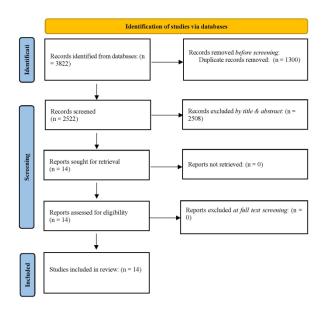
53

54 55

56

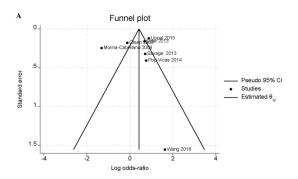
57

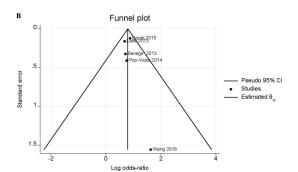
58


59

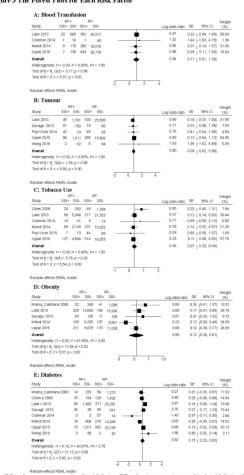
- 440 19. Pop-Vicas A, Musuuza JS, Schmitz M, Al-Niaimi A, Safdar N. Incidence and risk factors for surgical site infection post-hysterectomy in a tertiary care center.
- 442 American Journal of Infection Control 2017; **45**(3): 284-7.
- 443 20. Uppal S, Harris J, Al-Niaimi A, et al. Prophylactic antibiotic choice and risk
- of surgical site infection after hysterectomy. *Obstetrics and gynecology* 2016; **127**(2):
- 445 321.
- 446 21. Wang D, Chen Y, Deng J, et al. A Retrospective Study from 2 Tertiary
- 447 Hospitals in China to Evaluate the Risk Factors for Surgical Site Infections After
- 448 Abdominal Hysterectomy in 188 Patients. Medical Science Monitor: International
- 449 Medical Journal of Experimental and Clinical Research 2022; **28**: e936198-1.
- 450 22. Brown O, Geynisman-Tan J, Gillingham A, et al. Minimizing risks in
- 451 minimally invasive surgery: rates of surgical site infection across subtypes of
- laparoscopic hysterectomy. Journal of Minimally Invasive Gynecology 2020; 27(6):
- 453 1370-6. e1.
- 454 23. Tsuzuki Y, Hirata T, Tsuzuki S, Wada S, Tamakoshi A. Risk factors of
- 455 vaginal cuff infection in women undergoing laparoscopic hysterectomy for benign
- 456 gynecological diseases. *J Obstet Gynaecol Res* 2021; **47**(4): 1502-9.
- 457 24. Olsen MA, Higham-Kessler J, Yokoe DS, et al. Developing a risk
- 458 stratification model for surgical site infection after abdominal hysterectomy. *Infect*
- 459 *Control Hosp Epidemiol* 2009; **30**(11): 1077-83.
- 460 25. Tuomi T, Pasanen A, Leminen A, Bützow R, Loukovaara M. Incidence of and
- 461 risk factors for surgical site infections in women undergoing hysterectomy for
- 462 endometrial carcinoma. Acta obstetricia et gynecologica Scandinavica 2016; 95(4):
- 463 480-5.
- Lake AG, McPencow AM, Dick-Biascoechea MA, Martin DK, Erekson EA.
- Surgical site infection after hysterectomy. *American journal of obstetrics and*
- 466 *gynecology* 2013; **209**(5): 490. e1-. e9.
- 467 27. Till SR, Morgan DM, Bazzi AA, et al. Reducing surgical site infections after
- 468 hysterectomy: metronidazole plus cefazolin compared with cephalosporin alone.
- 469 American Journal of Obstetrics and Gynecology 2017; 217(2): 187. e1-. e11.
- 470 28. Goodnough LT. Risks of blood transfusion. Crit Care Med 2003; 31(12):
- 471 S678-S86.
- 472 29. Carson JL. Blood transfusion and risk of infection: new convincing evidence?
- 473 *JAMA* 2014; **311**(13): 1293-4.
- 474 30. Tjeertes EE, Hoeks SS, Beks SS, Valentijn T, Hoofwijk AA, Stolker RJR.
- Obesity-a risk factor for postoperative complications in general surgery? BMC
- *Anesthesiol* 2015; **15**(1): 1-7.
- 477 31. Bowditch M, Villar R. Do obese patients bleed more? A prospective study of
- 478 blood loss at total hip replacement. Ann R Coll Surg Engl 1999; **81**(3): 198.
- 479 32. Verma S, Hussain ME. Obesity and diabetes: an update. *Diabetes & Metabolic*
- 480 Syndrome: Clinical Research & Reviews 2017; 11(1): 73-9.
- 481 33. De Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune
- 482 system during cancer development. *Nature reviews cancer* 2006; **6**(1): 24-37.
- 483 34. Shaked Y. Balancing efficacy of and host immune responses to cancer
- 484 therapy: the yin and yang effects. *Nature reviews Clinical oncology* 2016; **13**(10):
- 485 611-26.
- 486 35. Sørensen LT. Wound healing and infection in surgery: the pathophysiological
- impact of smoking, smoking cessation, and nicotine replacement therapy: a systematic

1 2		
3	488	review. Ann Surg 2012; 255 (6): 1069-79.
4 5	489	36. Hilton P, Monaghan JM. Opening and closing the abdominal cavity. Bonney's
6	490	Gynaecological Surgery 2018: 33.
7	491	37. Lu I. Smart knives: controlled cutting schemes to enable advanced endoscopic
8	492	surgery: UCL (University College London); 2011.
9	493	38. Moen MD, Richter HE. Vaginal hysterectomy: past, present, and future.
10	494	International urogynecology journal 2014; 25 : 1161-5.
11 12 13	495	
14 15	496	
16 17	497	Figure 1 The PRISMA Flow
18 19	498	
20	499	Figure 2 The Funnel Plots
21 22	500	
23 24	501	Figure 3 The Forest Plots for Each Risk Factor
25 26	502	
27		
28	503	Figure 4 Tobacco Use Subgroup Forest Plot between SSI Types
29 30	504	
31	505	Figure 5 Bayesian network analysis
32 33		
34	506	
35 36	507	
37		
38 39		
40		
41		
42		
43		
44 45		

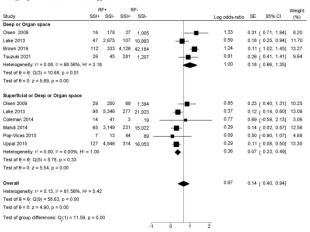

BMJ Open: first published as 10.1136/bmjopen-2024-093072 on 4 June 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.


Figure 1 The PRISMA Flow

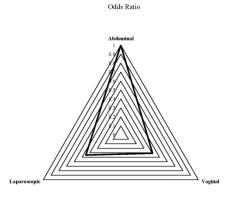
210x297mm (300 x 301 DPI)


Figure 2 The Funnel Plots

210x297mm (302 x 300 DPI)



Random-effects PEIML model


Note. RFF-refers to cases exposed to the risk factor; RF- refers to cases not exposed to the risk factor; SSI+ refers to SSI positive cases; SSI-refers to SSI negative cases;

210x297mm (300 x 300 DPI)

297x210mm (300 x 300 DPI)

297x210mm (300 x 300 DPI)

Contents

Search Terms	2
Pubmed (Central) Search Strategy	2
Medline (Ovid) Search Strategy	4
Embase (Ovid) Search Strategy	6
Web of Science Search Strategy	8
Cochrane Library Search Strategy	10
Risk of Bias Assessment	12
NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CONTROL STUDIES)	
Selection	12
Comparability	12
Exposure	12
NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COL STUDIES)	14
Selection	
Comparability	14
Outcome	
Table 1 Study Summary	16
Table 2 Subgroup Analyses Between Different SSI Types	18

Search Terms

Pubmed (Central) Search Strategy

Framework Item	Target	Search term
Population Population	female participants who had post-hysterectomy surgeries SSI (no restriction to age)	hysterectomy surgeriesmesh term: #1
Intervention	hysterectomy surgeries(No restriction on the surgery type, e.g. laparoscopy)	hysterectomy surgeriesmesh term: #1
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term: #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8
Outcome	SSI	Infection mesh term: #10

step	code	results
#1	((((((((((((((((((((((((((((((((((((((53,350
#2	((Clinical Trials, Randomized) OR (Trials, Randomized Clinical)) OR (Controlled Clinical Trials, Randomized)	742,997
#3	((((((((((((((((((((((((((((((((((((((1,122,672
#4	((((((((((((((((((((((((((((((((((((((339,768
#5	((((((((((((((((((((((((((((((((((((((1,589,628

	Matched)) OR (Case-Control Study, Matched)) OR (Matched Case Control	
	Studies)) OR (Matched Case-Control Study)) OR (Studies, Matched Case-Control))	
	OR (Study, Matched Case-Control)	
#6	((Prospective Study) OR (Studies, Prospective)) OR (Study, Prospective)	904,417
#7	((((((((((((((((((((((((((((((((((((((<u>3,150,416</u>
#8	Observational Study	205,618
#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	4,994,412
#10	((((Infection and Infestation) OR (Infestation and Infection)) OR (Infections and	
	Infestations)) OR (Infestations and Infections)) OR (Infection)	4003846
#11	#1 AND #9 AND #10	1,758
#12	The year 2000 - Current	1,198
#13	English	1,096

The results are hyperlinked in each column

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	Medline code
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	Medline code
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term with Medline code
Outcome	SSI	Infection mesh term with Medline code

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	52599
2	hysterectomies. ti,ab,mp.	3423
3	hysterectomy, Vaginal. ti,ab,mp.	3235
4	hysterectomies, Vaginal. ti,ab,mp.	9
5	vaginal hysterectomies. ti,ab,mp.	437
6	vaginal hysterectomy. ti,ab,mp.	3593
7	Colpohysterectomy. ti,ab,mp.	84
8	Colpohysterectomies. ti,ab,mp.	8
9	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8	53278
Group 2	Intervention	
10	hysterectomy. ti,ab,mp.	52599
11	hysterectomies. ti,ab,mp.	3423
12	hysterectomy, Vaginal. ti,ab,mp.	3235
13	hysterectomies, Vaginal. ti,ab,mp.	9
14	vaginal hysterectomies. ti,ab,mp.	437
15	vaginal hysterectomy. ti,ab,mp.	3593
16	Colpohysterectomy. ti,ab,mp.	84
17	Colpohysterectomies. ti,ab,mp.	8
18	10 or 11 or 12 or 13 or 14 or 15 or 16 or 17	53278
Group 3	Comparator	
19	Cross-sectional. ti,ab,mp.	632818
20	Longitudinal. ti,ab,mp.	377935
21	Prospective study. ti,ab,mp.	159216
22	Cohort study. ti,ab,mp.	274386
23	Observational study. ti,ab,mp.	199248
24	Randomized control study. ti,ab,mp.	937
25	Case-Control Studies. ti,ab,mp.	338463
26	19 or 21 or 22 or 23 or 24 or 25	1494518
Group 4	Outcome	
27	Infections. ti,ab,mp.	1470008
28	"Infection and Infestation". ti,ab,mp.	86
29	"Infestation and Infection". ti,ab,mp.	51
30	"Infections and Infestations". ti,ab,mp.	311

31	"Infestations and Infections". ti,ab,mp.	28
32	Infection. ti,ab,mp.	1418735
33	27 or 28 or 29 or 30 or 31 or 32	2279134
Combined	9 and 18 and 26 and 33	407
Limited to English only	9 and 18 and 26 and 33	384
The year 2000 to present	9 and 18 and 26 and 33	337

Results link:

https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=5SYIqKO2Gpep7EBCDrAGLmKZrFtVAMXrv0wx7zAaFQsQRH5DCIC 4ESMKrqhH2tOv1

Embase (Ovid) Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	Embase code
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	Embase code
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term with Embase code
Outcome	SSI	Infection mesh term with Embase code

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	93767
2	hysterectomies. ti,ab,mp.	6284
3	hysterectomy, Vaginal. ti,ab,mp.	392
4	trachelectomy. ti,ab,mp.	19
5	hysterectomies, Vaginal. ti,ab,mp.	758
6	vaginal hysterectomies. ti,ab,mp.	8954
7	vaginal hysterectomy. ti,ab,mp.	83
8	Colpohysterectomy. ti,ab,mp.	5
9	Colpohysterectomies. ti,ab,mp.	94170
10	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9	93767
Group 2	Intervention	
11	hysterectomy. ti,ab,mp.	93767
12	hysterectomies. ti,ab,mp.	6284
13	hysterectomy, Vaginal. ti,ab,mp.	392
14	trachelectomy. ti,ab,mp.	19
15	hysterectomies, Vaginal. ti,ab,mp.	758
16	vaginal hysterectomies. ti,ab,mp.	8954
17	vaginal hysterectomy. ti,ab,mp.	83
18	Colpohysterectomy. ti,ab,mp.	5
19	Colpohysterectomies. ti,ab,mp.	94170
20	11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19	93767
Group 3	Comparator	
21	Cross-sectional. ti,ab,mp.	765496
22	Longitudinal. ti,ab,mp.	475332
23	Prospective study. ti,ab,mp.	899849
24	Cohort study. ti,ab,mp.	405571
25	Observational study. ti,ab,mp.	342074
26	Randomized control study. ti,ab,mp.	1628
27	Case-Control Studies. ti,ab,mp.	27610
28	21 or 22 or 23 or 24 or 25 or 26 or 27	2146419
Group 4	Outcome	
29	Infections. ti,ab,mp.	835857
30	"Infection and Infestation". ti,ab,mp.	107

31	"Infestation and Infection". ti,ab,mp.	55
32	"Infections and Infestations". ti,ab,mp.	807
33	"Infestations and Infections". ti,ab,mp.	49
34	Infection. ti,ab,mp.	2763568
35	29 or 30 or 31 or 32 or 33 or 34	2991465
Combined	10 and 20 and 28 and 35	1510
Limited to English only	10 and 20 and 28 and 35	1468
The year 2000 to present	10 and 20 and 28 and 35	1419

Results link:

_dweb.cgi?1 _dadXj9ZUf4Uz. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=79TCxxCp1oN0adXj9ZUf4UzOGz44m8xhcwT9pEsrMoJkpSIjfY4IktYO 5RKZbvU7

Web of Science Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	the web of science code: #1
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	the web of science code: #1
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study mesh terms with the
		web of science code: #2, #3, #4, #5, #6,
		#7, #8
Outcome	SSI	Infection mesh term with the web of
		science code: #10

step	code	results
#1	TS= (hysterectomy* OR hysterectomies* OR hysterectomy, vaginal* OR hysterectomies, vaginal OR vaginal hysterectomies* OR vaginal hysterectomy* OR colpohysterectomy* OR colpohysterectomies*)	40974
#2	TS= (Clinical Trials, Randomized* OR Trials, Randomized Clinical* OR Controlled Clinical Trials, Randomized*)	357993
#3	TS= (Longitudinal Study* OR Studies, Longitudinal* OR Study, Longitudinal* OR Tuskegee Syphilis Study* OR Syphilis Studies, Tuskegee* OR Syphilis Study, Tuskegee* OR Tuskegee Syphilis Studies* OR Jackson Heart Study* OR Heart Studies, Jackson* OR Heart Study, Jackson* OR Jackson Heart Studies* OR Studies, Jackson Heart* OR California Teachers Study* OR California Teachers Studies* OR Studies, California Teachers* OR Study, California Teachers* OR Teachers Studies, California* OR Bogalusa Heart Study* OR Bogalusa Heart Studies, Bogalusa Heart Study, Bogalusa* OR Studies, Bogalusa Heart* OR Study, Bogalusa Heart* OR Study, Bogalusa Heart* OR Framingham Heart Study* OR Framingham Heart Studies* OR Heart Study, Framingham* OR Longitudinal Survey* OR Longitudinal Surveys* OR Survey, Longitudinal* OR Surveys, Longitudinal*)	389252
#4	TS= (Case-Control Study* OR Studies, Case-Control* OR Study, Case-Control* OR Case-Comparison Studies* OR Case-Comparison Studies* OR Case-Comparison* OR Study, Case-Comparison* OR Case-Compeer Studies* OR Studies, Case-Compeer* OR Case-Referrent Studies* OR Case-Referrent Studies* OR Case-Referrent Study* OR Studies, Case-Referrent* OR Study, Case-Referrent* OR Case-Referent Studies* OR Case-Referent Study* OR Studies, Case-Referent* OR Study, Case-Referent* OR Case-Base Studies* OR Case Base Studies* OR Studies, Case-Base* OR Case Control Study* OR Studies, Case-Base* OR Case Control Studies* OR Case Control Study* OR Studies, Case-Control Studies* OR Case-Control Study, Nested* OR Nested Case-Control Study* OR Studies, Nested* OR Case-Control Study* OR Studies, Nested Case-Control Study* OR Study, Nested Case-Control Studies* OR Case-Control Studies, Matched* OR Case-Control Studies* OR Studies, Matched* OR Case-Control Study* OR Studies, Matched* OR Case-Control Study* OR Studies, Matched Case Control Studies* OR Matched Case-Control Studies, Matched* OR Study, Matched* OR Study, Matched* OR Studies, Matched* OR Study, Matched* OR Studies, Matched* Case-Control* OR Study, Matched* Case-Control*)	742023
#5	TS= (Cross Sectional Studies* OR Cross-Sectional Study * OR Studies, Cross-Sectional * OR Study, Cross-Sectional * OR Surveys, Disease Frequency * OR Disease Frequency Survey * OR Survey, Disease Frequency * OR Analysis, Cross-Sectional * OR Analyses, Cross-Sectional * OR Analysis, Cross Sectional * OR Cross-Sectional Analysis * OR Cross-Sectional Analysis	<u>1164085</u>

Cochrane Library Search Strategy

Framework Item	Target	Search term
P opulation	female participants who had post-hysterectomy	hysterectomy surgeriesCochrane search
	surgeriesSSI(no restriction to age)	manager
		hysterectomy surgerieswith Cochrane
		code based on mesh term: #1
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgerieswith Cochrane
	surgery type, e.g. laparoscopy)	code based on mesh term
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study with Cochrane code
		based on mesh term:
Outcome	SSI	hysterectomy surgerieswith Cochrane
		code based on mesh term

step	code	results
#1	(hysterectomy):ti,ab,kw OR (hysterectomies):ti,ab,kw OR (hysterectomy,Vaginal):ti,ab,kw OR (vaginal hysterectomies):ti,ab,kw OR (vaginal hysterectomy):ti,ab,kw OR (vaginal hysterectomy):ti,ab,kw OR (Colpohysterectomy):ti,ab,kw OR (Colpohysterectomies):ti,ab,kw	8202
#2	(Clinical Trials, Randomized):ti,ab,kw OR (Trials, Randomized Clinical):ti,ab,kw OR (Controlled Clinical Trials, Randomized):ti,ab,kw	154945
#3	(Longitudinal Study):ti,ab,kw OR (Studies, Longitudinal):ti,ab,kw OR (Study, Longitudinal):ti,ab,kw OR (Tuskegee Syphilis Study):ti,ab,kw OR (Syphilis Studies, Tuskegee):ti,ab,kw OR (Syphilis Study, Tuskegee):ti,ab,kw OR (Tuskegee Syphilis Studies):ti,ab,kw OR (Jackson Heart Study):ti,ab,kw OR (Heart Studies, Jackson):ti,ab,kw OR (Heart Study, Jackson):ti,ab,kw OR (Jackson Heart Studies):ti,ab,kw OR (Studies, Jackson Heart):ti,ab,kw OR (California Teachers Study):ti,ab,kw OR (Studies, California Teachers Study):ti,ab,kw OR (Studies, California Teachers):ti,ab,kw OR (Studies, California):ti,ab,kw OR (Study, California):ti,ab,kw OR (Bogalusa Heart Studies):ti,ab,kw OR (Heart Studies, Bogalusa):ti,ab,kw OR (Heart Studies, Bogalusa):ti,ab,kw OR (Study, Bogalusa):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Heart Studies, Framingham):ti,ab,kw OR (Heart Study, Framingham):ti,ab,kw OR (Longitudinal Survey):ti,ab,kw OR (Survey, Longitudinal):ti,ab,kw	23544
#4	(Case-Control Study):ti,ab,kw OR (Studies, Case-Control):ti,ab,kw OR (Study, Case-Control):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Studies, Case-Referrent):ti,ab,kw OR (Study, Case-Referrent):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Study, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Studies, Case-Base):ti,ab,kw OR (Case Control Studies):ti,ab,kw OR (Studies, Case-Control Study):ti,ab,kw OR (Studies, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Studies, Nested Case-Control):ti,ab,kw OR (Studies, Nested Case-Control):ti,ab,kw OR (Case-Control Studies):ti,ab,kw OR (Case-Control Studies):ti,ab	33557

11

60

Studies, Matched):ti,ab,kw OR (Case-Control Study, Matched):ti,ab,kw OR (Matched Case Control Studies):ti,ab,kw OR (Matched Case-Control Study):ti,ab,kw OR (Studies, Matched Case-Control):ti,ab,kw OR (Study, Matched Case-Control):ti,ab,kw #5 (Cross Sectional Studies):ti,ab,kw OR (Cross-Sectional Study):ti,ab,kw OR (Studies, Cross-Sectional):ti,ab,kw OR (Study, Cross-Sectional):ti,ab,kw OR (Surveys, Disease Frequency):ti,ab,kw OR (Disease Frequency Survey):ti,ab,kw OR (Survey, Disease Frequency):ti,ab,kw OR (Analysis, Cross-Sectional):ti,ab,kw OR (Analyses, Cross-Sectional):ti,ab,kw OR (Analysis, Cross Sectional):ti,ab,kw OR (Cross-Sectional Analyses):ti,ab,kw OR (Cross-Sectional Analysis):ti,ab,kw OR (Cross Sectional 54133 Analysis);ti.ab.kw OR (Analyses, Cross Sectional);ti.ab.kw OR (Cross Sectional Analyses):ti,ab,kw OR (Cross-Sectional Survey):ti,ab,kw OR (Cross Sectional Survey):ti,ab,kw OR (Cross-Sectional Surveys):ti,ab,kw OR (Survey, Cross-Sectional):ti,ab,kw OR (Surveys, Cross-Sectional):ti,ab,kw OR (Disease Frequency Surveys):ti,ab,kw OR (Prevalence Studies):ti,ab,kw OR (Prevalence Study):ti,ab,kw OR (Studies, Prevalence):ti,ab,kw OR (Study, Prevalence):ti,ab,kw #6 (Prospective Study):ti,ab,kw OR (Studies, Prospective):ti,ab,kw OR (Study, 233446 Prospective):ti,ab,kw #7 (Cohort Study):ti.ab.kw OR (Studies, Cohort):ti.ab.kw OR (Study, Cohort):ti.ab.kw OR (Concurrent Studies):ti,ab,kw OR (Studies, Concurrent):ti,ab,kw OR (Concurrent Study):ti,ab,kw OR (Study, Concurrent):ti,ab,kw OR (Closed Cohort Studies):ti,ab,kw OR (Cohort Studies, Closed):ti,ab,kw OR (Closed Cohort Study):ti,ab,kw OR (Cohort Study, Closed):ti,ab,kw OR (Study, Closed Cohort):ti,ab,kw OR (Studies, Closed Cohort):ti,ab,kw OR (Birth Cohort Studies):ti,ab,kw OR (Birth Cohort Study):ti,ab,kw OR (Cohort Studies, Birth):ti,ab,kw OR (Cohort Study, Birth):ti,ab,kw OR (Studies, 184886 Birth Cohort):ti,ab,kw OR (Study, Birth Cohort):ti,ab,kw OR (Analysis, Cohort):ti,ab,kw OR (Analyses, Cohort):ti,ab,kw OR (Cohort Analyses):ti,ab,kw OR (Cohort Analysis):ti,ab,kw OR (Historical Cohort Studies):ti,ab,kw OR (Cohort Studies, Historical):ti,ab,kw OR (Cohort Study, Historical):ti,ab,kw OR (Historical Cohort Study):ti,ab,kw OR (Study, Historical Cohort):ti,ab,kw OR (Studies, Historical Cohort):ti,ab,kw OR (Incidence Studies):ti,ab,kw OR (Incidence Study):ti,ab,kw OR (Studies, Incidence):ti,ab,kw OR (Study, Incidence):ti,ab,kw 20328 #8 (Observational Study):ti,ab,kw #9 (Infection and Infestation):ti,ab,kw OR (Infection and Infestation):ti,ab,kw OR (Infections and Infestations):ti,ab,kw OR (Infestations and Infections):ti,ab,kw OR 102985 (Infection):ti,ab,kw #10 #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 552677 #11 #1 AND #9 AND #10 382 #12 Trials 377 #13 The year 2000 - current; English 243

Risk of Bias Assessment

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CASE

CONTROL STUDIES)
Selection
1) Is the case definition adequate?
a) yes, with independent validation \square
b) yes, e.g. record linkage or based on self-reports
c) no description
2) Representativeness of the cases
a) consecutive or obviously representative series of cases \Box
b) potential for selection biases or not stated
3) Selection of Controls
a) community controls □
b) hospital controls
c) no description
4) Definition of Controls
a) no history of disease (endpoint) □
b) no description of source
Comparability
1) Comparability of cases and controls on the basis of the design or analysis
a) study controls for (Select the most important factor.) \Box
b) study controls for any additional factor (This criteria could be modified to indicate specific control for a second important factor.)
Exposure
1) Ascertainment of exposure
a) secure record (e.g. surgical records) \square
b) structured interview where blind to case/control status $\hfill\Box$
c) interview not blinded to case/control status

- d) written self-report or medical record only
- e) no description

2) Same method of ascertainment for cases and controls

- a) yes □
- b) no

3) Non-response rate

- a) same rate for both groups \Box
- b) non-respondents described
- c) rate different and no designation

Table 1 Risk of Bias Assessment with NOS Case-control Study Scale

Author & Year	9	Selecti	ion	(Comparability	E	xposu	re	Total scor
Olsen 2009		1	1	0	2	1	1	0	6
Lake 2013	1	1	1	1	2	1	1	1	9
Savage 2013	1	1	1	0	2	1	1	0	7
Pop-Vicas 2014	0	1	1	0	2	0	1	1	6
Morgan 2016	1	1	1	0	2	0	1	1	7
Wang 2022	1	1	1	0	2	1	1	0	7

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHORT STUDIES)

α	ı 4•
\ Δ	action
	lection

Scice	tivii		
1) Re	epresentativeness of the exposed cohe	ort	
comr	a) truly representative of the average \Box	rage	(describe) in the
	b) somewhat representative of the a	verage	in the community
	c) selected group of users e.g. nurse	s, volunteers	
	d) no description of the derivation o	f the cohort	
2) Se	lection of the non-exposed cohort		
	a) drawn from the same community	as the exposed cohort \square	
	b) drawn from a different source		
	c) no description of the derivation o	f the non-exposed cohort	
3) As	certainment of exposure		
	a) secure record (e.g. surgical record	ls) 🗆	
	b) structured interview		
	c) written self-report		
	d) no description		
4) De	emonstration that outcome of interes	t was not present at sta	rt of study
	a) yes □		
	b) no		
Com	parability		
1) Co	omparability of cohorts on the basis	of the design or analysi	S
	a) study controls for	_(select the most import	ant factor) \square
indic	b) study controls for any additional fate specific control for a second	Cactor ☐ (This criteria co cond important factor.)	ould be modified to
Outc	ome		
1) As	sessment of outcome		
	a) independent blind assessment \square		
	b) record linkage \square		
	c) self-renort		

2) Was follow-up long enough for outcomes to occur

- a) yes (select an adequate follow-up period for outcome of interest) \Box
- b) no

3) Adequacy of follow-up of cohorts

- a) complete follow-up all subjects accounted for \Box
- b) subjects lost to follow-up unlikely to introduce bias small number lost > $\underline{\hspace{0.5cm}}$ % (select an adequate %) follow up, or description provided of those lost) \Box
- c) follow up rate < ____% (select an adequate %) and no description of those lost
 - d) no statement

Table 2 Risk of Bias Assessment with NOS Cohort Study Scale

Author & Year		Sele	ection		Comparability	E	xposu	Total score	
Molina-Cabrillana 2008	0	1	1	0	2	1	1	0	6
Coleman 2014	1	1	1	0	2	1	0	1	7
Mahdi 2014	1	1	1	0	2	1	1	0	7
Uppal 2015	1	1	1	0	2	1	1	1	8
Tuomi 2016	1	1	1	0	2	1	1	1	8
Till 2017	1	1	1	0	2	0	1	1	7
Brown 2019	1	1	1	1	2	1	1	1	9
Tsuzuki 2021	1	1	1	0	2	1	1	0	7

Table 3 Study Summary

Author & Year		Sele	ction		Comparability	E	xposur	·e	Total score		
Molina-Cabrillana 2008#	0	1	1	0	2	1	1	0	6		
Olsen 2009*	1	1	1	0	2	1	1	0	6		
Lake 2013*	1	1	1	1	2	1	1	1	9		
Savage 2013*	1	1	1	0	2	1	1	0	7		
Coleman 2014#	1	1	1	0	2	1	0	1	7		
Mahdi 2014#	1	1	1	0	2	1	1	0	7		
Pop-Vicas 2014*	0	1	1	0	2	0	1	1	6		
Uppal 2015#	1	1	1	0	2	1	1	1	8		
Morgan 2016*	1	1	1	0	2	0	1	1	7		
Tuomi 2016#	1	1	1	0	2	1	1	1	8		
Till 2017#	1	1	1	0	2	0	1	1	7		
Brown 2019#	1	1	1	1	2	1	1	1	9		
Tsuzuki 2021#	1	1	1	0	2	1	1	0	7		
Wang 2022*	1	1	1	0	2	1	1	0	7		

Note. *means this study was assessed through the items for case-control studies. # means this study was assessed through the items for cohort studies.

Table 3 Study Summary

Author & Sam Year Ori Molina- Cabrillana 2008 Univer Materno- de Canari Olsen 2003-200 Preve Epicenter hospital	agin -2004 pital rsitario -Infantil ias, Sapin 05 CDC ention r Program	40 72	(±SD)	Surgery Method abdominal & vaginal	Age RF	Anti- microbia l	3 Stud Blood Loss	y Summary Blood Transfusion		Diabetes	by copyright, including for uses reliable by Copyright.	Surgery Duration	Tobacco Use	Tumour	Wound Cleanness
YearOriMolina-Cabrillana 20082000-Hosp Univer Materno- de CanariOlsen2003-20t Preve Epicenter	agin -2004 pital rsitario -Infantil ias, Sapin 05 CDC ention r Program	40 72	(±SD)	Method abdominal	RF	microbia l			BMI	Diabetes	Obes relia	Surgery Duration	Tobacco Use	Tumour	
Molina- Hosp Cabrillana Univer 2008 Materno- de Canari Olsen 2003-200 Preve Epicenter	pital rsitario 15- p-Infantil ias, Sapin 05 CDC ention Program 82				Age >60	Y/N					****	•			
Preve Epicenter	ention 82 Program	20 66				1/11	NR	NR	NR	Y/N	gnement Sur lated∯o text	P 75 ≥P75	NR	Y/N	Clean- contaminated vs Contaminated /dirty
	15, USA	-00	51.70 (±17.78)	abdominal & vaginal	Mean	NR	NR	NR	Mean	Y/N	nent Superieur (AE d∯o text and ∯ata r	Mean	Y/N	Y/N	NR
Lake 2005-200 NSQIP		322 375		abdominal & vaginal & laparoscopic	Age >80	NR	NR	Y/N	BMI≥30 (Obesity)	Y/N	ABES) 00 John J. College ABES) 60 John J. College ABES 60 Joh	≥P75	Y/N	Y/N	Clean vs Clean- contaminated Contaminated vs Dirty
Savage University 2013 Hospita Clinics	y of Iowa als and	04 126	54.53 (±13.66)	abdominal	Mean	Mean	NR	Median	BMI≥30 (Obesity)	Y/N	I training and simulation in the simulation in t	Mean	NR	Y/N	NR
Coleman 1999-201 2014 Hopkins Institution	Medical 7	7 17	42.56 (±5.93)	abdominal & vaginal & laparoscopic	Mean	NR	>250ml; ≥451ml	Y/N	Median	Y/N	BM 30 (Ob Aity)	NR	Y/N	NR	NR
Mahdi 2005-201 2014 NSQIP	11 ACS- P, USA 283	366 296	NR	laparoscopic	Age >60, 70 & 80	NR	NR	>4 units of packed red blood cells	BMI≥30 (Obesity)	Y/N	BM 30 (Oberty)	>60 min, 180 min	Y/N	NR	NR
Pop-Vicas Univer 2014 Wisco Hospital	rsity of onsin 153	31 52	58.27 (±12.31)	abdominal & vaginal & laparoscopic	Mean	Y/N	Median*	NR	NR	NR	es. NR	Mean Mean	Y/N	Y/N	NR

 //bmjopen-2024-0930 d by copyright, includ

	_
1	7

Uppal 2015	2012-2015 MSQC, USA	21358	441	48.10 (±11.70)	abdominal & vaginal & laparoscopic	Median	Y/N	Median	NR	BMI≥30 (Obesity)	NR	din 30 cl	Mean	Y/N	Y/N	NR
Morgan 2016	2012-2014 MSQC, USA	16548	315	NR	abdominal	Age >50	NR	Mean	Y/N	BMI≥30 (Obesity)	Y/N	Easseign Usesirela (Oberla		Y/N	Y/N	NR
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	1164	94	67.46 (±10.23)	abdominal & vaginal & laparoscopic	Mean	NR	Median	NR	Mean	Y/N	zs. Downlo nement Su ated∯o tex	Mean	Y/N	NR	NR
Till 2017	2012-2015 MSQC, USA	18255	329	NR	abdominal & vaginal & laparoscopic		NR	≥250ml	NR	BMI≥30 (Obesity)	Y/N	ipe∰eyr (A t amdglata BMG	Mean	Y/N	Y/N	NR
Brown 2019	2012-2014 ACS- NSQIP, USA	46755	445	45.95 (±1.51)	laparoscopic	Mean	NR	NR	Y/N	Mean	Y/N	MBES). mining, Alt	•	Y/N	NR	Clean vs Clean- contaminated vs Contaminated vs Dirty
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	1559	71	48.28 (±11.39)	laparoscopic	Mean	NA	NR	Y/N	Mean	Y/N		•	Y/N	NR	NR
Wang 2022	2012-2022 Two Grade A Tertiary Hospitals, China	94	188	47.70 (±10.87)	abdominal	Age >50	Y/N	≥500ml	NR	Mean	Y/N	and≶imilar technolo	>180 min	NR	Y/N	Clinicians determined Class II vs Class III
Overall	contant under o	152993		47.53 (±8.29)		4 11		141 * 14	7F1 1 4				3		COL	ositiva casas:

Note. The content under each risk factor was how these studies presented their data. The detailed case numbers are Table 3; SSI+ refers to SSI-positive cases; ACS-NSQIP refers to the American College of Surgeons National Surgical Quality Improvement Program; MSQC refers to the Michigan Surgical Quality Collaborative; NR refers to not reported; NA refers to not applicable; Y/N refers to reported in Yes or No; Median*: the median reported in this study did not include IQR to estimate its variance; P75 refers to the 75th percentil

Bibliographique de l

V/bmjopen-2024-093072 o

Table 2 Subgroup Analyses Between Different SSI Types

	Sı	uperficial & 1	Deep & C	rgan Sp	oace			Deep & 0		Group Difference			
Risk Factors	LogOR	I^2	OR	SE	Z	p	LogOR	\mathbf{I}^2	OR	SPE Z	p	Q (df)	p
Tobacco Use	0.36	0.00%	1.43	0.07	5.78	<.001	1	68.56%	2.72	202 5.69	.001	11.59 (1)	<.001
Diabetes	0.53	64.07%	1.70	0.15	2.5	<.001	0.27	61.95%	1.31	6 2 9 3 5 1.06	.290	.71 (1)	.400

Note. Only Tobacco Use and Diabetes retrieved more than 4 datasets reporting Deep or Organ Space SSI types. The individual SSI or Organ Space, were reported in less than 4 sets. This is to demonstrate that ORs of risk factors might differ between the tand data mining, and similar technologies.

At training, and similar technologies. Note. Only Tobacco Use and Diabetes retrieved more than 4 datasets reporting Deep or Organ Space SSI types. The indiagram as Superficial, Deep,

BMJ Open

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A systematic review, meta-analysis and network analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-093072.R2
Article Type:	Original research
Date Submitted by the Author:	16-Apr-2025
Complete List of Authors:	liu, yin; West China Women's and Children's Hospital, Nosocomial Infection Management Department; Sichuan University West China Second University Hospital Key Laboratory of Birth Defects and Related Diseases of Women and Children liu, yihao; University of Exeter, School of Psychology, Faculty of Health and Life Sciences yang, zhan; West China Women's and Children's Hospital, Medical affairs Department; WCSUH-Tianfu·Sichuan Provincial Children's Hospital, Medical and education Department; Sichuan University West China Second University Hospital Key Laboratory of Birth Defects and Related Diseases of Women and Children wu, jinlin; West China Women's and Children's Hospital, Medical affairs department li, juan; West China Women's and Children's Hospital, Nosocomial Infection Management Department
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Risk Factors, Network Meta-Analysis, Meta-Analysis

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A systematic review, meta-analysis and network analysis

Abstract

Objective: Surgical site infections (SSI) after hysterectomy constitute significant postoperative complications, affecting patient recovery and healthcare costs. We conducted a systematic review of risk factors for SSI in patients undergoing hysterectomy.

Design: The current study conducted a systematic review with meta-analysis and network analysis to identify and summarise risk factors for SSI following hysterectomy.

Data sources: Pubmed, Medline, Embase, Web of Science, and Cochrane Central Register of Controlled Trials were searched through 1 November 2023.

Eligibility criteria: The inclusion criteria were 1) population: female participants who had post-hysterectomy SSI; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI; 4) outcomes: the number of participants exposed and not exposed to the risk factors of SSI. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Data extraction and synthesis: Two reviewers conducted the screening process independently. Articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. The meta-analysis synthesised risk factors reported ≥ 4 datasets via random-effects models, assessing heterogeneity, sensitivity (leave-one-out), publication bias (Egger's test/funnel plots), and subgroup analyses (incision types). A Bayesian network evaluated SSI risk across surgical types, validated by DIC.

Results: Blood transfusion emerged as the largest risk factor (OR = 2.55, 95%CI [1.84, 3.56]), followed by tumour presence (OR = 2.23, 95%CI [1.86, 2.66]), obesity (OR = 1.79, 95%CI [1.43, 2.23]), diabetes (OR = 1.70, 95%CI [1.26, 2.29]), and tobacco use (OR = 1.43, 95%CI [1.26, 1.63]). The ORs varied by incision type.

31	Network analysis revealed that vaginal and laparoscopic hysterectomies had
32	significantly lower SSI risk (59% and 55%, respectively) compared to abdominal
33	hysterectomies.
34	Conclusion: The study establishes blood transfusion tumour presence

Conclusion: The study establishes blood transfusion, tumour presence, obesity, diabetes, and tobacco use as significant risk factors for SSI after hysterectomy, with variations in risk evident across different incision types. The findings also suggest vaginal and laparoscopic hysterectomies as preferable alternatives to abdominal hysterectomy in mitigating SSI risk. Future research should aim for more granular data to untangle the interplay between comorbidities and further elucidate the differential risk across SSI types.

41 Keywords: Hysterectomy; Surgical Site Infections; Risk Factors; Meta-analysis;
 42 Network Analysis

Strengths and limitations of this study

- 1. The current systematic review synthesised evidence on odds ratios of risk factors for post-hysterectomy SSI and applied Bayesian network analysis to compare SSI risks among three commonly used hysterectomy approaches.
- 2. The current systematic review included 152993 patients who underwent hysterectomy, including 2887 who had post-hysterectomy SSI.
- 3. The major limitation was that we found the case numbers exposed to each risk factor were counted respectively, such that the odds ratios were not solely attributed to a single risk factor and might be overestimated.

53 Introduction

 Hysterectomy is a very common procedure in which the uterus is surgically removed, and it is an optional treatment for leiomyoma, endometriosis, abnormal bleeding, benign ovarian neoplasms, pelvic organ prolapse, and gynecologic cancer ¹. Epidemiological research estimated that the lifetime prevalence of hysterectomy surgery is approximately 236/100,0000 in Germany, 143/100,0000 in the US ² ³, 80/100,0000 in China ⁴, and 42/100,0000 in the UK ² among the female population, depending on waitlist queuing time of different regions ². Among patients who had hysterectomies, 2.1% are estimated to develop surgical site infections (SSI) worldwide 5, which has been one of the most common complications after hysterectomy surgery ⁶. According to Centers for Disease Control and Prevention (CDC), SSI is an infection that develops in the portion of the body where the operation was performed. It might be superficial, affecting simply the skin, or more serious, involving tissues beneath the skin, organs, or implanted material. currently accepted risk factors of hysterectomy SSI are age, body mass index (BMI), smoking, and diabetes 7. However, many studies have shown different results, one study from Spain only considered obesity and inadequate prophylaxis as meaningful indicators 8, whereas another study from the UK also suggested that the operative time should be considered an independent risk factor 9. The evidence from current research appears to be diverse, isolated, and lacking in quantitative power. One study analyzed the risk factors for SSI after obstetric and gynecological surgery; in fact, the types of obstetric and gynecological surgeries are varied; for example, breast-conserving surgeries are cleansing surgeries, and breast reconstruction may use silicone implants, so the factors affecting SSI for these surgeries may be different than for hysterectomies ¹⁰.

- Consequently, the current study aims to summarise the results of risk factors
- of hysterectomy SSI through a quantitative approach.

80	Method
81	Study Registration
82	The protocol of the current study was registered and reviewed by the
83	PROSPERO International Prospective Register of Systematic Reviews (No.
84	CRD42023411668). The protocol is available at:
85	https://www.crd.york.ac.uk/PROSPERO/export_details_pdf.php
86	The Patient and Public Involvement statement
87	None
88	Search Strategy The data was extracted from published ampirical study reports retrieved from
89	The data was extracted from published empirical study reports retrieved from

lished empirical study reports retrieved from the databases, including Pubmed (central), Medline (Ovid), Embase (Ovid), Web of Science, and Cochrane Central Register of Controlled Trials. The search terms followed the standard PICO guideline (population, intervention, comparator,

outcome) and were adapted according to Medical Subject Headings (MeSH) terms 11.

The search was conducted upon the completion of study registration.

Eligibility criteria

The inclusion criteria were 1) population: female participants who had posthysterectomy SSI; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI; 4) outcomes: SSI. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Study screening and data extraction

The report articles were retrieved in RIS format and managed with Endnote (Bld13966, EndNote X9.3.3, 2023). The screening process followed the PRISMA guidelines ¹². Two reviewers conducted the screening process independently. Initially, they removed all duplicate articles. Then, articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. Data from the selected articles was subsequently extracted.

Risk of bias assessment

Two reviewers independently scored the studies using the Newcastle-Ottawa quality assessment (NOS) 13 14. NOS is a validated, easy-to-use scale containing 8

items organised into three dimensions: selection, comparability, and exposure/outcome, which has been endorsed for use in systematic reviews of non-randomised studies by The Cochrane Collaboration ¹⁴. Studies rated 0-2 as poor quality, 3-5 as fair quality, and 6–9 as good/high quality.

Data synthesis

Data synthesis requires at least four sets of data according to the general conduct suggested by the Cochrane Handbook ¹⁵. The effect size of each identified risk factor will be pooled in a quantitative meta-analysis using STATA v18. The risk factors were expected to be reported as binary data about whether or not the patients were exposed to the risk factor and were infected. Consequently, odds ratios (ORs) would be calculated as the effect size with the following formula:

$$OR = \frac{a}{b} \div \frac{c}{d}$$

Where a represents cases exposed to the risk factor and infected, b represents those exposed but not infected, c represents unexposed but infected, and d represents unexposed and uninfected cases. And the LogOR is the natural log of the OR.

Statistical Analysis Plan

The meta-analysis was conducted with STATA v18. Only risk factors reported in over 4 datasets were synthesised into meta-analysis. A random effect model meta-analysis with the restricted maximum likelihood method was used to evaluate the pooled ORs (LogORs). The heterogeneity was also assessed with the random effects model, where heterogeneity I^2 is considered moderate when $I^2 > 50\%$ and high when $I^2 > 75\%$ ¹⁵. Sensitivity analysis was conducted using the Leave-one-out approach by omitting one dataset each time and evaluating the pooled effect sizes. Egger's test and funnel plots were used to assess potential publication bias.

The pooled effect sizes were also entered into subgroup analysis based on the SSI types (superficial, deep, organ space) with available datasets. BMI was entered into the meta-regression analysis with pooled effect sizes of diabetes to explore the relationship between obesity and diabetes and its influence on SSI risk prediction.

Finally, a Bayesian network model was conducted with R and WinBugs to determine the risk of SSI between three surgery types (abdominal, vaginal, and laparoscopic). The model structure defined SSI risk (binomial variable: infected/non-

infected) as the child node conditional on the surgical approach (categorical variable: abdominal, vaginal, laparoscopic). The Bayesian network model offers a probabilistic graphical framework that represents and analyses the probabilistic relationships among binominal variables ¹⁶. The model fit of the Bayesian network was evaluated with the Deviance Information Criterion (DIC), where a lower DIC indicates a better-fitting model.

Results

149	
150	Systematic rev

Systematic review

Initially, searching the ke

Initially, searching the keywords in PubMed, Medline (Ovid), Embase (Ovid), Web of Science, and the Cochrane Central Register of Controlled Trials produced 3821 records. Fourteen studies met the inclusion criteria after screening based on the PRISMA guidelines. The PRISMA procedure is shown in Figure 1.

Figure 1 The PRISMA Flow

All identified studies were retrospective observations to record the case numbers of SSI after hysterectomy surgeries with or without the occurrence of each risk factor. In total, 152993 female patients (age: 47.53±8.29) who underwent hysterectomy were included in the current 14 studies, of whom 2887 had SSI in different types, and 150106 had no SSI taken as controls. The details of all studies are described in Table 1 (More detailed information can be found at supplymentary material 1).

Table 1 Study Summary

					on g fa		
Author & Year	Sample Origin	Surgery Method	Blood Transfusion	Diabetes	4 EytiædO E	Tobacco Use	Tumour
Molina-Cabrillana 2008	2000-2004 Hospital Universitario Materno-Infantil de Canarias, Sapin	abdominal & vaginal	NR	Y/N	822	NR	Y/N
Olsen 2009	2003-2005 CDC Prevention Epicenter Program hospitals, USA	abdominal & vaginal	NR	Y/N	∋ 2025. Dowr seignement t s felated¥o t	Y/N	Y/N
Lake 2013	2005-2009 ACS-NSQIP, USA	abdominal & vaginal & laparoscopic	Y/N	Y/N	t Subjection BMI≥30 fear ded	Y/N	Y/N
Savage 2013	2007-2010 University of Iowa Hospitals and Clinics, USA	abdominal	Median	Y/N	from Gata	NR	Y/N
Coleman 2014	1999-2012 Johns Hopkins Medical Institution, USA	abdominal & vaginal & laparoscopic	Y/N	Y/N	BMI≥30 ty)	Y/N	NR
Mahdi 2014	2005-2011 ACS-NSQIP, USA	laparoscopic	>4 units of packed red blood cells	Y/N	BMI≥30 2 Obeaty)	Y/N	NR
Pop-Vicas 2014	2012-2015 University of Wisconsin Hospitals, USA	abdominal & vaginal & laparoscopic	NR	NR	open.bmj trair∯ng, a	Y/N	Y/N
Uppal 2015	2012-2015 MSQC, USA	abdominal & vaginal & laparoscopic	NR	NR	BMI≥30 2 Obesety)	Y/N	Y/N
Morgan 2016	2012-2014 MSQC, USA	abdominal	Y/N	Y/N	BMI≥30 Obesity)	Y/N	Y/N
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	abdominal & vaginal & laparoscopic	NR	Y/N	June 7, 20∯5 at Aç Har t∯chnologies BMI≥30gies	Y/N	NR
Till 2017	2012-2015 MSQC, USA	abdominal & vaginal & laparoscopic	NR	Y/N	BMI≥30 g Obe N ty)	Y/N	Y/N
Brown 2019	2012-2014 ACS-NSQIP, USA	laparoscopic	Y/N	Y/N	is Ag	Y/N	NR
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	laparoscopic	Y/N	Y/N	at Agence Bibli lesk NR	Y/N	NR
					Bibliographique de		
			9		e de		

BMJ Open

Page 11 of 46

Among these studies, seven only reported infection cases in mixed three SSI types (superficial, deep or organ space) ⁸ ¹⁷⁻²², two only reported in mixed two SSI (deep or organ space) ²³ ²⁴, one study reported each SSI types separately ²⁵ and one study reported superficial and organ space SSIs separately ²⁶, one study reported superficial SSI independently but mixed deep or organ space SSIs ²⁷, one study reported deep SSI independently but mixed superficial or deep SSIs ⁵, one study reported only organ space SSIs ²⁸. Since it requires at least four datasets to conduct meta-analyses ¹⁵, the studies reported cases in independent SSI types were combined into three mixed SSI types (superficial, deep or organ space) to synthesise with those only reported the mixed SSI types. The NOS risk of bias assessment rated three studies scored 6 ⁸ ²⁰ ²⁵, seven scored 7 ⁵ ¹⁷⁻¹⁹ ²² ²⁴ ²⁸, two scored 8 ²¹ ²⁶, and the other two scored 9 ²³ ²⁷. All 14 studies are ranked as good/high quality and were included in the following review.

Among the 14 studies, there were 11 risk factors identified in total, including age, antimicrobial, blood loss, blood transfusion, BMI, diabetes (both type I or type II), obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, antimicrobial and blood loss were reported in less than four datasets. Wound cleanness and age were reported in different classification standards. Only 5 factors reported in more than 4 datasets are available for quantitative analysis, including blood transfusion, diabetes, obesity, tobacco use, and tumour. Age, high BMI, and surgery duration reported continued data and thus could not be directly synthesised.

Meta-analyses

The identified risk factors with sufficient datasets were entered into meta-analyses respectively. As shown in Table 2, pooled effect sizes revealed significant overall logORs of blood transfusion (OR = 2.55, 95%CI [1.84, 3.56], p <.001), obesity (OR = 1.79, 95%CI [1.43, 2.23], p <.001), diabetes (OR = 1.70, 95%CI [1.26, 2.29], p <.001), tobacco use (OR = 1.43, 95%CI [1.26, 1.63], p <.001), but not tumour (OR = 1.35, p =.362), as the risk factors for SSI infections. However, after removing each dataset one at a time, leave-one-out sensitivity analysis on all risk factors suggested no changes except for tumour (OR = 2.33, 95%CI [1.86, 2.66], p <.001), where one dataset changed the results ⁸. Further analysis with publication bias suggested no publication bias in all factors. However, as shown in Figure 2A, the funnel plot suggested three outlier datasets ⁸ ²¹ ²⁵. One border dataset was decided to

be kept ²¹, and the other two were excluded from the analysis ^{8 25}.

Table 2 Summary of Meta-analyses

	Risk Factor	Blood Transfusion	Tumour	Obesity	Diabetes	Tobacco Use
	RF+ SSI+	39	226	720	229	340
Case Number	RF+ SSI-	998	3924	28717	5330	13645
Case Number	RF- SSI+	1075	769	531	1314	938
	RF- SSI-	62830	44733	36398	62893	54500
	LogOR	0.94	0.8	0.58	0.53	0.36
	OR	2.55	2.23	1.79	1.7	1.43
Meta-analysis	SE	0.17	0.09	0.12	0.15	0.07
	Z	5.57	8.8	5.07	3.5	5.54
	p	<.001	<.001	<.001	<.001	<.001
	I^2	0.00%	0.00%	67.56%	64.07%	0.00%
Heterogeneity Test	Q _(df)	.17 (3)	1.34 (4)	11.58 (4)	21.13 (7)	5.78 (5)
	p	0.983	0.85	0.02	<.001	0.33
Leave-one-out	lowest LogOR	0.88	0.7	0.54	0.44	0.32
Sensitivity	Highest LogOR	0.96	0.86	0.66	0.64	0.43
	β	0.09	0.05	1.79	-1.21	0.76
Egger's Publication	SE	1.08	0.81	7.6	0.89	0.73
Publication Bias	Z	0.08	0.06	1.12	-1.35	0.91
	p	0.934	0.95	0.263	0.178	0.363

Note. The presenting data of the tumour was after exclusions of outliers. RF+ refers to exposure to the risk factor, RF- refers to no exposure to the risk factor, SSI+ refers to SSI positive, and SSI- refers to SSI negative, OR refers to Odds ratio, 1² refers to Heterogeneity index, p refers to p-value.

Figure 2 The Funnel Plots

 After exclusion, data from the tumour was entered into meta-analysis again and reported a significant pooled effect size predicting SSI infections (logOR = .80, OR = 2.23, p < .001), and, as shown in Figure 2B, there were no outliers. As shown in Figure 3A, 3B, and 3C, the estimation of heterogeneity suggested that the chance of inconsistent distribution of the pooled logORs was not significant in blood transfusion datasets ($I^2 = 0\%$, $Q_{(3)} = .17$, p = .983), tumour ($I^2 = 0\%$, $Q_{(4)} = 1.34$, p = .850) or tobacco use ($I^2 = 0\%$, $Q_{(5)} = 5.78$, p = .330). However, Figure 3D and Figure 3E suggested significant moderate heterogeneity in obesity ($I^2 = 67.56\%$, $Q_{(4)} = 11.58$, p < .001) and diabetes datasets ($I^2 = 64.07\%$, $Q_{(7)} = 21.13$, p < .001). These results suggested that blood transfusion, tumour, tobacco use, obesity, and diabetes were significant risk factors predicting post-hysterectomy SSI. Patients who underwent blood transfusion had a 155% increased likelihood of experiencing post-hysterectomy SSI. Similarly, individuals with tumours had a 123% increased risk, obese individuals 79%, diabetics 70%, and tobacco users 43%.

Figure 3 The Forest Plots for Each Risk Factor

Subgroup analysis between studies reporting different SSI types (mixed superficial or deep or organ space vs. mixed deep or organ space) was conducted among tobacco use and diabetes, for they obtained more than 4 datasets under each subgroup. The difference was whether they included superficial SSI. A significant group difference in pooled ORs between mixed superficial & deep & organ space cases and mixed deep or organ space among tobacco use, $Q_{(1)} = 11.59$, p < .001, but not among diabetes, $Q_{(1)} = .71$, p = .400. The impact of tobacco use on the risk of SSI varied significantly depending on the type of SSI, see supplymentary material Table 2. As shown in Figure 4, while tobacco use was associated with a 143% increased risk for combined superficial, deep, and organ space SSIs, this risk escalated to a 272% increase when considering only deep and organ space SSIs. This suggests that the influence of smoking may be more pronounced for deep and organ space infections than superficial ones. Given the observed discrepancy in risk between the combined three types of SSIs and the combined two types (deep or organ space) for tobacco use,

- it is plausible that other risk factors might also exhibit differential effects across various SSI categories.
 - Figure 4 Tobacco Use Subgroup Forest Plot between SSI Types

Continuous BMI data was incorporated into a meta-regression analysis alongside the ORs of diabetes to evaluate the relationship between obesity and diabetes. Given the absence of group differences or heterogeneity discrepancies across SSI types in the effect sizes associated with diabetes, datasets from both SSI types (though not originating from identical studies) were incorporated into the meta-regression. The results suggested that BMI did not significantly predict the ORs of diabetes (β = .001, SE = .08, t = .02, p = .989). While this does not suggest that BMI (or obesity) is not correlated with the incidence of diabetes, it does affirm that high BMI did not affect the outcomes in this particular analysis.

Bayesian Network Analysis

The infected and non-infected case numbers under each surgery method (abdominal, vaginal, laparoscopic) were analysed with a Bayesian network model to determine whether vaginal and laparoscopic surgeries had a lower SSI risk than abdominal surgeries, see Figure 5. The Bayesian network model exhibited a DIC of 111.5. Compared to abdominal surgeries, vaginal surgeries reduced the risk of developing SSI by 59% (OR = .41, 95%CI [0.33, 0.67]) and laparoscopic surgeries by 55% (OR = .45, 95%CI [0.37, 0.67]). However, the latter two did not distinguish from each other (OR = .9, 95%CI [0.72, 1.21]). These results suggest that conducting the hysterectomy with the vaginal or laparoscopic methods is respectively safer than the abdominal method in terms of SSI risk.

Figure 5 Bayesian network analysis

 259 Discussion

The current study conducted a systematic review with meta-analysis and network analysis to summarise the evidence of risk factors of SSI after hysterectomy surgeries. To our knowledge, this is the first quantitative review of the topic. In total, 14 retrospective observations studies were identified with 2887 SSI positive and 150106 negative cases under 11 risk factors, including age, antimicrobial, blood loss, blood transfusion, high BMI, diabetes, obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, only 5 were available for meta-analysis synchronisation. Among which, blood transfusion, tumour, obesity, diabetes, and tobacco use were factors that significantly increased the risk of SSI. The estimated ORs also seemed to vary between different SSI types (superficial, deep, or organ space). Apart from risk factors, Bayesian network analysis also suggested that conducting vaginal or laparoscopic hysterectomies induced a significantly lower risk of SSI infection than abdominal surgeries. The details of the quantitative analysis are discussed as follows.

The largest risk factor of SSI is blood transfusion (OR = 2.55), with a 155% increased likelihood of SSI. Blood transfusion has always been identified as a major source of post-surgical infections ²⁹ ³⁰. Administrative errors, such as bacterial contamination in platelet products, are believed responsible for infections induced by blood transfusion ²⁹. These issues are related to the healthcare service environment and beyond the current paper's discussion. Instead, the need for blood transfusion deserves further elaboration from the patients' site. For example, blood loss was reported to be positively correlated with BMI ³¹ ³². Apart from obesity, severe abnormal uterine bleeding and cancer-related anaemia are also important reasons that patients require extra blood transfusion. However, none of the included studies attempted to isolate these factors, nor did they report preoperative haemoglobin. Consequently, we could not address whether blood transfusion was an independent factor or it was attributed to other factors such as obesity, severe abnormal uterine bleeding, cancer-related anaemia, preoperative haemoglobin or whether its estimated ORs were inflated. Future studies should consider reporting more comprehensive data to precisely estimate the ORs for blood transfusion as the SSI risk factor.

Likewise, one may argue that obesity and diabetes are comorbid, where obesity-induced insulin resistance is one of the major sources of type 2 diabetes 33 . This might explain the moderate heterogeneity of the ORs in obesity (OR = 1.79, $I^2 = 67.56\%$)

and diabetes (OR = 1.70, $I^2 = 64.07\%$). This is, in fact, a methodological issue, where all studies directly counted the case number that was exposed and not exposed to the specific risk factors, but none attempted to distinguish whether the case was exposed to multiple risk factors. That is, one might suffer from obesity or diabetes or both, and the case would be counted in each risk factor respectively when they suffer from both. Consequently, the estimated ORs were not solely attributed to one risk factor and might be overestimated. Hypothetically, in the current case, the heterogeneity of the ORs in obesity and diabetes was moderate because some studies included more patients suffering from both obesity and diabetes and reported higher ORs than those with fewer such patients. As a result, although both obesity and diabetes are significant risk factors, their estimated ORs should be considered cautiously and require further clarification in future studies by reporting cases separately.

To further address this issue, the current study conducted a meta-regression analysis to investigate whether BMI predicts the ORs of diabetes. The analysis found no significant relationship between continuous BMI values and the ORs of diabetes. Notably, the absence of a significant predictive relationship between BMI and the OR for diabetes does not imply that these two factors were unrelated or that obesity does not influence the estimation of OR for diabetes. On the one hand, the absence of a significant predictive relationship might arise from including both type I and type II diabetes in the studies, with type I diabetes having less direct relevance to obesity. On the other hand, the estimation of ORs may still have been elevated due to the repeated counting of cases exposed to multiple risk factors. Instead, this result might be interpreted as the pathologies of obesity and diabetes are relatively independent in the context of SSI risk.

Apart from obesity and diabetes, the second-largest risk factor was tumour (OR = 2.23), with a 123% increased likelihood of SSI. The immune system in patients afflicted with malignant tumours was generally compromised ³⁴. This impairment in the primary immune function directly results from the tumour's pervasive influence on the natural defence mechanisms. Furthermore, the standard therapeutic interventions for tumours, including surgery, chemotherapy, and radiotherapy, also contribute to the weakened immune state ³⁵.

Tobacco use was the last risk factor (OR = 1.43), with a 43% increased likelihood of SSI. Nicotine and carbon monoxide, two primary agents produced in tobacco use, contribute to the constriction of peripheral blood vessels. This vasoconstriction reduces the oxygen supply to tissues, vital for cellular function and healing processes ³⁶. Consequently, this oxygen deficit can precipitate the formation of microthrombi, which are small clots that can impair blood flow and further hinder tissue repair and regeneration.

However, the estimated ORs of tobacco use seemed to vary between SSI types. A subgroup comparison was conducted between studies that reported all mixed SSI and those that only reported deep or organ space SSI for tobacco use and diabetes, where only these two risk factors were reported repeatedly in distinguishing between SSI types. Significant subgroup differences were observed exclusively in the context of tobacco use. Specifically, tobacco use was associated with a 43% increased risk for superficial, deep, or organ space SSIs. This risk escalated to a 172% increase when focusing solely on deep or organ space SSIs. The pronounced impact of tobacco use appears more substantial in increasing the risk of deep or organ space infections compared to superficial ones. This discrepancy may also be attributed to tobacco-induced vasoconstriction. The vascular system supporting superficial cells, such as those in the skin, is more prosperous than the vasculature of deep and organ space cells. Consequently, cells in deeper tissues and organ spaces are more vulnerable to oxygen supply alterations exacerbated by tobacco use. However, this was merely a hypothetical explanation without solid evidence, which requires further investigation.

Finally, the current Bayesian model revealed a significant reduction in SSI risk with vaginal and laparoscopic hysterectomies compared to the abdominal approach, with decreases of 59% and 55% respectively. Abdominal hysterectomy, though designed to prevent bladder damage by opening the peritoneal reflection and mobilising the bladder, increases postoperative infection risks due to larger incisions and greater abdominal exposure ³⁷. In contrast, laparoscopic methods, utilising smaller incisions and camera systems, minimise air exposure and use electrocoagulation for cutting and hemostasis, thereby reducing pelvic-abdominal disturbances and promoting a stable internal environment ³⁸. While total laparoscopic hysterectomy demands high skill levels, vaginal hysterectomy offers a simpler approach to uterine manipulation, albeit with a slight increase in urinary system

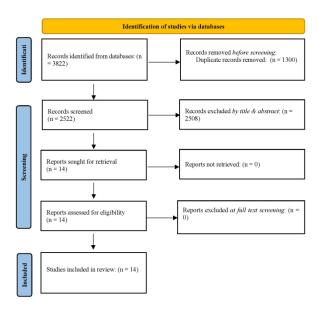
 infection risks from metal cannula introduction ³⁹. Although each technique has distinct risk-benefit profiles, the current results provided straightforward evidence of SSI risk, comparing the techniques to reference individual patient needs and surgical goals.

There are five limitations in the current study. First, some procedures performed in conjunction with hysterectomy can also affect SSI, but this was not explored in this paper. Second, the included studies did not differentiate cases based on the number of risk factors present, counting each instance for all identified risks. This approach likely inflated the ORs, particularly for comorbid conditions like patients with severe abnormal uterine bleeding or cancer-related anaemia and obesity and diabetes. Thirdly, there was no distinction between Type I and Type II diabetes in the studies, potentially contributing to moderate heterogeneity in the pooled OR estimates. Therefore, the estimated ORs for obesity and diabetes as risk factors for SSIs should be interpreted cautiously. Then, since none of the studies isolated patients with severe abnormal uterine bleeding, suffered from cancer-related anaemia, or reported preoperative HbA1, it is unclear whether these factors also inflated the estimation ORs for blood transfusion, and thus, they should be interpreted cautiously as well. Lastly, few studies specified the types of SSI (superficial, deep, or organ space). Given that our analysis indicates variation in tobacco use ORs across different SSI types, it is crucial to ascertain if similar variations apply to other risk factors. Addressing these issues in future research, with more detailed data reporting, is essential for a clearer understanding of the risk factors for SSIs. Future studies should report more comprehensive data to address these limitations.

In summary, the current study conducted a systematic review with meta-analysis and network analysis of the risk factors of SSI after hysterectomy surgeries. In total, 11 risk factors were mentioned, whereas only blood transfusion, tumour, obesity, diabetes, and tobacco use had sufficient data to be entered into meta-analysis and yield statistical significance. With limited available data, the ORs of tobacco use seemed to vary between different SSI types, suggesting potential diversity in other risk factors. Finally, a Bayesian network model compared the risk of SSI between vaginal and laparoscopic and abdominal hysterectomy approaches. This approach offers valuable insights into the varying risks associated with each surgical method.

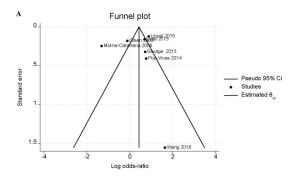
388	Conflict of Interest: The authors declare that they have no conflict of interest		
389	Funding: The researchers of this study did not receive or use any funding		
390 391	Data Sharing: All relevant data are within the manuscript and its Supporting information files.		
392	Contributor Information		
393	Liu, yin, Email: 2471669869@qq.com		
394	Liu, yihao, Email: yl531@exeter.ac.uk.		
395	Yang, zhan, Email: 614958117@qq.com.		
396	Wu, jinlin, Email: 1369051705@qq.com.		
397	Li, juan, Email: 364256183@qq.com.		
398	Liu, yihao and Yang, zhan contributed equally to this paper.		
399	Yang, zhan is the guarantor.		
400	YL and ZY contributed to the conception of the work; YL, ZY, JL W and J L were		
401	the independent investigators to conducted the study's review, quality assessment, and		
402	data extraction. YL and YH L completed the data analysis, and drafted the		
403	manuscript. Finally, ZY and YH L gave final approval for the publish version; and		
404	ZY agreed to be responsible for all aspects of the work and to ensure that problems		
405	relating to the accuracy or integrity of any part of the work are appropriately		
406	investigated and resolved.		
407			

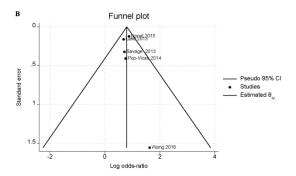
408 Reference


409 1. Wright JD, Ananth CV, Lewin SN, et al. Robotically assisted vs laparoscopic 410 hysterectomy among women with benign gynecologic disease. *JAMA* 411 2013;309(7):689-98.

- 2. Mukhopadhaya N, Manyonda I. The hysterectomy story in the United Kingdom. *Journal of mid-life health* 2013;4(1):40.
 - 3. OECD. OECD Health Data 2003. Ottawa, 2004:5-7.
- 4. Liu F, Pan Y, Liang Y, et al. The epidemiological profile of hysterectomy in rural Chinese women: a population-based study. *BMJ open* 2017;7(6):e015351.
- 5. Morgan DM, Swenson CW, Streifel KM, et al. Surgical site infection following hysterectomy: adjusted rankings in a regional collaborative. *American Journal of Obstetrics and Gynecology* 2016;214(2):259. e1-59. e8.
- 420 6. Shi L, Gu Q, Zhang F, et al. Predictive factors of surgical site infection after hysterectomy for endometrial carcinoma: a retrospective analysis. *BMC Surg* 2021;21(1):1-7.
 - 7. Chen I, Choudhry AJ, Schramm D, et al. Type of pelvic disease as a risk factor for surgical site Infectionin women undergoing hysterectomy. *Journal of Minimally Invasive Gynecology* 2019;26(6):1149-56.
- 8. Molina-Cabrillana J, Valle-Morales L, Hernandez-Vera J, et al. Surveillance and risk factors on hysterectomy wound infection rate in Gran Canaria, Spain.
 European Journal of Obstetrics & Gynecology and Reproductive Biology 2008;136(2):232-38.
- 430 9. Pakzad R, Safiri S. Incidence and risk factors for surgical site infection posthysterectomy in a tertiary care center: methodologic issues. *American Journal of Infection Control* 2017;45(5):580-81.
- 10. Yang Z, Wang D, Yang M, et al. Risk factors for surgical site infection in patients undergoing obstetrics and gynecology surgeries: A meta-analysis of observational studies. *PLoS One* 2024;19(3):e0296193. doi: 10.1371/journal.pone.0296193 [published Online First: 20240306]
 11. Bramer WM, De Jonge GB, Rethlefsen ML, et al. A systematic approach to
 - 11. Bramer WM, De Jonge GB, Rethlefsen ML, et al. A systematic approach to searching: an efficient and complete method to develop literature searches. *Journal of the Medical Library Association: JMLA* 2018;106(4):531.
 - 12. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Systematic reviews* 2021;10(1):1-11.
 - 13. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses: Oxford, 2000.
- 14. Nasser M. New standards for systematic reviews incorporate population health sciences. *American Journal of Public Health* 2020;110(6):753.
- Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons 2019.
- 16. Hu D, O'Connor AM, Wang C, et al. How to conduct a Bayesian network metaanalysis. *Frontiers in veterinary science* 2020;7:271.
- 452 17. Savage MW, Pottinger JM, Chiang H-Y, et al. Surgical site infections and cellulitis after abdominal hysterectomy. *American Journal of Obstetrics and Gynecology* 2013;209(2):108. e1-08. e10.
- 455 18. Coleman JS, Green I, Scheib S, et al. Surgical site infections after hysterectomy 456 among HIV-infected women in the HAART era: a single institution's

- 19. Mahdi H, Goodrich S, Lockhart D, et al. Predictors of surgical site infection in women undergoing hysterectomy for benign gynecologic disease: a multicenter analysis using the national surgical quality improvement program data. *Journal of minimally invasive gynecology* 2014;21(5):901-09.
 - 20. Pop-Vicas A, Musuuza JS, Schmitz M, et al. Incidence and risk factors for surgical site infection post-hysterectomy in a tertiary care center. *American Journal of Infection Control* 2017;45(3):284-87.
 - 21. Uppal S, Harris J, Al-Niaimi A, et al. Prophylactic antibiotic choice and risk of surgical site infection after hysterectomy. *Obstetrics and gynecology* 2016;127(2):321.
- 22. Wang D, Chen Y, Deng J, et al. A Retrospective Study from 2 Tertiary Hospitals in China to Evaluate the Risk Factors for Surgical Site Infections After Abdominal Hysterectomy in 188 Patients. *Medical Science Monitor: International Medical Journal of Experimental and Clinical Research* 2022;28:e936198-1.
- 23. Brown O, Geynisman-Tan J, Gillingham A, et al. Minimizing risks in minimally invasive surgery: rates of surgical site infection across subtypes of laparoscopic hysterectomy. *Journal of Minimally Invasive Gynecology* 2020;27(6):1370-76. e1.
- 24. Tsuzuki Y, Hirata T, Tsuzuki S, et al. Risk factors of vaginal cuff infection in women undergoing laparoscopic hysterectomy for benign gynecological diseases. *J Obstet Gynaecol Res* 2021;47(4):1502-09.
- 25. Olsen MA, Higham-Kessler J, Yokoe DS, et al. Developing a risk stratification model for surgical site infection after abdominal hysterectomy. *Infect Control Hosp Epidemiol* 2009;30(11):1077-83.
- 26. Tuomi T, Pasanen A, Leminen A, et al. Incidence of and risk factors for surgical site infections in women undergoing hysterectomy for endometrial carcinoma. *Acta obstetricia et gynecologica Scandinavica* 2016;95(4):480-85.
- 27. Lake AG, McPencow AM, Dick-Biascoechea MA, et al. Surgical site infection after hysterectomy. *American journal of obstetrics and gynecology* 2013;209(5):490. e1-90. e9.
- 28. Till SR, Morgan DM, Bazzi AA, et al. Reducing surgical site infections after hysterectomy: metronidazole plus cefazolin compared with cephalosporin alone. *American Journal of Obstetrics and Gynecology* 2017;217(2):187. e1-87. e11.
- 29. Goodnough LT. Risks of blood transfusion. *Crit Care Med* 2003;31(12):S678-S86.
- 30. Carson JL. Blood transfusion and risk of infection: new convincing evidence? *JAMA* 2014;311(13):1293-94.
- 498 31. Tjeertes EE, Hoeks SS, Beks SS, et al. Obesity–a risk factor for postoperative complications in general surgery? *BMC Anesthesiol* 2015;15(1):1-7.
- 32. Bowditch M, Villar R. Do obese patients bleed more? A prospective study of blood loss at total hip replacement. *Ann R Coll Surg Engl* 1999;81(3):198.
- 502 33. Verma S, Hussain ME. Obesity and diabetes: an update. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2017;11(1):73-79.
- 34. De Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. *Nature reviews cancer* 2006;6(1):24-37.
- 506 35. Shaked Y. Balancing efficacy of and host immune responses to cancer therapy:


507	the yin and yang effects. Nature reviews Clinical oncology 2016;13(10):611-
508 509	26.36. Sørensen LT. Wound healing and infection in surgery: the pathophysiological
510 511	impact of smoking, smoking cessation, and nicotine replacement therapy: a systematic review. <i>Ann Surg</i> 2012;255(6):1069-79.
512	37. Hilton P, Monaghan JM. Opening and closing the abdominal cavity. Bonney's
513 514	Gynaecological Surgery 2018:33. 38. Lu I. Smart knives: controlled cutting schemes to enable advanced endoscopic
515	surgery. UCL (University College London), 2011.
516 517	39. Moen MD, Richter HE. Vaginal hysterectomy: past, present, and future. <i>International urogynecology journal</i> 2014;25:1161-65.
518	
519	
520	Figure 1 The PRISMA Flow
521	
522	Figure 2 The Funnel Plots
523	
524	Figure 3 The Forest Plots for Each Risk Factor
525	
526	Figure 4 Tobacco Use Subgroup Forest Plot between SSI Types
527	
528	Figure 5 Bayesian network analysis
529	
530	
531	
532	


Figure 1 The PRISMA Flow

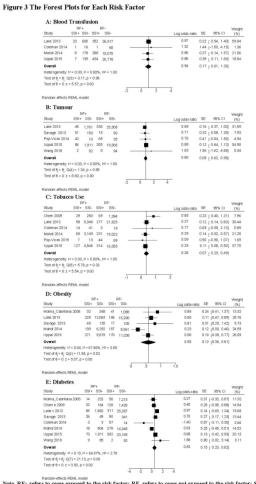
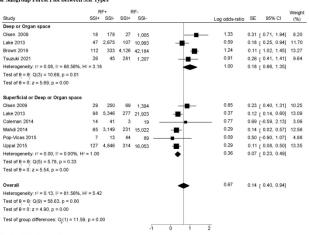
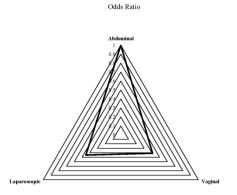

210x297mm (300 x 301 DPI)

Figure 2 The Funnel Plots



210x297mm (302 x 300 DPI)



Note. RF+ refers to cases exposed to the risk factor; RF- refers to cases not exposed to the risk factor; SSI+ refers to SSI positive cases; SSI- refers to SSI negative cases;

210x297mm (300 x 300 DPI)

297x210mm (300 x 300 DPI)

297x210mm (300 x 300 DPI)

Contents

Search Terms	2
Pubmed (Central) Search Strategy	2
Medline (Ovid) Search Strategy	
Embase (Ovid) Search Strategy	6
Web of Science Search Strategy	
Cochrane Library Search Strategy	10
Risk of Bias Assessment	12
NEWCASTLE - OTTAWA QUALITY CONTROL STUDIES)	
Selection	12
Comparability	12
Exposure	12
NEWCASTLE - OTTAWA QUALITY A STUDIES)	14
Selection	14
Comparability	14
Outcome	
Table 1 Study Summary	16
Table 2 Subgroup Analyses Between Different S	SSI Types18

Search Terms

Pubmed (Central) Search Strategy

Framework Item	Target	Search term
Population	female participants who had post-hysterectomy surgeries SSI (no restriction to age)	hysterectomy surgeriesmesh term: #1
Intervention	hysterectomy surgeries(No restriction on the surgery type, e.g. laparoscopy)	hysterectomy surgeriesmesh term: #1
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term: #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8
Outcome	SSI	Infection mesh term: #10

step	code	results
#1	((((((((((((((((((((((((((((((((((((((53,350
#2	((Clinical Trials, Randomized) OR (Trials, Randomized Clinical)) OR (Controlled Clinical Trials, Randomized)	742,997
#3	((((((((((((((((((((((((((((((((((((((1,122,672
#4	((((((((((((((((((((((((((((((((((((((339,768
#5	((((((((((((((((((((((((((((((((((((((1,589,628

		5
#6	Matched)) OR (Case-Control Study, Matched)) OR (Matched Case Control Studies)) OR (Matched Case-Control Study)) OR (Studies, Matched Case-Control)) OR (Study, Matched Case-Control) ((Prospective Study) OR (Studies, Prospective)) OR (Study, Prospective)	904,417
#7	((((((((((((((((((((((((((((((((((((((<u>3,150,416</u>
#8	Observational Study	205,618
#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	4,994,412
#10	((((Infection and Infestation) OR (Infestation and Infection)) OR (Infections and Infestations)) OR (Infestations and Infections)) OR (Infection)	4003846
#11	#1 AND #9 AND #10	<u>1,758</u>
#12	The year 2000 - Current	1,198
#13	English	1,096

The results are hyperlinked in each column

Medline (Ovid) Search Strategy

Framework Item	Target	Search term
Population	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	Medline code
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	Medline code
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term with Medline code
Outcome	SSI	Infection mesh term with Medline code

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	52599
2	hysterectomies. ti,ab,mp.	3423
3	hysterectomy, Vaginal. ti,ab,mp.	3235
4	hysterectomies, Vaginal. ti,ab,mp.	9
5	vaginal hysterectomies. ti,ab,mp.	437
6	vaginal hysterectomy. ti,ab,mp.	3593
7	Colpohysterectomy. ti,ab,mp.	84
8	Colpohysterectomies. ti,ab,mp.	8
9	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8	53278
Group 2	Intervention	
10	hysterectomy. ti,ab,mp.	52599
11	hysterectomies. ti,ab,mp.	3423
12	hysterectomy, Vaginal. ti,ab,mp.	3235
13	hysterectomies, Vaginal. ti,ab,mp.	9
14	vaginal hysterectomies. ti,ab,mp.	437
15	vaginal hysterectomy. ti,ab,mp.	3593
16	Colpohysterectomy. ti,ab,mp.	84
17	Colpohysterectomies. ti,ab,mp.	8
18	10 or 11 or 12 or 13 or 14 or 15 or 16 or 17	53278
Group 3	Comparator	
19	Cross-sectional. ti,ab,mp.	632818
20	Longitudinal. ti,ab,mp.	377935
21	Prospective study. ti,ab,mp.	159216
22	Cohort study. ti,ab,mp.	274386
23	Observational study. ti,ab,mp.	199248
24	Randomized control study. ti,ab,mp.	937
25	Case-Control Studies. ti,ab,mp.	338463
26	19 or 21 or 22 or 23 or 24 or 25	1494518
Group 4	Outcome	
27	Infections. ti,ab,mp.	1470008
28	"Infection and Infestation". ti,ab,mp.	86
29	"Infestation and Infection". ti,ab,mp.	51
30	"Infections and Infestations". ti,ab,mp.	311

31	"Infestations and Infections". ti,ab,mp.	28
32	Infection. ti,ab,mp.	1418735
33	27 or 28 or 29 or 30 or 31 or 32	2279134
Combined	9 and 18 and 26 and 33	407
Limited to English only	9 and 18 and 26 and 33	384
The year 2000 to present	9 and 18 and 26 and 33	337

Results link:

ovia.
jpep7EBC. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=5SYIqKQ2Gpep7EBCDrAGLmKZrFtVAMXrv0wx7zAaFQsQRH5DCIC 4ESMKrqhH2tOv1

Embase (Ovid) Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	Embase code
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	Embase code
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term with Embase code
Outcome	SSI	Infection mesh term with Embase code

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	93767
2	hysterectomies. ti,ab,mp.	6284
3	hysterectomy, Vaginal. ti,ab,mp.	392
4	trachelectomy. ti,ab,mp.	19
5	hysterectomies, Vaginal. ti,ab,mp.	758
6	vaginal hysterectomies. ti,ab,mp.	8954
7	vaginal hysterectomy. ti,ab,mp.	83
8	Colpohysterectomy. ti,ab,mp.	5
9	Colpohysterectomies. ti,ab,mp.	94170
10	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9	93767
Group 2	Intervention	
11	hysterectomy. ti,ab,mp.	93767
12	hysterectomies. ti,ab,mp.	6284
13	hysterectomy, Vaginal. ti,ab,mp.	392
14	trachelectomy. ti,ab,mp.	19
15	hysterectomies, Vaginal. ti,ab,mp.	758
16	vaginal hysterectomies. ti,ab,mp.	8954
17	vaginal hysterectomy. ti,ab,mp.	83
18	Colpohysterectomy. ti,ab,mp.	5
19	Colpohysterectomies. ti,ab,mp.	94170
20	11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19	93767
Group 3	Comparator	
21	Cross-sectional. ti,ab,mp.	765496
22	Longitudinal. ti,ab,mp.	475332
23	Prospective study. ti,ab,mp.	899849
24	Cohort study. ti,ab,mp.	405571
25	Observational study. ti,ab,mp.	342074
26	Randomized control study. ti,ab,mp.	1628
27	Case-Control Studies. ti,ab,mp.	27610
28	21 or 22 or 23 or 24 or 25 or 26 or 27	2146419
Group 4	Outcome	
29	Infections. ti,ab,mp.	835857
30	"Infection and Infestation". ti,ab,mp.	107

31	"Infestation and Infection". ti,ab,mp.	55
32	"Infections and Infestations". ti,ab,mp.	807
33	"Infestations and Infections". ti,ab,mp.	49
34	Infection. ti,ab,mp.	2763568
35	29 or 30 or 31 or 32 or 33 or 34	2991465
Combined	10 and 20 and 28 and 35	1510
Limited to English only	10 and 20 and 28 and 35	1468
The year 2000 to present	10 and 20 and 28 and 35	1419

Results link:

dweb.cgi?1 _0adXj9ZUf4Uz. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=79TCxxCp1oN0adXj9ZUf4UzOGz44m8xhcwT9pEsrMoJkpSIjfY4IktYO 5RKZbvU7

Web of Science Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	the web of science code: #1
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	the web of science code: #1
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study mesh terms with the
		web of science code: #2, #3, #4, #5, #6,
		#7, #8
Outcome	SSI	Infection mesh term with the web of
		science code: #10

step	code	results
#1	TS= (hysterectomy* OR hysterectomies* OR hysterectomy, vaginal* OR hysterectomies, vaginal OR vaginal hysterectomies* OR vaginal hysterectomy* OR colpohysterectomy* OR colpohysterectomies*)	40974
#2	TS= (Clinical Trials, Randomized* OR Trials, Randomized Clinical* OR Controlled Clinical Trials, Randomized*)	357993
#3	TS= (Longitudinal Study* OR Studies, Longitudinal* OR Study, Longitudinal* OR Tuskegee Syphilis Study* OR Syphilis Studies, Tuskegee* OR Syphilis Study, Tuskegee* OR Tuskegee Syphilis Studies* OR Jackson Heart Study* OR Heart Studies, Jackson* OR Heart Study, Jackson* OR Jackson Heart Studies* OR Studies, Jackson Heart* OR California Teachers Study* OR California Teachers Studies* OR Studies, California Teachers* OR Study, California Teachers* OR Teachers Studies, California* OR Bogalusa Heart Study* OR Bogalusa Heart Studies, Bogalusa Heart Study, Bogalusa* OR Studies, Bogalusa Heart* OR Study, Bogalusa Heart* OR Study, Bogalusa Heart* OR Framingham Heart Studies* OR Heart Study, Framingham* OR Longitudinal Survey* OR Longitudinal Surveys* OR Survey, Longitudinal* OR Surveys, Longitudinal*)	<u>389252</u>
#4	TS= (Case-Control Study* OR Studies, Case-Control* OR Study, Case-Control* OR Case-Comparison Studies* OR Case Comparison Studies* OR Case-Comparison Study* OR Studies, Case-Comparison* OR Study, Case-Comparison* OR Case-Compeer Studies* OR Studies, Case-Compeer* OR Case-Referrent Studies* OR Case Referrent Studies* OR Case-Referrent Study* OR Studies, Case-Referrent* OR Study, Case-Referrent* OR Case-Referent Studies* OR Case Referent Studies* OR Case-Referent Study* OR Studies, Case-Referent* OR Study, Case-Referent* OR Case-Base Studies* OR Case Base Studies* OR Studies, Case-Base* OR Case Control Studies* OR Case Control Study* OR Studies, Case-Control Studies* OR Case-Control Studies* OR Case-Control Study, Nested* OR Nested Case-Control Study* OR Studies, Nested* OR Nested Case-Control Study* OR Studies, Natched* OR Case-Control Studies* OR Case-Control Studies* OR Case-Control Studies* OR Matched Case-Control Studies* OR Matched Case-Control Studies* OR Matched Case-Control Studies* OR Matched Case-Control Studies, Matched* OR Case-Control Study* OR Studies, Matched Case-Control* OR Study, Matched Case-Control*	742023
#5	TS=(Cross Sectional Studies* OR Cross-Sectional Study * OR Studies, Cross-Sectional * OR Study, Cross-Sectional * OR Surveys, Disease Frequency * OR Disease Frequency Survey * OR Survey, Disease Frequency * OR Analysis, Cross-Sectional * OR Analyses, Cross-Sectional * OR Analysis, Cross Sectional * OR Cross-Sectional Analysis * OR Cross-Sectional Analysis	1164085

* OR Analyses, Cross Sectional * OR Cross Sectional Analyses * OR Cross-Sectional Survey * OR Cross Sectional Survey * OR Cross Sectional Surveys * OR Cross Sectional * OR Disease Frequency Surveys * OR Prevalence Studies * OR Prevalence Study * OR Studies, Prevalence * OR Study, Prevalence*) #6 TS= (Prospective Study* OR Studies, Prospective* OR Study, Prospective*) #7 TS= (Cohort Study* OR Studies, Cohort * OR Study, Cohort * OR Concurrent Studies * OR Studies, Closed Cohort Studies * OR Cohort Studies * OR Cohort Studies * OR Cohort Studies * OR Cohort Study, Closed Cohort * OR Cohort Study, Closed * OR Study, Closed Cohort * OR Study, Closed * OR Study, Closed Cohort * OR Studies, Closed Cohort Studies, Birth Cohort Study, Birth * OR Studies, Birth Cohort * OR Analysis, Cohort * OR Analysis, Cohort * OR Study, Birth Cohort * OR Analysis, Cohort * OR Analysis, Cohort * OR Cohort Studies * OR Cohort Studies, Historical * OR Cohort Study, Historical Cohort * OR Incidence * OR Study, Historical Cohort * OR Incidence * OR Study, Historical Cohort * OR Incidence Study * OR Studies, Incidence * OR Study, Incidence*) #8 TS= (Observational study *) #8 TS= (Infections * OR Infection and Infestation * OR Infestation and Infection * OR Infection * OR Infection * OR Infection * OR Infestation * OR Infestation * OR Infestation * OR Infection * OR Infectio			
TS= (Cohort Study* OR Studies, Cohort * OR Study, Cohort * OR Concurrent Studies * OR Studies, Concurrent * OR Concurrent Study * OR Study, Concurrent * OR Closed Cohort Studies * OR Cohort Studies, Closed * OR Closed Cohort Study * OR Cohort Studies, Closed * OR Closed Cohort Study * OR Cohort Study, Closed * OR Study, Closed Cohort * OR Studies, Closed Cohort * OR Birth Cohort Studies * OR Birth Cohort Study * OR Cohort Studies, Birth * OR Cohort Study, Birth * OR Studies, Birth Cohort * OR Study, Birth Cohort * OR Analysis, Cohort * OR Analyses, Cohort * OR Cohort Analyses * OR Cohort Analysis * OR Historical Cohort Studies * OR Cohort Study * OR Study, Historical Cohort * OR Studies, Historical Cohort * OR Incidence Study * OR Studies, Incidence * OR Study, Incidence*) #8 TS= (Observational study *) #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 TS= (Infections* OR Infection and Infestation * OR Infestation and Infection * OR Infection * OR Infections * OR Infe		Cross-Sectional Survey * OR Cross Sectional Survey * OR Cross-Sectional Surveys * OR Survey, Cross-Sectional * OR Surveys, Cross-Sectional * OR Disease Frequency Surveys * OR Prevalence Studies * OR Prevalence Study * OR Studies, Prevalence * OR Study,	
Concurrent Studies * OR Studies, Concurrent * OR Concurrent Study * OR Study, Concurrent * OR Closed Cohort Studies * OR Cohort Studies, Closed * OR Closed Cohort Study * OR Cohort Study, Closed * OR Study, Closed Cohort * OR Studies, Closed Cohort * OR Birth Cohort Studies * OR Birth Cohort Studies, Birth * OR Cohort Studies * OR Birth Cohort * OR Study, Birth * OR Cohort Study, Birth * OR Cohort * OR Analysis, Cohort * OR Analyses, Cohort * OR Cohort Analyses * OR Cohort Analysis * OR Historical Cohort Studies * OR Cohort Studies, Historical * OR Cohort Study, Historical * OR Historical Cohort * OR Incidence Studies * OR Incidence Study * OR Studies, Incidence * OR Study, Incidence*) #8 TS= (Observational study *) #9 #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 TS= (Infections * OR Infection and Infestation * OR Infestation and Infection * OR Infections and Infections * OR Infections * OR Infestation * OR Infest	#6		<u>721432</u>
#9 #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 TS= (Infections* OR Infection and Infestation * OR Infestation and Infection * OR Infections and Infections * OR Infections and Infections * OR Infections and Infections * OR Infection	#7	Concurrent Studies * OR Studies, Concurrent * OR Concurrent Study * OR Study, Concurrent * OR Closed Cohort Studies * OR Cohort Studies, Closed * OR Closed Cohort Study * OR Cohort Study, Closed * OR Study, Closed Cohort * OR Studies, Closed Cohort * OR Birth Cohort Studies * OR Birth Cohort Studies * OR Birth Cohort Studies, Birth * OR Cohort Study, Birth * OR Studies, Birth Cohort * OR Study, Birth Cohort * OR Analysis, Cohort * OR Analyses, Cohort * OR Cohort Analyses * OR Cohort Analysis * OR Historical Cohort Studies, Historical * OR Cohort Study, Historical * OR Historical Cohort Study * OR Study, Historical Cohort * OR Studies, Historical Cohort * OR Incidence Study * OR Studies,	<u>1333108</u>
TS= (Infections* OR Infection and Infestation * OR Infestation and Infection * OR Infections and Infections * OR Infections and Infections * OR Infections and Infections * OR Infections * OR Infections * OR Infections * OR Infestations and Infections * OR Infections * O	#8	TS= (Observational study *)	<u>234254</u>
#10 Infection * OR Infections and Infestations * OR Infestations and Infes	#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	3887063
	#10	Infection * OR Infections and Infestations * OR Infestations and	<u>1895911</u>
#12 The year 2000 – current; English 726	#11	#1 AND #9 AND #10	<u>853</u>
	#12	The year 2000 – current; English	<u>726</u>

The results are hyperlinked in each column

Cochrane Library Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesCochrane search
	surgeriesSSI(no restriction to age)	manager
		hysterectomy surgerieswith Cochrane
		code based on mesh term: #1
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgerieswith Cochrane
	surgery type, e.g. laparoscopy)	code based on mesh term
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study with Cochrane code
		based on mesh term:
Outcome	SSI	hysterectomy surgerieswith Cochrane
		code based on mesh term

step	code	results
#1	(hysterectomy):ti,ab,kw OR (hysterectomies):ti,ab,kw OR (hysterectomy, Vaginal):ti,ab,kw OR (vaginal hysterectomies):ti,ab,kw OR (vaginal hysterectomy):ti,ab,kw OR (Colpohysterectomy):ti,ab,kw OR (Colpohysterectomies):ti,ab,kw	8202
#2	(Clinical Trials, Randomized):ti,ab,kw OR (Trials, Randomized Clinical):ti,ab,kw OR (Controlled Clinical Trials, Randomized):ti,ab,kw	154945
#3	(Longitudinal Study):ti,ab,kw OR (Studies, Longitudinal):ti,ab,kw OR (Study, Longitudinal):ti,ab,kw OR (Tuskegee Syphilis Study):ti,ab,kw OR (Syphilis Studies, Tuskegee):ti,ab,kw OR (Syphilis Study, Tuskegee):ti,ab,kw OR (Tuskegee Syphilis Studies):ti,ab,kw OR (Jackson Heart Study):ti,ab,kw OR (Heart Studies, Jackson):ti,ab,kw OR (Heart Study, Jackson):ti,ab,kw OR (Jackson Heart Studies):ti,ab,kw OR (Studies, Jackson Heart):ti,ab,kw OR (California Teachers Study):ti,ab,kw OR (California Teachers Studies):ti,ab,kw OR (Studies, California Teachers):ti,ab,kw OR (Studies, California):ti,ab,kw OR (Teachers Study, California):ti,ab,kw OR (Bogalusa Heart Study):ti,ab,kw OR (Bogalusa Heart Studies):ti,ab,kw OR (Studies, Bogalusa):ti,ab,kw OR (Study, Bogalusa):ti,ab,kw OR (Studies, Bogalusa Heart):ti,ab,kw OR (Study, Bogalusa Heart):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Framingham Heart Studies):ti,ab,kw OR (Longitudinal Survey):ti,ab,kw OR (Longitudinal Survey):ti,ab,kw OR (Survey, Longitudinal):ti,ab,kw	23544
#4	(Case-Control Study):ti,ab,kw OR (Studies, Case-Control):ti,ab,kw OR (Study, Case-Control):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Studies, Case-Referrent):ti,ab,kw OR (Study, Case-Referrent):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Studies, Case-Base):ti,ab,kw OR (Case Control Studies):ti,ab,kw OR (Studies, Case-Control Study, Nested):ti,ab,kw OR (Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control Study):ti,ab,kw OR (Studies, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Case-Control):ti,ab,kw OR (Case	33557

377

243

60

#12

#13

Trials

The year 2000 - current; English

1

Studies, Matched):ti,ab,kw OR (Case-Control Study, Matched):ti,ab,kw OR (Matched Case Control Studies):ti,ab,kw OR (Matched Case-Control Study):ti,ab,kw OR (Studies, Matched Case-Control):ti,ab,kw OR (Study, Matched Case-Control):ti,ab,kw #5 (Cross Sectional Studies):ti,ab,kw OR (Cross-Sectional Study):ti,ab,kw OR (Studies, Cross-Sectional):ti,ab,kw OR (Study, Cross-Sectional):ti,ab,kw OR (Surveys, Disease Frequency):ti,ab,kw OR (Disease Frequency Survey):ti,ab,kw OR (Survey, Disease Frequency):ti,ab,kw OR (Analysis, Cross-Sectional):ti,ab,kw OR (Analyses, Cross-Sectional):ti,ab,kw OR (Analysis, Cross Sectional):ti,ab,kw OR (Cross-Sectional Analyses):ti,ab,kw OR (Cross-Sectional Analysis):ti,ab,kw OR (Cross Sectional 54133 Analysis);ti.ab.kw OR (Analyses, Cross Sectional);ti.ab.kw OR (Cross Sectional Analyses):ti,ab,kw OR (Cross-Sectional Survey):ti,ab,kw OR (Cross Sectional Survey):ti,ab,kw OR (Cross-Sectional Surveys):ti,ab,kw OR (Survey, Cross-Sectional):ti,ab,kw OR (Surveys, Cross-Sectional):ti,ab,kw OR (Disease Frequency Surveys):ti,ab,kw OR (Prevalence Studies):ti,ab,kw OR (Prevalence Study):ti,ab,kw OR (Studies, Prevalence):ti,ab,kw OR (Study, Prevalence):ti,ab,kw #6 (Prospective Study):ti,ab,kw OR (Studies, Prospective):ti,ab,kw OR (Study, 233446 Prospective):ti,ab,kw #7 (Cohort Study):ti.ab.kw OR (Studies, Cohort):ti.ab.kw OR (Study, Cohort):ti.ab.kw OR (Concurrent Studies):ti,ab,kw OR (Studies, Concurrent):ti,ab,kw OR (Concurrent Study):ti,ab,kw OR (Study, Concurrent):ti,ab,kw OR (Closed Cohort Studies):ti,ab,kw OR (Cohort Studies, Closed):ti,ab,kw OR (Closed Cohort Study):ti,ab,kw OR (Cohort Study, Closed):ti,ab,kw OR (Study, Closed Cohort):ti,ab,kw OR (Studies, Closed Cohort):ti,ab,kw OR (Birth Cohort Studies):ti,ab,kw OR (Birth Cohort Study):ti,ab,kw OR (Cohort Studies, Birth):ti,ab,kw OR (Cohort Study, Birth):ti,ab,kw OR (Studies, 184886 Birth Cohort):ti,ab,kw OR (Study, Birth Cohort):ti,ab,kw OR (Analysis, Cohort):ti,ab,kw OR (Analyses, Cohort):ti,ab,kw OR (Cohort Analyses):ti,ab,kw OR (Cohort Analysis):ti,ab,kw OR (Historical Cohort Studies):ti,ab,kw OR (Cohort Studies, Historical):ti,ab,kw OR (Cohort Study, Historical):ti,ab,kw OR (Historical Cohort Study):ti,ab,kw OR (Study, Historical Cohort):ti,ab,kw OR (Studies, Historical Cohort):ti,ab,kw OR (Incidence Studies):ti,ab,kw OR (Incidence Study):ti,ab,kw OR (Studies, Incidence):ti,ab,kw OR (Study, Incidence):ti,ab,kw 20328 #8 (Observational Study):ti,ab,kw #9 (Infection and Infestation):ti,ab,kw OR (Infection and Infestation):ti,ab,kw OR (Infections and Infestations):ti,ab,kw OR (Infestations and Infections):ti,ab,kw OR 102985 (Infection):ti,ab,kw #10 #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 552677 #11 #1 AND #9 AND #10 382

Risk of Bias Assessment

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CASE

CONTROL STUDIES)

■	lection
. 7 -	

Selection
1) Is the case definition adequate?
a) yes, with independent validation \Box
b) yes, e.g. record linkage or based on self-reports
c) no description
2) Representativeness of the cases
a) consecutive or obviously representative series of cases \Box
b) potential for selection biases or not stated
3) Selection of Controls
a) community controls □
b) hospital controls
c) no description
4) Definition of Controls
a) no history of disease (endpoint)
b) no description of source
Comparability
1) Comparability of cases and controls on the basis of the design or analysis
a) study controls for (Select the most important factor.) \Box
b) study controls for any additional factor (This criteria could be modified to indicate specific control for a second important factor.)
Exposure
1) Ascertainment of exposure
a) secure record (e.g. surgical records) \Box
b) structured interview where blind to case/control status $\hfill\Box$
c) interview not blinded to case/control status
d) written self-report or medical record only
e) no description

- a) yes □
- b) no

3) Non-response rate

- a) same rate for both groups \Box
- b) non-respondents described
- c) rate different and no designation

Table 1 Risk of Bias Assessment with NOS Case-control Study Scale

Author & Year		Sele	ction		Comparability	E	xposu	re	re Total score		
Olsen 2009	1	1	1	0	2	1	1	0	6		
Lake 2013	1	1	1	1	2	1	1	1	9		
Savage 2013	1	1	1	0	2	1	1	0	7		
Pop-Vicas 2014	0	1	1	0	2	0	1	1	6		
Morgan 2016	1	1	1	0	2	0	1	1	7		
Wang 2022	1	1	1	0	2	1	1	0	7		

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHORT STUDIES)

lecti	

1) Rep	presentativeness of the exposed cohort	
comm	a) truly representative of the averageunity \Box	(describe) in the
	b) somewhat representative of the average	in the community
	c) selected group of users e.g. nurses, volunteers	
	d) no description of the derivation of the cohort	
2) Selo	ection of the non-exposed cohort	
	a) drawn from the same community as the exposed cohort $\hfill\Box$	
	b) drawn from a different source	
	c) no description of the derivation of the non-exposed cohort	
3) Asc	certainment of exposure	
	a) secure record (e.g. surgical records) □	
	b) structured interview □	
	c) written self-report	
	d) no description	
4) Der	monstration that outcome of interest was not present at sta	rt of study
	a) yes □	
	b) no	
Comp	parability	
1) Co	mparability of cohorts on the basis of the design or analysis	S
	a) study controls for (select the most important	ant factor) \square
indica	b) study controls for any additional factor (This criteria co te specific control for a second important factor.)	uld be modified to
Outco	ome	
1) Ass	sessment of outcome	
	a) independent blind assessment \square	
	b) record linkage \square	
	c) self-report	

 d) no description

2) Was follow-up long enough for outcomes to occur

- a) yes (select an adequate follow-up period for outcome of interest) \Box
- b) no

3) Adequacy of follow-up of cohorts

- a) complete follow-up all subjects accounted for \Box
- b) subjects lost to follow-up unlikely to introduce bias small number lost > $\underline{\hspace{0.5cm}}$ % (select an adequate %) follow up, or description provided of those lost) \Box
- c) follow up rate < ____% (select an adequate %) and no description of those lost
 - d) no statement

Table 2 Risk of Bias Assessment with NOS Cohort Study Scale

Author & Year		Selection			Comparability	E	xposu	Total score	
Molina-Cabrillana 2008	0	1	1	0	2	1	1	0	6
Coleman 2014	1	1	1	0	2	1	0	1	7
Mahdi 2014	1	1	1	0	2	1	1	0	7
Uppal 2015	1	1	1	0	2	1	1	1	8
Tuomi 2016	1	1	1	0	2	1	1	1	8
Till 2017	1	1	1	0	2	0	1	1	7
Brown 2019	1	1	1	1	2	1	1	1	9
Tsuzuki 2021	1	1	1	0	2	1	1	0	7

Table 3 Study Summary

Author & Year		Selection			Comparability	E	xposur	Total score	
Molina-Cabrillana 2008#	0	1	1	0	2	1	1	0	6
Olsen 2009*	1	1	1	0	2	1	1	0	6
Lake 2013*	1	1	1	1	2	1	1	1	9
Savage 2013*	1	1	1	0	2	1	1	0	7
Coleman 2014#	1	1	1	0	2	1	0	1	7
Mahdi 2014#	1	1	1	0	2	1	1	0	7
Pop-Vicas 2014*	0	1	1	0	2	0	1	1	6
Uppal 2015#	1	1	1	0	2	1	1	1	8
Morgan 2016*	1	1	1	0	2	0	1	1	7
Tuomi 2016#	1	1	1	0	2	1	1	1	8
Till 2017#	1	1	1	0	2	0	1	1	7
Brown 2019#	1	1	1	1	2	1	1	1	9
Tsuzuki 2021#	1	1	1	0	2	1	1	0	7
Wang 2022*	1	1	1	0	2	1	1	0	7

Note. *means this study was assessed through the items for case-control studies. # means this study was assessed through the items for cohort studies.

Table 3 Study Summary

//bmjopen-2024-093072 on d by copyright, including fo

Author & Year	Sample Origin	N	SSI +	Age (±SD)	Surgery Method	Age RF	Anti- microbia l	Blood Loss	Blood Transfusion	BMI	Diabetes		Duration	Tobacco Use	Tumour	Wound Cleanness
Molina- Cabrillana 2008	2000-2004 Hospital Universitario Materno-Infantil de Canarias, Sapin	1540	72	54.00 (±12.90)	abdominal & vaginal	Age >60	Y/N	NR	NR	NR	Y/N	gnement Superieu elated∯o text and i	125	NR	Y/N	Clean- contaminated vs Contaminated /dirty
Olsen 2009	2003-2005 CDC Prevention Epicenter Program hospitals, USA	820	66	51.70 (±17.78)	abdominal & vaginal	Mean	NR	NR	NR	Mean	Y/N	ır (AE gata ı	Mean B	Y/N	Y/N	NR
Lake 2013	2005-2009 ACS- NSQIP, USA	13822	375	NR	abdominal & vaginal & laparoscopic	Age >80	NR	NR	Y/N	BMI≥30 (Obesity)	Y/N	BES) 30 mining and similar (Obdates) 30 (Obd	≥P75	Y/N	Y/N	Clean vs Clean- contaminated Contaminated vs Dirty
Savage 2013	2007-2010 University of Iowa Hospitals and Clinics, USA	1104	126	54.53 (±13.66)	abdominal	Mean	Mean	NR	Median	BMI≥30 (Obesity)	Y/N	ining∑and s	Mean	NR	Y/N	NR
Coleman 2014	1999-2012 Johns Hopkins Medical Institution, USA	77	17	42.56 (±5.93)	abdominal & vaginal & laparoscopic	Mean	NR	>250ml; ≥451ml	Y/N	Median	Y/N	BM=30 (Obeatity)	NR NR	Y/N	NR	NR
Mahdi 2014	2005-2011 ACS- NSQIP, USA	28366	296	NR	laparoscopic	Age >60, 70 & 80	NR	NR	>4 units of packed red blood cells	BMI≥30 (Obesity)	Y/N	BM B 30 (Ob S ity)	7 >60 min, 180 min	Y/N	NR	NR
Pop-Vicas 2014	2012-2015 University of Wisconsin Hospitals, USA	1531	52	58.27 (±12.31)	abdominal & vaginal & laparoscopic	Mean	Y/N	Median*	NR	NR	NR		Mean Mean Mean	Y/N	Y/N	NR
				г	or 10 oor 10 o	امر ممار	, http://br	nionon	hmi com/site/	ahaut/a	uidolinos y					

								ВМЈ Ор	en			J by copyright, including for u				17
)24-093 ht, incl				1,
Uppal 2015	2012-2015 MSQC, USA	21358	441	48.10 (±11.70)	abdominal & vaginal & laparoscopic	Median	Y/N	Median	NR	BMI≥30 (Obesity)	NR	BM 30 on 4 (Oberty)	Mean	Y/N	Y/N	NR
Morgan 2016	2012-2014 MSQC, USA	16548	315	NR	abdominal	Age >50	NR	Mean	Y/N	BMI≥30 (Obesity)	Y/N	June 20 Emsesio BMessie (Obesie	Mean	Y/N	Y/N	NR
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	1164	94	67.46 (±10.23)	abdominal & vaginal & laparoscopic	Mean	NR	Median	NR	Mean	Y/N	t June 2025. Downk Easeignement Su r usesigelated≝o tex BOO BOO	Mean	Y/N	NR	NR
Till 2017	2012-2015 MSQC, USA	18255	329	NR	abdominal & vaginal & laparoscopic		NR	≥250ml	NR	BMI≥30 (Obesity)	Y/N	paded from pe∯eyr (A t and slata Obslata	Mean	Y/N	Y/N	NR
Brown 2019	2012-2014 ACS- NSQIP, USA	46755	445	45.95 (±1.51)	laparoscopic	Mean	NR	NR	Y/N	Mean	Y/N	25. Downloaded from http://bmjopen.bmj.com/ on nement Supeझ்eழ்r (ABES) ated∯o text and glata mining, Al training, and≶imi ^{Mo} ©	Mean	Y/N	NR	Clean vs Clean- contaminated vs Contaminated vs Dirty
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	1559	71	48.28 (±11.39)	laparoscopic	Mean	NA	NR	Y/N	Mean	Y/N	n.bmj.c Inin g , aı	Mean	Y/N	NR	NR
Wang 2022	2012-2022 Two Grade A Tertiary Hospitals, China	94	188	47.70 (±10.87)	abdominal	Age >50	Y/N	≥500ml	NR	Mean	Y/N	mjopen.bmj.com∕ on June 7, 202 Al trainin氀 and≶imilar technolo	>180 min	NR	Y/N	Clinicians determined Class II vs Class III
Overall		152993	2887	47.53 (±8.29)								on June 7, 202 milar technolo				

Note. The content under each risk factor was how these studies presented their data. The detailed case numbers are a Table 3; SSI+ refers to SSI-positive cases; ACS-NSQIP refers to the American College of Surgeons National Surgical Quality Improvement Program; MSQC Pefers to the Michigan Surgical Quality Collaborative; NR refers to not reported; NA refers to not applicable; Y/N refers to reported in Yes or No; Median*: te median reported in this study did not include IQR to estimate its variance; P75 refers to the 75th percentil

V/bmjopen-2024-093072 or

Table 2 Subgroup Analyses Between Different SSI Types

	Sı	uperficial &	Deep & C	rgan Sp	oace			Deep & (Group Difference			
Risk Factors	LogOR	I^2	OR	SE	Z	p	LogOR	I^2	OR	Sine z	p	Q (df)	p
Tobacco Use	0.36	0.00%	1.43	0.07	5.78	<.001	1	68.56%	2.72	7.69 7.69 7.69	.001	11.59 (1)	<.001
Diabetes	0.53	64.07%	1.70	0.15	2.5	<.001	0.27	61.95%	1.31	62 9 5 1.06	.290	.71 (1)	.400

Note. Only Tobacco Use and Diabetes retrieved more than 4 datasets reporting Deep or Organ Space SSI types. The individual SSI or Organ Space, were reported in less than 4 sets. This is to demonstrate that ORs of risk factors might differ between the terminant of the composition Note. Only Tobacco Use and Diabetes retrieved more than 4 datasets reporting Deep or Organ Space SSI types. The indiagogual SSI types, such as Superficial, Deep,

BMJ Open

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-093072.R3
Article Type:	Original research
Date Submitted by the Author:	06-May-2025
Complete List of Authors:	liu, yin; West China Women's and Children's Hospital, Nosocomial Infection Management Department; Sichuan University West China Second University Hospital Key Laboratory of Birth Defects and Related Diseases of Women and Children liu, yihao; West China Hospital of Sichuan University, Mental Health Center; West China Hospital of Sichuan University, Department of Social Psychiatry yang, zhan; West China Women's and Children's Hospital, Medical affairs Department; WCSUH-Tianfu·Sichuan Provincial Children's Hospital, Medical and education Department; Sichuan University West China Second University Hospital Key Laboratory of Birth Defects and Related Diseases of Women and Children wu, jinlin; West China Women's and Children's Hospital, Medical affairs department li, juan; West China Women's and Children's Hospital, Nosocomial Infection Management Department
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Risk Factors, Meta-Analysis, Systematic Review

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Risk factors for surgical site infection (SSI) in patients undergoing hysterectomy: A systematic review and meta-analysis

Abstract

Objective: Surgical site infections (SSI) after hysterectomy constitute significant postoperative complications, affecting patient recovery and healthcare costs. We conducted a systematic review of risk factors for SSI in patients undergoing hysterectomy.

Design: The current study conducted a systematic review with meta-analysis to identify and summarise risk factors for SSI following hysterectomy.

Data sources: Pubmed, Medline, Embase, Web of Science, and Cochrane Central Register of Controlled Trials were searched through 1 November 2023.

Eligibility criteria: The inclusion criteria were 1) population: female participants who had post-hysterectomy SSI; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI; 4) outcomes: the number of participants exposed and not exposed to the risk factors of SSI. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Data extraction and synthesis: Two reviewers conducted the screening process independently. Articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. The meta-analysis synthesised risk factors reported ≥ 4 datasets via random-effects models, assessing heterogeneity, sensitivity (leave-one-out), publication bias (Egger's test/funnel plots), and subgroup analyses (incision types).

Results: Blood transfusion emerged as the largest risk factor (OR = 2.55, 95%CI [1.84, 3.56]), followed by tumour presence (OR = 2.23, 95%CI [1.86, 2.66]), obesity (OR = 1.79, 95%CI [1.43, 2.23]), diabetes (OR = 1.70, 95%CI [1.26, 2.29]), and tobacco use (OR = 1.43, 95%CI [1.26, 1.63]). The ORs varied by incision type.

Conclusion: The study establishes blood transfusion, tumour presence, obesity, diabetes, and tobacco use as significant risk factors for SSI after

hysterectomy, with variations in risk evident across different incision types. The
findings also suggest vaginal and laparoscopic hysterectomies as preferable
alternatives to abdominal hysterectomy in mitigating SSI risk. Future research should
aim for more granular data to untangle the interplay between comorbidities and
further elucidate the differential risk across SSI types.

Keywords: Hysterectomy; Surgical Site Infections; Risk Factors; Meta-analysis

Strengths and limitations of this study

- 1. The current systematic review synthesised evidence on odds ratios of risk factors for post-hysterectomy SSI.
- 2. The current systematic review included 152993 patients who underwent hysterectomy, including 2887 who had post-hysterectomy SSI.
- 3. The major limitation was that we found the case numbers exposed to each risk factor were counted respectively, such that the odds ratios were not solely attributed to a single risk factor and might be overestimated.

46 Introduction

 Hysterectomy is a very common procedure in which the uterus is surgically removed, and it is an optional treatment for leiomyoma, endometriosis, abnormal bleeding, benign ovarian neoplasms, pelvic organ prolapse, and gynecologic cancer ¹. Epidemiological research estimated that the lifetime prevalence of hysterectomy surgery is approximately 236/100,0000 in Germany, 143/100,0000 in the US ² ³, 80/100,0000 in China 4, and 42/100,0000 in the UK 2 among the female population, depending on waitlist queuing time of different regions ². Among patients who had hysterectomies, 2.1% are estimated to develop surgical site infections (SSI) worldwide 5, which has been one of the most common complications after hysterectomy surgery ⁶. According to Centers for Disease Control and Prevention (CDC), SSI is an infection that develops in the portion of the body where the operation was performed. It might be superficial, affecting simply the skin, or more serious, involving tissues beneath the skin, organs, or implanted material. currently accepted risk factors of hysterectomy SSI are age, body mass index (BMI), smoking, and diabetes 7. However, many studies have shown different results, one study from Spain only considered obesity and inadequate prophylaxis as meaningful indicators 8, whereas another study from the UK also suggested that the operative time should be considered an independent risk factor 9. The evidence from current research appears to be diverse, isolated, and lacking in quantitative power. One study analyzed the risk factors for SSI after obstetric and gynecological surgery; in fact, the types of obstetric and gynecological surgeries are varied; for example, breast-conserving surgeries are cleansing surgeries, and breast reconstruction may use silicone implants, so the factors affecting SSI for these surgeries may be different than for hysterectomies ¹⁰.

- Consequently, the current study aims to summarise the results of risk factors
- of hysterectomy SSI through a quantitative approach.

73					Metho	d
74	Study Regis	stration				
75	The	protocol	of the	current	study	V

The protocol of the current study was registered and reviewed by the PROSPERO International Prospective Register of Systematic Reviews (No. CRD42023411668). The protocol is available at:

https://www.crd.york.ac.uk/PROSPERO/export details pdf.php

The Patient and Public Involvement statement

None

Search Strategy

The data was extracted from published empirical study reports retrieved from the databases, including Pubmed (central), Medline (Ovid), Embase (Ovid), Web of Science, and Cochrane Central Register of Controlled Trials. The search terms followed the standard PICO guideline (population, intervention, comparator, outcome) and were adapted according to Medical Subject Headings (MeSH) terms 11. The search was conducted upon the completion of study registration.

Eligibility criteria

The inclusion criteria were 1) population: women undergoing hysterectomy; 2) intervention: hysterectomy surgeries; 3) comparators: the number of participants who had or had not post-hysterectomy SSI; 4) outcomes: SSI. The exclusion criteria were 1) non-English studies and 2) studies that provided insufficient data.

Study screening and data extraction

The report articles were retrieved in RIS format and managed with Endnote (Bld13966, EndNote X9.3.3, 2023). The screening process followed the PRISMA guidelines ¹². Two reviewers conducted the screening process independently. Initially, they removed all duplicate articles. Then, articles that did not meet the inclusion criteria were excluded. For those that met the criteria, full-text papers were procured. Any discrepancies between the reviewers were resolved through discussion. Data from the selected articles was subsequently extracted.

Risk of bias assessment

Two reviewers independently scored the studies using the Newcastle-Ottawa quality assessment (NOS) 13 14. NOS is a validated, easy-to-use scale containing 8 organised three dimensions: selection. comparability, items into and

exposure/outcome, which has been endorsed for use in systematic reviews of non-randomised studies by The Cochrane Collaboration ¹⁴. Studies rated 0-2 as poor quality, 3-5 as fair quality, and 6–9 as good/high quality.

Data synthesis

Data synthesis requires at least four sets of data according to the general conduct suggested by the Cochrane Handbook ¹⁵. The effect size of each identified risk factor will be pooled in a quantitative meta-analysis using STATA v18. The risk factors were expected to be reported as binary data about whether or not the patients were exposed to the risk factor and were infected. Consequently, odds ratios (ORs) would be calculated as the effect size with the following formula:

$$OR = \frac{a}{b} \div \frac{c}{d}$$

Where a represents cases exposed to the risk factor and infected, b represents those exposed but not infected, c represents unexposed but infected, and d represents unexposed and uninfected cases. And the LogOR is the natural log of the OR.

Statistical Analysis Plan

The meta-analysis was conducted with STATA v18. Only risk factors reported in over 4 datasets were synthesised into meta-analysis. A random effect model meta-analysis with the restricted maximum likelihood method was used to evaluate the pooled ORs (LogORs). The heterogeneity was also assessed with the random effects model, where heterogeneity I^2 is considered moderate when $I^2 > 50\%$ and high when $I^2 > 75\%$ ¹⁵. Sensitivity analysis was conducted using the Leave-one-out approach by omitting one dataset each time and evaluating the pooled effect sizes. Egger's test and funnel plots were used to assess potential publication bias.

The pooled effect sizes were also entered into subgroup analysis based on the SSI types (superficial, deep, organ space) with available datasets. BMI was entered into the meta-regression analysis with pooled effect sizes of diabetes to explore the relationship between obesity and diabetes and its influence on SSI risk prediction.

133		Results
134	Systematic review	

Initially, searching the keywords in PubMed, Medline (Ovid), Embase (Ovid), Web of Science, and the Cochrane Central Register of Controlled Trials produced 3821 records. Fourteen studies met the inclusion criteria after screening based on the PRISMA guidelines. The PRISMA procedure is shown in Figure 1.

Figure 1 The PRISMA Flow

All identified studies were retrospective observations to record the case numbers of SSI after hysterectomy surgeries with or without the occurrence of each risk factor. In total, 152993 female patients (age: 47.53±8.29) who underwent hysterectomy were included in the current 14 studies, of whom 2887 had SSI in different types, and 150106 had no SSI taken as controls. The details of all studies are described in Table 1 (More detailed information can be found at supplymentary material 1).

Table 1 Study Summary

			ВМЈ О	pen		i/bmjopen		
able 1 Study Summa	nry					//bmjopen-2024-093072 on d by copyright, including fo		
Author & Year	Sample Origin	Study Design	Surgery Method	Blood Transfusion	Diabetes	४ ६ इंक्रिड्डिस्ट्रि	Tobacco Use	Tumour
Molina-Cabrillana 2008	2000-2004 Hospital Universitario Materno-Infantil de Canarias, Sapin	Cohort Study	abdominal & vaginal	NR	Y/N	ne 2025. Donseigneme es related	NR	Y/N
Olsen 2009	2003-2005 CDC Prevention Epicenter Program hospitals, USA	Case-control Study	abdominal & vaginal	NR	Y/N	. Downloadesity)	Y/N	Y/N
Lake 2013	2005-2009 ACS-NSQIP, USA	Case-control Study	abdominal & vaginal & laparoscopic	Y/N	Y/N	σ. ≌. છ	Y/N	Y/N
Savage 2013	2007-2010 University of Iowa Hospitals and Clinics, USA	Case-control Study	abdominal	Median	Y/N	fron ur (A data	NR	Y/N
Coleman 2014	1999-2012 Johns Hopkins Medical Institution, USA	Cohort Study	abdominal & vaginal & laparoscopic	Y/N	Y/N	BEE (Obesity)	Y/N	NR
Mahdi 2014	2005-2011 ACS-NSQIP, USA	Cohort Study	laparoscopic	>4 units of packed red blood cells	Y/N	BMt≥30 Obesity)	Y/N	NR
Pop-Vicas 2014	2012-2015 University of Wisconsin Hospitals, USA	Case-control Study	abdominal & vaginal & laparoscopic	NR	NR	training, and 3000 Obesity)	Y/N	Y/N
Uppal 2015	2012-2015 MSQC, USA	Cohort Study	abdominal & vaginal & laparoscopic	NR	NR	BM 230 Obesity)	Y/N	Y/N
Morgan 2016	2012-2014 MSQC, USA	Case-control Study	abdominal	Y/N	Y/N	BM 230 Obesity) BM 230 Obesity)	Y/N	Y/N
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	Cohort Study	abdominal & vaginal & laparoscopic	NR	Y/N	ch NA	Y/N	NR
Till 2017	2012-2015 MSQC, USA	Cohort Study	abdominal & vaginal & laparoscopic	NR	Y/N	BMS ≥ 30 Cobesity)	Y/N	Y/N
Brown 2019	2012-2014 ACS-NSQIP, USA	Cohort Study	laparoscopic	Y/N	Y/N	· 🕍	Y/N	NR
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	Cohort Study	laparoscopic	Y/N	Y/N	∍nc∯ Bibliog	Y/N	NR
			8			genc∕ള́ Bibliographique de		

2012-2022 Two Grade A Tertiary Case-control Study Wang 2022 Hospitals, China

abdominal

NR

Y/N

d by copyright, including fo //bmjopen-2024-09307≸ on

NR

Y/N

Note. The content under each risk factor was how these studies presented their data. The detailed case numbers are in supplymentary material 1; ACS-NSQIP refers to the American College of Surgeons National Surgical Quality Improvement Program; MSQC refers to the Military Collaborative; NR refers to not reported; NA refers to not applicable; V/N refers to reported in Yes or No.

| Downloaded from http://downloaded from http://downloa Note. The content under each risk factor was how these studies presented their data. The detailed case numbers arg in supplymentary material 1; ACS-NSQIP

Among these studies, seven only reported infection cases in mixed three SSI types (superficial, deep or organ space) ⁸ ¹⁷⁻²², two only reported in mixed two SSI (deep or organ space) ²³ ²⁴, one study reported each SSI types separately ²⁵ and one study reported superficial and organ space SSIs separately ²⁶, one study reported superficial SSI independently but mixed deep or organ space SSIs ²⁷, one study reported deep SSI independently but mixed superficial or deep SSIs ⁵, one study reported only organ space SSIs ²⁸. Since it requires at least four datasets to conduct meta-analyses ¹⁵, the studies reported cases in independent SSI types were combined into three mixed SSI types (superficial, deep or organ space) to synthesise with those only reported the mixed SSI types. The NOS risk of bias assessment rated three studies scored 6 ⁸ ²⁰ ²⁵, seven scored 7 ⁵ ¹⁷⁻¹⁹ ²² ²⁴ ²⁸, two scored 8 ²¹ ²⁶, and the other two scored 9 ²³ ²⁷. All 14 studies are ranked as good/high quality and were included in the following review.

Among the 14 studies, there were 11 risk factors identified in total, including age, antimicrobial, blood loss, blood transfusion, BMI, diabetes (both type I or type II), obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, antimicrobial and blood loss were reported in less than four datasets. Wound cleanness and age were reported in different classification standards. Only 5 factors reported in more than 4 datasets are available for quantitative analysis, including blood transfusion, diabetes, obesity, tobacco use, and tumour. Age, high BMI, and surgery duration reported continued data and thus could not be directly synthesised.

Meta-analyses

The identified risk factors with sufficient datasets were entered into meta-analyses respectively. As shown in Table 2, pooled effect sizes revealed significant overall logORs of blood transfusion (OR = 2.55, 95%CI [1.84, 3.56], p <.001), obesity (OR = 1.79, 95%CI [1.43, 2.23], p <.001), diabetes (OR = 1.70, 95%CI [1.26, 2.29], p <.001), tobacco use (OR = 1.43, 95%CI [1.26, 1.63], p <.001), but not tumour (OR = 1.35, p =.362), as the risk factors for SSI infections. However, after removing each dataset one at a time, leave-one-out sensitivity analysis on all risk factors suggested no changes except for tumour (OR = 2.33, 95%CI [1.86, 2.66], p <.001), where one dataset changed the results 8 . Further analysis with publication bias suggested no publication bias in all factors. However, as shown in Figure 2A, the funnel plot suggested three outlier datasets 8 21 25 . One border dataset was decided to

Table 2 Summary of Meta-analyses

	Risk Factor	Blood Transfusion	Tumour	Obesity	Diabetes	Tobacco Use
	RF+ SSI+	39	226	720	229	340
C. N. N.	RF+ SSI-	998	3924	28717	5330	13645
Case Number	RF- SSI+	1075	769	531	1314	938
	RF- SSI-	62830	44733	36398	62893	54500
	LogOR	0.94	0.8	0.58	0.53	0.36
	OR	2.55	2.23	1.79	1.7	1.43
Meta-analysis	SE	0.17	0.09	0.12	0.15	0.07
	Z	5.57	8.8	5.07	3.5	5.54
	p	<.001	<.001	<.001	<.001	<.001
	I^2	0.00%	0.00%	67.56%	64.07%	0.00%
Heterogeneity Test	Q _(df)	.17 (3)	1.34 (4)	11.58 (4)	21.13 (7)	5.78 (5)
	p	0.983	0.85	0.02	<.001	0.33
Leave-one-out	lowest LogOR	0.88	0.7	0.54	0.44	0.32
Sensitivity	Highest LogOR	0.96	0.86	0.66	0.64	0.43
	β	0.09	0.05	1.79	-1.21	0.76
Egger's	SE	1.08	0.81	7.6	0.89	0.73
Publication Bias	Z	0.08	0.06	1.12	-1.35	0.91
	p	0.934	0.95	0.263	0.178	0.363

Note. The presenting data of the tumour was after exclusions of outliers. RF+ refers to exposure to the risk factor, RF- refers to no exposure to the risk factor, SSI+ refers to SSI positive, and SSI- refers to SSI negative, OR refers to Odds ratio, I² refers to Heterogeneity index, p refers to p-value.

Figure 2 The Funnel Plots

After exclusion, data from the tumour was entered into meta-analysis again and reported a significant pooled effect size predicting SSI infections (logOR = .80, OR = 2.23, p < .001), and, as shown in Figure 2B, there were no outliers. As shown in Figure 3A, 3B, and 3C, the estimation of heterogeneity suggested that the chance of inconsistent distribution of the pooled logORs was not significant in blood transfusion datasets ($I^2 = 0\%$, $Q_{(3)} = .17$, p = .983), tumour ($I^2 = 0\%$, $Q_{(4)} = 1.34$, p = .850) or tobacco use ($I^2 = 0\%$, $Q_{(5)} = 5.78$, p = .330). However, Figure 3D and Figure 3E suggested significant moderate heterogeneity in obesity ($I^2 = 67.56\%$, $Q_{(4)} = 11.58$, p < .001) and diabetes datasets ($I^2 = 64.07\%$, $Q_{(7)} = 21.13$, p < .001). These results suggested that blood transfusion, tumour, tobacco use, obesity, and diabetes were significant risk factors predicting post-hysterectomy SSI. Patients who underwent blood transfusion had a 155% increased likelihood of experiencing post-hysterectomy SSI. Similarly, individuals with tumours had a 123% increased risk, obese individuals 79%, diabetics 70%, and tobacco users 43%.

Figure 3 The Forest Plots for Each Risk Factor

Subgroup analysis between studies reporting different SSI types (mixed superficial or deep or organ space vs. mixed deep or organ space) was conducted among tobacco use and diabetes, for they obtained more than 4 datasets under each subgroup. The difference was whether they included superficial SSI. A significant group difference in pooled ORs between mixed superficial & deep & organ space cases and mixed deep or organ space among tobacco use, $Q_{(1)} = 11.59$, p < .001, but not among diabetes, $Q_{(1)} = .71$, p = .400. The impact of tobacco use on the risk of SSI varied significantly depending on the type of SSI, see supplymentary material Table 2. As shown in Figure 4, while tobacco use was associated with a 143% increased risk for combined superficial, deep, and organ space SSIs, this risk escalated to a 272% increase when considering only deep and organ space SSIs. This suggests that the influence of smoking may be more pronounced for deep and organ space infections than superficial ones. Given the observed discrepancy in risk between the combined three types of SSIs and the combined two types (deep or organ space) for tobacco use,

- 218 it is plausible that other risk factors might also exhibit differential effects across
- various SSI categories.

220 Figure 4 Tobacco Use Subgroup Forest Plot between SSI Types

Continuous BMI data was incorporated into a meta-regression analysis alongside the ORs of diabetes to evaluate the relationship between obesity and diabetes. Given the absence of group differences or heterogeneity discrepancies across SSI types in the effect sizes associated with diabetes, datasets from both SSI types (though not originating from identical studies) were incorporated into the metaregression. The results suggested that BMI did not significantly predict the ORs of diabetes ($\beta = .001$, SE = .08, t = .02, p = .989). While this does not suggest that BMI (or obesity) is not correlated with the incidence of diabetes, it does affirm that high BMI did not affect the outcomes in this particular analysis.

231 Discussion

 The current study conducted a systematic review with meta-analysis to summarise the evidence of risk factors of SSI after hysterectomy surgeries. To our knowledge, this is the first quantitative review of the topic. In total, 14 retrospective observations studies were identified with 2887 SSI positive and 150106 negative cases under 11 risk factors, including age, antimicrobial, blood loss, blood transfusion, high BMI, diabetes, obesity, surgery duration, tobacco use, tumour, and wound cleanness. However, only 5 were available for meta-analysis synchronisation. Among which, blood transfusion, tumour, obesity, diabetes, and tobacco use were factors that significantly increased the risk of SSI. The estimated ORs also seemed to vary between different SSI types (superficial, deep, or organ space). The details of the quantitative analysis are discussed as follows.

The largest risk factor of SSI is blood transfusion (OR = 2.55), with a 155% increased likelihood of SSI. Blood transfusion has always been identified as a major source of post-surgical infections ²⁹ ³⁰. Administrative errors, such as bacterial contamination in platelet products, are believed responsible for infections induced by blood transfusion ²⁹. These issues are related to the healthcare service environment and beyond the current paper's discussion. Instead, the need for blood transfusion deserves further elaboration from the patients' site. For example, blood loss was reported to be positively correlated with BMI ³¹ ³². Apart from obesity, severe abnormal uterine bleeding and cancer-related anaemia are also important reasons that patients require extra blood transfusion. However, none of the included studies attempted to isolate these factors, nor did they report preoperative haemoglobin. Consequently, we could not address whether blood transfusion was an independent factor or it was attributed to other factors such as obesity, severe abnormal uterine bleeding, cancer-related anaemia, preoperative haemoglobin or whether its estimated ORs were inflated. Future studies should consider reporting more comprehensive data to precisely estimate the ORs for blood transfusion as the SSI risk factor.

Likewise, one may argue that obesity and diabetes are comorbid, where obesity-induced insulin resistance is one of the major sources of type 2 diabetes 33 . This might explain the moderate heterogeneity of the ORs in obesity (OR = 1.79, $I^2 = 67.56\%$) and diabetes (OR = 1.70, $I^2 = 64.07\%$). This is, in fact, a methodological issue, where all studies directly counted the case number that was exposed and not exposed to the

 specific risk factors, but none attempted to distinguish whether the case was exposed to multiple risk factors. That is, one might suffer from obesity or diabetes or both, and the case would be counted in each risk factor respectively when they suffer from both. Consequently, the estimated ORs were not solely attributed to one risk factor and might be overestimated. Hypothetically, in the current case, the heterogeneity of the ORs in obesity and diabetes was moderate because some studies included more patients suffering from both obesity and diabetes and reported higher ORs than those with fewer such patients. As a result, although both obesity and diabetes are significant risk factors, their estimated ORs should be considered cautiously and require further clarification in future studies by reporting cases separately.

To further address this issue, the current study conducted a meta-regression analysis to investigate whether BMI predicts the ORs of diabetes. The analysis found no significant relationship between continuous BMI values and the ORs of diabetes. Notably, the absence of a significant predictive relationship between BMI and the OR for diabetes does not imply that these two factors were unrelated or that obesity does not influence the estimation of OR for diabetes. On the one hand, the absence of a significant predictive relationship might arise from including both type I and type II diabetes in the studies, with type I diabetes having less direct relevance to obesity. On the other hand, the estimation of ORs may still have been elevated due to the repeated counting of cases exposed to multiple risk factors. Instead, this result might be interpreted as the pathologies of obesity and diabetes are relatively independent in the context of SSI risk.

Apart from obesity and diabetes, the second-largest risk factor was tumour (OR = 2.23), with a 123% increased likelihood of SSI. The immune system in patients afflicted with malignant tumours was generally compromised ³⁴. This impairment in the primary immune function directly results from the tumour's pervasive influence on the natural defence mechanisms. Furthermore, the standard therapeutic interventions for tumours, including surgery, chemotherapy, and radiotherapy, also contribute to the weakened immune state ³⁵.

Tobacco use was the last risk factor (OR = 1.43), with a 43% increased likelihood of SSI. Nicotine and carbon monoxide, two primary agents produced in tobacco use, contribute to the constriction of peripheral blood vessels. This

vasoconstriction reduces the oxygen supply to tissues, vital for cellular function and healing processes ³⁶. Consequently, this oxygen deficit can precipitate the formation of microthrombi, which are small clots that can impair blood flow and further hinder tissue repair and regeneration.

However, the estimated ORs of tobacco use seemed to vary between SSI types. A subgroup comparison was conducted between studies that reported all mixed SSI and those that only reported deep or organ space SSI for tobacco use and diabetes, where only these two risk factors were reported repeatedly in distinguishing between SSI types. Significant subgroup differences were observed exclusively in the context of tobacco use. Specifically, tobacco use was associated with a 43% increased risk for superficial, deep, or organ space SSIs. This risk escalated to a 172% increase when focusing solely on deep or organ space SSIs. The pronounced impact of tobacco use appears more substantial in increasing the risk of deep or organ space infections compared to superficial ones. This discrepancy may also be attributed to tobacco-induced vasoconstriction. The vascular system supporting superficial cells, such as those in the skin, is more prosperous than the vasculature of deep and organ space cells. Consequently, cells in deeper tissues and organ spaces are more vulnerable to oxygen supply alterations exacerbated by tobacco use. However, this was merely a hypothetical explanation without solid evidence, which requires further investigation.

There are five limitations in the current study. First, some procedures performed in conjunction with hysterectomy can also affect SSI, but this was not explored in this paper. Second, the included studies did not differentiate cases based on the number of risk factors present, counting each instance for all identified risks. This approach likely inflated the ORs, particularly for comorbid conditions like patients with severe abnormal uterine bleeding or cancer-related anaemia and obesity and diabetes. Thirdly, there was no distinction between Type I and Type II diabetes in the studies, potentially contributing to moderate heterogeneity in the pooled OR estimates. Therefore, the estimated ORs for obesity and diabetes as risk factors for SSIs should be interpreted cautiously. Then, since none of the studies isolated patients with severe abnormal uterine bleeding, suffered from cancer-related anaemia, or reported preoperative HbA1, it is unclear whether these factors also inflated the estimation ORs for blood transfusion, and thus, they should be interpreted cautiously as well. Lastly, few studies specified the types of SSI (superficial, deep, or organ space). Given that

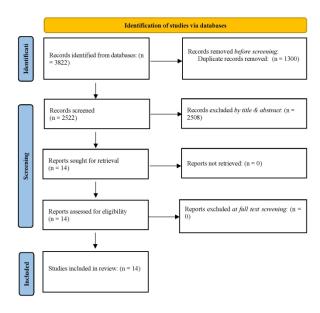
our analysis indicates variation in tobacco use ORs across different SSI types, it is crucial to ascertain if similar variations apply to other risk factors. Addressing these issues in future research, with more detailed data reporting, is essential for a clearer understanding of the risk factors for SSIs. Future studies should report more comprehensive data to address these limitations.

In summary, the current study conducted a systematic review with meta-analysis of the risk factors of SSI after hysterectomy surgeries. In total, 11 risk factors were mentioned, whereas only blood transfusion, tumour, obesity, diabetes, and tobacco use had sufficient data to be entered into meta-analysis and yield statistical significance. With limited available data, the ORs of tobacco use seemed to vary between different SSI types, suggesting potential diversity in other risk factors. This approach offers valuable insights into the varying risks associated with each surgical method.

- **Conflict of Interest:** The authors declare that they have no conflict of interest
- Funding: The researchers of this study did not receive or use any funding
- 344 Data Sharing: All relevant data are within the manuscript and its Supporting
- information files.
- **Ethical Statement:** This study was a systematic review and meta-analysis. All data
- were obtained from published literature and therefore no ethical approval was
- 348 required.

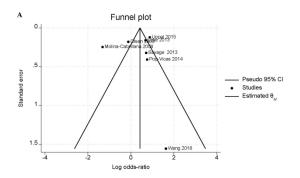
349	Contributor Information
350	Liu, yin, Email: 2471669869@qq.com
351	Liu, yihao, Email: yl531@exeter.ac.uk.
352	Yang, zhan, Email: 614958117@qq.com.
353	Wu, jinlin, Email: 1369051705@qq.com.
354	Li, juan, Email: 364256183@qq.com.
355	Liu, yihao and Yang, zhan contributed equally to this paper.
356	Yang, zhan is the guarantor.
357	YL and ZY contributed to the conception of the work; YL, ZY, JL W and J L were
358	the independent investigators to conducted the study's review, quality assessment, and
359	data extraction. YL and YH L completed the data analysis, and drafted the
360	manuscript. Finally, ZY and YH L gave final approval for the publish version; and
361	ZY agreed to be responsible for all aspects of the work and to ensure that problems
362	relating to the accuracy or integrity of any part of the work are appropriately
363	investigated and resolved.
364	

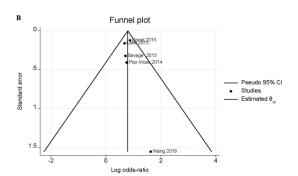
365 Reference


366 1. Wright JD, Ananth CV, Lewin SN, et al. Robotically assisted vs laparoscopic 367 hysterectomy among women with benign gynecologic disease. *JAMA* 368 2013;309(7):689-98.

- Mukhopadhaya N, Manyonda I. The hysterectomy story in the United Kingdom.
 Journal of mid-life health 2013;4(1):40.
 - 3. OECD. OECD Health Data 2003. Ottawa, 2004:5-7.
- 4. Liu F, Pan Y, Liang Y, et al. The epidemiological profile of hysterectomy in rural Chinese women: a population-based study. *BMJ open* 2017;7(6):e015351.
 - 5. Morgan DM, Swenson CW, Streifel KM, et al. Surgical site infection following hysterectomy: adjusted rankings in a regional collaborative. *American Journal of Obstetrics and Gynecology* 2016;214(2):259. e1-59. e8.
 - 6. Shi L, Gu Q, Zhang F, et al. Predictive factors of surgical site infection after hysterectomy for endometrial carcinoma: a retrospective analysis. *BMC Surg* 2021;21(1):1-7.
 - 7. Chen I, Choudhry AJ, Schramm D, et al. Type of pelvic disease as a risk factor for surgical site Infectionin women undergoing hysterectomy. *Journal of Minimally Invasive Gynecology* 2019;26(6):1149-56.
 - 8. Molina-Cabrillana J, Valle-Morales L, Hernandez-Vera J, et al. Surveillance and risk factors on hysterectomy wound infection rate in Gran Canaria, Spain. *European Journal of Obstetrics & Gynecology and Reproductive Biology* 2008;136(2):232-38.
 - 9. Pakzad R, Safiri S. Incidence and risk factors for surgical site infection posthysterectomy in a tertiary care center: methodologic issues. *American Journal of Infection Control* 2017;45(5):580-81.
 - 10. Yang Z, Wang D, Yang M, et al. Risk factors for surgical site infection in patients undergoing obstetrics and gynecology surgeries: A meta-analysis of observational studies. *PLoS One* 2024;19(3):e0296193. doi: 10.1371/journal.pone.0296193 [published Online First: 20240306]
 - 11. Bramer WM, De Jonge GB, Rethlefsen ML, et al. A systematic approach to searching: an efficient and complete method to develop literature searches. *Journal of the Medical Library Association: JMLA* 2018;106(4):531.
 - 12. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Systematic reviews* 2021;10(1):1-11.
 - 13. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses: Oxford, 2000.
 - 14. Nasser M. New standards for systematic reviews incorporate population health sciences. *American Journal of Public Health* 2020;110(6):753.
- Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons 2019.
 Hu D, O'Connor AM, Wang C, et al. How to conduct a Bayesian network meta-
 - 16. Hu D, O'Connor AM, Wang C, et al. How to conduct a Bayesian network metaanalysis. *Frontiers in veterinary science* 2020;7:271.
 - 17. Savage MW, Pottinger JM, Chiang H-Y, et al. Surgical site infections and cellulitis after abdominal hysterectomy. *American Journal of Obstetrics and Gynecology* 2013;209(2):108. e1-08. e10.
- 412 18. Coleman JS, Green I, Scheib S, et al. Surgical site infections after hysterectomy 413 among HIV-infected women in the HAART era: a single institution's

- 19. Mahdi H, Goodrich S, Lockhart D, et al. Predictors of surgical site infection in women undergoing hysterectomy for benign gynecologic disease: a multicenter analysis using the national surgical quality improvement program data. *Journal of minimally invasive gynecology* 2014;21(5):901-09.
 - 20. Pop-Vicas A, Musuuza JS, Schmitz M, et al. Incidence and risk factors for surgical site infection post-hysterectomy in a tertiary care center. *American Journal of Infection Control* 2017;45(3):284-87.
 - 21. Uppal S, Harris J, Al-Niaimi A, et al. Prophylactic antibiotic choice and risk of surgical site infection after hysterectomy. *Obstetrics and gynecology* 2016;127(2):321.
 - 22. Wang D, Chen Y, Deng J, et al. A Retrospective Study from 2 Tertiary Hospitals in China to Evaluate the Risk Factors for Surgical Site Infections After Abdominal Hysterectomy in 188 Patients. *Medical Science Monitor: International Medical Journal of Experimental and Clinical Research* 2022;28:e936198-1.
- 23. Brown O, Geynisman-Tan J, Gillingham A, et al. Minimizing risks in minimally invasive surgery: rates of surgical site infection across subtypes of laparoscopic hysterectomy. *Journal of Minimally Invasive Gynecology* 2020;27(6):1370-76. e1.
 - 24. Tsuzuki Y, Hirata T, Tsuzuki S, et al. Risk factors of vaginal cuff infection in women undergoing laparoscopic hysterectomy for benign gynecological diseases. *J Obstet Gynaecol Res* 2021;47(4):1502-09.
 - 25. Olsen MA, Higham-Kessler J, Yokoe DS, et al. Developing a risk stratification model for surgical site infection after abdominal hysterectomy. *Infect Control Hosp Epidemiol* 2009;30(11):1077-83.
 - 26. Tuomi T, Pasanen A, Leminen A, et al. Incidence of and risk factors for surgical site infections in women undergoing hysterectomy for endometrial carcinoma. *Acta obstetricia et gynecologica Scandinavica* 2016;95(4):480-85.
 - 27. Lake AG, McPencow AM, Dick-Biascoechea MA, et al. Surgical site infection after hysterectomy. *American journal of obstetrics and gynecology* 2013;209(5):490. e1-90. e9.
 - 28. Till SR, Morgan DM, Bazzi AA, et al. Reducing surgical site infections after hysterectomy: metronidazole plus cefazolin compared with cephalosporin alone. *American Journal of Obstetrics and Gynecology* 2017;217(2):187. e1-87. e11.
- 451 29. Goodnough LT. Risks of blood transfusion. *Crit Care Med* 2003;31(12):S678-452 S86.
- 453 30. Carson JL. Blood transfusion and risk of infection: new convincing evidence? 454 *JAMA* 2014;311(13):1293-94.
- 31. Tjeertes EE, Hoeks SS, Beks SS, et al. Obesity–a risk factor for postoperative complications in general surgery? *BMC Anesthesiol* 2015;15(1):1-7.
- 32. Bowditch M, Villar R. Do obese patients bleed more? A prospective study of blood loss at total hip replacement. *Ann R Coll Surg Engl* 1999;81(3):198.
- 33. Verma S, Hussain ME. Obesity and diabetes: an update. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2017;11(1):73-79.
- 34. De Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. *Nature reviews cancer* 2006;6(1):24-37.
- 35. Shaked Y. Balancing efficacy of and host immune responses to cancer therapy:


1		
2 3	464	the yin and yang effects. <i>Nature reviews Clinical oncology</i> 2016;13(10):611-
4	465	26.
5		
6	466	36. Sørensen LT. Wound healing and infection in surgery: the pathophysiological
7	467	impact of smoking, smoking cessation, and nicotine replacement therapy: a
8	468	systematic review. <i>Ann Surg</i> 2012;255(6):1069-79.
9	469	37. Hilton P, Monaghan JM. Opening and closing the abdominal cavity. Bonney's
10	470	Gynaecological Surgery 2018:33.
11	471	38. Lu I. Smart knives: controlled cutting schemes to enable advanced endoscopic
12	472	surgery. UCL (University College London), 2011.
13	473	39. Moen MD, Richter HE. Vaginal hysterectomy: past, present, and future.
14 15	474	International urogynecology journal 2014;25:1161-65.
16	.,.	11100 111101 00 1
17	475	
18		
19	476	
20		
21	477	Figure 1 The PRISMA Flow
22		
23	478	
24	479	Figure 2 The Funnel Plots
25	4/3	Figure 2 The Funner Flots
26	480	
27		
28 29	481	Figure 3 The Forest Plots for Each Risk Factor
30		
31	482	
32		
33	483	Figure 4 Tobacco Use Subgroup Forest Plot between SSI Types
34	101	
35	484	
36	485	
37		
38	486	
39		
40	487	
41		
42	488	
43 44		
44 45	489	
46		
47	490	
48		
49		
50		
51		
52		
53		
54		
55		
56		
57 50		
58 59		
ン フ		


Figure 1 The PRISMA Flow

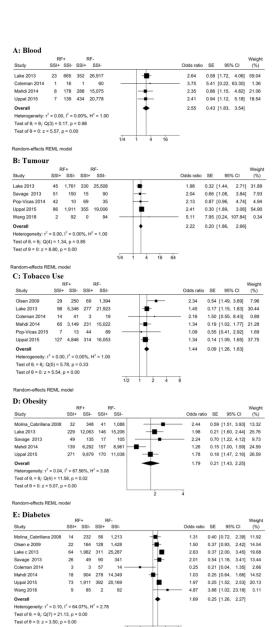
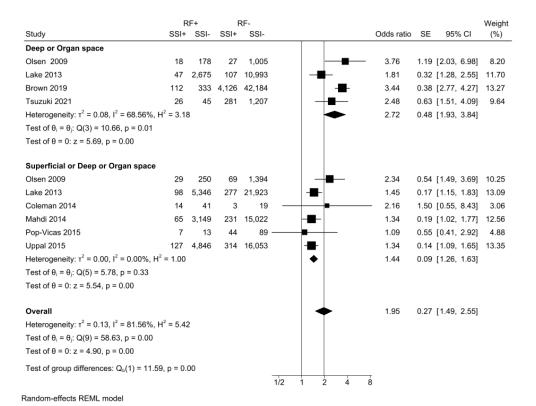

210x297mm (300 x 301 DPI)

Figure 2 The Funnel Plots



210x297mm (302 x 300 DPI)

109x250mm (300 x 300 DPI)

Random-effects REML model

248x194mm (96 x 96 DPI)

Contents

Search Terms	2
Pubmed (Central) Search Strategy	2
Medline (Ovid) Search Strategy	4
Embase (Ovid) Search Strategy	6
Web of Science Search Strategy	8
Cochrane Library Search Strategy	10
Risk of Bias Assessment	12
NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (C. CONTROL STUDIES)	
Selection	12
Comparability	12
Exposure	12
NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHOSTUDIES)	
Selection	
Comparability	
Outcome	14
Table 1 Study Summary	16
Table 2 Subgroup Analyses Between Different SSI Types	18

Search Terms

Pubmed (Central) Search Strategy

Framework Item	Target	Search term
Population	female participants who had post-hysterectomy surgeries SSI (no restriction to age)	hysterectomy surgeriesmesh term: #1
Intervention	hysterectomy surgeries(No restriction on the surgery type, e.g. laparoscopy)	hysterectomy surgeriesmesh term: #1
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term: #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8
Outcome	SSI	Infection mesh term: #10

step	code	results
#1	((((((((((((((((((((((((((((((((((((((<u>53,350</u>
#2	((Clinical Trials, Randomized) OR (Trials, Randomized Clinical)) OR (Controlled Clinical Trials, Randomized)	742,997
#3	((((((((((((((((((((((((((((((((((((((1,122,672
#4	((((((((((((((((((((((((((((((((((((((339,768
#5	((((((((((((((((((((((((((((((((((((((1,589,628

	Matched)) OR (Case-Control Study, Matched)) OR (Matched Case Control	
	Studies)) OR (Matched Case-Control Study)) OR (Studies, Matched Case-Control))	
	OR (Study, Matched Case-Control)	
#6	((Prospective Study) OR (Studies, Prospective)) OR (Study, Prospective)	904,417
#7	((((((((((((((((((((((((((((((((((((((<u>3,150,416</u>
#8	Observational Study	205,618
#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	4,994,412
#10	((((Infection and Infestation) OR (Infestation and Infection)) OR (Infections and	4002946
	Infestations)) OR (Infestations and Infections)) OR (Infection)	<u>4003846</u>
#11	#1 AND #9 AND #10	<u>1,758</u>
#12	The year 2000 - Current	<u>1,198</u>
#13	English	1,096

The results are hyperlinked in each column

Medline (Ovid) Search Strategy

Framework Item	Target	Search term
Population	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	Medline code
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	Medline code
Comparator	the number of participants who had or had not post-hysterectomy SSI	RCT, case-control, cross-sectional, longitudinal, observational, cohort and prospective study mesh term with Medline code
Outcome	SSI	Infection mesh term with Medline code

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	52599
2	hysterectomies. ti,ab,mp.	3423
3	hysterectomy, Vaginal. ti,ab,mp.	3235
4		
5 vaginal hysterectomies. ti,ab,mp.		437
6	vaginal hysterectomy. ti,ab,mp.	3593
7	Colpohysterectomy. ti,ab,mp.	84
8	Colpohysterectomies. ti,ab,mp.	8
9	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8	53278
Group 2	Intervention	
10	hysterectomy. ti,ab,mp.	52599
11	hysterectomies. ti,ab,mp.	3423
12	hysterectomy, Vaginal. ti,ab,mp.	3235
13	hysterectomies, Vaginal. ti,ab,mp.	9
14	vaginal hysterectomies. ti,ab,mp.	437
15	vaginal hysterectomy. ti,ab,mp.	3593
16	Colpohysterectomy. ti,ab,mp.	84
17	Colpohysterectomies. ti,ab,mp.	8
18	10 or 11 or 12 or 13 or 14 or 15 or 16 or 17	53278
Group 3	Comparator	
19	Cross-sectional. ti,ab,mp.	632818
20	Longitudinal. ti,ab,mp.	377935
21	Prospective study. ti,ab,mp.	159216
22	Cohort study. ti,ab,mp.	274386
23	Observational study. ti,ab,mp.	199248
24	Randomized control study. ti,ab,mp.	937
25	Case-Control Studies. ti,ab,mp.	338463
26	19 or 21 or 22 or 23 or 24 or 25	1494518
Group 4	Outcome	
27	Infections. ti,ab,mp.	1470008
28	"Infection and Infestation". ti,ab,mp.	86
29	"Infestation and Infection". ti,ab,mp.	51
30	"Infections and Infestations". ti,ab,mp.	311

31	"Infestations and Infections". ti,ab,mp.	28
32	Infection. ti,ab,mp.	1418735
33	27 or 28 or 29 or 30 or 31 or 32	2279134
Combined	9 and 18 and 26 and 33	407
Limited to English only	9 and 18 and 26 and 33	384
The year 2000 to present	9 and 18 and 26 and 33	337

Results link:

ovia.
ipep7EBC. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=5SYIqKQ2Gpep7EBCDrAGLmKZrFtVAMXrv0wx7zAaFQsQRH5DCIC 4ESMKrqhH2tOv1

Embase (Ovid) Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	Embase code
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	Embase code
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
_	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study mesh term with
		Embase code
Outcome	SSI	Infection mesh term with Embase code

	Term searched	Results
Group 1	Population	
1	hysterectomy. ti,ab,mp.	93767
2	hysterectomies. ti,ab,mp. 6284	6284
3	hysterectomy, Vaginal. ti,ab,mp.	392
4 trachelectomy. ti,ab,mp.		19
5	hysterectomies, Vaginal. ti,ab,mp.	758
6	vaginal hysterectomies. ti,ab,mp.	8954
7	vaginal hysterectomy. ti,ab,mp.	83
8	Colpohysterectomy. ti,ab,mp.	5
9	Colpohysterectomies. ti,ab,mp.	94170
10	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9	93767
Group 2	Intervention	
11	hysterectomy. ti,ab,mp.	93767
12	hysterectomies. ti,ab,mp.	6284
13	hysterectomy, Vaginal. ti,ab,mp.	392
14	trachelectomy. ti,ab,mp.	19
15	hysterectomies, Vaginal. ti,ab,mp.	758
16	vaginal hysterectomies. ti,ab,mp.	8954
17	vaginal hysterectomy. ti,ab,mp.	83
18	Colpohysterectomy. ti,ab,mp.	5
19	Colpohysterectomies. ti,ab,mp.	94170
20	11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19	93767
Group 3	Comparator	
21	Cross-sectional. ti,ab,mp.	765496
22	Longitudinal. ti,ab,mp.	475332
23	Prospective study. ti,ab,mp.	899849
24	Cohort study. ti,ab,mp.	405571
25	Observational study. ti,ab,mp.	342074
26	Randomized control study. ti,ab,mp.	1628
27	Case-Control Studies. ti,ab,mp.	27610
28	21 or 22 or 23 or 24 or 25 or 26 or 27	2146419
Group 4	Outcome	
29	Infections. ti,ab,mp.	835857
30	"Infection and Infestation". ti,ab,mp.	107

31	"Infestation and Infection". ti,ab,mp.	55
32	"Infections and Infestations". ti,ab,mp.	807
33	"Infestations and Infections". ti,ab,mp.	49
34	Infection. ti,ab,mp.	2763568
35	29 or 30 or 31 or 32 or 33 or 34	2991465
Combined	10 and 20 and 28 and 35	1510
Limited to English only	10 and 20 and 28 and 35	1468
The year 2000 to present	10 and 20 and 28 and 35	1419

Results link:

dweb.cgi?1 OadXj9ZUf4Uz. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=main&SHAREDSE ARCHID=79TCxxCp1oN0adXj9ZUf4UzOGz44m8xhcwT9pEsrMoJkpSIjfY4IktYO 5RKZbvU7

Web of Science Search Strategy

Framework Item	Target	Search term
Population P	female participants who had post-hysterectomy	hysterectomy surgeriesmesh term with
	surgeriesSSI(no restriction to age)	the web of science code: #1
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeriesmesh term with
	surgery type, e.g. laparoscopy)	the web of science code: #1
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study mesh terms with the
		web of science code: #2, #3, #4, #5, #6,
		#7, #8
Outcome	SSI	Infection mesh term with the web of
		science code: #10

step	code	results
#1	TS= (hysterectomy* OR hysterectomies* OR hysterectomy, vaginal* OR hysterectomies, vaginal OR vaginal hysterectomies* OR vaginal hysterectomy* OR colpohysterectomy* OR colpohysterectomies*)	40974
#2	TS= (Clinical Trials, Randomized* OR Trials, Randomized Clinical* OR Controlled Clinical Trials, Randomized*)	357993
#3	TS= (Longitudinal Study* OR Studies, Longitudinal* OR Study, Longitudinal* OR Tuskegee Syphilis Study* OR Syphilis Studies, Tuskegee* OR Syphilis Study, Tuskegee* OR Tuskegee Syphilis Studies* OR Jackson Heart Study* OR Heart Studies, Jackson* OR Heart Study, Jackson* OR Jackson Heart Studies* OR Studies, Jackson Heart* OR California Teachers Study* OR California Teachers Studies* OR Studies, California Teachers* OR Study, California Teachers* OR Teachers Studies, California* OR Teachers Study, California* OR Bogalusa Heart Study* OR Bogalusa Heart Studies, Bogalusa Heart Study, Bogalusa* OR Studies, Bogalusa Heart* OR Study, Bogalusa Heart* OR Framingham Heart Study* OR Framingham Heart Studies* OR Heart Study, Framingham* OR Longitudinal Survey* OR Longitudinal Surveys* OR Survey, Longitudinal* OR Surveys, Longitudinal*)	<u>389252</u>
#4	TS= (Case-Control Study* OR Studies, Case-Control* OR Study, Case-Control* OR Case-Comparison Studies* OR Case-Comparison Studies* OR Case-Comparison Study* OR Studies, Case-Comparison* OR Study, Case-Comparison* OR Case-Compeer Studies* OR Studies, Case-Compeer* OR Case-Referrent Studies* OR Case-Referrent Studies* OR Case-Referrent Study* OR Studies, Case-Referrent* OR Study, Case-Referrent* OR Case-Referent Studies* OR Case-Referent Study* OR Studies, Case-Referent* OR Study, Case-Referent* OR Case-Base Studies* OR Case Base Studies* OR Studies, Case-Base* OR Case Control Studies* OR Case Control Study* OR Studies, Case-Base* OR Case Control Studies* OR Case-Control Studies, Case-Control Studies* OR Case-Control Study, Nested* OR Nested Case-Control Study* OR Studies, Natched Case-Control Studies* OR Case-Control Studies, Matched* OR Case-Control Study, Matched* OR Matched Case Control Studies* OR Matched Case Control Studies* OR Matched Case-Control Studies, Matched* OR Case-Control Study* OR Studies, Matched Case-Control* OR Study, Matched Case-Control*)	742023
#5	TS=(Cross Sectional Studies* OR Cross-Sectional Study * OR Studies, Cross-Sectional * OR Study, Cross-Sectional * OR Surveys, Disease Frequency * OR Disease Frequency Survey * OR Survey, Disease Frequency * OR Analysis, Cross-Sectional * OR Analyses, Cross-Sectional * OR Analysis, Cross Sectional * OR Cross-Sectional Analyses * OR Cross-Sectional Analysis	<u>1164085</u>

	* OR Analyses, Cross Sectional * OR Cross Sectional Analyses * OR Cross-Sectional Survey * OR Cross-Sectional Survey * OR Cross-Sectional Surveys * OR Survey, Cross-Sectional * OR Disease Frequency Surveys * OR Prevalence Studies * OR Prevalence Study * OR Studies, Prevalence * OR Study, Prevalence*)	
#6	TS= (Prospective Study* OR Studies, Prospective* OR Study, Prospective*)	<u>721432</u>
#7	TS= (Cohort Study* OR Studies, Cohort * OR Study, Cohort * OR Concurrent Studies * OR Studies, Concurrent * OR Concurrent Study * OR Study, Concurrent * OR Closed Cohort Studies * OR Cohort Studies, Closed * OR Closed Cohort Study * OR Cohort Study, Closed * OR Study, Closed Cohort * OR Studies, Closed Cohort * OR Birth Cohort Studies * OR Birth Cohort Studies * OR Birth Cohort Studies, Birth * OR Cohort Study, Birth * OR Studies, Birth Cohort * OR Study, Birth * OR Analysis, Cohort * OR Analyses, Cohort * OR Cohort Analyses * OR Cohort Analysis * OR Historical Cohort Studies * OR Cohort Studies, Historical * OR Cohort Study, Historical * OR Historical Cohort * OR Incidence Study * OR Studies, Incidence * OR Study, Incidence*)	<u>1333108</u>
#8	TS= (Observational study *)	<u>234254</u>
#9	#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	3887063
#10	TS= (Infections* OR Infection and Infestation * OR Infestation and Infection * OR Infections and Infections * OR Infections and Infections * OR Infection *)	1895911
#11	#1 AND #9 AND #10	<u>853</u>
#12	The year 2000 – current; English	<u>726</u>

The results are hyperlinked in each column 700 J

Cochrane Library Search Strategy

Framework Item	Target	Search term
Population female participants who had post-hysterectomy		hysterectomy surgeriesCochrane search
	surgeriesSSI(no restriction to age)	manager
		hysterectomy surgerieswith Cochrane
		code based on mesh term: #1
Intervention	hysterectomy surgeries(No restriction on the	hysterectomy surgeries with Cochrane
	surgery type, e.g. laparoscopy)	code based on mesh term
Comparator	the number of participants who had or had not	RCT, case-control, cross-sectional,
	post-hysterectomy SSI	longitudinal, observational, cohort and
		prospective study with Cochrane code
		based on mesh term:
Outcome	SSI	hysterectomy surgerieswith Cochrane
		code based on mesh term

step	code	results
#1	(hysterectomy):ti,ab,kw OR (hysterectomies):ti,ab,kw OR (hysterectomy, Vaginal):ti,ab,kw OR (vaginal hysterectomies):ti,ab,kw OR (vaginal hysterectomy):ti,ab,kw OR (Colpohysterectomy):ti,ab,kw OR (Colpohysterectomies):ti,ab,kw	8202
#2	(Clinical Trials, Randomized):ti,ab,kw OR (Trials, Randomized Clinical):ti,ab,kw OR (Controlled Clinical Trials, Randomized):ti,ab,kw	154945
#3	(Longitudinal Study):ti,ab,kw OR (Studies, Longitudinal):ti,ab,kw OR (Study, Longitudinal):ti,ab,kw OR (Tuskegee Syphilis Study):ti,ab,kw OR (Syphilis Studies, Tuskegee):ti,ab,kw OR (Syphilis Study, Tuskegee):ti,ab,kw OR (Tuskegee Syphilis Studies):ti,ab,kw OR (Jackson Heart Study):ti,ab,kw OR (Heart Studies, Jackson):ti,ab,kw OR (Heart Study, Jackson):ti,ab,kw OR (Jackson Heart Studies):ti,ab,kw OR (Studies, Jackson Heart):ti,ab,kw OR (California Teachers Study):ti,ab,kw OR (California Teachers Studies):ti,ab,kw OR (Studies, California Teachers):ti,ab,kw OR (Studies, California):ti,ab,kw OR (Teachers Studies, California):ti,ab,kw OR (Bogalusa Heart Study):ti,ab,kw OR (Bogalusa Heart Studies):ti,ab,kw OR (Heart Studies, Bogalusa):ti,ab,kw OR (Study, Bogalusa):ti,ab,kw OR (Studies, Bogalusa Heart):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Framingham Heart Study):ti,ab,kw OR (Heart Studies, Framingham):ti,ab,kw OR (Heart Studies, Framingham):ti,ab,kw OR (Longitudinal Survey):ti,ab,kw OR (Survey, Longitudinal):ti,ab,kw	23544
#4	(Case-Control Study):ti,ab,kw OR (Studies, Case-Control):ti,ab,kw OR (Study, Case-Control):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Case-Comparison Studies):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Studies, Case-Comparison):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Case-Referrent Studies):ti,ab,kw OR (Studies, Case-Referrent):ti,ab,kw OR (Study, Case-Referrent):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Case-Referent Studies):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Studies, Case-Referent):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Case-Base Studies):ti,ab,kw OR (Studies, Case-Base):ti,ab,kw OR (Case Control Studies):ti,ab,kw OR (Studies, Case-Control Studies):ti,ab,kw OR (Studies, Nested):ti,ab,kw OR (Study, Nested Case-Control Study):ti,ab,kw OR (Studies, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control Study):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Study, Nested Case-Control):ti,ab,kw OR (Case-Control):ti,ab,kw OR (Case-Control):	33557

243

58 59 60 #13

The year 2000 - current; English

1 2 3

4

Studies, Matched):ti,ab,kw OR (Case-Control Study, Matched):ti,ab,kw OR (Matched Case Control Studies):ti,ab,kw OR (Matched Case-Control Study):ti,ab,kw OR (Studies, Matched Case-Control):ti,ab,kw OR (Study, Matched Case-Control):ti,ab,kw #5 (Cross Sectional Studies):ti,ab,kw OR (Cross-Sectional Study):ti,ab,kw OR (Studies, Cross-Sectional):ti,ab,kw OR (Study, Cross-Sectional):ti,ab,kw OR (Surveys, Disease Frequency):ti,ab,kw OR (Disease Frequency Survey):ti,ab,kw OR (Survey, Disease Frequency):ti,ab,kw OR (Analysis, Cross-Sectional):ti,ab,kw OR (Analyses, Cross-Sectional):ti,ab,kw OR (Analysis, Cross Sectional):ti,ab,kw OR (Cross-Sectional Analyses):ti,ab,kw OR (Cross-Sectional Analysis):ti,ab,kw OR (Cross Sectional 54133 Analysis);ti.ab.kw OR (Analyses, Cross Sectional);ti.ab.kw OR (Cross Sectional Analyses):ti,ab,kw OR (Cross-Sectional Survey):ti,ab,kw OR (Cross Sectional Survey):ti,ab,kw OR (Cross-Sectional Surveys):ti,ab,kw OR (Survey, Cross-Sectional):ti,ab,kw OR (Surveys, Cross-Sectional):ti,ab,kw OR (Disease Frequency Surveys):ti,ab,kw OR (Prevalence Studies):ti,ab,kw OR (Prevalence Study):ti,ab,kw OR (Studies, Prevalence):ti,ab,kw OR (Study, Prevalence):ti,ab,kw #6 (Prospective Study):ti,ab,kw OR (Studies, Prospective):ti,ab,kw OR (Study, 233446 Prospective):ti,ab,kw #7 (Cohort Study):ti.ab.kw OR (Studies, Cohort):ti.ab.kw OR (Study, Cohort):ti.ab.kw OR (Concurrent Studies):ti,ab,kw OR (Studies, Concurrent):ti,ab,kw OR (Concurrent Study):ti,ab,kw OR (Study, Concurrent):ti,ab,kw OR (Closed Cohort Studies):ti,ab,kw OR (Cohort Studies, Closed):ti,ab,kw OR (Closed Cohort Study):ti,ab,kw OR (Cohort Study, Closed):ti,ab,kw OR (Study, Closed Cohort):ti,ab,kw OR (Studies, Closed Cohort):ti,ab,kw OR (Birth Cohort Studies):ti,ab,kw OR (Birth Cohort Study):ti,ab,kw OR (Cohort Studies, Birth):ti,ab,kw OR (Cohort Study, Birth):ti,ab,kw OR (Studies, 184886 Birth Cohort):ti,ab,kw OR (Study, Birth Cohort):ti,ab,kw OR (Analysis, Cohort):ti,ab,kw OR (Analyses, Cohort):ti,ab,kw OR (Cohort Analyses):ti,ab,kw OR (Cohort Analysis):ti,ab,kw OR (Historical Cohort Studies):ti,ab,kw OR (Cohort Studies, Historical):ti,ab,kw OR (Cohort Study, Historical):ti,ab,kw OR (Historical Cohort Study):ti,ab,kw OR (Study, Historical Cohort):ti,ab,kw OR (Studies, Historical Cohort):ti,ab,kw OR (Incidence Studies):ti,ab,kw OR (Incidence Study):ti,ab,kw OR (Studies, Incidence):ti,ab,kw OR (Study, Incidence):ti,ab,kw 20328 #8 (Observational Study):ti,ab,kw #9 (Infection and Infestation):ti,ab,kw OR (Infection and Infestation):ti,ab,kw OR (Infections and Infestations):ti,ab,kw OR (Infestations and Infections):ti,ab,kw OR 102985 (Infection):ti,ab,kw #10 #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 552677 #11 #1 AND #9 AND #10 382 #12 Trials 377

Risk of Bias Assessment

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (CASE

CONTROL STUDIES)

■	lectior	٠
170	-	ı

Selection
1) Is the case definition adequate?
a) yes, with independent validation \square
b) yes, e.g. record linkage or based on self-reports
c) no description
2) Representativeness of the cases
a) consecutive or obviously representative series of cases \Box
b) potential for selection biases or not stated
3) Selection of Controls
a) community controls □
b) hospital controls
c) no description
4) Definition of Controls
a) no history of disease (endpoint)
b) no description of source
Comparability
1) Comparability of cases and controls on the basis of the design or analysis
a) study controls for (Select the most important factor.)
b) study controls for any additional factor (This criteria could be modified to indicate specific control for a second important factor.)
Exposure
1) Ascertainment of exposure
a) secure record (e.g. surgical records) \Box
b) structured interview where blind to case/control status $\hfill\Box$
c) interview not blinded to case/control status
d) written self-report or medical record only
e) no description

- a) yes \square
- b) no

3) Non-response rate

- a) same rate for both groups \Box
- b) non-respondents described
- c) rate different and no designation

Table 1 Risk of Bias Assessment with NOS Case-control Study Scale

Author & Year Selection Comparability Exposure Total score Olsen 2009 1 1 1 0 2 1 1 0 6 Lake 2013 1 1 1 1 2 1 1 1 9 Savage 2013 1 1 1 0 2 1 1 0 7 Pop-Vicas 2014 0 1 1 0 2 0 1 1 6 Morgan 2016 1 1 1 0 2 0 1 1 7 Wang 2022 1 1 1 0 2 1 1 0 7
Savage 2013 1 1 1 0 2 1 1 0 7 Pop-Vicas 2014 0 1 1 0 2 0 1 1 6 Morgan 2016 1 1 1 0 2 0 1 1 7
Pop-Vicas 2014 0 1 1 0 2 0 1 1 6 Morgan 2016 1 1 1 0 2 0 1 1 7
Pop-Vicas 2014 0 1 1 0 2 0 1 1 6 Morgan 2016 1 1 1 0 2 0 1 1 7
Wang 2022 1 1 1 0 2 1 1 0 7

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE (COHORT STUDIES)

Selection		
1) Representativeness of the exposed cohort		
a) truly representative of the average	 (describe) in t	he
community		

nity □	
b) somewhat representative of the average	in the community

- c) selected group of users e.g. nurses, volunteers
- d) no description of the derivation of the cohort

2) Selection of the non-exposed cohort

- a) drawn from the same community as the exposed cohort \Box
- b) drawn from a different source
- c) no description of the derivation of the non-exposed cohort

3) Ascertainment of exposure

- a) secure record (e.g. surgical records) \Box
- b) structured interview \square
- c) written self-report
- d) no description

4) Demonstration that outcome of interest was not present at start of study

- a) yes □
- b) no

Comparability

1) Comparability of cohorts on the basis of the design or analysis

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(select the most important factor) \Box
a) study controls for	I select the most important factor)
a, stady controls for	(Select the most important factor)

b) study controls for any additional factor \Box (This criteria could be modified to indicate specific control for a second important factor.)

Outcome

1) Assessment of outcome

- a) independent blind assessment \Box
- b) record linkage □
- c) self-report

 d) no description

2) Was follow-up long enough for outcomes to occur

- a) yes (select an adequate follow-up period for outcome of interest) \Box
- b) no

3) Adequacy of follow-up of cohorts

- a) complete follow-up all subjects accounted for \Box
- b) subjects lost to follow-up unlikely to introduce bias small number lost > % (select an adequate %) follow up, or description provided of those lost) □
- c) follow up rate < % (select an adequate %) and no description of those lost
 - d) no statement

Table 2 Risk of Bias Assessment with NOS Cohort Study Scale

Author & Year		Sele	ection		Comparability	E	xposu	Total score		
Molina-Cabrillana 2008	0	1	1	0	2	1	1	0	6	
Coleman 2014	1	1	1	0	2	1	0	1	7	
Mahdi 2014	1	1	1	0	2	1	1	0	7	
Uppal 2015	1	1	1	0	2	1	1	1	8	
Tuomi 2016	1	1	1	0	2	1	1	1	8	
Till 2017	1	1	1	0	2	0	1	1	7	
Brown 2019	1	1	1	1	2	1	1	1	9	
Tsuzuki 2021	1	1	1	0	2	1	1	0	7	

Table 3 Study Summary

Author & Year		Selec	tion		Comparability	E	xposur	Total score		
Molina-Cabrillana 2008#	0	1	1	0	2	1	1	0	6	
Olsen 2009*	1	1	1	0	2	1	1	0	6	
Lake 2013*	1	1	1	1	2	1	1	1	9	
Savage 2013*	1	1	1	0	2	1	1	0	7	
Coleman 2014#	1	1	1	0	2	1	0	1	7	
Mahdi 2014 [#]	1	1	1	0	2	1	1	0	7	
Pop-Vicas 2014*	0	1	1	0	2	0	1	1	6	
Uppal 2015#	1	1	1	0	2	1	1	1	8	
Morgan 2016*	1	1	1	0	2	0	1	1	7	
Tuomi 2016#	1	1	1	0	2	1	1	1	8	
Till 2017#	1	1	1	0	2	0	1	1	7	
Brown 2019#	1	1	1	1	2	1	1	1	9	
Tsuzuki 2021#	1	1	1	0	2	1	1	0	7	
Wang 2022*	1	1	1	0	2	1	1	0	7	

Note. *means this study was assessed through the items for case-control studies. # means this study was assessed through the items for cohort studies.

Table 3 Study Summary

								ВМЈ (Open			d by copyright, including fo	7hm ionen-2024-093072			16
							Table	3 Stud	ly Summary	7		Sluding fo	33072 on			
Author & Year	Sample Origin	N	SSI +	Age (±SD)	Surgery Method	Age RF	Anti- microbia l	Blood Loss	Blood Transfusion	BMI	Diabetes	Obesity	Surgery Duration	Tobacco Use	Tumour	Wound Cleanness
Molina- Cabrillana 2008	2000-2004 Hospital Universitario Materno-Infantil de Canarias, Sapin	1540	72	54.00 (±12.90)	abdominal & vaginal	Age >60	Y/N	NR	NR	NR	Y/N	ate	25	NR	Y/N	Clean- contaminated vs Contaminated /dirty
Olsen 2009	2003-2005 CDC Prevention Epicenter Program hospitals, USA	820	66	51.70 (±17.78)	abdominal & vaginal	Mean	NR	NR	NR	Mean	Y/N	ment Superieur (AB ed≰o text and ∯ata n	Mean	Y/N	Y/N	NR
Lake 2013	2005-2009 ACS- NSQIP, USA	13822	375	NR	abdominal & vaginal & laparoscopic	Age >80	NR	NR	Y/N	BMI≥30 (Obesity)	Y/N	ABES) 30 (y) a mining 30 (y) BM (Ob BM (Ob BM (Ob BM (Ob)	≥P75	Y/N	Y/N	Clean vs Clean- contaminated Contaminated vs Dirty
Savage 2013	2007-2010 University of Iowa Hospitals and Clinics, USA	1104	126	54.53 (±13.66)	abdominal	Mean	Mean	NR	Median	BMI≥30 (Obesity)	Y/N	ning∑and	Mean	NR	Y/N	NR
Coleman 2014	1999-2012 Johns Hopkins Medical Institution, USA	77	17	42.56 (±5.93)	abdominal & vaginal & laparoscopic		NR	>250ml; ≥451ml	Y/N	Median	Y/N	BM=30 (Oberity)	on NR	Y/N	NR	NR
Mahdi 2014	2005-2011 ACS- NSQIP, USA	28366	296	NR	laparoscopic	Age >60, 70 & 80	NR	NR	>4 units of packed red blood cells	BMI≥30 (Obesity)	Y/N	BM B 30 (Ob Q ity)	7 >60 min, 180 min	Y/N	NR	NR
Pop-Vicas 2014	2012-2015 University of Wisconsin Hospitals, USA	1531	52	58.27 (±12.31)	abdominal & vaginal & laparoscopic	Mean	Y/N	Median*	NR	NR	NR	es. NR	At Aconce Bibliographique de	Y/N	Y/N	NR
				_									graphique de l			

1
2
3 4
5
6
7
8
9
10
11
12
13
14
15
16 17
18
19
20
21
22
23
24
25
26
27
28
29 30
31 32
32 33
34
35
36
37
38

42 43

45 46

Uppal 2015	2012-2015 MSQC, USA	21358	441	48.10 (±11.70)	abdominal & vaginal & laparoscopic	Median	Y/N	Median	NR	BMI≥30 (Obesity)	NR	uding 30 on 4 J	Mean	Y/N	Y/N	NR
Morgan 2016	2012-2014 MSQC, USA	16548	315	NR	abdominal	Age >50	NR	Mean	Y/N	BMI≥30 (Obesity)	Y/N	Inne 20	Mean	Y/N	Y/N	NR
Tuomi 2016	2007-2013 Helsinki University Hospital, Finland	1164	94	67.46 (±10.23)	abdominal & vaginal & laparoscopic	Mean	NR	Median	NR	Mean	Y/N	l June 2025. Downlo Easeignement Su r usesÿelated⊈o text ^{BM} S	Mean	Y/N	NR	NR
Till 2017	2012-2015 MSQC, USA	18255	329	NR	abdominal & vaginal & laparoscopic	Age >65	NR	≥250ml	NR	BMI≥30 (Obesity)	Y/N	s. Downloaded from sment Supe∯eyr (AB) red≝o text and slata n	Mean	Y/N	Y/N	NR
Brown 2019	2012-2014 ACS- NSQIP, USA	46755	445	45.95 (±1.51)	laparoscopic	Mean	NR	NR	Y/N	Mean	Y/N	n http://bmjopen.bm .BES) minin羹, Al trainin羹,	Mean Mean Mean >180 min	Y/N	NR	Clean vs Clean- contaminated vs Contaminated vs Dirty
Tsuzuki 2021	2014-2018 Teine Keijinkai Hospital, Japan	1559	71	48.28 (±11.39)	laparoscopic	Mean	NA	NR	Y/N	Mean	Y/N	n.bmj.co inin∯, an	Mean	Y/N	NR	NR
Wang 2022	2012-2022 Two Grade A Tertiary Hospitals, China	94	188	47.70 (±10.87)	abdominal	Age >50	Y/N	≥500ml	NR	Mean	Y/N	.com/ on June 7, 202 and髣imilar technolo	>180 min	NR	Y/N	Clinicians determined Class II vs Class III
Overall		152993	2887	47.53 (±8.29)								e 7, 202 echnolo				

Note. The content under each risk factor was how these studies presented their data. The detailed case numbers are Table 3; SSI+ refers to SSI-positive cases; ACS-NSQIP refers to the American College of Surgeons National Surgical Quality Improvement Program; MSQC refers to the Michigan Surgical Quality Collaborative; NR refers to not reported; NA refers to not applicable; Y/N refers to reported in Yes or No; Median*: the median reported in this study did not include IQR to estimate its variance; P75 refers to the 75th percentil

//bmjopen-2024-093 d by copyright, inclu

//bmjopen-2024-093072 o

 Table 2 Subgroup Analyses Between Different SSI Types

	Sı	uperficial &	Deep & C	rgan Sp	oace			Group Diffe	erence				
Risk Factors	LogOR	I^2	OR	SE	Z	p	LogOR	\mathbf{I}^2	OR	Since z	p	Q (df)	p
Tobacco Use	0.36	0.00%	1.43	0.07	5.78	<.001	1	68.56%	2.72	202 5.69	.001	11.59 (1)	<.001
Diabetes	0.53	64.07%	1.70	0.15	2.5	<.001	0.27	61.95%	1.31	6 2 9 5 1.06	.290	.71 (1)	.400

Note. Only Tobacco Use and Diabetes retrieved more than 4 datasets reporting Deep or Organ Space SSI types. The individual SSI or Organ Space, were reported in less than 4 sets. This is to demonstrate that ORs of risk factors might differ between the terminant of the composition Note. Only Tobacco Use and Diabetes retrieved more than 4 datasets reporting Deep or Organ Space SSI types. The indiagogual SSI types, such as Superficial, Deep,