

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of Cardiovascular-Kidney-Metabolic Syndrome with Kidney Stones: A Population-based Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-096533
Article Type:	Original research
Date Submitted by the Author:	13-Nov-2024
Complete List of Authors:	Lu, Guoliang; Shanghai Jiao Tong University School of Medicine, Department of Urology Tian, Jinjun; Shanghai Pudong New Area people's Hospital, Department of urology Shi, Feng; Civil Aviation Shanghai Hospital Zhang, Ding-Guo; Shanghai Pudong New Area people's Hospital, Department of urology Wang, Dawei; Shanghai Jiao Tong University School of Medicine, Department of Urology
Keywords:	Cardiovascular Disease, Urolithiasis < UROLOGY, Chronic renal failure < NEPHROLOGY, Lipid disorders < DIABETES & ENDOCRINOLOGY, Obesity

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1	Association of Cardiovascular-Kidney-Metabolic Syndrome with Kidney Stones: A
2	Population-based Study
3	Guoliang Lu ^{1, #} Jinjun Tian ^{2, #} , Feng Shi ³ , Dingguo Zhang ^{2,*} , Dawei Wang ^{1, *}
4	
5	¹ Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
6	Shanghai, China
7	² Department of urology, Shanghai Pudong New Area people's Hospital, Shanghai, China;
8	³ CAAC East China Aviation Personnel Medical Appraisal Center, Civil Aviation Shanghai
9	Hospital, Shanghai, China
10	
11	Corresponding authors:
12	DingGuo Zhang, Department of urology, Shanghai Pudong New Area people's Hospital, No. 490,
13	Chuanhuan South Road, Shanghai 200120, China; E-mail: jdzdguo@163.com
14	Dawei Wang, Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of
15	Medicine, No. 999, xiwang Road, Shanghai 200025, China; E-mail: wdwrjhn@163.com
16	
17	# Da-Wei Wang and Dingguo Zhang contributed equally to this work as the co-first author.
18	*Guoliang Lu and Jinjun Tian contributed equally as co-correspondence authors.
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

38 Abstract

39 Background: The prevalence of kidney stones (KS) has been increasing globally, and their
40 association with cardiovascular disease and metabolic syndrome suggests a shared underlying
41 pathophysiology. However, the impact of different stages of cardiovascular-kidney-metabolic (CKM)
42 syndrome on KS prevalence remains unclear.

43 Objective: This study aimed to investigate the association between the stages of cardiovascular44 kidney-metabolic (CKM) syndrome and the prevalence of kidney stones (KS) in a nationally
45 representative sample of adults in the United States.

46 Methods: A total of 15,568 participants aged ≥20 years were included in the National Health and
47 Nutrition Examination Survey 2007–2020 fasting subsample. CKM syndrome stages (0–4) were
48 defined based on the 2023 American Heart Association Presidential Advisory on CKM Health. The
49 KS history was determined using self-reported data. Multivariable logistic regression models were
50 used to assess the association between the CKM syndrome stage and KS prevalence.

Results: Of the 15,568 participants, 1,501 (9.64%) reported a history of KS. The KS prevalence increased progressively with advancing CKM stage, rising from 5.10% in stage 0 to 16.55% in stage 4 (P < 0.001). In the fully adjusted model, the odds ratios (ORs) for KS were 1.18 (95% confidence interval [CI]: 0.83–1.68) for Stage 1, 1.72 (95% CI: 1.28–2.32) for Stage 2, 2.00 (95% CI: 1.29–3.10) for Stage 3, and 2.36 (95% CI: 1.64–3.40) for Stage 4, compared to Stage 0 (*P* for trend < 0.001). Stratified analyses revealed no significant interactions between age, sex, race/ethnicity, or other subgroups.

58 Conclusion: This study demonstrated a significant stepwise increase in KS prevalence with the
59 advancing stages of CKM syndrome. These findings highlight the importance of monitoring and
60 managing CKM syndromes to mitigate the risks of KS.

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Keywords: cardiovascular disease; kidney disease; metabolic syndrome; kidney stones; National
Health and Nutrition Examination Survey.

Page 4 of 26

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Novel Approach: This is the first study to explore CKM syndrome stages in relation to kidney

Strengths of the Study:

65	stones, offering new insights for future research.
66	Large Sample Size: This study utilized a large, nationally representative sample from NHANES,
67	enhancing generalizability.
68	Limitations of the Study:
69	Cross-Sectional Design: The cross-sectional design prevents inference of causality between CKM
70	syndrome and kidney stone development.
71	Limited Generalizability: The study included only U.S. adults, limiting the applicability of results
72	to other populations or regions.
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
04 85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	

Introduction Kidney stones (KS) are hard mineral deposits forming in the renal calyces and pelvis when urine concentrations of substances like calcium, oxalate, uric acid, or phosphate become high enough to crystallize[1]. KS affects 10.1% of the U.S. population[2]. Recent research suggests KS is a systemic disorder linked to chronic diseases such as cardiovascular diseases (CVD), diabetes, and obesity, rather than being limited to the kidneys. Stone formation is a complex process influenced by genetic, metabolic, and environmental factors[3].

The American Heart Association (AHA) recently defined the interconnectedness of obesity, type 2 diabetes mellitus (DM), CVD, chronic kidney disease (CKD), and other metabolic disorders[4]. These conditions share common risk factors like hypertension, insulin resistance, dyslipidemia, and systemic inflammation; progression of one often worsens others, creating a vicious cycle. CVD remains the leading cause of death in the U.S., while CKD and diabetes prevalence and mortality rates are rising[5, 6]. As these diseases increase, the prevalence of cardiovascular-kidney-metabolic (CKM) syndrome is expected to grow.

116 CKM syndrome comprises interconnected risk factors that elevate the likelihood of developing CVD, 117 type 2 diabetes, and other health complications. Metabolic diseases such as obesity, diabetes mellitus 118 (DM), and hypertension are associated with an increased risk of KS[7]. An 8-year follow-up study 119 found a correlation between high blood pressure and KS development, with the risk further heightened 120 when hypertension coexists with overweight conditions[8]. These factors can alter urine composition, 121 metabolic processes, and kidney function, promoting stone formation. Specifically, increased acid 122 excretion, low citrate levels, and high calcium excretion create a conducive environment for KS[9].

Emerging evidence supports the association between KS and various metabolic risk factors. Unhealthy metabolic status significantly increases KS risk, and combined effects can substantially elevate this risk. Previous studies have identified a broad range of KS risk factors, including biological factors, high sodium intake, metabolic disturbances, and genetic predispositions[10]. Observational studies suggest that vascular calcification may also increase KS risk[11]. A growing number of studies indicate a positive association between CVD and KS, suggesting potential shared pathological mechanisms. Therefore, each component of CKM syndrome may influence KS formation.

To better understand these connections, the American Heart Association (AHA) introduced a model4/22

133 classifying CKM syndrome into distinct stages[4]. Assessing the associations between the combined 134 effects of these factors at various stages and KS prevalence is essential. However, few studies have 135 explored the relationship between this new concept, CKM syndrome, and the KS stages. The aim of 136 this study was to investigate the association between CKM syndrome stages and the prevalence of KS 137 in a nationally representative sample of U.S. adults, utilizing data from the National Health and 138 Nutrition Examination Survey (NHANES) from 2007 to 2020.

139 Materials and methods

140 Study population

NHANES is a nationally representative cross-sectional survey conducted by the National Center for
Health Statistics (NCHS), collecting health and nutrition data via complex sampling methods (data
available at https://www.cdc.gov/nchs/nhanes). The study was approved by the NCHS Ethics Review
Board (Protocols #2005-06, #2011-17, #2018-01); informed consent was obtained from all
participants.

Fasting samples were used to measure key biomarkers (glucose, lipids) essential for CKM syndrome staging. From the NHANES 2007–2020 fasting subsample (n=21,745), we excluded 2,772 participants with missing laboratory data or insufficient fasting duration. Of the remaining 18,973 individuals, we further excluded 3,215 under 20 years old, 147 pregnant participants, and 43 with missing KS data, yielding a final sample of 15,568 for analysis (Figure 1).

153 Figure 1: Flowchart of participant selection for the study.

154 Definition of KS

KS history was determined via self-report; participants who affirmed a prior KS diagnosis were
classified accordingly. This method is validated, correctly identifying 97% of clinically diagnosed KS
cases [12].

158 Assessment of CKM Syndrome Stages

CKM syndrome stages (0–4) were classified per the 2023 AHA Presidential Advisory on CKM
Health[4]. Stage 0: individuals without CKM risk factors (e.g., hypertension, hyperlipidemia). Stage
1: overweight, obese, or dysfunctional adipose tissue without additional metabolic risk factors or CKD.
Stage 2: presence of metabolic risk factors or CKD. Stage 3: high-risk CKD or high predicted 10-year
CVD risk. Stage 4: established CVD (e.g., coronary artery disease). Detailed NHANES-adapted
descriptions are in the Supplementary Material.

166 Assessment of Covariates

To control for confounding factors, covariates included: age (20–39, 40–59, ≥60 years), sex (male, female), race/ethnicity (non-Hispanic white, non-Hispanic black, other), education level (below high school, high school graduate, above high school), and family poverty-to-income ratio (PIR $\leq 1.0, 1.1-$ 3.0, >3.0). Drinking status was categorized as nondrinkers, low-to-moderate, or heavy drinkers; smoking status as never, former, or current smoker. Physical activity (PA), based on self-report, was classified as inactive, insufficiently active, or active. Total energy intake and key biochemical markers (serum calcium, serum phosphorus, urinary creatinine) were divided into quartiles to account for metabolic variations. Detailed definitions are in the Supplementary Materials.

175 Statistical Analysis

Analyses followed NHANES guidelines with sample weights for the complex survey design, using the R "survey" package. Descriptive statistics summarized the study population: continuous variables as medians with interquartile ranges (IQR), categorical variables as weighted percentages. Mann-Whitney U tests compared continuous variables; chi-squared tests compared categorical variables. For CKM syndrome stages, Kruskal-Wallis tests were used, followed by Dunn's post-hoc tests when applicable.

183 Multivariable logistic regression models estimated the association between CKM syndrome stages
 6/22

and KS prevalence, yielding odds ratios (ORs) with 95% confidence intervals (CIs). Subgroup analyses explored interactions between CKM stages and age, sex, race/ethnicity, smoking status, and physical activity. Statistical analyses were performed using R software (version 4.3.2), with significance defined at P < 0.05.

188 Results

189 Baseline Characteristics of Participants

Table 1 presents the survey-weighted baseline characteristics by KS status. Among 15,568 participants, 1,501 (9.64%) reported a history of KS. The median age was 48 years, with females comprising 51.32% of the cohort. Stone formers were significantly older; 38.12% were aged ≥ 60 years compared to 25.59% of non-stone formers (P < 0.001). Males had a higher prevalence of KS (53.27%) than females (46.73%) (P = 0.003). Participants with KS were more frequently classified into advanced CKM syndrome stages (Stages 3 and 4), with 24.42% versus 14.02% among non-stone formers (P < 0.001). Other covariates, including race/ethnicity, smoking status, drinking status, and physical activity, also showed significant differences between the groups.

Table 1. Survey-weighted characteristics of the general adult population by kidney stone in NHANES 2007–2020.

	0 11			Р
Characteristics	Overall	Non-Stone Former	Stone Former	value
Participant, N	15568	14067	1501	
Age, years				< 0.001
20-39	4893(35.91)	4618(37.40)	275(22.25)	
40-59	5323(37.27)	4799(37.01)	524(39.64)	
≥60	5352(26.82)	4650(25.59)	702(38.12)	
Sex, %				0.003
Female	8020(51.32)	7344(51.82)	676(46.73)	
Male	7548(48.68)	6723(48.18)	825(53.27)	
Race/ethnicity, %				< 0.001
Non-Hispanic White	6333(66.13)	5553(65.19)	780(74.76)	
Non-Hispanic Black	3224(11.31)	3039(11.94)	185(5.54)	
Other race	6011(22.56)	5475(22.87)	536(19.70)	
Education level, %				0.852
Below high school	3752(16.24)	3382(16.18)	370(16.85)	
High school	3528(22.68)	3190(22.67)	338(22.74)	
Above high school	8288(61.08)	7495(61.15)	793(60.41)	
Family PIR, %				0.507
≤1.0	3409(15.40)	3092(15.53)	317(14.18)	
1.1–3.0	6577(36.32)	5943(36.28)	634(36.67)	
>3.0	5582(48.28)	5032(48.19)	550(49.15)	

7 / 22

Smoking status, %				0.027
Never smoker	8734(55.70)	7950(56.10)	784(52.09)	
Former smoker	3806(25.28)	3372(24.84)	434(29.31)	
Current smoker	3028(19.02)	2745(19.06)	283(18.60)	
Drinking status, %				<
Nondrinker	2067(10.53)	1867(10.44)	200(11.39)	0.001
Former drinker	2052(11.88)	1800(11.41)	252(16.24)	
Current drinker	11449(77.59)	10400(78.16)	1049(72.37)	
Dhysical activity 0/				<
Physical activity, %				0.001
Inactive	4064(21.88)	3592(21.23)	472(27.81)	
Insufficiently active	4885(32.66)	4440(32.79)	445(31.45)	
Active	6619(45.46)	6035(45.98)	584(40.74)	
Total energy intakes,	2007.00	2007.00	2005.00	0 (70
kcal/day	(1495.00,2655.00)	(1493.00,2667.00)	(1541.00,2585.00)	0.079
Serum calcium, mmol/L	2.33(2.28,2.40)	2.33(2.28,2.40)	2.33(2.28,2.38)	0.029
Serum phosphorus, mmol/L	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.03,1.26)	< 0.001
Urinary creatinine, mg/dL	114.00(67.00,168.00)	113.00(66.00,168.00)	120.00(77.00,168.00)	0.006
CKM syndrome				<0.001
stage, %				<0.001
Stage 0	1457(11.83)	1390(12.45)	67(6.15)	
Stage 1	3211(23.11)	3014(23.91)	197(15.78)	
Stage 2	7735(50.02)	6968(49.62)	767(53.65)	
Stage 3	1385(5.87)	1198(5.53)	187(8.96)	
Stage 4	1780(9.17)	1497(8.49)	283(15.46)	

Abbreviations: PIR, poverty income ratio; CKM, cardiovascular-kidney-metabolic. Continuous variables without a normal distribution are presented as medians [interquartile ranges]. Sampling weights were applied for calculation of demographic descriptive statistics; N reflect the study sample while percentages reflect the survey-weighted data.

Table 2 summarizes the survey-weighted characteristics across CKM syndrome stages. In Stage 0, 66.05% of participants were aged 20–39 years, whereas in Stage 4, 69.49% were aged ≥60 years (P < 0.001). A higher proportion of males was observed in advanced stages: 54.78% in Stage 4 compared to 32.69% in Stage 0 (P < 0.001). KS prevalence increased consistently with advancing CKM stages, rising from 5.10% in Stage 0 to 16.55% in Stage 4. As shown in Figure 2, the prevalence progressed as follows: 5.10% (Stage 0), 6.71% (Stage 1), 10.53% (Stage 2), 15.00% (Stage 3), and 16.55% (Stage 4), indicating a significant upward trend with increasing CKM syndrome severity (P < 0.001).

		(CKM syndrome stag	e	
Characteristics	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4
0 Participant, N	1457	3211	7735	1385	1780
2 Age, years					
4 20-39	996(66.05)	1676(53.78)	2138(30.22)	9(0.80)	74(5.53)
5 40-59	382(28.56)	1134(35.22)	3345(46.34)	64(4.80)	398(24.98)
7 ≥60	79(5.39)	401(11.01)	2252(23.45)	1312(94.40)	1308(69.49)
ex, %					
) Female	974(67.31)	1728(51.37)	3921(48.92)	608(48.92)	789(45.22)
Male	483(32.69)	1483(48.63)	3814(51.08)	777(51.08)	991(54.78)
Race/ethnicity, %					
Non-Hispanic White	657(70.46)	1159(62.34)	2886(64.89)	713(72.83)	918(72.65)
Non-Hispanic Black	188(7.34)	686(12.58)	1672(11.54)	271(11.22)	407(12.03)
Other race	612(22.20)	1366(25.08)	3177(23.57)	401(15.95)	455(15.32)
, Education level, %					
) Below high school	194(9.48)	613(12.65)	1898(16.86)	470(25.14)	577(24.98)
2 High school	258(16.68)	671(21.45)	1773(23.05)	369(29.35)	457(27.22)
Above high school	1005(73.84)	1927(65.90)	4064(60.09)	546(45.50)	746(47.80)
Family PIR, %					
$\frac{1}{2} \leq 1.0$	271(12.78)	713(15.79)	1702(15.42)	306(16.63)	417(16.89)
3 1.1-3.0	535(30.49)	1255(34.38)	3212(35.43)	685(47.18)	890(46.62)
>3.0	651(56.74)	1243(49.83)	2821(49.15)	394(36.19)	473(36.49)
moking status, %					
Never smoker	1004(65.82)	1980(60.01)	4372(55.25)	649(47.09)	729(39.83)
Former smoker	185(15.70)	622(22.11)	1784(24.73)	544(40.90)	671(38.58)
Current smoker	268(18.48)	609(17.88)	1579(20.02)	192(12.01)	380(21.60)
Drinking status, %					
Nondrinker	185(9.86)	332(8.67)	1036(10.29)	265(18.90)	249(12.03)
Former drinker	89(5.74)	251(7.36)	966(11.98)	337(23.05)	409(23.48)
, Current drinker	1183(84.40)	2628(83.97)	5733(77.73)	783(58.05)	1122(64.49)
hysical activity, %					
Inactive	222(12.18)	569(16.28)	1915(21.59)	616(42.11)	742(37.13)
5 Insufficiently active	470(31.79)	992(32.01)	2524(33.94)	397(29.85)	502(30.15)
Active	765(56.02)	1650(51.70)	3296(44.46)	372(28.04)	536(32.72)
	1974.00	2098.00	2066.00	1666.00	1810.00
otal energy intakes,	(1551.00,2624.0	(1588.00,2751.0	(1531.00,2709.0	(1263.00,2147.0	(1330.00,2360.00
ical/day	0)	0)	0)	0))
Serum calcium, mmol/L	2.35(2.30,2.40)	2.33(2.28,2.38)	2.33(2.28,2.40)	2.35(2.28,2.40)	2.33(2.28,2.40)
Serum phosphorus,	1.23(1.13,1.32)	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.07,1.29)
nmol/L					
Jrinary creatinine,	102.00	118.00	115.00	99.00	108.00
ng/dL	(57.00,160.00)	(69.00,176.00)	(69.00,170.00)	(65.00,143.00)	(67.00,155.00)
Kidney stone, %		·			
No	1390(94.90)	3014(93.29)	6968(89.47)	1198(85.00)	1497(83.45)

Page 11 of 26

		CKM syndi	rome stage			D
	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Ptrend
Crucha	1.00	1.34(0.94,1.91	2.19(1.64,2.93	3.28(2.29,4.71	3.69(2.68,5.09	< 0.00
Crude	[Reference]))))	1
Madal 1	1.00	1.27(0.89,1.82	1.84(1.37,2.48	2.24(1.48,3.40	2.63(1.87,3.72	< 0.00
Model I	[Reference]))))	1
Model 2	1.00	1.25(0.88,1.79	1.80(1.34,2.42	2.08(1.35,3.22	2.45(1.71,3.51	< 0.00
	[Reference]))))	1
Model 3	1.00	1.18(0.83,1.68	1.72(1.28,2.32	2.00(1.29,3.10	2.36(1.64,3.40	< 0.00
Model 1 Model 2 Model 3	[Reference] 1.00 [Reference] [Reference] 1.00) 1.27(0.89,1.82) 1.25(0.88,1.79) 1.18(0.83,1.68) 1.84(1.37,2.48) 1.80(1.34,2.42) 1.72(1.28,2.32) 2.24(1.48,3.40) 2.08(1.35,3.22) 2.00(1.29,3.10) 2.63(1.87,3.72) 2.45(1.71,3.51) 2.36(1.64,3.40	<0.0 1 <0.0 1 <0.0

	10 / 22	
--	---------	--

	[Reference]))))	1
238	Abbreviations: OR, Odd ratio; CI	, confidence	interval; CKM, ca	rdiovascular-kidn	ey-metabolic.	
239	Data are presented as OR (95% C	I) unless ind	icated otherwise; N	Model 1 was adjus	sted as age (20-39	9, 40-59,
240	or ≥ 60), sex (male or female), and	l race/ethnici	ity (Non-Hispanic	White, Non-Hispa	anic Black, or Oth	ner race);
241	Model 2 was adjusted as model 1	plus education	on level (below hi	gh school, high sc	hool, or above hi	gh
242	school), family PIR (≤1.0, 1.1–3.0), or >3.0), d	rinking status (nor	ndrinker, low-to-m	oderate drinker,	or heavy
243	drinker), smoking status (never sn	noker, forme	er smoker, or curre	nt smoker), physic	cal activity (inact	ive,
244	insufficiently active, or active), to	tal energy in	takes (in quartiles)); Model 3 was ad	justed as model 2	2 plus
245	serum calcium (in quartiles), seru	m phosphoru	ıs (in quartiles), an	d urinary creatinin	ne (in quartiles).	
246						
247	Stratified analysis					
248	Table 4 presents stratified ar	alyses of	the association	between CKM	syndrome stage	e and KS
249	prevalence. Among participant	ts aged 20-	-59, Stage 4 was	associated with	over threefold	increased
250	odds of KS compared to Stag	e 0 (OR =	3.14, 95% CI: 2	2.08–4.73). In th	ose aged ≥60	years, the
251	association was weaker and no	nsignifican	t (OR = 1.31, 95	% CI: 0.45–3.80), with no signi	ficant age
252	interaction (P for interaction	= 0.482). S	Sex-stratified resu	ults were similar	; in Stage 4, fer	males and
253	males had approximately 2.4	times the	odds of KS, wi	ith no significar	nt sex interaction	on (P for
254	interaction = 0.299). Non-Hisp	anic Whites	s showed stronge	er associations (C	DR = 2.28, 95%	CI: 1.45–
255	3.60), with weaker trends in oth	her ethniciti	es. Consistent pa	tterns emerged a	cross subgroups	of family
256	PIR, education level, smokin	g, drinking	g, and physical	activity. Despit	e varying stren	ngths, the
257	association between CKM syn	drome seve	erity and KS pre	valence remaine	ed consistent ac	ross these
258	groups.					
250	Table 4 Stratified analyses of the	associations	s hetween CKM our	ndrome stage and th	e nrevalence of L	ridney stone

9

Table 4. Stratified analyses of the associations between CKM syndrome stage and the prevalence of kidney stone
among adults in NHANES 2007–2020.

Subgroups	N	CKM syndrome stage					Dint
Subgroups	1	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	- <i>F</i> - <i>ini</i>
Age, years							0.482
20.50	10216	1	1.35 (0.92-	2.10 (1.51-	2.79 (0.86-	3.14 (2.08-	
20-39		[Reference]	1.98)	2.91)	9.10)	4.73)	
> 60	5352	1	0.61 (0.20-	0.96 (0.32-	1.15 (0.39-	1.31 (0.45-	
≥ 00		[Reference]	1.89)	2.88)	3.41)	3.80)	
Sex, %							0.299
Famala	8020	1	1.33 (0.85-	1.82 (1.21-	1.99 (1.05-	2.36 (1.40-	
remate		[Reference]	2.07)	2.74)	3.77)	4.00)	
Mala	7548	1	1.09 (0.56-	1.78 (0.99-	2.09 (1.04-	2.47 (1.34-	
Wale		[Reference]	2.15)	3.20)	4.21)	4.55)	
Race, %							0.351
Non-Hispanic	6333	1	1.23 (0.79-	1.68 (1.16-	2.05 (1.17-	2.28 (1.45-	
White		[Reference]	1.92)	2.43)	3.57)	3.60)	

BMJ Open

Non-Hispanic	3224	1	0.79 (0.36-	1.50 (0.70-	1.94 (0.79-	1.53 (0.56-	
Black		[Reference]	1.70)	3.18)	4.77)	4.14)	
Other race	6011	1	1.10 (0.62-	1.91 (1.11 -	1.66 (0.84-	3.02 (1.60-	
Other face		[Reference]	1.94)	3.31)	3.28)	5.69)	
Family PIR, %							0.687
<1.0	3409	1	1.75 (0.76-	2.42 (1.14-	3.02 (1.05-	4.37 (1.90-	
		[Reference]	4.00)	5.18)	8.72)	10.04)	
1.1-3.0	6577		1.34 (0.78-	1.84 (1.13-	1.94 (1.14-	2.56 (1.59-	
		[Reference]	2.30)	3.00)	3.33)	4.11)	
>3.0	5582	[] []] - f	1.02 (0.62-	1.54 (1.00-	2.07 (1.13-	1.88 (1.05-	
Education land 0/		[Reference]	1.07)	2.39)	3.80)	3.37)	0.571
Delow bigh	2752	1	1 72 (0 66	2 10 (1 21	2 78 (1 00	1 24 (1 79	0.371
school	5752	[Deference]	1.72 (0.00-	5.10 (1.51- 7.22)	2.78 (1.00-	4.34 (1.78-	
SCHOOL	3578		4.47)	1 21 (0 50	1 10 (0 /7	10.30	
High school	5528	I [Reference]	2 07)	2 /9)	3 03)	3.01)	
Above high	8288		2.07) 1 22 (0 77-	2. 4 9) 1 75 (1 10-	2.03)	2.01)	
school	0200	Referencel	1.22 (0.77-	2 57)	2.33 (1.40- 4 32)	2.77 (1. 4 2- <u>4</u> (10)	
Smoking status %			1.75)	2.37)	т.34)	т.07)	0 266
Zinoming burdes, 70	8734		1.47 (0 88-	2.29 (1 46-	2.40 (1.28-	3.61 (2.04-	0.200
Nonsmokers	0,51	[Reference]	2.46)	3.62)	4.51)	6.39)	
	3806	1	0 84 (0 40-	1 17 (0 61-	1 73 (0 78-	1 63 (0 83-	
Former smokers	2000	[Reference]	1 73)	2 25)	3 85)	3 20)	
	3028	1	0.93 (0.47-	1.23 (0.63-	1.23 (0.43-	1.41 (0.61-	
Current smokers		[Reference]	1.83)	2.42)	3.49)	3.26)	
Drinking status, %		[]))	0.336
	2067	1	0.58 (0.20-	1.50 (0.73-	1.86 (0.66-	1.95 (0.84-	
Nondrinker		[Reference]	1.74)	3.11)	5.24)	4.52)	
Low-to-moderate	2052	1	1.74 (0.51-	2.40 (0.87-	2.08 (0.63-	2.70 (0.82-	
drinker		[Reference]	5.94)	6.66)	6.81)	8.91)	
Hazza drinkar	11449	1	1.23 (0.82-	1.72 (1.21-	2.18 (1.31-	2.52 (1.63-	
ficavy drinker		[Reference]	1.87)	2.43)	3.63)	3.88)	
Physical activity, %							0.575
Inactive	4064	1	1.19 (0.48-	1.47 (0.61-	1.49 (0.55-	2.24 (0.89-	
muetre		[Reference]	2.97)	3.56)	4.05)	5.63)	
Insufficiently	4885	1	1.00 (0.48-	2.06 (1.13-	2.86 (1.37-	2.69 (1.27-	
active		[Reference]	2.11)	3.75)	5.97)	5.71)	
Active	6619	1	1.27 (0.81-	1.65 (1.10-	2.08 (1.15-	2.09 (1.24-	
		[Reference]	1.99)	2.49)	3.78)	3.51)	
Serum calcium, mmol/L							0.395
Quartile 1	4717	1	2.10 (1.06-	2.93 (1.59-	2.85 (1.22-	3.01 (1.35-	
Yuururo 1	r/1/	[Reference]	4.16)	5.41)	6.65)	6.70)	
Quartile 2	3638	1	1.20 (0.60-	1.66 (0.90-	2.01 (0.77-	3.05 (1.34-	
×	2020	[Reference]	2.41)	3.05)	5.26)	6.94)	
Ouartile 3	3361	1	0.57 (0.29-	1.24 (0.71-	1.63 (0.75-	1.73 (0.80-	
C		[Reference]	1.11)	2.17)	3.58)	3.72)	
Ouartile 4	3852	1	1.24 (0.55-	1.59 (0.86-	1.98 (0.91-	2.41 (1.27-	
([Reference]	2.78)	2.95)	4.35)	4.57)	
Serum phosphorus, mmol/L							0.408
Quartile 1	4635	1	1.16 (0.62-	1.52 (0.89-	1.52 (0.74-	2.23 (1.15-	
Zuurine 1	1055	[Reference]	2.16)	2.60)	3.12)	4.35)	
Quartile 2	3543	1	1.76 (0.67-	2.15 (0.82-	4.16 (1.27-	3.10 (1.00-	

		[Reference]	4.63)	5.65)	13.63)	9.60)	
Overtile 2	4131	1	1.48 (0.75-	2.28 (1.20-	2.24 (0.83-	3.20 (1.32-	
Quartile 3		[Reference]	2.92)	4.36)	6.01)	7.75)	
Overtile 4	2250	1	0.53 (0.26-	1.38 (0.77-	1.63 (0.72-	1.97 (1.02-	
Quartile 4	3239	[Reference]	1.08)	2.48)	3.69)	3.83)	
Urinary creatinine,							0.393
mg/dL							
Quartila 1	3913	1	1.58 (0.76-	1.60 (0.85-	2.19 (0.95-	2.89 (1.31-	
Quartile		[Reference]	3.28)	3.03)	5.07)	6.39)	
Quartila 2	1029	1	1.04 (0.54-	1.35 (0.80-	1.69 (0.78-	2.06 (1.09-	
Quartile 2	4038	[Reference]	1.98)	2.28)	3.66)	3.87)	
Quartila 2	2750	1	1.83 (0.89-	2.85 (1.45-	2.85 (1.22-	3.12 (1.60-	
Quartile 3	3730	[Reference]	3.77)	5.59)	6.65)	6.08)	
Quartila 4	2067	1	0.68 (0.33-	1.43 (0.77-	1.80 (0.74-	1.69 (0.78-	
Qual the 4	200/	[Reference]	1.42)	2.64)	4.39)	3.67)	

Abbreviations: OR, Odd ratio; CI, confidence interval; PIR, poverty-to-income ratio; CKM, cardiovascular-kidney-metabolic.

Data are presented as OR (95% CI) unless indicated otherwise; Analyses were adjusted for age (20-39, 40-59,

or ≥ 60), sex (male or female), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race),

education level (below high school, high school, or above high school), family PIR ($\leq 1.0, 1.1-3.0, \text{ or } > 3.0$),

drinking status (nondrinker, low-to-moderate drinker, or heavy drinker), smoking status (never smoker, former smoker, or current smoker), physical activity (inactive, insufficiently active, or active), total energy intakes (in quartiles), serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles) when they were not the strata variables. *p-int*, p for interaction.

Discussion

This study explored the relationship between CKM syndrome stages and the prevalence of KS among 15,568 U.S. adults using data from the NHANES 2007-2020. We found that participants with CKM syndrome had significantly higher odds of KS as CKM stage advanced. Moreover, the association between the CKM syndrome stage and KS prevalence was consistent in the fully adjusted models.

Both CKM syndrome and KS are systemic conditions affecting multiple organs. This study shows KS prevalence is closely linked to advanced CKM syndrome, characterized by insulin resistance, obesity, dyslipidemia, and hypertension. These contribute to stone formation and reflect metabolic dysfunction. CKM syndrome begins early in life[13], inducing dysfunctional adipose tissue, inflammation, oxidative stress, and insulin resistance[14], leading to hypertension, hypertriglyceridemia, metabolic syndrome, and type 2 diabetes[4]. As these conditions progress, they burden the kidneys, causing CKD and worsening CKM syndrome[3].

Metabolic syndrome is a known risk factor for KS development. Type 2 diabetes patients have an elevated risk of urinary KS due to increased urinary oxalate excretion, enhancing calcium oxalate stone formation[15]. Their urinary profiles-high oxalate excretion and low pH-make them more

BMJ Open

prone to uric acid and calcium oxalate stones[15]. Uric acid stone formers face a higher risk of diabetes
and glucose intolerance than non-stone formers[16];increasing HbA1c levels correlate with lower
urinary pH, further contributing to KS risk[17].

Obesity is another significant factor associated with KS. Excess caloric intake results in greater metabolic waste and altered urinary composition[18]. Studies show that waist circumference and body mass index are linked to higher KS risk among adults over 46 years of age[19]. In obese individuals, insulin resistance impairs renal ammonium excretion[7], and obesity induces a pro-inflammatory state contributing to KS via oxidative stress and altered renal function. Dyslipidemia is also linked to KS, particularly uric acid stone formation[20]. Masterson et al. found individuals with dyslipidemia are over twice as likely to develop KS[21], and Inci et al. reported that KS formers have significantly higher serum lipid levels^[22].

A large longitudinal cohort study in Taiwan confirmed a strong relationship between metabolic syndrome and KS formation, with hypertension identified as the strongest predictor of metabolic syndrome components[23]. Metabolic dysfunction has been independently associated with a higher risk of KS, especially in individuals with both obesity and metabolic dysfunction[24]. A meta-analysis confirmed a positive correlation between the number of metabolic syndrome components (such as hypertension, obesity, and dyslipidemia) and risk of KS development[25]. In 694 aging males, Yung et al. found metabolic syndrome and particularly hypertension strongly associated with nephrolithiasis[26]. Kohjimoto et al. reported hypertension and dyslipidemia significantly linked to KS severity, while other metabolic traits showed less consistent associations [27]. While relationships between CKM syndrome components and KS vary across populations, our study found no significant demographic interactions, indicating a consistent association between CKM stages and KS prevalence across these groups.

KS and CKD are closely related, each potentially exacerbating the other. Stone formation can lead to long-term kidney damage, inducing CKD[28]. Patients with CKD often exhibit altered urinary excretion of calcium, oxalate, phosphate, and uric acid-key contributors to stone formation[28]. Impaired kidney function diminishes oxalate filtration and excretion, leading to its accumulation in the bloodstream[29]. The Chronic Renal Insufficiency Cohort study found that as estimated glomerular filtration rate (eGFR) declined in CKD stages 2-4, urinary oxalate excretion decreased[30], increasing stone risk due to metabolic imbalance. However, some studies suggest CKD may offer protection against KS[31]. One study observed that CKD patients with average creatinine clearance

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

of 35–38 mL/min exhibited hypocitraturia without significant differences in other components[32]. since citrate inhibits calcium stone formation, this could influence stone risk. A single-center study indicated that urinary components involved in stone formation were positively associated with eGFR[33], implying that worse kidney function might reduce stone-forming constituents. Although current data suggest a connection, more comprehensive studies are needed to establish a clear pattern of how worsening kidney function affects KS development.

Several large-scale epidemiological studies report that individuals with a history of KS have a higher risk of myocardial infarction, coronary heart disease, and stroke compared to those without stones[34, 35]. Reiner's longitudinal study found that KS history is associated with greater carotid artery wall thickness[36]. His et al. identified a significant association between recurrent KS formation and coronary artery calcium (CAC), especially in those with higher CAC scores[37], suggesting a link between recurrent KS and increased coronary artery calcification. CVD-related metabolic factors such as cholesterol, phospholipids, and uric acid are associated with KS pathogenesis [38]. Evidence suggests that KS formers with CVD have lower renal alkali excretion and higher acid retention[39]. Hamono et al. found that CVD risk factors-including smoking, hypertension, and overweight-are positively correlated with calcium oxalate stone risk[40]. Abdominal aortic calcification significantly correlates with hypocitraturia; stone formers have notably lower urinary citrate excretion[41]. These findings suggest that hypocitraturia may be a common mechanism for both CVD and KS.

The association between CKM syndrome and KS prevalence involves several interconnected mechanisms. Patients with CKM syndrome are at higher risk of developing both calcium oxalate and uric acid stones, with urinary pH playing a critical role in stone composition; acidic urine promotes uric acid stones, while alkaline urine favors calcium phosphate stones. Insulin resistance impairs renal ammoniogenesis in proximal tubules, reducing ammonia production and lowering urinary pH[42], increasing uric acid stone risk. The inflammatory response also contributes to KS and CKM syndrome progression[43]; elevated urinary oxalate levels-a key risk factor for calcium oxalate stones-are influenced by inflammatory molecules like monocyte chemoattractant protein 1 and immune cell activity[43]. Both KS formation and atherosclerotic plaque development involve macrophage recruitment, releasing inflammatory mediators that cause tissue damage and calcium deposition[44]. Metabolic syndrome may also increase oxalate excretion[27]; elevated urinary oxalate harms renal parenchyma and may be reabsorbed into proximal tubules via passive diffusion[30]. The individual traits of CKM syndrome independently influence stone formation risk, and cumulatively further increase the risk of both calcium oxalate and uric acid stones. Future studies are needed to clarify

BMJ Open

these pathways and identify additional mechanisms.

To our knowledge, this is the first study to examine the relationship between CKM syndrome and KS in a large population from NHANES. CKM syndrome is a relatively new clinical concept with stages based on recent guidelines. We analyzed CKM syndrome stages (0-4) and KS prevalence in a broad population, finding a clear and progressive increase in KS prevalence with advancing CKM stages.

However, this study has limitations. First, its cross-sectional design prevents inference of causality or temporal relationships between CKM syndrome and KS development. Longitudinal and mechanistic studies are needed to confirm this hypothesis. Second, some data were self-reported, such as KS history, which may be subject to recall bias or misreporting. Third, despite multivariate adjustments, unmeasured confounders might have influenced the observed associations. Lastly, our study included only U.S. adults, limiting generalizability to other settings or populations.

Conclusions

This study demonstrates a clear and progressive association between advancing CKM syndrome stages and increased KS prevalence in a nationally representative U.S. adult population. Individuals with more advanced CKM stages are at higher risk of developing KS. These findings underscore the critical importance of early detection and effective management of CKM syndrome to mitigate KS risk and burden. Further research is needed to elucidate the underlying mechanisms driving this association and to develop targeted prevention strategies for at-risk populations.

Figure legends

Figure 1: Flowchart of participant selection for the study.

Figure 2: Prevalence of kidney stones across CKM syndrome stages.

Use of AI and AI-assisted technologies statement

AI has not been used in the writing process.

Author contributions

DW W: Conceived and designed the study; drafted the initial manuscript.

JJ T: Collected and analyzed the data and assisted in writing and editing the manuscript.

- F S: Analyzed data and organized data.
- DG Z: Supervised the research and was responsible for the manuscript revision and final approval.
- GL L: Provided research resources; responsible for project management.

389 390 391 392	Abbreviations
390 391 392	Abbreviations
391 392	
392	CKM, cardiovascular-kidney-metabolic; KS, kidney stone; NHANES, National Health and Nutrition
	Examination Survey; ORs, odds ratio; CIs, confidence interval; AHA, American Heart Association;
393	CVD, cardiovascular disease; DM, diabetes mellitus; CKD, chronic kidney disease; NCHS, National
394	Center for Health Statistics; PIR, poverty-to-income ratio; PA, physical activity; IQRs, interquartile
395	range.
396	
397	Declaration
398	Acknowledgments
399	We appreciate the contributions of the participants to the NHANES data.
400	
401	Disclosure Statement
402	The authors have no competing interests to declare.
403	
404	Ethics Statement
405	All participants provided written informed consent and study procedures were approved by the
406	National Center for Health Statistics Research Ethics Review Board (Protocol Number: Protocol
407	#2011-17).
408	
409	Funding
410	Supported by establishing an early warning model for renal calculi in civil aviation pilots (No.254).
411	
412	Data Availability
413	NHANES data described in this manuscript are available at https://wwwn.cdc.gov/nchs/nhan
	 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

1 2		
3 4	414	References
5	115	1 Khan SP Pearle MS Robertson WG Gambaro G Canalas BK Doizi S et al Kidney stones Nat
6 7 8	415	Rev Dis Primers. 2016;2:16008.
9 10	417	2. Chewcharat A, Curhan G. Trends in the prevalence of kidney stones in the United States from 2007
10 11 12	418	to 2016. Urolithiasis. 2021;49:27–39.
13 14	419	3. Peerapen P, Thongboonkerd V. Kidney Stone Prevention. Adv Nutr. 2023;14:555-69.
15 16	420	4. Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, et al. A Synopsis of the
17	421	Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM)
18	422	Syndrome: A Scientific Statement From the American Heart Association. Circulation.
19 20	423	2023;148:1636–64.
21 22	424	5. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas:
23 24 25	425 426	Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
25 26	107	6 GPD Chronic Kidney Disease Collaboration, Global, regional, and national burden of abronic
27	427 128	kidney disease 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet
28 29 30	429	2020;395:709–33.
31	430	7 Carbone A Al Salhi Y Tasca A Palleschi G Fuschi A De Nunzio C et al. Obesity and kidney
32 33 34	431	stone disease: a systematic review. Minerva Urol Nefrol. 2018;70:393–400.
35	432	8. Borghi L, Meschi T, Guerra A, Briganti A, Schianchi T, Allegri F, et al. Essential arterial
36 37 38 39 40 41 42 43 43	433	hypertension and stone disease. Kidney Int. 1999;55:2397–406.
	434 435	9. Increased acid excretion in kidney stone formers with essential hypertension - PubMed. https://pubmed.ncbi.nlm.nih.gov/18715964/. Accessed 19 Sep 2024.
	436 437	10. Rule AD, Lieske JC, Pais VM. Management of Kidney Stones in 2020. JAMA. 2020;323:1961–2.
45 46 47	438 439	11. Huang L, Hu J, Xue C, Ding J, Guo Z, Yu B. Vascular calcification on the risk of kidney stone: a meta-analysis. Ren Fail. 2023;45:2183727.
49 50 51	440 441	12. Weinberg AE, Patel CJ, Chertow GM, Leppert JT. Diabetic severity and risk of kidney stone disease. Eur Urol. 2014;65:242–7.
52	440	12 Largué E. Labovan I. Eladmark C. E. Liggov I. Cramin S. Mangar I. A. et al. Francesco di st
53 54 55	442 443	infancy - early risk factors for childhood obesity. Nat Rev Endocrinol. 2019;15:456–78.
56 57	444	14. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose Tissue
57	445	Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci.
59 60	446	2019;20:2358.
-	447	15. Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic
	448	stone formers - PubMed. https://pubmed.ncbi.nlm.nih.gov/20400141/. Accessed 19 Sep 2024.
	449	16 Sakhaee K Adams-Huet B Moe OW Pak CYC Pathonhysiologic basis for normouricosurie uric
	450	acid nephrolithiasis. Kidney Int. 2002;62:971–9.
	451 452	17. Torricelli FCM, De S, Gebreselassie S, Li I, Sarkissian C, Monga M. Type-2 diabetes and kidney stones: impact of diabetes medications and glycemic control. Urology. 2014:84:544–8.
	453	18. Wollin DA, Skolarikos A, Preminger GM. Obesity and metabolic stone disease. Curr Opin Urol
		18/22
		10 / 22

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

454 2017;27:422–7.

- 455 19. Obesity and weight gain increase risk of kidney stones. Mayo Clin Womens Healthsource.456 2005;9:3.
- 457 20. Torricelli FCM, De SK, Gebreselassie S, Li I, Sarkissian C, Monga M. Dyslipidemia and kidney
 458 stone risk. J Urol. 2014;191:667–72.
- 459 21. Masterson JH, Woo JR, Chang DC, Chi T, L'Esperance JO, Stoller ML, et al. Dyslipidemia is
 460 associated with an increased risk of nephrolithiasis. Urolithiasis. 2015;43:49–53.
- 461 22. Inci M, Demirtas A, Sarli B, Akinsal E, Baydilli N. Association between body mass index, lipid
 462 profiles, and types of urinary stones. Ren Fail. 2012;34:1140–3.
- 463 23. Chang C-W, Ke H-L, Lee J-I, Lee Y-C, Jhan J-H, Wang H-S, et al. Metabolic Syndrome Increases
 464 the Risk of Kidney Stone Disease: A Cross-Sectional and Longitudinal Cohort Study. J Pers Med.
 465 2021;11:1154.
- 466 24. Ye Z, Wu C, Xiong Y, Zhang F, Luo J, Xu L, et al. Obesity, metabolic dysfunction, and risk of 467 kidney stone disease: a national cross-sectional study. Aging Male. 2023;26:2195932.

468 25. Association between metabolic syndrome components and the risk of developing nephrolithiasis:
469 A systematic review and bayesian meta-analysis - PubMed.
1 470 https://pubmed.ncbi.nlm.nih.gov/34804491/. Accessed 19 Sep 2024.

- 471 26. Lee Y-C, Huang S-P, Juan Y-S, Huang T-Y, Liu C-C. Impact of metabolic syndrome and its components on kidney stone in aging Taiwanese males. Aging Male. 2016;19:197–201.
- 473 27. Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide
 474 survey on urolithiasis in Japan PubMed. https://pubmed.ncbi.nlm.nih.gov/23433467/. Accessed 19
 475 Sep 2024.
- 476 28. Stepanova N. Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of
 477 Key Findings and Perspectives. Biomedicines. 2023;11:1654.
- 478 29. Perinpam M, Enders FT, Mara KC, Vaughan LE, Mehta RA, Voskoboev N, et al. Plasma oxalate
 479 in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone
 480 disease. Clin Biochem. 2017;50:1014–9.
- 481 30. Waikar SS, Srivastava A, Palsson R, Shafi T, Hsu C-Y, Sharma K, et al. Association of Urinary
 482 Oxalate Excretion With the Risk of Chronic Kidney Disease Progression. JAMA Intern Med.
 483 2019;179:542–51.
- 484 31. Uribarri J. Chronic kidney disease and kidney stones. Curr Opin Nephrol Hypertens. 2020;29:237–
 485 42.
- 486 32. Uribarri J, Oh MS, Pak CY. Renal stone risk factors in patients with type IV renal tubular acidosis.
 487 Am J Kidney Dis. 1994;23:784–7.
 - 33. Bao D, Zhang H, Wang J, Wang Y, Wang S, Zhao M-H. Determinants on urinary excretion of
 oxalate and other key factors related to urolithiasis among patients with chronic kidney disease: a
 single center study. Urolithiasis. 2023;51:88.
 - 34. Rule AD, Roger VL, Melton LJ, Bergstralh EJ, Li X, Peyser PA, et al. Kidney stones associate
 with increased risk for myocardial infarction. J Am Soc Nephrol. 2010;21:1641–4.
 - 493 35. Association of nephrolithiasis with the risk of cardiovascular diseases: a longitudinal follow-up
 494 study using a national health screening cohort PubMed. https://pubmed.ncbi.nlm.nih.gov/33191264/.

495 Accessed 19 Sep 2024.

496 36. Reiner AP, Kahn A, Eisner BH, Pletcher MJ, Sadetsky N, Williams OD, et al. Kidney stones and
497 subclinical atherosclerosis in young adults: the CARDIA study. J Urol. 2011;185:920–5.

498 37. Rs H, Aj S, Ml S, Dr J, Ap R, Rl M, et al. Coronary Artery Calcium Score and Association with
499 Recurrent Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. The Journal of urology.
500 2016;195 4 Pt 1.

- 501 38. Devarajan A. Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between
 502 kidney stone formation and cardiovascular diseases. Clin Sci (Lond). 2018;132:615–26.
- 503 39. Bargagli M, Moochhala S, Robertson WG, Gambaro G, Lombardi G, Unwin RJ, et al. Urinary
 504 metabolic profile and stone composition in kidney stone formers with and without heart disease. J
 505 Nephrol. 2022;35:851–7.
- 40. Hamano S, Nakatsu H, Suzuki N, Tomioka S, Tanaka M, Murakami S. Kidney stone disease and risk factors for coronary heart disease. Int J Urol. 2005;12:859–63.
- 508 41. Patel ND, Ward RD, Calle J, Remer EM, Monga M. Vascular Disease and Kidney Stones:
 509 Abdominal Aortic Calcifications Are Associated with Low Urine pH and Hypocitraturia. J Endourol.
 510 2017;31:956–61.
- 42. Strohmaier WL, Wrobel BM, Schubert G. Overweight, insulin resistance and blood pressure (parameters of the metabolic syndrome) in uric acid urolithiasis. Urol Res. 2012;40:171–5.
- 513 43. Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal
 514 models, and tissue-culture studies. Clin Exp Nephrol. 2004;8:75–88.
- 44. Yencilek E, Sarı H, Yencilek F, Yeşil E, Aydın H. Systemic endothelial function measured by
 flow-mediated dilation is impaired in patients with urolithiasis. Urolithiasis. 2017;45:545–52.

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

For peer review only

BMJ Open

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	519			
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23				Protected by c
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 				copyright, including for uses related to text
48 49 50 51 52 53 54 55 56 57 58 59 60				ṫ and daṫa miníng, Al training, and sir

Online Supplementary Material

Association of Cardiovascular-Kidney-Metabolic Syndrome with Kidney Stones: A

Population-based Study

Materials and methods

Assessment of cardiovascular-kidney-metabolic syndrome stages

Cardiovascular-kidney-metabolic (CKM) syndrome stages were classified using NHANES 2017-2018 data, in line with the 2023 AHA Presidential Advisory on CKM Health [1]. This classification system was specifically adapted to the NHANES dataset for this analysis. Definitions were adapted to the available data as follows:

CKM Stage 0: Participants with a normal BMI (<25 kg/m²), waist circumference (<88 cm for women, <102 cm for men), normoglycemia (fasting glucose <100 mg/dL, HbA1c <5.7%), normal blood pressure (systolic <130 mmHg, diastolic <80 mmHg), a healthy lipid profile (triglycerides <135 mg/dL), and no signs of CKD or cardiovascular disease (CVD).

CKM Stage 1: Individuals with an elevated BMI ($\geq 25 \text{ kg/m}^2$), increased waist circumference ($\geq 88 \text{ cm}$ for women, $\geq 102 \text{ cm}$ for men), or prediabetes (HbA1c 5.7%-6.4% or fasting glucose 100-125 mg/dL), but without other metabolic risk factors or CKD.

CKM Stage 2: Participants with additional metabolic risk factors or moderate-to-high-risk CKD, as defined by KDIGO guidelines [2]. Risk factors included elevated triglycerides (\geq 135 mg/dL), hypertension, diabetes, or metabolic syndrome, characterized by at least three of the following: 1/4

BMJ Open

increased waist circumference, low HDL (men <40 mg/dL, women <50 mg/dL), high triglycerides (\geq 150 mg/dL), elevated blood pressure (systolic \geq 130 mmHg, diastolic \geq 80 mmHg), or prediabetes.

CKM Stage 3: Those classified with very-high-risk CKD based on KDIGO criteria, or with a high 10year CVD risk (≥20%), calculated using the AHA PREVENT risk equations (based on recommended thresholds [https://professional.heart.org/en/guidelines-and-statements/prevent-calculator]) [3].

CKM Stage 4: Individuals with self-reported established CVD, including coronary heart disease, angina, myocardial infarction, heart failure, or stroke. Data for atrial fibrillation and peripheral artery disease were unavailable and not included.

Assessment of Other Covariates

This study included several confounding variables such as family poverty-to-income ratio (PIR), drinking status, smoking status, physical activity, and total energy intake, which were defined as follows:

Family poverty income ratio Income was assessed using the poverty income ratio (PIR, the ratio of family income divided by a poverty threshold specific for family size using guidelines from the US Department of Health and Human Services) and categorized as ≤ 1.0 , 1.1-3.0 and > 3.0 [4].

Drinking status Drinking status was classified as nondrinker, low-to-moderate drinker (<2 drinks/day in men and <1 drink/day in women), or heavy drinker (≥ 2 drinks/day in men and ≥ 1 drinks/day in women) [5].

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Smoking status Never smokers were classified as those who reported smoking <100 cigarettes during their lifetime. Those who smoked >100 cigarettes in their lifetime were considered as current smokers, and those who smoked >100 cigarettes and had quit smoking were considered as former smokers [5].
Physical activity Physical activity was categorized as inactive group (no leisure-time physical activity), insufficiently active group (leisure time moderate activity 1–5 times per week with MET ranging from 3 to 6 or leisure-time vigorous activity 1–3 times per week with MET >6), or active

Dietary total energy intakes Dietary intake was assessed through two 24-hour recalls—one conducted in person at the NHANES Mobile Examination Center (MEC) and the second by telephone 3 to 10 days later. Participants reported all foods and beverages consumed during the 24-hour period, and total energy intake was estimated using the USDA Automated Multiple-Pass Method (AMPM) and analyzed via the Food and Nutrient Database for Dietary Studies (FNDDS). The average of the two recalls was used for analysis. Further details on dietary assessment can be found at: https://wwwn.cdc.gov/nchs/nhanes/tutorials/dietaryanalyses.aspx

group (those who had more leisure-time moderate-or-vigorous activity than above) [6].

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Enseignement Superieur (ABES)	J Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Biblio
--	-------------------------------	---

References

1.	Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, Coresh J, Baker-Smith
	CM, Carnethon MR, Després JP et al: A Synopsis of the Evidence for the Science and
	Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A
	Scientific Statement From the American Heart Association. Circulation 2023,
	148 (20):1636-1664.
2.	KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases.
	Kidney international 2021, 100(4s):S1-s276.
3.	Khan SS, Matsushita K, Sang Y, Ballew SH, Grams ME, Surapaneni A, Blaha MJ, Carson
	AP, Chang AR, Ciemins E et al: Development and Validation of the American Heart
	Association's PREVENT Equations. Circulation 2024, 149(6):430-449.
4.	Services USDoHaH. Poverty Guidelines, Research, and Measurement
	[http://aspe.hhs.gov/POVERTY/index.shtml.]
5.	Qiu Z, Chen X, Geng T, Wan Z, Lu Q, Li L, Zhu K, Zhang X, Liu Y, Lin X et al: Associations
	of Serum Carotenoids With Risk of Cardiovascular Mortality Among Individuals With
	Type 2 Diabetes: Results From NHANES. Diabetes Care 2022, 45(6):1453-1461.
6.	Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T: Physical activity and mortality in
	chronic kidney disease (NHANES III). Clin J Am Soc Nephrol 2009, 4(12):1901-1906.

BMJ Open

Association of Cardiovascular-Kidney-Metabolic Syndrome Stages with Kidney Stone Prevalence: A Cross-Section Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-096533.R1
Article Type:	Original research
Date Submitted by the Author:	02-Mar-2025
Complete List of Authors:	Lu, Guoliang; Ruijin Hospital, Department of Urology Tian, Jinjun; Shanghai Pudong New Area people's Hospital, Department of urology Shi, Feng; Civil Aviation Shanghai Hospital Zhang, Ding-Guo; Shanghai Pudong New Area people's Hospital, Department of urology Wang, Dawei; Ruijin Hospital, Department of Urology
Primary Subject Heading :	Urology
Secondary Subject Heading:	Public health
Keywords:	Cardiovascular Disease, Urolithiasis < UROLOGY, Chronic renal failure < NEPHROLOGY, Lipid disorders < DIABETES & ENDOCRINOLOGY, Obesity

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Association of Cardiovascular-Kidney-Metabolic Syndrome Stages with Kidney Stone

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
50 51 52 53 54 55 56 57 58 59 60	

2	Prevalence: A Cross-Section Study
3	Guoliang Lu ^{1, #} Jinjun Tian ^{2, #} , Feng Shi ³ , Dingguo Zhang ^{2,*} , Dawei Wang ^{1, *}
4	
5	¹ Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
6	Shanghai, China
7	² Department of urology, Shanghai Pudong New Area people's Hospital, Shanghai, China;
8	³ CAAC East China Aviation Personnel Medical Appraisal Center, Civil Aviation Shanghai
9	Hospital, Shanghai, China
10	
11	Corresponding authors:
12	Dingguo Zhang, Department of urology, Shanghai Pudong New Area people's Hospital, No. 490,
13	Chuanhuan South Road, Shanghai 200120, China; E-mail: jdzdguo@163.com
14	Dawei Wang, Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of
15	Medicine, No. 999, xiwang Road, Shanghai 200025, China; E-mail: wdwrjhn@163.com
16	
17	# Dawei Wang and Dingguo Zhang contributed equally to this work as the co-first author.
18	*Guoliang Lu and Jinjun Tian contributed equally as co-correspondence authors.
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

36 Abstract

Background: The prevalence of kidney stones (KS) has been increasing globally, and their
association with cardiovascular disease and metabolic syndrome suggests a shared underlying
pathophysiology. However, the impact of different stages of cardiovascular-kidney-metabolic (CKM)
syndrome on KS prevalence remains unclear.

41 Objective: This study aimed to investigate the association between the stages of cardiovascular42 kidney-metabolic (CKM) syndrome and the prevalence of kidney stones (KS) in a nationally
43 representative sample of adults in the United States.

44 Methods: A total of 15,568 participants aged ≥20 years were included in the National Health and
45 Nutrition Examination Survey 2007–2020 fasting subsample. CKM syndrome stages (0–4) were
46 defined based on the 2023 American Heart Association Presidential Advisory on CKM Health. The
47 KS history was determined using self-reported data. Multivariable logistic regression models were
48 used to assess the association between the CKM syndrome stage and KS prevalence.

Results: Of the 15,568 participants, 1,501 (9.64%) reported a history of KS. The KS prevalence increased progressively with advancing CKM stage, rising from 5.10% in stage 0 to 16.55% in stage 4 (P < 0.001). In the fully adjusted model, the odds ratios (ORs) for KS were 1.18 (95% confidence interval [CI]: 0.83–1.68) for Stage 1, 1.72 (95% CI: 1.28–2.32) for Stage 2, 2.00 (95% CI: 1.29–3.10) for Stage 3, and 2.36 (95% CI: 1.64–3.40) for Stage 4, compared to Stage 0 (*P* for trend < 0.001). Stratified analyses revealed no significant interactions between age, sex, race/ethnicity, or other subgroups.

56 Conclusion: This study demonstrated a significant stepwise increase in KS prevalence with the
57 advancing stages of CKM syndrome. These findings highlight the importance of monitoring and
58 managing CKM syndromes to mitigate the risks of KS.

59 Keywords: cardiovascular disease; kidney disease; metabolic syndrome; kidney stones; National
60 Health and Nutrition Examination Survey.

Page 4 of 32

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

61	Strengths of the Study:
62	Novel Approach: This is the first study to explore CKM syndrome stages in relation to kidney
63	stones, offering new insights for future research.
64	Large Sample Size: This study utilized a large, nationally representative sample from NHANES,
65	enhancing generalizability.
66	Limitations of the Study:
67	Cross-Sectional Design: The cross-sectional design prevents inference of causality between CKM
68	syndrome and kidney stone development.
69	Limited Generalizability: The study included only U.S. adults, limiting the applicability of results
70	to other populations or regions.
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	

98 Introduction

Widney stones (KS) are hard mineral deposits forming in the renal calyces and pelvis when urine concentrations of substances like calcium, oxalate, uric acid, or phosphate become high enough to crystallize[1]. KS affects 10.1% of the U.S. population[2]. Recent research suggests KS is a systemic disorder linked to chronic diseases such as cardiovascular diseases (CVD), diabetes, and obesity, rather than being limited to the kidneys. Stone formation is a complex process influenced by genetic, metabolic, and environmental factors[3].

Cardiovascular-Kidney-Metabolic (CKM) syndrome, recently defined by the American Heart Association (AHA), represents a systemic disorder characterized by the pathophysiological interplay among metabolic risk factors (e.g., obesity, type 2 diabetes, hypertension, dyslipidemia, and insulin resistance), chronic kidney disease (CKD), and CVD[4]. These conditions share common underlying mechanisms, including systemic inflammation and metabolic dysfunction, which create a vicious cycle of organ damage and disease progression. The presence of one condition often exacerbates others, leading to increased risks of adverse outcomes, morbidity, and mortality[5–7]. CKM syndrome encompasses individuals at risk for CVD due to metabolic or kidney-related factors, as well as those with established CVD complicated by these conditions. Furthermore, social determinants of health, such as socioeconomic status and environmental factors, exacerbate biological risks and create barriers to effective lifestyle modification and care[8]. This integrated framework underscores the need for interdisciplinary approaches to address the complex mechanisms, clinical heterogeneity, and management challenges associated with CKM syndrome. In this study, we explore the association between CKM syndrome stages and KS prevalence, as both conditions are systemic and share underlying metabolic disturbances.

CKM syndrome comprises interconnected risk factors that elevate the likelihood of developing CVD, type 2 diabetes, and other health complications. Metabolic diseases such as obesity, diabetes mellitus (DM), and hypertension are associated with an increased risk of KS[9]. An 8-year follow-up study found a correlation between high blood pressure and KS development, with the risk further heightened when hypertension coexists with overweight conditions[10]. These factors can alter urine composition, metabolic processes, and kidney function, promoting stone formation. Specifically, increased acid excretion, low citrate levels, and high calcium excretion create a conducive environment for KS[11].

130 Emerging evidence supports the association between KS and various metabolic risk factors.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Unhealthy metabolic status significantly increases KS risk, and combined effects can substantially elevate this risk. Previous studies have identified a broad range of KS risk factors, including biological factors, high sodium intake, metabolic disturbances, and genetic predispositions[12]. Observational studies suggest that vascular calcification may also increase KS risk[13]. A growing number of studies indicate a positive association between CVD and KS, suggesting potential shared pathological mechanisms. Therefore, each component of CKM syndrome may influence KS formation.

To better understand these connections, the American Heart Association (AHA) introduced a model classifying CKM syndrome into distinct stages[7]. Assessing the associations between the combined effects of these factors at various stages and KS prevalence is essential. However, few studies have explored the relationship between this new concept, CKM syndrome, and the KS stages. The aim of this study was to investigate the association between CKM syndrome stages and the prevalence of KS in a nationally representative sample of U.S. adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2020.

145 Materials and methods

146 Study population

NHANES is a nationally representative cross-sectional survey conducted by the National Center for
Health Statistics (NCHS), collecting health and nutrition data via complex sampling methods (data
available at https://www.cdc.gov/nchs/nhanes). The study protocols were approved by the National
Center for Health Statistics (NCHS) Research Ethics Review Board (Protocols #2005-06, #2011-17,
#2018-01) and Ruijin Hospital(2024-177), and all participants provided written informed consent.

Fasting samples were used to measure key biomarkers (glucose, lipids) essential for CKM syndrome staging. From the NHANES 2007–2020 fasting subsample (n=21,745), we excluded 2,772 participants with missing laboratory data or insufficient fasting duration. Of the remaining 18,973 individuals, we further excluded 3,215 under 20 years old, 147 pregnant participants, and 43 with missing KS data, yielding a final sample of 15,568 for analysis (Figure 1).

Definition of KS

KS history was determined through self-reported data. Participants were classified as having a KS history if they affirmed a prior diagnosis of KS by a healthcare professional in response to the questionnaire item, "Have you/Has sample person (SP) ever had kidney stones?". Additionally, recurrence of KS was defined as having experienced two or more episodes of passing kidney stones, based on the response to "How many times have you/has SP passed a kidney stone?". This self-report
BMJ Open

164 method has been validated in prior studies, demonstrating a 97% accuracy rate in identifying clinically

165 diagnosed KS cases [14].

166 Assessment of CKM Syndrome Stages

CKM syndrome stages (0-4) were classified according to the 2023 AHA Presidential Advisory on CKM Health[7], with adaptations for NHANES data. The stages were defined as follows: Stage 0: No CKM risk factors (e.g., absence of hypertension, hyperlipidemia, or metabolic abnormalities). Stage 1: Overweight, obesity, or dysfunctional adipose tissue without additional metabolic risk factors or Stage 2: Presence of metabolic risk factors (e.g., hypertension, dyslipidemia, insulin CKD. resistance) or CKD. Stage 3: High-risk CKD (e.g., eGFR <60 mL/min/1.73 m² or albuminuria ≥300 mg/g) or a high predicted 10-year CVD risk (≥20% based on validated risk scores). Stage 4: Established CVD (e.g., coronary artery disease, heart failure, or stroke). Detailed NHANES-adapted definitions for each stage, including specific criteria and thresholds, are provided in the Supplementary Material.

177 Assessment of Covariates

To account for potential confounding factors, the following covariates were included. Demographics: Age (categorized as 20–39, 40–59, ≥60 years), sex (male, female), and race/ethnicity (non-Hispanic white, non-Hispanic black, other). Socioeconomic Status: Education level (below high school, high school graduate, above high school) and family poverty-to-income ratio(PIR)(PIR $\leq 1.0, 1.1-3.0, \geq 3.0$). Lifestyle Factors: Drinking status: nondrinkers, low-to-moderate drinkers, or heavy drinkers (based on standard alcohol consumption thresholds); Smoking status: Never, former, or current smoker; Physical activity (PA): Classified as inactive, insufficiently active, or active based on self-reported adherence to physical activity guidelines. Biochemical and Nutritional Markers: Serum calcium, serum phosphorus, and urinary creatinine levels were divided into quartiles to account for metabolic variations; Total energy intake was assessed using 24-hour dietary recall data and categorized into quartiles. Detailed definitions and measurement protocols for all covariates are provided in the Supplementary Materials.

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

190 Statistical Analysis

All analyses adhered to NHANES guidelines, incorporating sample weights to account for the complex survey design, and were performed using the R "survey" package (version 4.3.2). Continuous variables were summarized as medians with interquartile ranges (IQR), while categorical variables were expressed as weighted percentages. Group comparisons were performed using the Mann-Whitney U test or Kruskal-Wallis H test for continuous variables with non-normal distributions and ordinal categorical variables, while the Chi-square test was applied to nominal categorical variables.

Multivariable logistic regression models estimated the association between CKM stages and KS prevalence, adjusting for covariates, with results reported as odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses explored interactions between CKM stages and key variables (age, sex, race/ethnicity, smoking status, and physical activity). A two-sided P < 0.05 was considered statistically significant.

Patient and Public Involvement Statement

None

Results

Baseline Characteristics of Participants

Table 1 presents the survey-weighted baseline characteristics by KS status. Among 15,568 participants, 1,501 (9.64%) reported a history of KS. The median age was 48 years, with females comprising 51.32% of the cohort. Stone formers were significantly older; 38.12% were aged ≥ 60 years compared to 25.59% of non-stone formers (P < 0.001). Males had a higher prevalence of KS (53.27%) than females (46.73%) (P = 0.003). Participants with KS were more frequently classified into advanced CKM syndrome stages (Stages 3 and 4), with 24.42% versus 14.02% among non-stone formers (P < 0.001). Other covariates, including race/ethnicity, smoking status, drinking status, and physical activity, also showed significant differences between the groups.

215	Table 1. Survey-weighted characteristics of the general adult	population by kidney stone in NHANES 2007-
216	2020.	

Characteristics	Orverall	Non Stone Former	Store - Former	Р
Characteristics	Overall	Non-Stone Former	Stone Former	value
Participant, N	15568	14067	1501	
Age, years				< 0.001
20-39	4893(35.91)	4618(37.40)	275(22.25)	
40-59	5323(37.27)	4799(37.01)	524(39.64)	
≥60	5352(26.82)	4650(25.59)	702(38.12)	
Sex, %				0.003
Female	8020(51.32)	7344(51.82)	676(46.73)	
Male	7548(48.68)	6723(48.18)	825(53.27)	
Race/ethnicity, %				< 0.001
Non-Hispanic White	6333(66.13)	5553(65.19)	780(74.76)	
Non-Hispanic Black	3224(11.31)	3039(11.94)	185(5.54)	
Other race	6011(22.56)	5475(22.87)	536(19.70)	
Education level, %				0.604
Below high school	3752(16.24)	3382(16.18)	370(16.85)	
High school	3528(22.68)	3190(22.67)	338(22.74)	

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

(ABES)

Above high school	8288(61.08)	7495(61.15)	793(60.41)	
Family PIR, %				0.431
≤1.0	3409(15.40)	3092(15.53)	317(14.18)	
1.1–3.0	6577(36.32)	5943(36.28)	634(36.67)	
>3.0	5582(48.28)	5032(48.19)	550(49.15)	
Smoking status, %				0.018
Never smoker	8734(55.70)	7950(56.10)	784(52.09)	
Former smoker	3806(25.28)	3372(24.84)	434(29.31)	
Current smoker	3028(19.02)	2745(19.06)	283(18.60)	
Drinking status, %				0.002
Nondrinker	2067(10.53)	1867(10.44)	200(11.39)	
Former drinker	2052(11.88)	1800(11.41)	252(16.24)	
Current drinker	11449(77.59)	10400(78.16)	1049(72.37)	
Physical activity, %				<
Inactive	4064(21.88)	3592(21,23)	472(27.81)	0.001
Insufficiently active	4885(32.66)	4440(32.79)	445(31.45)	
Active	6619(45 46)	6035(45.98)	584(40,74)	
Total energy intakes	2007.00	2007.00	2005.00	
kcal/dav	(1495.00.2655.00)	(1493.00.2667.00)	(1541.00.2585.00)	0.679
Serum calcium, mmol/L	2.33(2.28,2.40)	2.33(2.28,2.40)	2.33(2.28,2.38)	0.029
Serum phosphorus, mmol/L	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.03,1.26)	< 0.001
Urinary creatinine, mg/dL	114.00(67.00,168.00)	113.00(66.00,168.00)	120.00(77.00,168.00)	0.006
Fasting blood glucose, mg/dL	100.00(93.00,109.00)	100.00(93.00,109.00)	103.000(95.00,115.00)	<0.001
Hemoglobin A1c, %	5.50(5.20,5.80)	5.40(5.20,5.80)	5.600(5.30,6.10)	< 0.001
LDL-cholesterol,	111.00(89.00,135.00)	111.00(89.00,135.00)	113.00(91.000,135.00)	0.427
mg/dL				
HDL- cholesterol,	51.000(43.00,63.00)	52.00(43.00,63.00)	48.00(41.00,59.00)	< 0.001
mg/dL				
CKM syndrome				.0.001
stage, %				<0.001
Stage 0	1457(11.83)	1390(12.45)	67(6.15)	
Stage 1	3211(23.11)	3014(23.91)	197(15.78)	
Stage 2	7735(50.02)	6968(49.62)	767(53.65)	
Stage 3	1385(5.87)	1198(5.53)	187(8.96)	
Stage 4	1780(9.17)	1497(8.49)	283(15.46)	

Abbreviations: PIR, poverty income ratio; LDL, low density lipoprotein; HDL, high density lipoprotein; CKM,
 cardiovascular-kidney-metabolic. Continuous variables without a normal distribution are presented as medians

219 [interquartile ranges]. Sampling weights were applied for calculation of demographic descriptive statistics; N

reflect the study sample while percentages reflect the survey-weighted data.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

> Table 2 summarizes the survey-weighted characteristics across CKM syndrome stages. In Stage 0, 66.05% of participants were aged 20–39 years, whereas in Stage 4, 69.49% were aged ≥60 years (P < 0.001). A higher proportion of males was observed in advanced stages: 54.78% in Stage 4 compared to 32.69% in Stage 0 (P < 0.001). KS prevalence increased consistently with advancing CKM stages, rising from 5.10% in Stage 0 to 16.55% in Stage 4. As shown in Figure 2, the prevalence progressed as follows: 5.10% (Stage 0), 6.71% (Stage 1), 10.53% (Stage 2), 15.00% (Stage 3), and 16.55% (Stage 4), indicating a significant upward trend with increasing CKM syndrome severity (P < 0.001).

 Table 2. Survey-weighted characteristics of the general adult population by CKM syndrome stages in NHANES 2007–2020.

CharacteristicsStage 0Stage 1Stage 2Stage 3Stage 4Participant, N14573211773513851780Age, years $20-39$ 996(66.05)1676(53.78)2138(30.22)9(0.80)74(5.53)40-59382(28.56)1134(35.22)3345(46.34)64(4.80)398(24.98) ≥ 60 79(5.39)401(11.01)2252(23.45)1312(94.40)1308(69.49)	value <0.00 1
Participant, N 1457 3211 7735 1385 1780 Age, years 20-39 996(66.05) 1676(53.78) 2138(30.22) 9(0.80) 74(5.53) 40-59 382(28.56) 1134(35.22) 3345(46.34) 64(4.80) 398(24.98) ≥60 79(5.39) 401(11.01) 2252(23.45) 1312(94.40) 1308(69.49)	<0.00 1
Age, years 20-39 996(66.05) 1676(53.78) 2138(30.22) 9(0.80) 74(5.53) 40-59 382(28.56) 1134(35.22) 3345(46.34) 64(4.80) 398(24.98) ≥60 79(5.39) 401(11.01) 2252(23.45) 1312(94.40) 1308(69.49)	<0.00 1
$20-39$ $996(66.05)$ $1676(53.78)$ $2138(30.22)$ $9(0.80)$ $74(5.53)$ $40-59$ $382(28.56)$ $1134(35.22)$ $3345(46.34)$ $64(4.80)$ $398(24.98)$ ≥ 60 $79(5.39)$ $401(11.01)$ $2252(23.45)$ $1312(94.40)$ $1308(69.49)$	
$40-59$ $382(28.56)$ $1134(35.22)$ $3345(46.34)$ $64(4.80)$ $398(24.98)$ ≥ 60 $79(5.39)$ $401(11.01)$ $2252(23.45)$ $1312(94.40)$ $1308(69.49)$	
≥ 60 79(5.39) 401(11.01) 2252(23.45) 1312(94.40) 1308(69.49)	
Sex, %	<0.00 1
Female974(67.31)1728(51.37)3921(48.92)608(48.92)789(45.22)	
Male 483(32.69) 1483(48.63) 3814(51.08) 777(51.08) 991(54.78)	
Race/ethnicity,	< 0.00
%	1
Non-Hispanic (57(70.46) 1159(62.34) 2886(64.89) 713(72.83) 918(72.65)	
White White	
Non-Hispanic 188(7.34) 686(12.58) 1672(11.54) 271(11.22) 407(12.03)	
Black	
Other race 612(22.20) 1366(25.08) 3177(23.57) 401(15.95) 455(15.32)	
Education	<0.00
level, %	1
Below high 194(9.48) 613(12.65) 1898(16.86) 470(25.14) 577(24.98)	
school	
High school 258(16.68) 671(21.45) 1773(23.05) 369(29.35) 457(27.22)	
Above high 1005(73.84) 1927(65.90) 4064(60.09) 546(45.50) 746(47.80)	
school	-0.00
Family PIR, %	<0.00 1
≤1.0 271(12.78) 713(15.79) 1702(15.42) 306(16.63) 417(16.89)	
1.1–3.0 535(30.49) 1255(34.38) 3212(35.43) 685(47.18) 890(46.62)	
>3.0 651(56.74) 1243(49.83) 2821(49.15) 394(36.19) 473(36.49)	

Smoking						<0.0
status. %						1
Never smoker	1004(65.82)	1980(60.01)	4372(55.25)	649(47.09)	729(39.83)	-
Former)				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
smoker	185(15.70)	622(22.11)	1784(24.73)	544(40.90)	671(38.58)	
Current						
smoker	268(18.48)	609(17.88)	1579(20.02)	192(12.01)	380(21.60)	
Drinking						<0.0
status %						1
Nondrinker	185(9.86)	332(8.67)	1036(10.29)	265(18.90)	249(12.03)	1
Former	100().00)	(0.07)	1000(1012))	200(10.50)	2.0(12.00)	
drinker	89(5.74)	251(7.36)	966(11.98)	337(23.05)	409(23.48)	
Current						
duinten	1183(84.40)	2628(83.97)	5733(77.73)	783(58.05)	1122(64.49)	
Dharrigal						-0.1
						<0.0
activity, %	222(12.19)	5(0(1(20)	1015(21.50)	(1((10.11)	742(27.12)	1
Inactive	222(12.18)	569(16.28)	1915(21.59)	616(42.11)	742(37.13)	
Insufficiently	470(31.79)	992(32.01)	2524(33.94)	397(29.85)	502(30.15)	
active						
Active	765(56.02)	1650(51.70)	3296(44.46)	372(28.04)	536(32.72)	
Total energy	1974.00	2098.00 (1588.00,	2066.00 (1531.00,	1666.00 (1263.00,	1810.00 (1330.00,	<0.
intakes, kcal/day	(1551.00,	2751.00)	2709.00)	2147.00)	2360.00)	1
	2624.00)					
Serum calcium,	2.35(2.30,2.40)	2.33(2.28,2.38)	2.33(2.28,2.40)	2.35(2.28,2.40)	2.33(2.28,2.40)	<0.0
mmol/L			4.			1
Serum						<0.
phosphorus,	1.23(1.13,1.32)	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.07,1.29)	1
mmol/L						
Urinary	102.00	118.00	115.00		108.00	<0.
creatinine,	(57.00.160.00)	(69.00.176.00)	(69.00.170.00)	99.00 (65.00,143.00)	(67.00.155.00)	1
mg/dL	(27.00,100.00)	(0).00,170.00)	(0).00,170.00)		(07.00,100.00)	
Fasting blood		98 00/92 00 103 00	103 00/96 00 112 00	114 00(100 00 134 00	108 00(98 00 126 00	<0
alucose ma/dI	91.00(86.00,95.0))	114.00(100.00,134.00)	~0. 1
glucose, mg/uL	0)))))	1
Hemoglobin	5 200(5 00 5 200)	5 200(5 100 5 600)	5 500(5 200 5 800)	6 00/5 600 6 600)	5 800(5 500 6 400)	<0.
A1c, %	5.200(5.00,5.500)	5.500(5.100,5.000)	5.500(5.500,5.800)	0.00(5.000,0.000)	5.800(5.500,0.400)	1
IDI abalaster-1		112 00/02 00	118 00/06 00 142 00			-0
mg/dI	97.00(79.00,118.	124.00	110.00(90.00,142.00	104.00(80.00,126.00)	04 00/74 00 121 00	∖ 0.
mg/aL	00)	134.00))		94.00(74.00,121.00)	1
HDL-						
cholesterol,	62.00(53.00,73.0	55.00(47.00,65.00)	48.00(40.00,59.00)	50.00(42.00,61.00)	48.00(40.00,59.00)	<0.
mg/dL	0)					1
						<0.
Kidney stone, %						1
No	1390(94.90)	3014(93.29)	6968(89.47)	1198(85.00)	1497(83.45)	

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

and data mining, Al training, and similar technologies.

Protected by copyright, including for uses related to text

Abbreviations: PIR, poverty income ratio; LDL, low density lipoprotein; HDL, high density lipoprotein; CKM, cardiovascular-kidney-metabolic. Continuous variables without a normal distribution are presented as medians [interquartile ranges]. Sampling weights were applied for calculation of demographic descriptive statistics; N reflect the study sample while percentages reflect the survey-weighted data.

Association between CKM syndrome stages and the prevalence of KS

Table 3 illustrates the ORs for KS prevalence across CKM syndrome stages. In the unadjusted model, KS likelihood rose progressively with advancing CKM stages, with Stage 4 showing almost 3.7 times the odds compared to Stage 0. This association remained robust in Model 1, which adjusted for age, sex, and race/ethnicity. The trend persisted in Model 2 with further adjustments for socioeconomic and lifestyle factors. In Model 3, even after additional adjustments for serum calcium, phosphorus, and creatinine, the ORs for KS prevalence continued to increase with CKM severity: 1.18 (95% CI: 0.83-1.68) for Stage 1, 1.72 (95% CI: 1.28-2.32) for Stage 2, 2.00 (95% CI: 1.29-3.10) for Stage 3, and 2.36 (95% CI: 1.64-3.40) for Stage 4. This indicates a significant and stepwise rise in KS prevalence with worsening CKM stages ($P_{\text{trend}} < 0.001$). To visually summarize the association between CKM syndrome stages and KS prevalence, the odds ratios (ORs) and 95% confidence intervals (CIs) from Table 3 are further illustrated in Figure 3 using a forest plot.

Table 3. OR (95% CIs) of the prevalence of kidney stone according to CKM syndrome stages among adults in NHANES 2007-2020.

	CKM syndrome stage					
-	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	· P _{trend}
Create	1.00	1.34(0.94,1.91	2.19(1.64,2.93	3.28(2.29,4.71	3.69(2.68,5.09	< 0.00
Crude	[Reference]))))	1
Model 1	1.00	1.27(0.89,1.82	1.84(1.37,2.48	2.24(1.48,3.40	2.63(1.87,3.72	< 0.00
Model 1	[Reference]))))	1
Madal 2	1.00	1.25(0.88,1.79	1.80(1.34,2.42	2.08(1.35,3.22	2.45(1.71,3.51	< 0.00
Model 2	[Reference]))))	1
M. 1.12	1.00	1.18(0.83,1.68	1.72(1.28,2.32	2.00(1.29,3.10	2.36(1.64,3.40	< 0.00
Model 3	[Reference]))))	1

Abbreviations: OR, Odd ratio; CI, confidence interval; CKM, cardiovascular-kidney-metabolic.

Data are presented as OR (95% CI) unless indicated otherwise; Model 1 was adjusted as age (20-39, 40-59,

or ≥60), sex (male or female), and race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race);

Model 2 was adjusted as model 1 plus education level (below high school, high school, or above high

school), family PIR (≤1.0, 1.1–3.0, or >3.0), drinking status (nondrinker, low-to-moderate drinker, or heavy

1

BMJ Open

58

59 60 drinker), smoking status (never smoker, former smoker, or current smoker), physical activity (inactive,

259 insufficiently active, or active), total energy intakes (in quartiles); Model 3 was adjusted as model 2 plus

serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles).

262 Stratified analysis

Table 4 presents stratified analyses of the association between CKM syndrome stage and KS 263 prevalence. Among participants aged 20-59, Stage 4 was associated with over threefold increased 264 odds of KS compared to Stage 0 (OR = 3.14, 95% CI: 2.08–4.73). In those aged ≥ 60 years, the 265 association was weaker and nonsignificant (OR = 1.31, 95% CI: 0.45–3.80), with no significant age 266 interaction (P for interaction = 0.482). Sex-stratified results were similar; in Stage 4, females and 267 268 males had approximately 2.4 times the odds of KS, with no significant sex interaction (P for 269 interaction = 0.299). Non-Hispanic Whites showed stronger associations (OR = 2.28, 95% CI: 1.45-3.60), with weaker trends in other ethnicities. Consistent patterns emerged across subgroups of family 270 PIR, education level, smoking, drinking, and physical activity. Despite varying strengths, the 271 association between CKM syndrome severity and KS prevalence remained consistent across these 272 273 groups.

CKM syndrome stage Subgroups Ν P-int Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Age, years 0.482 2.79 (0.86-10216 1.35 (0.92-2.10 (1.51-3.14 (2.08-1 20-59 [Reference] 1.98) 2.91) 9.10) 4.73) 5352 0.61 (0.20-0.96 (0.32-1.15 (0.39-1.31 (0.45-1 ≥ 60 [Reference] 1.89) 2.88) 3.41) 3.80) Sex, % 0.299 8020 1 1.33 (0.85-1.82 (1.21-1.99 (1.05-2.36 (1.40-Female 2.07) 2.74) 4.00) [Reference] 3.77) 7548 1.09 (0.56-1.78 (0.99-2.09 (1.04-2.47 (1.34-1 Male [Reference] 2.15) 3.20) 4.21) 4.55) Race, % 0.351 Non-Hispanic 6333 1 1.23 (0.79-1.68 (1.16-2.05 (1.17-2.28 (1.45-2.43)White [Reference] 1.92) 3.57) 3.60) Non-Hispanic 3224 0.79 (0.36-1.50 (0.70-1.94 (0.79-1.53 (0.56-1 Black [Reference] 1.70) 3.18) 4.77) 4.14) 6011 1.10 (0.62-1.66 (0.84-3.02 (1.60-1 1.91 (1.11-Other race [Reference] 1.94) 5.69) 3.31) 3.28) Family PIR, % 0.687 3409 1 1.75 (0.76-2.42 (1.14-3.02 (1.05-4.37 (1.90-≤1.0 [Reference] 4.00) 5.18) 8.72) 10.04) 6577 1.34 (0.78-1.84 (1.13-1.94 (1.14-2.56 (1.59-1 1.1-3.0 [Reference] 2.30)3.00)3.33) 4.11) >3.0 5582 1.02 (0.62-1.54 (1.00-2.07 (1.13-1.88 (1.05-1 12 / 25

Table 4. Stratified analyses of the associations between CKM syndrome stage and the prevalence of kidney stone
 among adults in NHANES 2007–2020.

		[Reference]	1 67)	2 39)	3 80)	3 37)	
Education level, %		[reference]	1.07)	2.37)	5.00)	5.57)	0.571
Below high	3752	1	1.72 (0.66-	3.10 (1.31-	2.78 (1.00-	4.34 (1.78-	
school		[Reference]	4.47)	7.33)	7.73)	10.56)	
High school	3528	1	0.92 (0.41-	1.21 (0.59-	1.19 (0.47-	1.42 (0.67-	
riigii school		[Reference]	2.07)	2.49)	3.03)	3.01)	
Above high	8288	1	1.22 (0.77-	1.75 (1.19-	2.53 (1.48-	2.47 (1.49-	
school		[Reference]	1.93)	2.57)	4.32)	4.09)	
Smoking status, %							0.266
Nonsmokers	8734	1	1.47 (0.88-	2.29 (1.46-	2.40 (1.28-	3.61 (2.04-	
	• • • • •	[Reference]	2.46)	3.62)	4.51)	6.39)	
Former smokers	3806		0.84 (0.40-	1.17 (0.61-	1.73 (0.78-	1.63 (0.83-	
		[Reference]	1.73)	2.25)	3.85)	3.20)	
Current smokers	3028	1	0.93 (0.47-	1.23 (0.63-	1.23 (0.43-	1.41 (0.61-	
		[Reference]	1.83)	2.42)	3.49)	3.26)	0.000
Drinking status, %	20(7		0.50 (0.20	1 50 (0 72	1.00 (0.00	1.05 (0.04	0.336
Nondrinker	2067	I Dafama 1	0.58 (0.20-	1.50 (0./3-	1.80 (0.66-	1.95 (0.84-	
Low to moderate	2052		1./4) 1.74 (0.51	5.11) 2.40 (0.97	5.24) 2.09 (0.62	4.52) 2.70 (0.82	
Low-to-moderate	2052	I [D of one of other	1./4 (0.51-	2.40 (0.8/-	2.08 (0.03-	2.70 (0.82-	
drinker	11440	[Reference]	5.94) 1.22 (0.82	0.00)	0.81)	(3.91)	
Heavy drinker	11449	[D of aron oo]	1.25 (0.82-	1.72(1.21 - 2.42)	2.18 (1.51-	2.32 (1.03-	
Dhygical activity 0/		[Reference]	1.87)	2.45)	5.05)	5.88)	0 575
Physical activity, %	4064		1 10 (0 48	1 47 (0.61	1 /0 (0 55	2 24 (0 80	0.373
Inactive	4004	I [Reference]	2 07)	3 56)	1.49 (0.55-	2.24 (0.89-	
Insufficiently	1995		2.97)	5.50) 2.06 (1.12	(1.03)	3.03)	
active	4005	I [Pafaranca]	2 11)	2.00 (1.13-	2.80 (1.37-	2.09 (1.27-	
active	6610		2.11) 1 27 (0.81	5.75	(3.57)	3.71)	
Active	0019	I [Reference]	1.27 (0.81-	2 49)	2.08 (1.13-	2.09 (1.24-	
Serum calcium.		[Reference]	1.99)	2.49)	5.78)	5.51)	0.395
mmol/L							
Overtile 1	4717	1	2.10 (1.06-	2.93 (1.59-	2.85 (1.22-	3.01 (1.35-	
Quartile 1	4/1/	[Reference]	4.16)	5.41)	6.65)	6.70)	
Quantila 2	2620	1	1.20 (0.60-	1.66 (0.90-	2.01 (0.77-	3.05 (1.34-	
Quartile 2	3638	[Reference]	2.41)	3.05)	5.26)	6.94)	
Quantila 2	2261	1	0.57 (0.29-	1.24 (0.71-	1.63 (0.75-	1.73 (0.80-	
Quartile 3	3301	[Reference]	1.11)	2.17)	3.58)	3.72)	
Quantila 1	2052	1	1.24 (0.55-	1.59 (0.86-	1.98 (0.91-	2.41 (1.27-	
Quartile 4	3832	[Reference]	2.78)	2.95)	4.35)	4.57)	
Serum phosphorus,							0.408
mmol/L							
Quartile 1	4635	1	1.16 (0.62-	1.52 (0.89-	1.52 (0.74-	2.23 (1.15-	
Quartine 1	4055	[Reference]	2.16)	2.60)	3.12)	4.35)	
Quartile 2	3543	1	1.76 (0.67-	2.15 (0.82-	4.16 (1.27-	3.10 (1.00-	
Quartific 2	5545	[Reference]	4.63)	5.65)	13.63)	9.60)	
Quartile 3	4131	1	1.48 (0.75-	2.28 (1.20-	2.24 (0.83-	3.20 (1.32-	
Quartine 5	4151	[Reference]	2.92)	4.36)	6.01)	7.75)	
Quartile 4	3259	1	0.53 (0.26-	1.38 (0.77-	1.63 (0.72-	1.97 (1.02-	
Zumme T	5459	[Reference]	1.08)	2.48)	3.69)	3.83)	
Urinary creatinine,							0.393
mg/dL							
Quartile 1	3913	1	1.58 (0.76-	1.60 (0.85-	2.19 (0.95-	2.89 (1.31-	
Zuminio 1	5715	[Reference]	3.28)	3.03)	5.07)	6.39)	
Quartile 2	4038	1	1.04 (0.54-	1.35 (0.80-	1.69 (0.78-	2.06 (1.09-	

		[Reference]	1.98)	2.28)	3.66)	3.87)	
Quartila 2	2750	1	1.83 (0.89-	2.85 (1.45-	2.85 (1.22-	3.12 (1.60-	
Quartile 5	3750	[Reference]	3.77)	5.59)	6.65)	6.08)	
Quartila 1	2067	1	0.68 (0.33-	1.43 (0.77-	1.80 (0.74-	1.69 (0.78-	
Quartile 4	380/	[Reference]	1.42)	2.64)	4.39)	3.67)	

Abbreviations: OR, Odd ratio; CI, confidence interval; PIR, poverty-to-income ratio; CKM, cardiovascular kidney-metabolic.

278 Data are presented as OR (95% CI) unless indicated otherwise; Analyses were adjusted for age (20-39, 40-59,

279 or ≥60), sex (male or female), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race),

education level (below high school, high school, or above high school), family PIR (≤ 1.0 , 1.1–3.0, or >3.0),

drinking status (nondrinker, low-to-moderate drinker, or heavy drinker), smoking status (never smoker, former
smoker, or current smoker), physical activity (inactive, insufficiently active, or active), total energy intakes (in
quartiles), serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles)
when they were not the strata variables. *p-int*, p for interaction.

285 Discussion

This study explored the relationship between CKM syndrome stages and the prevalence of KS among 15,568 U.S. adults using data from the NHANES 2007–2020. We found that participants with CKM syndrome had significantly higher odds of KS as CKM stage advanced. Moreover, the association between the CKM syndrome stage and KS prevalence was consistent in the fully adjusted models.

Both CKM syndrome and KS are systemic conditions affecting multiple organs. This study shows KS
prevalence is closely linked to advanced CKM syndrome, characterized by insulin resistance, obesity,
dyslipidemia, and hypertension. These contribute to stone formation and reflect metabolic dysfunction.
CKM syndrome begins early in life[15], inducing dysfunctional adipose tissue, inflammation,
oxidative stress, and insulin resistance[16], leading to hypertension, hypertriglyceridemia, metabolic
syndrome, and type 2 diabetes[7]. As these conditions progress, they burden the kidneys, causing
CKD and worsening CKM syndrome[3].

Metabolic syndrome is a known risk factor for KS development. Type 2 diabetes patients have an elevated risk of urinary KS due to increased urinary oxalate excretion, enhancing calcium oxalate stone formation[17]. Their urinary profiles—high oxalate excretion and low pH—make them more prone to uric acid and calcium oxalate stones[17]. Uric acid stone formers face a higher risk of diabetes and glucose intolerance than non-stone formers[18];increasing HbA1c levels correlate with lower urinary pH, further contributing to KS risk[19].

306 Obesity is another significant factor associated with KS. Excess caloric intake results in greater

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

> metabolic waste and altered urinary composition[20]. Studies show that waist circumference and body mass index are linked to higher KS risk among adults over 46 years of age[21]. In obese individuals, insulin resistance impairs renal ammonium excretion[9],and obesity induces a pro-inflammatory state contributing to KS via oxidative stress and altered renal function. Dyslipidemia is also linked to KS, particularly uric acid stone formation[22]. Masterson et al. found individuals with dyslipidemia are over twice as likely to develop KS[23], and Inci et al. reported that KS formers have significantly higher serum lipid levels[24].

> A large longitudinal cohort study in Taiwan confirmed a strong relationship between metabolic syndrome and KS formation, with hypertension identified as the strongest predictor of metabolic syndrome components[25]. Metabolic dysfunction has been independently associated with a higher risk of KS, especially in individuals with both obesity and metabolic dysfunction[26]. A meta-analysis confirmed a positive correlation between the number of metabolic syndrome components (such as hypertension, obesity, and dyslipidemia) and risk of KS development[27]. In 694 aging males, Yung et al. found metabolic syndrome and particularly hypertension strongly associated with nephrolithiasis[28]. Kohjimoto et al. reported hypertension and dyslipidemia significantly linked to KS severity, while other metabolic traits showed less consistent associations [29]. While relationships between CKM syndrome components and KS vary across populations, our study found no significant demographic interactions, indicating a consistent association between CKM stages and KS prevalence across these groups.

> KS and CKD are closely related, each potentially exacerbating the other. Stone formation can lead to long-term kidney damage, inducing CKD[28]. Patients with CKD often exhibit altered urinary excretion of calcium, oxalate, phosphate, and uric acid-key contributors to stone formation[30]. Impaired kidney function diminishes oxalate filtration and excretion, leading to its accumulation in the bloodstream[31]. The Chronic Renal Insufficiency Cohort study found that as estimated glomerular filtration rate (eGFR) declined in CKD stages 2-4, urinary oxalate excretion decreased[32], increasing stone risk due to metabolic imbalance. However, some studies suggest CKD may offer protection against KS[33]. One study observed that CKD patients with average creatinine clearance of 35–38 mL/min exhibited hypocitraturia without significant differences in other components[34]. since citrate inhibits calcium stone formation, this could influence stone risk. A single-center study indicated that urinary components involved in stone formation were positively associated with eGFR[35], implying that worse kidney function might reduce stone-forming constituents. Although current data suggest a connection, more comprehensive studies are needed to establish a clear pattern

BMJ Open

341 of how worsening kidney function affects KS development.

Several large-scale epidemiological studies report that individuals with a history of KS have a higher risk of myocardial infarction, coronary heart disease, and stroke compared to those without stones[36,37]. Reiner's longitudinal study found that KS history is associated with greater carotid artery wall thickness[38]. His et al. identified a significant association between recurrent KS formation and coronary artery calcium (CAC), especially in those with higher CAC scores[39], suggesting a link between recurrent KS and increased coronary artery calcification. CVD-related metabolic factors such as cholesterol, phospholipids, and uric acid are associated with KS pathogenesis [40]. Evidence suggests that KS formers with CVD have lower renal alkali excretion and higher acid retention[41]. Hamono et al. found that CVD risk factors-including smoking, hypertension, and overweight-are positively correlated with calcium oxalate stone risk[42]. Abdominal aortic calcification significantly correlates with hypocitraturia; stone formers have notably lower urinary citrate excretion[43]. These findings suggest that hypocitraturia may be a common mechanism for both CVD and KS.

CKM syndrome and increased prevalence of KS is particularly critical in the context of the COVID-19 pandemic, which has exacerbated the burden of CKM syndrome. Individuals with CKM syndrome are at higher risk of severe COVID-19 outcomes. A recent study of 81,051 individuals from a primary care database compared pre-pandemic (2017–2019) and pandemic (2020–2022) periods, revealing a significant increase in CKM syndrome components during the pandemic. Notably, prediabetes prevalence rose by 170%, while diabetes, hypertension, dyslipidemia, and obesity also showed marked increases. Nearly half of the patients exhibited at least one CKM component, underscoring the growing health burden and the urgent need for targeted interventions to address this escalating public health challenge[44].

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Epidemiological data demonstrate that the progression of cardiovascular-kidney-metabolic (CKM) syndrome from stage 0 to stage 3 is associated with a significantly higher absolute risk of atherosclerotic CVD and heart failure, both of which remain leading causes of global morbidity and mortality[8]. Our findings further reveal a strong association between advancing CKM stages and increased KS prevalence, underscoring the systemic and interconnected nature of metabolic, cardiovascular, and kidney diseases. The COVID-19 pandemic has exacerbated the burden of CKM syndrome, amplifying its underlying mechanisms, including chronic inflammation, oxidative stress, and endothelial dysfunction, which collectively accelerate atherosclerosis and cardiovascular complications[45,46].

BMJ Open

The association between CKM syndrome and KS prevalence involves several interconnected

mechanisms. Patients with CKM syndrome are at higher risk of developing both calcium oxalate and

uric acid stones, with urinary pH playing a critical role in stone composition; acidic urine promotes

uric acid stones, while alkaline urine favors calcium phosphate stones. Insulin resistance impairs renal

ammoniogenesis in proximal tubules, reducing ammonia production and lowering urinary pH[47],

increasing uric acid stone risk. The inflammatory response also contributes to KS and CKM syndrome

progression[48]; elevated urinary oxalate levels-a key risk factor for calcium oxalate stones-are

influenced by inflammatory molecules like monocyte chemoattractant protein 1 and immune cell

activity[48]. Both KS formation and atherosclerotic plaque development involve macrophage

recruitment, releasing inflammatory mediators that cause tissue damage and calcium deposition[49].

Metabolic syndrome may also increase oxalate excretion[29]; elevated urinary oxalate harms renal

parenchyma and may be reabsorbed into proximal tubules via passive diffusion[32]. The individual

traits of CKM syndrome independently influence stone formation risk, and cumulatively further

increase the risk of both calcium oxalate and uric acid stones. Future studies are needed to clarify

Our study has several notable strengths, including its novel exploration of the relationship between

CKM syndrome stages and KS prevalence, the use of a large, nationally representative sample from

NHANES, and rigorous adjustment for multiple confounders to enhance the robustness of our findings.

These strengths provide valuable insights into the systemic and interconnected nature of metabolic,

cardiovascular, and kidney diseases. However, we fully acknowledge the limitations inherent in our

study design. The cross-sectional nature of the analysis precludes the ability to infer causality or

establish temporal relationships between CKM syndrome and KS development. Additionally, the

reliance on self-reported KS history may introduce recall bias or misclassification, potentially

affecting the accuracy of our results. While we adjusted for a wide range of covariates, the possibility

of unmeasured confounders influencing the observed associations cannot be ruled out. Furthermore,

the generalizability of our findings is limited to U.S. adults, and further research in diverse populations

these pathways and identify additional mechanisms.

is needed to validate and extend these results.

Conclusions

This study demonstrates a clear and progressive association between advancing CKM syndrome stages and increased KS prevalence in a nationally representative U.S. adult population. Individuals with more advanced CKM stages are at higher risk of developing KS. These findings underscore the critical importance of early detection and effective management of CKM syndrome to mitigate KS risk and burden. Further research is needed to elucidate the underlying mechanisms driving this

Declaration

BMJ Open

2 3 4 5	411 412	association and to develop targeted prevention strategies for at-risk populations.
6 7 8	413	Figure legends
9 10 11 12 13 14 15 16 17 18 19 20 21	414	Figure 1: Flowchart of participant selection for the study.
	415	Figure 2: Prevalence of kidney stones across CKM syndrome stages.
	416	Abbreviations: CKM, cardiovascular-kidney-metabolic
	417	Figure 3. Forest plot illustrating the odds ratios (ORs) and 95% confidence intervals (CIs) for kidney
	418	stone prevalence across CKM syndrome stages.
	419	Abbreviations: OR, Odd ratio; CI, confidence interval; CKM, cardiovascular-kidney-metabolic.
21 22 22	420	Data are presented as OR (95% CI) unless indicated otherwise; Model 1 was adjusted as age (20-39, 40-59,
23 24	421	or ≥60), sex (male or female), and race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race);
25 26	422	Model 2 was adjusted as model 1 plus education level (below high school, high school, or above high
27 28	423	school), family PIR ($\leq 1.0, 1.1-3.0, \text{ or } > 3.0$), drinking status (nondrinker, low-to-moderate drinker, or heavy
29 30 31 32 33 34 35 36	424	drinker), smoking status (never smoker, former smoker, or current smoker), physical activity (inactive,
	425	insufficiently active, or active), total energy intakes (in quartiles); Model 3 was adjusted as model 2 plus
	426	serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles).
	427	
37 38	428	Use of AI and AI-assisted technologies statement
39 40	429	AI has not been used in the writing process.
40 41	430	
42 43	431	Author contributions
44 45	432	DW W: Conceived and designed the study; drafted the initial manuscript.
46 47	433	JJ 1: Collected and analyzed the data and assisted in writing and editing the manuscript.
48	434	F S. Analyzeu data and organizeu data.
49 50	435	GL I : Provided research resources: responsible for project management
51 52	137	The guaranter of the study is DW W : accents full responsibility for the finished work and/or the
53 54	437	and use of the study had seeses to the data, and controlled the decision to publish
55 56	430	conduct of the study, had access to the data, and controlled the decision to publish.
57 58	439	
59 60	440	Abbreviations
	441	CKM, cardiovascular-kidney-metabolic; KS, kidney stone; NHANES, National Health and Nutrition
	442	Examination Survey; ORs, odds ratio; CIs, confidence interval; AHA, American Heart Association;
	443	CVD, cardiovascular disease; DM, diabetes mellitus; CKD, chronic kidney disease; NCHS, National
	444	Center for Health Statistics; PIR, poverty-to-income ratio; PA, physical activity; IQRs, interquartile
	445	range.
	446	

448	Acknowledgments
449	We appreciate the contributions of the participants to the NHANES data.
450	
451	Disclosure Statement
452	Shi Feng declare no competing interests and all other authors have no competing interest to declare.
453	
454	Ethics Statement
455	All participants provided written informed consent and study procedures were approved by the
456	National Center for Health Statistics Research Ethics Review Board (Protocol Number: Protocol
457	#2011-17) and Ruijin Hospital(2024-177).
458	
459	Funding
460	Supported by establishing an early warning model for renal calculi in civil aviation pilots (No.254).
461	
462	Data Availability
463	NHANES data described in this manuscript are available at https://wwwn.cdc.gov/nchs/nhan

1 2			
3			
4 5	464	Re	ferences
6 7 8	465 466	1	Khan SR, Pearle MS, Robertson WG, <i>et al.</i> Kidney stones. <i>Nat Rev Dis Primers</i> . 2016;2:16008. doi: 10.1038/nrdp.2016.8
9 10 11	467 468	2	Chewcharat A, Curhan G. Trends in the prevalence of kidney stones in the United States from 2007 to 2016. <i>Urolithiasis</i> . 2021;49:27–39. doi: 10.1007/s00240-020-01210-w
12 13 14 15	469 470	3	Peerapen P, Thongboonkerd V. Kidney Stone Prevention. <i>Adv Nutr.</i> 2023;14:555–69. doi: 10.1016/j.advnut.2023.03.002
16 17 18	471	4	Ndumele CE, Rangaswami J, Chow SL, <i>et al.</i> Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association <i>Circulation</i> 2023:148:1606–35. doi:
19 20	472		10.1161/CIR.00000000001184
21 22 23 24 25	474 475 476	5	Sun H, Saeedi P, Karuranga S, <i>et al.</i> IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. <i>Diabetes Res Clin Pract.</i> 2022;183:109119. doi: 10.1016/j.diabres.2021.109119
26 27 28 29 30	477 478 479	6	GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. <i>Lancet</i> . 2020;395:709–33. doi: 10.1016/S0140-6736(20)30045-3
31 32 33 34 35 36	480 481 482 483	7	Ndumele CE, Neeland IJ, Tuttle KR, <i>et al.</i> A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement From the American Heart Association. <i>Circulation</i> . 2023;148:1636–64. doi: 10.1161/CIR.00000000001186
37 38 39 40 41 42	484 485 486 487	8	Khan SS, Coresh J, Pencina MJ, <i>et al.</i> Novel Prediction Equations for Absolute Risk Assessment of Total Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health: A Scientific Statement From the American Heart Association. <i>Circulation</i> . 2023;148:1982–2004. doi: 10.1161/CIR.000000000001191
43 44 45 46	488 489	9	Carbone A, Al Salhi Y, Tasca A, <i>et al.</i> Obesity and kidney stone disease: a systematic review. <i>Minerva Urol Nefrol.</i> 2018;70:393–400. doi: 10.23736/S0393-2249.18.03113-2
47 48 49	490 491	10	Borghi L, Meschi T, Guerra A, <i>et al.</i> Essential arterial hypertension and stone disease. <i>Kidney Int.</i> 1999;55:2397–406. doi: 10.1046/j.1523-1755.1999.00483.x
50 51 52 53	492 493	11	Losito A, Nunzi EG, Covarelli C, <i>et al.</i> Increased acid excretion in kidney stone formers with essential hypertension. <i>Nephrol Dial Transplant.</i> 2009;24:137–41. doi: 10.1093/ndt/gfn468
54 55 56 57	494 495	12	Rule AD, Lieske JC, Pais VM. Management of Kidney Stones in 2020. <i>JAMA</i> . 2020;323:1961–2. doi: 10.1001/jama.2020.0662
58 59 60	496 497	13	Huang L, Hu J, Xue C, <i>et al.</i> Vascular calcification on the risk of kidney stone: a meta-analysis. <i>Ren Fail.</i> 2023;45:2183727. doi: 10.1080/0886022X.2023.2183727
	498 499	14	Weinberg AE, Patel CJ, Chertow GM, <i>et al.</i> Diabetic severity and risk of kidney stone disease. <i>Eur Urol.</i> 2014;65:242–7. doi: 10.1016/j.eururo.2013.03.026
	500 501	15	Larqué E, Labayen I, Flodmark C-E, <i>et al.</i> From conception to infancy - early risk factors for childhood obesity. <i>Nat Rev Endocrinol.</i> 2019;15:456–78. doi: 10.1038/s41574-019-0219-1
	502 503	16	Longo M, Zatterale F, Naderi J, <i>et al.</i> Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. <i>Int J Mol Sci.</i> 2019;20:2358. doi: 10.3390/ijms20092358
	504	17	Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic

1 2			
3 4 5	505 506		stone formers - PubMed. https://pubmed.ncbi.nlm.nih.gov/20400141/ (accessed 19 September 2024)
6 7 8 9 10 11 12 13 14	507 508	18	Sakhaee K, Adams-Huet B, Moe OW, <i>et al.</i> Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. <i>Kidney Int.</i> 2002;62:971–9. doi: 10.1046/j.1523-1755.2002.00508.x
	509 510 511	19	Torricelli FCM, De S, Gebreselassie S, <i>et al.</i> Type-2 diabetes and kidney stones: impact of diabetes medications and glycemic control. <i>Urology</i> . 2014;84:544–8. doi: 10.1016/j.urology.2014.02.074
15 16 17	512 513	20	Wollin DA, Skolarikos A, Preminger GM. Obesity and metabolic stone disease. <i>Curr Opin Urol.</i> 2017;27:422–7. doi: 10.1097/MOU.0000000000427
19 20 21	514 515	21	Obesity and weight gain increase risk of kidney stones. Mayo Clin Womens Healthsource. 2005;9:3.
22 23 24	516 517	22	Torricelli FCM, De SK, Gebreselassie S, <i>et al.</i> Dyslipidemia and kidney stone risk. <i>J Urol.</i> 2014;191:667–72. doi: 10.1016/j.juro.2013.09.022
25 26 27 28	518 519	23	Masterson JH, Woo JR, Chang DC, <i>et al.</i> Dyslipidemia is associated with an increased risk of nephrolithiasis. <i>Urolithiasis</i> . 2015;43:49–53. doi: 10.1007/s00240-014-0719-3
29 30 31 32	520 521	24	Inci M, Demirtas A, Sarli B, <i>et al.</i> Association between body mass index, lipid profiles, and types of urinary stones. <i>Ren Fail.</i> 2012;34:1140–3. doi: 10.3109/0886022X.2012.713298
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	522 523 524	25	Chang C-W, Ke H-L, Lee J-I, <i>et al.</i> Metabolic Syndrome Increases the Risk of Kidney Stone Disease: A Cross-Sectional and Longitudinal Cohort Study. <i>J Pers Med.</i> 2021;11:1154. doi: 10.3390/jpm11111154
	525 526 527	26	Ye Z, Wu C, Xiong Y, <i>et al.</i> Obesity, metabolic dysfunction, and risk of kidney stone disease: a national cross-sectional study. <i>Aging Male.</i> 2023;26:2195932. doi: 10.1080/13685538.2023.2195932
	528 529 530	27	Association between metabolic syndrome components and the risk of developing nephrolithiasis: A systematic review and bayesian meta-analysis - PubMed. https://pubmed.ncbi.nlm.nih.gov/34804491/ (accessed 19 September 2024)
	531 532 533	28	Lee Y-C, Huang S-P, Juan Y-S, <i>et al.</i> Impact of metabolic syndrome and its components on kidney stone in aging Taiwanese males. <i>Aging Male.</i> 2016;19:197–201. doi: 10.1080/13685538.2016.1174987
	534 535 536	29	Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan - PubMed. https://pubmed.ncbi.nlm.nih.gov/23433467/ (accessed 19 September 2024)
57 58 59 60	537 538 539	30	Stepanova N. Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of Key Findings and Perspectives. <i>Biomedicines</i> . 2023;11:1654. doi: 10.3390/biomedicines11061654
	540 541 542	31	Perinpam M, Enders FT, Mara KC, <i>et al.</i> Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease. <i>Clin Biochem.</i> 2017;50:1014–9. doi: 10.1016/j.clinbiochem.2017.07.017
	543 544 545	32	Waikar SS, Srivastava A, Palsson R, <i>et al.</i> Association of Urinary Oxalate Excretion With the Risk of Chronic Kidney Disease Progression. <i>JAMA Intern Med.</i> 2019;179:542–51. doi: 10.1001/jamainternmed.2018.7980
	546	33	Uribarri J. Chronic kidney disease and kidney stones. Curr Opin Nephrol Hypertens.
			21 / 25

Page 23 of 32

acidosis.	
y factors r study.	
vocardial	
ollow-up PubMed.	BMJ Ope
n young	en: first pu
ecurrent 016;195.	blished as 10. Prot
between -26. doi:	.1136/bmjoper ected by copy
position –7. doi:	1-2024-096533 rright, includii
ary heart	on 16 May Ens ng for uses
Il Aortic 31:956–	/ 2025. Downli seignement Su s related to tex
D-19: A accessed	oaded from ht uperieur (ABE (t and data mi
PubMed.	ttp://bmjop S) . ning, Al tra
action in 2703105	en.bmj.com/ iining, and si
pressure I–5. doi:	on June 7, imilar techr
, animal 57-004-	2025 at Agenc ologies.
nediated 52. doi:	e Bibliograph:
	nique de l

547		2020;29:237-42. doi: 10.1097/MNH.000000000000582				
548 549	34	Uribarri J, Oh MS, Pak CY. Renal stone risk factors in patients with type IV renal tubular acidosi <i>Am J Kidney Dis</i> . 1994;23:784–7. doi: 10.1016/s0272-6386(12)80129-6				
550 551 552	35	Bao D, Zhang H, Wang J, <i>et al.</i> Determinants on urinary excretion of oxalate and other key factor related to urolithiasis among patients with chronic kidney disease: a single center stud <i>Urolithiasis.</i> 2023;51:88. doi: 10.1007/s00240-023-01458-y				
553 554	36	Rule AD, Roger VL, Melton LJ, <i>et al.</i> Kidney stones associate with increased risk for myocardia infarction. <i>J Am Soc Nephrol.</i> 2010;21:1641–4. doi: 10.1681/ASN.2010030253				
555 556 557	37	Association of nephrolithiasis with the risk of cardiovascular diseases: a longitudinal follow-up study using a national health screening cohort - PubMed https://pubmed.ncbi.nlm.nih.gov/33191264/ (accessed 19 September 2024)				
558 559	38	Reiner AP, Kahn A, Eisner BH, <i>et al.</i> Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. <i>J Urol.</i> 2011;185:920–5. doi: 10.1016/j.juro.2010.10.086				
560 561 562	39	Rs H, Aj S, Ml S, <i>et al.</i> Coronary Artery Calcium Score and Association with Recurren Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. <i>The Journal of urology</i> . 2016;195 doi: 10.1016/j.juro.2015.10.001				
563 564 565	40	Devarajan A. Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. <i>Clin Sci (Lond)</i> . 2018;132:615–26. doi 10.1042/CS20171574				
566 567 568	41	Bargagli M, Moochhala S, Robertson WG, <i>et al.</i> Urinary metabolic profile and stone composition in kidney stone formers with and without heart disease. <i>J Nephrol.</i> 2022;35:851–7. doi 10.1007/s40620-021-01096-w				
569 570	42	Hamano S, Nakatsu H, Suzuki N, <i>et al.</i> Kidney stone disease and risk factors for coronary hear disease. <i>Int J Urol.</i> 2005;12:859–63. doi: 10.1111/j.1442-2042.2005.01160.x				
571 572 573	43	Patel ND, Ward RD, Calle J, <i>et al.</i> Vascular Disease and Kidney Stones: Abdominal Aorti Calcifications Are Associated with Low Urine pH and Hypocitraturia. <i>J Endourol.</i> 2017;31:956-61. doi: 10.1089/end.2017.0350				
574 575 576	44	Increased prevalence of cardiovascular-kidney-metabolic syndrome during COVID-19: A propensity score-matched study - PubMed. https://pubmed.ncbi.nlm.nih.gov/39536978/ (accessed 23 February 2025)				
577 578	45	Cardiovascular-Kidney-Metabolic (CKM) syndrome: A state-of-the-art review - PubMe https://pubmed.ncbi.nlm.nih.gov/38103820/ (accessed 23 February 2025)				
579 580	46	Shaito A, Aramouni K, Assaf R, <i>et al.</i> Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. <i>Front Biosci (Landmark Ed).</i> 2022;27:105. doi: 10.31083/j.fbl270310				
581 582 583	47	Strohmaier WL, Wrobel BM, Schubert G. Overweight, insulin resistance and blood pressur (parameters of the metabolic syndrome) in uric acid urolithiasis. <i>Urol Res.</i> 2012;40:171–5. do 10.1007/s00240-011-0403-9				
584 585 586	48	Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, anima models, and tissue-culture studies. <i>Clin Exp Nephrol</i> . 2004;8:75–88. doi: 10.1007/s10157-004 0292-0				
587 588	49	Yencilek E, Sarı H, Yencilek F, <i>et al.</i> Systemic endothelial function measured by flow-mediated dilation is impaired in patients with urolithiasis. <i>Urolithiasis</i> . 2017;45:545–52. doi				
		22 / 25				

589 10.1007/s00240-016-0941-2

For peer review only

24 / 25

For peer review only

For peer review only

Page 28 of 32

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	

: Crude	OR (95% CI)	P for trend	B: Model 1	OR (95% CI)	P for trend
CKM syndro	ome stages	<0.001	CKM syndro	ome stages	<0.001
Stage 0	1.00 [Reference]	•	Stage 0	1.00 [Reference]	÷
Stage 1	1.34 (0.94–1.91)	HEH	Stage 1	1.27 (0.89–1.82)	⊧∎⊣
Stage 2	2.19 (1.64–2.93)	⊦≣⊣	Stage 2	1.84 (1.37-2.48)	⊦∎⊣
Stage 3	3.28 (2.29-4.71)	⊢∎	Stage 3	2.24 (1.48-3.40)	⊢∎ I
Stage 4	3.69 (2.68-5.09)	⊢-∎→	Stage 4	2.63 (1.87-3.72)	⊢∎
	0	1 2 3 4 5		0	1 2 3 4
: Model 2	OR (95% CI)	P for trend	D: Model 3	OR (95% CI)	P for trend
CKM syndro	ome stages	<0.001	CKM syndro	ome stages	<0.001
Stage 0	1.00 [Reference]	•	Stage 0	1.00 [Reference]	•
Stage 1	1.25 (0.88–1.79)		Stage 1	1.18 (0.83-1.68)	H I H
Stage 2	1.80 (1.34-2.42)	⊦∎⊣	Stage 2	1.72 (1.28-2.32)	⊢∎⊷
Stage 3	2.08 (1.35-3.22)	⊢ ∎−−−1	Stage 3	2.00 (1.29-3.10)	⊨

Figure 3. Forest plot illustrating the odds ratios (ORs) and 95% confidence intervals (CIs) for kidney stone prevalence across CKM syndrome stages.

159x99mm (300 x 300 DPI)

59 60

Online Supplementary Material

Association of Cardiovascular-Kidney-Metabolic Syndrome with Kidney Stones: A

Population-based Study

Materials and methods

Assessment of cardiovascular-kidney-metabolic syndrome stages

Cardiovascular-kidney-metabolic (CKM) syndrome stages were classified using NHANES 2017-2018 data, in line with the 2023 AHA Presidential Advisory on CKM Health [1]. This classification system was specifically adapted to the NHANES dataset for this analysis. Definitions were adapted to the available data as follows:

CKM Stage 0: Participants with a normal BMI (<25 kg/m²), waist circumference (<88 cm for women, <102 cm for men), normoglycemia (fasting glucose <100 mg/dL, HbA1c <5.7%), normal blood pressure (systolic <130 mmHg, diastolic <80 mmHg), a healthy lipid profile (triglycerides <135 mg/dL), and no signs of CKD or cardiovascular disease (CVD).

CKM Stage 1: Individuals with an elevated BMI ($\geq 25 \text{ kg/m}^2$), increased waist circumference ($\geq 88 \text{ cm}$ for women, $\geq 102 \text{ cm}$ for men), or prediabetes (HbA1c 5.7%-6.4% or fasting glucose 100-125 mg/dL), but without other metabolic risk factors or CKD.

CKM Stage 2: Participants with additional metabolic risk factors or moderate-to-high-risk CKD, as defined by KDIGO guidelines [2]. Risk factors included elevated triglycerides (\geq 135 mg/dL), hypertension, diabetes, or metabolic syndrome, characterized by at least three of the following: 1/4

Page 31 of 32

BMJ Open

increased waist circumference, low HDL (men <40 mg/dL, women <50 mg/dL), high triglycerides (\geq 150 mg/dL), elevated blood pressure (systolic \geq 130 mmHg, diastolic \geq 80 mmHg), or prediabetes.

CKM Stage 3: Those classified with very-high-risk CKD based on KDIGO criteria, or with a high 10year CVD risk (≥20%), calculated using the AHA PREVENT risk equations (based on recommended thresholds [https://professional.heart.org/en/guidelines-and-statements/prevent-calculator]) [3].

CKM Stage 4: Individuals with self-reported established CVD, including coronary heart disease, angina, myocardial infarction, heart failure, or stroke. Data for atrial fibrillation and peripheral artery disease were unavailable and not included.

Assessment of Other Covariates

This study included several confounding variables such as family poverty-to-income ratio (PIR), drinking status, smoking status, physical activity, and total energy intake, which were defined as follows:

Family poverty income ratio Income was assessed using the poverty income ratio (PIR, the ratio of family income divided by a poverty threshold specific for family size using guidelines from the US Department of Health and Human Services) and categorized as ≤ 1.0 , 1.1-3.0 and > 3.0 [4].

Drinking status Drinking status was classified as nondrinker, low-to-moderate drinker (<2 drinks/day in men and <1 drink/day in women), or heavy drinker (≥ 2 drinks/day in men and ≥ 1 drinks/day in women) [5].

Smoking status Never smokers were classified as those who reported smoking <100 cigarettes during their lifetime. Those who smoked >100 cigarettes in their lifetime were considered as current smokers, and those who smoked >100 cigarettes and had quit smoking were considered as former smokers [5].

Physical activity Physical activity was categorized as inactive group (no leisure-time physical activity), insufficiently active group (leisure time moderate activity 1–5 times per week with MET ranging from 3 to 6 or leisure-time vigorous activity 1–3 times per week with MET >6), or active group (those who had more leisure-time moderate-or-vigorous activity than above) [6].

Dietary total energy intakes Dietary intake was assessed through two 24-hour recalls—one conducted in person at the NHANES Mobile Examination Center (MEC) and the second by telephone 3 to 10 days later. Participants reported all foods and beverages consumed during the 24-hour period, and total energy intake was estimated using the USDA Automated Multiple-Pass Method (AMPM) and analyzed via the Food and Nutrient Database for Dietary Studies (FNDDS). The average of the two recalls was used for analysis. Further details on dietary assessment can be found at: https://wwwn.cdc.gov/nchs/nhanes/tutorials/dietaryanalyses.aspx

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.	J Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 a
--	--

References

1.	Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, Coresh J, Baker-Smith					
	CM, Carnethon MR, Després JP et al: A Synopsis of the Evidence for the Science and					
	Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A					
	Scientific Statement From the American Heart Association. Circulation 2023,					
	148(20):1636-1664.					
2.	KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases.					
	Kidney international 2021, 100(4s):S1-s276.					
3.	Khan SS, Matsushita K, Sang Y, Ballew SH, Grams ME, Surapaneni A, Blaha MJ, Carson					
	AP, Chang AR, Ciemins E et al: Development and Validation of the American Heart					
	Association's PREVENT Equations. Circulation 2024, 149(6):430-449.					
4.	Services USDoHaH. Poverty Guidelines, Research, and Measurement					

[http://aspe.hhs.gov/POVERTY/index.shtml.]

- Qiu Z, Chen X, Geng T, Wan Z, Lu Q, Li L, Zhu K, Zhang X, Liu Y, Lin X *et al*: Associations of Serum Carotenoids With Risk of Cardiovascular Mortality Among Individuals With Type 2 Diabetes: Results From NHANES. *Diabetes Care* 2022, 45(6):1453-1461.
- Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T: Physical activity and mortality in chronic kidney disease (NHANES III). *Clin J Am Soc Nephrol* 2009, 4(12):1901-1906.

BMJ Open

Association of Cardiovascular-Kidney-Metabolic Syndrome Stages with Kidney Stone Prevalence: A Population-based Analysis of NHANES 2007–2020

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-096533.R2
Article Type:	Original research
Date Submitted by the Author:	08-Apr-2025
Complete List of Authors:	Lu, Guoliang; Ruijin Hospital, Department of Urology Tian, Jinjun; Shanghai Pudong New Area people's Hospital, Department of urology Shi, Feng; Civil Aviation Shanghai Hospital Zhang, Ding-Guo; Shanghai Pudong New Area People's Hospital Wang, Dawei; Ruijin Hospital, Department of Urology
Primary Subject Heading :	Urology
Secondary Subject Heading:	Public health
Keywords:	Cardiovascular Disease, Urolithiasis < UROLOGY, Chronic renal failure < NEPHROLOGY, Lipid disorders < DIABETES & ENDOCRINOLOGY, Obesity

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2						
4	1	Association of Cardiovascular-Kidney-Metabolic Syndrome Stages with Kidney Stone				
5 6	2	Prevalence: A Population-based Analysis of NHANES 2007–2020				
7 8	3					
9 10	4	Guoliang Lu ^{1, #} Jinjun Tian ^{2, #} , Feng Shi ³ , Dingguo Zhang ^{2,*} , Dawei Wang ^{1, *}				
11 12 13 14 15 16	5					
	6	¹ Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,				
	7	Shanghai, China				
17 18	8	² Department of urology, Shanghai Pudong New Area people's Hospital, Shanghai, China;				
19 20	9	³ CAAC East China Aviation Personnel Medical Appraisal Center, Civil Aviation Shanghai				
20 21 22	10	Hospital, Shanghai, China				
23 24	11					
24 25 26	12	Corresponding authors:				
20 27 28	13	Dingguo Zhang, Department of urology, Shanghai Pudong New Area people's Hospital, No. 490,				
28 29	14	Chuanhuan South Road, Shanghai 200120, China; E-mail: jdzdguo@163.com				
30 31	15	Dawei Wang, Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of				
32 33	16	Medicine, No. 999, xiwang Road, Shanghai 200025, China; E-mail: wdwrjhn@163.com				
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	17					
	18	# Dawei Wang and Dingguo Zhang contributed equally to this work as the co-first author.				
	19	*Guoliang Lu and Jinjun Tian contributed equally as co-correspondence authors.				
	20					
	21					
	22					
	23					
	24					
	25					
52 53	26					
54 55	27					
56 57	28					
58 59	29					
60	30					
	31					
	32					
	33					
	34					
	35					
	36					

37 Abstract

Background: The prevalence of kidney stones (KS) has been increasing globally, and their
association with cardiovascular disease and metabolic syndrome suggests a shared underlying
pathophysiology. However, the impact of different stages of cardiovascular-kidney-metabolic (CKM)
syndrome on KS prevalence remains unclear.

42 Objective: This study aimed to investigate the association between the stages of cardiovascular 43 kidney-metabolic (CKM) syndrome and the prevalence of kidney stones (KS) in a nationally
 44 representative sample of adults in the United States.

45 Methods: A total of 15,568 participants aged ≥20 years were included in the National Health and
46 Nutrition Examination Survey 2007–2020 fasting subsample. CKM syndrome stages (0–4) were
47 defined based on the 2023 American Heart Association Presidential Advisory on CKM Health. The
48 KS history was determined using self-reported data. Multivariable logistic regression models were
49 used to assess the association between the CKM syndrome stage and KS prevalence.

Results: Of the 15,568 participants, 1,501 (9.64%) reported a history of KS. The KS prevalence increased progressively with advancing CKM stage, rising from 5.10% in stage 0 to 16.55% in stage 4 (P < 0.001). In the fully adjusted model, the odds ratios (ORs) for KS were 1.18 (95% confidence interval [CI]: 0.83–1.68) for Stage 1, 1.72 (95% CI: 1.28–2.32) for Stage 2, 2.00 (95% CI: 1.29–3.10) for Stage 3, and 2.36 (95% CI: 1.64–3.40) for Stage 4, compared to Stage 0 (*P* for trend < 0.001). Stratified analyses revealed no significant interactions between age, sex, race/ethnicity, or other subgroups.

Conclusion: This study demonstrated a significant stepwise increase in KS prevalence with the 58 advancing stages of CKM syndrome. These findings highlight the importance of monitoring and 59 managing CKM syndromes to mitigate the risks of KS.

Keywords: cardiovascular disease; kidney disease; metabolic syndrome; kidney stones; National
Health and Nutrition Examination Survey.

2 3	62	Strengths and limitations of this study				
4 5	63	Strengths:				
6 7	64	- Utilized a nationally representative NHANES cohort (2007-2020) with complex survey				
8 9	65	weighting to ensure population generalizability				
10 11	66	- Implemented standardized 2023 AHA criteria for CKM syndrome staging enhancing clinical				
12 13	67	consistency				
14 15	68	- Adjusted for comprehensive covariates including demographics, socioeconomic status,				
16 17	69	lifestyle factors, and biochemical markers.				
18 19	70	Limitations:				
20 21	71	- Kidney stone history was based on self-reported data, which may be subject to recall bias.				
22 23	72	- The observational nature of the analysis precludes determination of temporal relationships.				
24 25	73					
26 27	74					
28 29	75					
30 31	76					
32 33	77					
34 35	78					
36 37	79					
38 39	80					
40 41 42 43	81					
	82					
44 45	83					
46 47	84					
48 49	85					
50 51	86					
52 53	87					
54 55	88					
56 57	89					
58 59	90					
60	91					
	92					
	93					
	94					
	95					
	96					
	97					
	98					
		3 / 23				

Page 5 of 30

99 Introduction

Kidney stones (KS) are hard mineral deposits forming in the renal calyces and pelvis when urine concentrations of substances like calcium, oxalate, uric acid, or phosphate become high enough to crystallize[1]. KS affects 10.1% of the U.S. population[2]. Recent research suggests KS is a systemic disorder linked to chronic diseases such as cardiovascular diseases (CVD), diabetes, and obesity, rather than being limited to the kidneys. Stone formation is a complex process influenced by genetic, metabolic, and environmental factors[3].

Cardiovascular-Kidney-Metabolic (CKM) syndrome, recently defined by the American Heart Association (AHA), represents a systemic disorder characterized by the pathophysiological interplay among metabolic risk factors (e.g., obesity, type 2 diabetes, hypertension, dyslipidemia, and insulin resistance), chronic kidney disease (CKD), and CVD[4]. These conditions share common underlying mechanisms, including systemic inflammation and metabolic dysfunction, which create a vicious cycle of organ damage and disease progression. The presence of one condition often exacerbates others, leading to increased risks of adverse outcomes, morbidity, and mortality [5–7]. CKM syndrome encompasses individuals at risk for CVD due to metabolic or kidney-related factors, as well as those with established CVD complicated by these conditions. Furthermore, social determinants of health, such as socioeconomic status and environmental factors, exacerbate biological risks and create barriers to effective lifestyle modification and care[8]. This integrated framework underscores the need for interdisciplinary approaches to address the complex mechanisms, clinical heterogeneity, and management challenges associated with CKM syndrome. In this study, we explore the association between CKM syndrome stages and KS prevalence, as both conditions are systemic and share underlying metabolic disturbances.

CKM syndrome comprises interconnected risk factors that elevate the likelihood of developing CVD, type 2 diabetes, and other health complications. Metabolic diseases such as obesity, diabetes mellitus (DM), and hypertension are associated with an increased risk of KS[9]. An 8-year follow-up study found a correlation between high blood pressure and KS development, with the risk further heightened when hypertension coexists with overweight conditions[10]. These factors can alter urine composition, metabolic processes, and kidney function, promoting stone formation. Specifically, increased acid excretion, low citrate levels, and high calcium excretion create a conducive environment for KS[11].

Emerging evidence supports the association between KS and various metabolic risk factors. Unhealthy metabolic status significantly increases KS risk, and combined effects can substantially elevate this risk. Previous studies have identified a broad range of KS risk factors, including biological

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

factors, high sodium intake, metabolic disturbances, and genetic predispositions[12]. Observational
studies suggest that vascular calcification may also increase KS risk[13]. A growing number of studies
indicate a positive association between CVD and KS, suggesting potential shared pathological
mechanisms. Therefore, each component of CKM syndrome may influence KS formation.

> To better understand these connections, the American Heart Association (AHA) introduced a model classifying CKM syndrome into distinct stages[7]. Assessing the associations between the combined effects of these factors at various stages and KS prevalence is essential. However, few studies have explored the relationship between this new concept, CKM syndrome, and the KS stages. The aim of this study was to investigate the association between CKM syndrome stages and the prevalence of KS in a nationally representative sample of U.S. adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2020.

146 Materials and methods

Study population

NHANES is a nationally representative health and nutrition survey conducted by the National Center
for Health Statistics (NCHS), with data collected through complex sampling methods (available at
https://www.cdc.gov/nchs/nhanes). The study protocols were approved by the National Center for
Health Statistics (NCHS) Research Ethics Review Board (Protocols #2005-06, #2011-17, #2018-01)
and Ruijin Hospital(2024-177), and all participants provided written informed consent.

Fasting samples were used to measure key biomarkers (glucose, lipids) essential for CKM syndrome staging. From the NHANES 2007–2020 fasting subsample (n=21,745), we excluded 2,772 participants with missing laboratory data or insufficient fasting duration. Of the remaining 18,973 individuals, we further excluded 3,215 under 20 years old, 147 pregnant participants, and 43 with missing KS data, yielding a final sample of 15,568 for analysis (Figure 1).

Definition of KS

KS history was determined through self-reported data. Participants were classified as having a KS history if they affirmed a prior diagnosis of KS by a healthcare professional in response to the questionnaire item, "Have you/Has sample person (SP) ever had kidney stones?". Additionally, recurrence of KS was defined as having experienced two or more episodes of passing kidney stones, based on the response to "How many times have you/has SP passed a kidney stone?". This self-report method has been validated in prior studies, demonstrating a 97% accuracy rate in identifying clinically diagnosed KS cases [14].

167 Assessment of CKM Syndrome Stages

CKM syndrome stages (0-4) were classified according to the 2023 AHA Presidential Advisory on CKM Health[7], with adaptations for NHANES data. The stages were defined as follows: Stage 0: No CKM risk factors (e.g., absence of hypertension, hyperlipidemia, or metabolic abnormalities). Stage 1: Overweight, obesity, or dysfunctional adipose tissue without additional metabolic risk factors or Stage 2: Presence of metabolic risk factors (e.g., hypertension, dyslipidemia, insulin CKD. resistance) or CKD. Stage 3: High-risk CKD (e.g., eGFR <60 mL/min/1.73 m² or albuminuria ≥300 mg/g) or a high predicted 10-year CVD risk (≥20% based on validated risk scores). Stage 4: Established CVD (e.g., coronary artery disease, heart failure, or stroke). Detailed NHANES-adapted definitions for each stage, including specific criteria and thresholds, are provided in the Supplementary Material.

178 Assessment of Covariates

To account for potential confounding factors, the following covariates were included. Demographics: Age (categorized as 20–39, 40–59, \geq 60 years), sex (male, female), and race/ethnicity (non-Hispanic white, non-Hispanic black, other). Socioeconomic Status: Education level (below high school, high school graduate, above high school) and family poverty-to-income ratio(PIR)(PIR $\leq 1.0, 1.1-3.0, >3.0$). Lifestyle Factors: Drinking status: nondrinkers, low-to-moderate drinkers, or heavy drinkers (based on standard alcohol consumption thresholds); Smoking status: Never, former, or current smoker; Physical activity (PA): Classified as inactive, insufficiently active, or active based on self-reported adherence to physical activity guidelines. Biochemical and Nutritional Markers: Serum calcium, serum phosphorus, and urinary creatinine levels were divided into quartiles to account for metabolic variations; Total energy intake was assessed using 24-hour dietary recall data and categorized into Detailed definitions and measurement protocols for all covariates are provided in the quartiles. Supplementary Materials.

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

191 Statistical Analysis

All analyses adhered to NHANES guidelines, incorporating sample weights to account for the complex survey design, and were performed using the R "survey" package (version 4.3.2). Continuous variables were summarized as medians with interquartile ranges (IQR), while categorical variables were expressed as weighted percentages. Group comparisons were performed using the Mann-Whitney U test or Kruskal-Wallis H test for continuous variables with non-normal distributions and ordinal categorical variables, while the Chi-square test was applied to nominal categorical variables. Multivariable logistic regression models estimated the association between CKM stages and KS prevalence, adjusting for covariates, with results reported as odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses explored interactions between CKM stages and key variables (age,

sex, race/ethnicity, smoking status, and physical activity). A two-sided P < 0.05 was considered

202 statistically significant.

203 Patient and Public Involvement Statement

204 None

205 Results

206 Baseline Characteristics of Participants

Table 1 presents the survey-weighted baseline characteristics by KS status. Among 15,568 participants, 1,501 (9.64%) reported a history of KS. The median age was 48 years, with females comprising 51.32% of the cohort. Stone formers were significantly older; 38.12% were aged ≥ 60 years compared to 25.59% of non-stone formers (P < 0.001). Males had a higher prevalence of KS (53.27%) than females (46.73%) (P = 0.003). Participants with KS were more frequently classified into advanced CKM syndrome stages (Stages 3 and 4), with 24.42% versus 14.02% among non-stone formers (P < 0.001). Other covariates, including race/ethnicity, smoking status, drinking status, and physical activity, also showed significant differences between the groups.

 Table 1. Survey-weighted characteristics of the general adult population by kidney stone in NHANES 2007–2020.

Characteristics	Overall	Non-Stone Former	Stone Former	<i>P</i> value	
Participant. N	15568	14067	1501	value	
Age, years				< 0.001	
20-39	4893(35.91)	4618(37.40)	275(22.25)		
40-59	5323(37.27)	4799(37.01)	524(39.64)		
≥60	5352(26.82)	4650(25.59)	702(38.12)		
Sex, %				0.003	
Female	8020(51.32)	7344(51.82)	676(46.73)		
Male	7548(48.68)	6723(48.18)	825(53.27)		
Race/ethnicity, %				< 0.001	
Non-Hispanic White	6333(66.13)	5553(65.19)	780(74.76)		
Non-Hispanic Black	3224(11.31)	3039(11.94)	185(5.54)		
Other race	6011(22.56)	5475(22.87)	536(19.70)		
Education level, %				0.604	
Below high school	3752(16.24)	3382(16.18)	370(16.85)		
High school	3528(22.68)	3190(22.67)	338(22.74)		
Above high school	8288(61.08)	7495(61.15)	793(60.41)		
Family PIR, %				0.431	
≤1.0	3409(15.40)	3092(15.53)	317(14.18)		
1.1–3.0	6577(36.32)	5943(36.28)	634(36.67)		
>3.0	5582(48.28)	5032(48.19)	550(49.15)		
Smoking state	us, %				0.018
------------------------	-------------	----------------------	----------------------	-----------------------	---------
Never smo	ker	8734(55.70)	7950(56.10)	784(52.09)	
Former smoker		3806(25.28)	3372(24.84)	434(29.31)	
Current sm	oker	3028(19.02)	2745(19.06)	283(18.60)	
Drinking state	us, %				0.002
Nondrinker	r	2067(10.53)	1867(10.44)	200(11.39)	
Former drin	nker	2052(11.88)	1800(11.41)	252(16.24)	
Current dri	nker	11449(77.59)	10400(78.16)	1049(72.37)	
Physical activ	vity, %				<
Inactivo		4064(21.99)	2502(21.22)	472(27.81)	0.001
Insufficient	the active	4004(21.88)	3332(21.23)	4/2(27.81)	
Active	lly active	4883(32.00)	4440(32.79)	584(40 74)	
Total anara	, intokac	2007.00	2007.00	2005.00	
keal/day	/ IIItakes,	(1495.00.2655.00)	(1493.00.2667.00)	(15/1) 00 2585 00)	0.679
Serum	calcium	(1495.00,2055.00)	(1495.00,2007.00)	(1341.00,2363.00)	
mmol/L	calcium,	2.33(2.28,2.40)	2.33(2.28,2.40)	2.33(2.28,2.38)	0.029
Serum pł mmol/L	nosphorus,	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.03,1.26)	< 0.001
Urinary o mg/dL	creatinine,	114.00(67.00,168.00)	113.00(66.00,168.00)	120.00(77.00,168.00)	0.006
Fasting blood glucose,		100.00(93.00,109.00)	100.00(93.00,109.00)	103.000(95.00,115.00)	< 0.001
mg/dL					
Hemoglobin A	A1c, %	5.50(5.20,5.80)	5.40(5.20,5.80)	5.600(5.30,6.10)	< 0.001
LDL-choleste	erol,	111.00(89.00,135.00)	111.00(89.00,135.00)	113.00(91.000,135.00)	0.427
mg/dL					
HDL- cl	holesterol,	51.000(43.00,63.00)	52.00(43.00,63.00)	48.00(41.00,59.00)	< 0.001
mg/dL					
CKM	syndrome				<0.001
stage, %					<0.001
Stage 0		1457(11.83)	1390(12.45)	67(6.15)	
Stage 1		3211(23.11)	3014(23.91)	197(15.78)	
Stage 2		7735(50.02)	6968(49.62)	767(53.65)	
Stage 3		1385(5.87)	1198(5.53)	187(8.96)	
Stage 4		1780(9.17)	1497(8.49)	283(15.46)	

Abbreviations: PIR, poverty income ratio; LDL, low density lipoprotein; HDL, high density lipoprotein; CKM,
 cardiovascular-kidney-metabolic. Continuous variables without a normal distribution are presented as medians
 [interquartile ranges]. Sampling weights were applied for calculation of demographic descriptive statistics; N
 reflect the study sample while percentages reflect the survey-weighted data.

> Table 2 summarizes the survey-weighted characteristics across CKM syndrome stages. In Stage 0, 66.05% of participants were aged 20–39 years, whereas in Stage 4, 69.49% were aged ≥ 60 years (P < 0.001). A higher proportion of males was observed in advanced stages: 54.78% in Stage 4 compared to 32.69% in Stage 0 (P < 0.001). KS prevalence increased consistently with advancing CKM stages, rising from 5.10% in Stage 0 to 16.55% in Stage 4. As shown in Figure 2, the prevalence $\frac{8}{23}$

progressed as follows: 5.10% (Stage 0), 6.71% (Stage 1), 10.53% (Stage 2), 15.00% (Stage 3), and 16.55% (Stage 4), indicating a significant upward trend with increasing CKM syndrome severity (*P* < 0.001).

Table 2. Survey-weighted characteristics of the general adult population by CKM syndrome stages in NHANES 2007-2020.

~			CKM syndrome stag	je		Р
Characteristics	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	value
Participant, N	1457	3211	7735	1385	1780	
						< 0.00
Age, years						1
20-39	996(66.05)	1676(53.78)	2138(30.22)	9(0.80)	74(5.53)	
40-59	382(28.56)	1134(35.22)	3345(46.34)	64(4.80)	398(24.98)	
≥60	79(5.39)	401(11.01)	2252(23.45)	1312(94.40)	1308(69.49)	
Sex %						< 0.00
Sex, 70						1
Female	974(67.31)	1728(51.37)	3921(48.92)	608(48.92)	789(45.22)	
Male	483(32.69)	1483(48.63)	3814(51.08)	777(51.08)	991(54.78)	
Race/ethnicity,						< 0.00
0⁄0						1
Non-Hispanic	657(70.46)	1159(62.34)	2886(64.89)	713(72.83)	918(72.65)	
White				()	,(
Non-Hispanic	188(7.34)	686(12.58)	1672(11.54)	271(11.22)	407(12.03)	
Black		()		()	()	
Other race	612(22.20)	1366(25.08)	3177(23.57)	401(15.95)	455(15.32)	
Education						< 0.00
level, %						1
Below high	194(9.48)	613(12.65)	1898(16.86)	470(25.14)	577(24.98)	
school						
High school	258(16.68)	671(21.45)	1773(23.05)	369(29.35)	457(27.22)	
Above high	1005(73.84)	1927(65.90)	4064(60.09)	546(45.50)	746(47.80)	
school						
Family PIR, %						< 0.00
						1
≤1.0	271(12.78)	713(15.79)	1702(15.42)	306(16.63)	417(16.89)	
1.1–3.0	535(30.49)	1255(34.38)	3212(35.43)	685(47.18)	890(46.62)	
>3.0	651(56.74)	1243(49.83)	2821(49.15)	394(36.19)	473(36.49)	
Smoking						< 0.00
status, %						1
Never smoker	1004(65.82)	1980(60.01)	4372(55.25)	649(47.09)	729(39.83)	
Former	185(15.70)	622(22.11)	1784(24.73)	544(40.90)	671(38.58)	
smoker						
Current	268(18.48)	609(17.88)	1579(20.02)	192(12.01)	380(21.60)	
smoker						

Drinking						<0.0
status, %						1
Nondrinker	185(9.86)	332(8.67)	1036(10.29)	265(18.90)	249(12.03)	
Former drinker	89(5.74)	251(7.36)	966(11.98)	337(23.05)	409(23.48)	
Current drinker	1183(84.40)	2628(83.97)	5733(77.73)	783(58.05)	1122(64.49)	
Physical						<0.
activity, %						1
Inactive	222(12.18)	569(16.28)	1915(21.59)	616(42.11)	742(37.13)	
Insufficiently active	470(31.79)	992(32.01)	2524(33.94)	397(29.85)	502(30.15)	
Active	765(56.02)	1650(51.70)	3296(44.46)	372(28.04)	536(32.72)	
Total energy intakes, kcal/day	1974.00 (1551.00, 2624.00)	2098.00 (1588.00, 2751.00)	2066.00 (1531.00, 2709.00)	1666.00 (1263.00, 2147.00)	1810.00 (1330.00, 2360.00)	<0.0
Serum calcium, mmol/L	2.35(2.30,2.40)	2.33(2.28,2.38)	2.33(2.28,2.40)	2.35(2.28,2.40)	2.33(2.28,2.40)	<0.0
Serum						<0.0
phosphorus,	1.23(1.13,1.32)	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.07,1.29)	1.16(1.07,1.29)	1
mmol/L						
Urinary	102.00	118.00	115.00		108.00	<0.(
creatinine, mg/dL	(57.00,160.00)	(69.00,176.00)	(69.00,170.00)	99.00 (65.00,143.00)	(67.00,155.00)	1
Fasting blood		98.00(92.00,103.00	103.00(96.00,112.00	114.00(100.00,134.00	108.00(98.00,126.00	<0.0
glucose, mg/dL	91.00(86.00,95.0 0))))	1
Hemoglobin A1c, %	5.200(5.00,5.300)	5.300(5.100,5.600)	5.500(5.300,5.800)	6.00(5.600,6.600)	5.800(5.500,6.400)	<0.0
LDL-cholesterol, mg/dL	97.00(79.00,118.	112.00(92.00, 134.00)	118.00(96.00,142.00)	104.00(80.00,126.00)	94.00(74.00,121.00)	<0.0
HDI -	00)					
cholesterol	62.00(53.00,73.0	55 00(47 00 65 00)	48 00(40 00 59 00)	50 00(42 00 61 00)	48 00(40 00 59 00)	<0.0
mg/dL	0)					1
Kidney stone, %						<0.
		2014(02.20)	(0(8)(80.47)	1108(85.00)	1407(02.45)	1
No	1300/07 000		Dubar su // //			

BMJ Open

Abbreviations: PIR, poverty income ratio; LDL, low density lipoprotein; HDL, high density lipoprotein; CKM,
 cardiovascular-kidney-metabolic. Continuous variables without a normal distribution are presented as medians
 [interquartile ranges]. Sampling weights were applied for calculation of demographic descriptive statistics; N
 reflect the study sample while percentages reflect the survey-weighted data.

239 Association between CKM syndrome stages and the prevalence of KS

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 3 illustrates the ORs for KS prevalence across CKM syndrome stages. In the unadjusted model, KS likelihood rose progressively with advancing CKM stages, with Stage 4 showing almost 3.7 times the odds compared to Stage 0. This association remained robust in Model 1, which adjusted for age, sex, and race/ethnicity. The trend persisted in Model 2 with further adjustments for socioeconomic and lifestyle factors. In Model 3, even after additional adjustments for serum calcium, phosphorus, and creatinine, the ORs for KS prevalence continued to increase with CKM severity: 1.18 (95% CI: 0.83–1.68) for Stage 1, 1.72 (95% CI: 1.28–2.32) for Stage 2, 2.00 (95% CI: 1.29–3.10) for Stage 3, and 2.36 (95% CI: 1.64-3.40) for Stage 4. This indicates a significant and stepwise rise in KS prevalence with worsening CKM stages ($P_{trend} < 0.001$). To visually summarize the association between CKM syndrome stages and KS prevalence, the odds ratios (ORs) and 95% confidence intervals (CIs) from Table 3 are further illustrated in Figure 3 using a forest plot.

 Table 3. OR (95% CIs) of the prevalence of kidney stone according to CKM syndrome stages among adults in

 NHANES 2007–2020.

	CKM syndrome stage						
	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Ptrend	
Cravela	1.00	1.34(0.94,1.91)	2.19(1.64,2.93)	3.28(2.29,4.71)	3.69(2.68,5.09)	< 0.001	
Crude	[Reference]						
Model	1.00	1.27(0.89,1.82)	1.84(1.37,2.48)	2.24(1.48,3.40)	2.63(1.87,3.72)	< 0.001	
1	[Reference]						
Model	1.00	1.25(0.88,1.79)	1.80(1.34,2.42)	2.08(1.35,3.22)	2.45(1.71,3.51)	< 0.001	
2	[Reference]						
Model	1.00	1.18(0.83,1.68)	1.72(1.28,2.32)	2.00(1.29,3.10)	2.36(1.64,3.40)	< 0.001	
3	[Reference]						

254 Abbreviations: OR, Odd ratio; CI, confidence interval; CKM, cardiovascular-kidney-metabolic.

255 Data are presented as OR (95% CI) unless indicated otherwise; Model 1 was adjusted as age (20-39, 40-59,

or ≥ 60), sex (male or female), and race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race);

257 Model 2 was adjusted as model 1 plus education level (below high school, high school, or above high

school), family PIR (≤1.0, 1.1–3.0, or >3.0), drinking status (nondrinker, low-to-moderate drinker, or heavy

drinker), smoking status (never smoker, former smoker, or current smoker), physical activity (inactive,

260 insufficiently active, or active), total energy intakes (in quartiles); Model 3 was adjusted as model 2 plus

serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles).

263 Stratified analysis

264 Table 4 presents stratified analyses of the association between CKM syndrome stage and KS

prevalence. Among participants aged 20–59, Stage 4 was associated with over threefold increased odds of KS compared to Stage 0 (OR = 3.14, 95% CI: 2.08–4.73). In those aged \geq 60 years, the association was weaker and nonsignificant (OR = 1.31, 95% CI: 0.45–3.80), with no significant age interaction (*P* for interaction = 0.482). Sex-stratified results were similar; in Stage 4, females and males had approximately 2.4 times the odds of KS, with no significant sex interaction (*P* for interaction = 0.299). Non-Hispanic Whites showed stronger associations (OR = 2.28, 95% CI: 1.45– 3.60), with weaker trends in other ethnicities. Consistent patterns emerged across subgroups of family PIR, education level, smoking, drinking, and physical activity. Despite varying strengths, the association between CKM syndrome severity and KS prevalence remained consistent across these groups.

5	Table 4. Stratified analyses of the associations between CKM syndrome stage and the prevalence of kidney stone
5	among adults in NHANES 2007–2020.

G-1		N		CKM synd	rome stage			Dia
Subgroups		N	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	P-int
Age, years								0.482
20.50		10216	1	1.35 (0.92-	2.10 (1.51-	2.79 (0.86-	3.14 (2.08-	
20-39			[Reference]	1.98)	2.91)	9.10)	4.73)	
> 60		5352	1	0.61 (0.20-	0.96 (0.32-	1.15 (0.39-	1.31 (0.45-	
≥ 60			[Reference]	1.89)	2.88)	3.41)	3.80)	
Sex, %								0.299
Fomala		8020	1	1.33 (0.85-	1.82 (1.21-	1.99 (1.05-	2.36 (1.40-	
гешае			[Reference]	2.07)	2.74)	3.77)	4.00)	
Mala		7548	1	1.09 (0.56-	1.78 (0.99-	2.09 (1.04-	2.47 (1.34-	
Male			[Reference]	2.15)	3.20)	4.21)	4.55)	
Race, %								0.351
Non-Hispan	ic	6333	1	1.23 (0.79-	1.68 (1.16-	2.05 (1.17-	2.28 (1.45-	
White			[Reference]	1.92)	2.43)	3.57)	3.60)	
Non-Hispan	ic	3224	1	0.79 (0.36-	1.50 (0.70-	1.94 (0.79-	1.53 (0.56-	
Black			[Reference]	1.70)	3.18)	4.77)	4.14)	
Other roce		6011	1	1.10 (0.62-	1.91 (1.11-	1.66 (0.84-	3.02 (1.60-	
Other race			[Reference]	1.94)	3.31)	3.28)	5.69)	
Family PIR, %)							0.687
<1.0		3409	1	1.75 (0.76-	2.42 (1.14-	3.02 (1.05-	4.37 (1.90-	
<u>_1.0</u>			[Reference]	4.00)	5.18)	8.72)	10.04)	
1130		6577	1	1.34 (0.78-	1.84 (1.13-	1.94 (1.14-	2.56 (1.59-	
1.1–5.0			[Reference]	2.30)	3.00)	3.33)	4.11)	
>3.0		5582	1	1.02 (0.62-	1.54 (1.00-	2.07 (1.13-	1.88 (1.05-	
- 5.0			[Reference]	1.67)	2.39)	3.80)	3.37)	
Education leve	el, %							0.571
Below	high	3752	1	1.72 (0.66-	3.10 (1.31-	2.78 (1.00-	4.34 (1.78-	
school			[Reference]	4.47)	7.33)	7.73)	10.56)	
High school		3528	1	0.92 (0.41-	1.21 (0.59-	1.19 (0.47-	1.42 (0.67-	
ringii school			[Reference]	2.07)	2.49)	3.03)	3.01)	
Above	high	8288	1	1.22 (0.77-	1.75 (1.19-	2.53 (1.48-	2.47 (1.49-	
school			[Reference]	1.93)	2.57)	4.32)	4.09)	
Smoking status	s, %							0.266
Nonsmokers		8734	1	1.47 (0.88-	2.29 (1.46-	2.40 (1.28-	3.61 (2.04-	
THOUSINGKETS	>		[Reference]	2.46)	3.62)	4.51)	6.39)	
Former smo	kers	3806	1	0.84 (0.40-	1.17 (0.61-	1.73 (0.78-	1.63 (0.83-	

		[Reference]	1.73)	2.25)	3.85)	3.20)	
Current smokers	3028	1	0.93 (0.47-	1.23 (0.63-	1.23 (0.43-	1.41 (0.61-	
Drinking status %		[Reference]	1.83)	2.42)	3.49)	3.26)	0 336
Drinking status, 70	2067	1	0.58 (0.20-	1.50 (0.73-	1.86 (0.66-	1.95 (0.84-	0.550
Nondrinker		[Reference]	1.74)	3.11)	5.24)	4.52)	
Low-to-moderate	2052	1	1.74 (0.51-	2.40 (0.87-	2.08 (0.63-	2.70 (0.82-	
drinker		[Reference]	5.94)	6.66)	6.81)	8.91)	
Heavy drinker	11449	1 [Reference]	1.23 (0.82-	1.72 (1.21-2.43)	2.18 (1.31-3.63)	2.52 (1.63-3.88)	
Physical activity, %		[])))		0.575
Inactive	4064	1	1.19 (0.48-	1.47 (0.61-	1.49 (0.55-	2.24 (0.89-	
maetive		[Reference]	2.97)	3.56)	4.05)	5.63)	
Insufficiently	4885	1	1.00 (0.48-	2.06 (1.13-	2.86 (1.37-	2.69 (1.27-	
active	((10	[Reference]	2.11)	3.75)	5.97)	5.71)	
Active	6619	[Reference]	1.27 (0.81-	1.65 (1.10-	2.08 (1.15-	2.09 (1.24-	
Serum calcium		[Reference]	1.77)	2.47)	5.70)	5.51)	0 395
mmol/L							0.575
Quartila 1	1717	1	2.10 (1.06-	2.93 (1.59-	2.85 (1.22-	3.01 (1.35-	
Quartine 1	4/1/	[Reference]	4.16)	5.41)	6.65)	6.70)	
Ouartile 2	3638	1	1.20 (0.60-	1.66 (0.90-	2.01 (0.77-	3.05 (1.34-	
Quartino 2	5050	[Reference]	2.41)	3.05)	5.26)	6.94)	
Quartile 3	3361		0.57 (0.29-	1.24 (0.71-	1.63 (0.75-	1.73 (0.80-	
		[Reference]	1.11)	2.17)	3.58)	3.72) 2.41 (1.27	
Quartile 4	3852	I [Reference]	2 78)	2 95)	4 35)	2.41 (1.27-	
Serum phosphorus,		[Reference]	2.70)	2.95)	1.55)	1.57)	0.408
mmol/L							
Quartile 1	1635	1	1.16 (0.62-	1.52 (0.89-	1.52 (0.74-	2.23 (1.15-	
Quartine	4055	[Reference]	2.16)	2.60)	3.12)	4.35)	
Quartile 2	3543	1	1.76 (0.67-	2.15 (0.82-	4.16 (1.27-	3.10 (1.00-	
	-	[Reference]	4.63)	5.65)	13.63)	9.60)	
Quartile 3	4131	[[Reference]	1.48 (0.75-	2.28 (1.20-	2.24 (0.83- 6 01)	5.20 (1.32- 7 75)	
			2.92) 0.53 (0.26-	4.30)	1 63 (0 72-	1 97 (1 02-	
Quartile 4	3259	[Reference]	1.08)	2.48)	3.69)	3.83)	
Urinary creatinine, mg/dL		LJ				,	0.393
Quartila 1	2012	1	1.58 (0.76-	1.60 (0.85-	2.19 (0.95-	2.89 (1.31-	
Qualitie	5175	[Reference]	3.28)	3.03)	5.07)	6.39)	
Ouartile 2	4038	1	1.04 (0.54-	1.35 (0.80-	1.69 (0.78-	2.06 (1.09-	
<u> </u>		[Reference]	1.98)	2.28)	3.66)	3.87)	
Quartile 3	3750] [D.ef	1.83 (0.89-	2.85 (1.45-	2.85 (1.22-	3.12 (1.60-	
		[Keterence]	5.//) 0.68 (0.22	5.59) 1 /2 (0 77	0.03) 1.80 (0.74	0.08) 1.60.0.79	
Quartile 4	3867	I [Reference]	1 42)	2 64)	4 39)	3 67)	
			1.74)	<i>∠.</i> ∪⊤ <i>)</i>	т.э7ј	5.07)	

Abbreviations: OR, Odd ratio; CI, confidence interval; PIR, poverty-to-income ratio; CKM, cardiovascular-

kidney-metabolic.

> Data are presented as OR (95% CI) unless indicated otherwise; Analyses were adjusted for age (20-39, 40-59, or ≥ 60), sex (male or female), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race), education level (below high school, high school, or above high school), family PIR (≤ 1.0 , 1.1–3.0, or >3.0), drinking status (nondrinker, low-to-moderate drinker, or heavy drinker), smoking status (never smoker, former smoker, or current smoker), physical activity (inactive, insufficiently active, or active), total energy intakes (in

BMJ Open

quartiles), serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles)
when they were not the strata variables. *p-int*, p for interaction.

Discussion

This study explored the relationship between CKM syndrome stages and the prevalence of KS among 15,568 U.S. adults using data from the NHANES 2007–2020. We found that participants with CKM syndrome had significantly higher odds of KS as CKM stage advanced. Moreover, the association between the CKM syndrome stage and KS prevalence was consistent in the fully adjusted models.

Both CKM syndrome and KS are systemic conditions affecting multiple organs. This study shows KS prevalence is closely linked to advanced CKM syndrome, characterized by insulin resistance, obesity, dyslipidemia, and hypertension. These contribute to stone formation and reflect metabolic dysfunction. CKM syndrome begins early in life[15], inducing dysfunctional adipose tissue, inflammation, oxidative stress, and insulin resistance[16], leading to hypertension, hypertriglyceridemia, metabolic syndrome, and type 2 diabetes[7]. As these conditions progress, they burden the kidneys, causing CKD and worsening CKM syndrome[3].

Metabolic syndrome is a known risk factor for KS development. Type 2 diabetes patients have an elevated risk of urinary KS due to increased urinary oxalate excretion, enhancing calcium oxalate stone formation[17]. Their urinary profiles—high oxalate excretion and low pH—make them more prone to uric acid and calcium oxalate stones[17]. Uric acid stone formers face a higher risk of diabetes and glucose intolerance than non-stone formers[18];increasing HbA1c levels correlate with lower urinary pH, further contributing to KS risk[19]. BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Obesity is another significant factor associated with KS. Excess caloric intake results in greater metabolic waste and altered urinary composition[20]. Studies show that waist circumference and body mass index are linked to higher KS risk among adults over 46 years of age[21]. In obese individuals, insulin resistance impairs renal ammonium excretion[9], and obesity induces a pro-inflammatory state contributing to KS via oxidative stress and altered renal function. Dyslipidemia is also linked to KS, particularly uric acid stone formation[22]. Masterson et al. found individuals with dyslipidemia are over twice as likely to develop KS[23], and Inci et al. reported that KS formers have significantly higher serum lipid levels[24].

316 A large longitudinal cohort study in Taiwan confirmed a strong relationship between metabolic 317 syndrome and KS formation, with hypertension identified as the strongest predictor of metabolic

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

syndrome components[25]. Metabolic dysfunction has been independently associated with a higher risk of KS, especially in individuals with both obesity and metabolic dysfunction[26]. A meta-analysis confirmed a positive correlation between the number of metabolic syndrome components (such as hypertension, obesity, and dyslipidemia) and risk of KS development[27]. In 694 aging males, Yung et al. found metabolic syndrome and particularly hypertension strongly associated with nephrolithiasis[28]. Kohjimoto et al. reported hypertension and dyslipidemia significantly linked to KS severity, while other metabolic traits showed less consistent associations [29]. While relationships between CKM syndrome components and KS vary across populations, our study found no significant demographic interactions, indicating a consistent association between CKM stages and KS prevalence across these groups.

KS and CKD are closely related, each potentially exacerbating the other. Stone formation can lead to long-term kidney damage, inducing CKD[28]. Patients with CKD often exhibit altered urinary excretion of calcium, oxalate, phosphate, and uric acid-key contributors to stone formation[30]. Impaired kidney function diminishes oxalate filtration and excretion, leading to its accumulation in the bloodstream[31]. The Chronic Renal Insufficiency Cohort study found that as estimated glomerular filtration rate (eGFR) declined in CKD stages 2-4, urinary oxalate excretion decreased[32], increasing stone risk due to metabolic imbalance. However, some studies suggest CKD may offer protection against KS[33]. One study observed that CKD patients with average creatinine clearance of 35–38 mL/min exhibited hypocitraturia without significant differences in other components[34]. since citrate inhibits calcium stone formation, this could influence stone risk. A single-center study indicated that urinary components involved in stone formation were positively associated with eGFR[35], implying that worse kidney function might reduce stone-forming constituents. Although current data suggest a connection, more comprehensive studies are needed to establish a clear pattern of how worsening kidney function affects KS development.

Several large-scale epidemiological studies report that individuals with a history of KS have a higher risk of myocardial infarction, coronary heart disease, and stroke compared to those without stones[36,37]. Reiner's longitudinal study found that KS history is associated with greater carotid artery wall thickness[38]. His et al. identified a significant association between recurrent KS formation and coronary artery calcium (CAC), especially in those with higher CAC scores[39], suggesting a link between recurrent KS and increased coronary artery calcification. CVD-related metabolic factors such as cholesterol, phospholipids, and uric acid are associated with KS pathogenesis [40]. Evidence suggests that KS formers with CVD have lower renal alkali excretion and higher acid retention[41]. Hamono et al. found that CVD risk factors-including smoking, hypertension, and overweight-are

Page 17 of 30

BMJ Open

positively correlated with calcium oxalate stone risk[42]. Abdominal aortic calcification significantly correlates with hypocitraturia; stone formers have notably lower urinary citrate excretion[43]. These findings suggest that hypocitraturia may be a common mechanism for both CVD and KS.

CKM syndrome and increased prevalence of KS is particularly critical in the context of the COVID-19 pandemic, which has exacerbated the burden of CKM syndrome. Individuals with CKM syndrome are at higher risk of severe COVID-19 outcomes. A recent study of 81,051 individuals from a primary care database compared pre-pandemic (2017-2019) and pandemic (2020-2022) periods, revealing a significant increase in CKM syndrome components during the pandemic. Notably, prediabetes prevalence rose by 170%, while diabetes, hypertension, dyslipidemia, and obesity also showed marked increases. Nearly half of the patients exhibited at least one CKM component, underscoring the growing health burden and the urgent need for targeted interventions to address this escalating public health challenge[44].

Epidemiological data demonstrate that the progression of cardiovascular-kidney-metabolic (CKM) syndrome from stage 0 to stage 3 is associated with a significantly higher absolute risk of atherosclerotic CVD and heart failure, both of which remain leading causes of global morbidity and mortality[8]. Our findings further reveal a strong association between advancing CKM stages and increased KS prevalence, underscoring the systemic and interconnected nature of metabolic, cardiovascular, and kidney diseases. The COVID-19 pandemic has exacerbated the burden of CKM syndrome, amplifying its underlying mechanisms, including chronic inflammation, oxidative stress, and endothelial dysfunction, which collectively accelerate atherosclerosis and cardiovascular complications[45,46].

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

 The association between CKM syndrome and KS prevalence involves several interconnected mechanisms. Patients with CKM syndrome are at higher risk of developing both calcium oxalate and uric acid stones, with urinary pH playing a critical role in stone composition; acidic urine promotes uric acid stones, while alkaline urine favors calcium phosphate stones. Insulin resistance impairs renal ammoniogenesis in proximal tubules, reducing ammonia production and lowering urinary pH[47], increasing uric acid stone risk. The inflammatory response also contributes to KS and CKM syndrome progression[48]; elevated urinary oxalate levels-a key risk factor for calcium oxalate stones-are influenced by inflammatory molecules like monocyte chemoattractant protein 1 and immune cell activity[48]. Both KS formation and atherosclerotic plaque development involve macrophage recruitment, releasing inflammatory mediators that cause tissue damage and calcium deposition[49]. Metabolic syndrome may also increase oxalate excretion[29]; elevated urinary oxalate harms renal parenchyma and may be reabsorbed into proximal tubules via passive diffusion[32]. The individual

traits of CKM syndrome independently influence stone formation risk, and cumulatively further increase the risk of both calcium oxalate and uric acid stones. Future studies are needed to clarify these pathways and identify additional mechanisms.

Our study has several notable strengths, including its novel exploration of the relationship between CKM syndrome stages and KS prevalence, the use of a large, nationally representative sample from NHANES, and rigorous adjustment for multiple confounders to enhance the robustness of our findings. These strengths provide valuable insights into the systemic and interconnected nature of metabolic, cardiovascular, and kidney diseases. However, we fully acknowledge the limitations inherent in our study design. The cross-sectional nature of the analysis precludes the ability to infer causality or establish temporal relationships between CKM syndrome and KS development. Additionally, the reliance on self-reported KS history may introduce recall bias or misclassification, potentially affecting the accuracy of our results. While we adjusted for a wide range of covariates, the possibility of unmeasured confounders influencing the observed associations cannot be ruled out. Furthermore, the generalizability of our findings is limited to U.S. adults, and further research in diverse populations is needed to validate and extend these results.

406 Conclusions

This study demonstrates a clear and progressive association between advancing CKM syndrome stages and increased KS prevalence in a nationally representative U.S. adult population. Individuals with more advanced CKM stages are at higher risk of developing KS. These findings underscore the critical importance of early detection and effective management of CKM syndrome to mitigate KS risk and burden. Further research is needed to elucidate the underlying mechanisms driving this association and to develop targeted prevention strategies for at-risk populations.

415 Use of AI and AI-assisted technologies statement

416 AI has not been used in the writing process.

418 Author contributions

- 419 DW W: Conceived and designed the study; drafted the initial manuscript.
- 420 JJ T: Collected and analyzed the data and assisted in writing and editing the manuscript.
- 421 F S: Analyzed data and organized data.
- 422 DG Z: Supervised the research and was responsible for the manuscript revision and final approval.
- 423 GL L: Provided research resources; responsible for project management.
- 424 The guarantor of the study is DW W.; accepts full responsibility for the finished work and/or the
- 425 conduct of the study, had access to the data, and controlled the decision to publish.

Page 19 of 30

1 2		
3 4	426	
5 6	427	Abbreviations
7 8	428	CKM, cardiovascular-kidney-metabolic; KS, kidney stone; NHANES, National Health and Nutrition
9 10	429	Examination Survey; ORs, odds ratio; CIs, confidence interval; AHA, American Heart Association;
10 11 12	430	CVD, cardiovascular disease; DM, diabetes mellitus; CKD, chronic kidney disease; NCHS, National
13 14	431	Center for Health Statistics; PIR, poverty-to-income ratio; PA, physical activity; IQRs, interquartile
15 16	432	range.
17	433	
19 20	434	Declaration
21 22	435	Acknowledgments
23 24	436	We appreciate the contributions of the participants to the NHANES data.
25 26	437	
27 28	438	Competing Interests Statement:
29 30	439	The authors declare that no financial or other conflicts of interest exist related to this work. The funder
31 32	440	had no involvement in study design, data collection/analysis, decision to publish, or content
33 34	441	preparation.
35 36	442	
37 38	443	Ethics Statement
39 40	444	All participants provided written informed consent and study procedures were approved by the
41 42	445	National Center for Health Statistics Research Ethics Review Board (Protocol Number: Protocol
43 44	446	#2011-17) and Ruijin Hospital(2024-177).
45 46	447	
47 48	448	Funding
49 50	449	Supported by establishing an early warning model for renal calculi in civil aviation pilots (No.254).
50 51	450	
52 53	451	Data Availability
54 55 56 57 58 59 60	452	NHANES data described in this manuscript are available at https://wwwn.cdc.gov/nchs/nhan

453 **References**

5

6

7

8 9

12

47

48

49 50

51

52

53 54

55

56 57 58

59

60

- 454 1 Khan SR, Pearle MS, Robertson WG, *et al.* Kidney stones. *Nat Rev Dis Primers*. 2016;2:16008.
 455 doi: 10.1038/nrdp.2016.8
- 94562Chewcharat A, Curhan G. Trends in the prevalence of kidney stones in the United States from104572007 to 2016. Urolithiasis. 2021;49:27–39. doi: 10.1007/s00240-020-01210-w
- 458
 458
 459
 Peerapen P, Thongboonkerd V. Kidney Stone Prevention. Adv Nutr. 2023;14:555–69. doi: 10.1016/j.advnut.2023.03.002
- 460
 460
 460
 461
 461
 461
 461
 462
 462
 462
 463
 464
 464
 465
 465
 466
 466
 467
 468
 468
 469
 469
 460
 460
 460
 461
 461
 461
 461
 461
 462
 462
 463
 464
 464
 465
 465
 466
 467
 468
 468
 469
 469
 469
 460
 460
 460
 461
 461
 462
 462
 462
 462
 463
 464
 464
 465
 465
 466
 467
 468
 468
 469
 469
 469
 469
 469
 469
 460
 460
 461
 461
 462
 462
 462
 462
 462
 463
 464
 464
 464
 464
 465
 465
 466
 467
 468
 468
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
- 463 5 Sun H, Saeedi P, Karuranga S, *et al.* IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. *Diabetes Res Clin Pract.*465 2022;183:109119. doi: 10.1016/j.diabres.2021.109119
- 466
 466
 467
 467
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
- 31 469 7 Ndumele CE, Neeland IJ, Tuttle KR, et al. A Synopsis of the Evidence for the Science and Clinical 32 Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement 470 33 34 471 From the American Heart Association. Circulation. 2023;148:1636-64. doi: 35 10.1161/CIR.000000000001186 472 36
- 473 8 Khan SS, Coresh J, Pencina MJ, *et al.* Novel Prediction Equations for Absolute Risk Assessment
 474 of Total Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health: A
 475 Scientific Statement From the American Heart Association. *Circulation*. 2023;148:1982–2004.
 476 doi: 10.1161/CIR.00000000001191
- 43
 44
 477
 45
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 478
 <li
 - 479 10 Borghi L, Meschi T, Guerra A, *et al.* Essential arterial hypertension and stone disease. *Kidney Int.*480 1999;55:2397–406. doi: 10.1046/j.1523-1755.1999.00483.x
 - 481 11 Losito A, Nunzi EG, Covarelli C, *et al.* Increased acid excretion in kidney stone formers with
 482 essential hypertension. *Nephrol Dial Transplant*. 2009;24:137–41. doi: 10.1093/ndt/gfn468
 - 483 12 Rule AD, Lieske JC, Pais VM. Management of Kidney Stones in 2020. *JAMA*. 2020;323:1961–
 484 2. doi: 10.1001/jama.2020.0662
 - Huang L, Hu J, Xue C, *et al.* Vascular calcification on the risk of kidney stone: a meta-analysis. *Ren Fail.* 2023;45:2183727. doi: 10.1080/0886022X.2023.2183727
 - 487 14 Weinberg AE, Patel CJ, Chertow GM, *et al.* Diabetic severity and risk of kidney stone disease.
 488 *Eur Urol.* 2014;65:242–7. doi: 10.1016/j.eururo.2013.03.026
 - Larqué E, Labayen I, Flodmark C-E, *et al.* From conception to infancy early risk factors for
 childhood obesity. *Nat Rev Endocrinol.* 2019;15:456–78. doi: 10.1038/s41574-019-0219-1
 - 491 16 Longo M, Zatterale F, Naderi J, *et al.* Adipose Tissue Dysfunction as Determinant of Obesity 492 Associated Metabolic Complications. *Int J Mol Sci.* 2019;20:2358. doi: 10.3390/ijms20092358
 - 493 17 Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic
 494 stone formers PubMed. https://pubmed.ncbi.nlm.nih.gov/20400141/ (accessed 19 September

	495		2024)
	496 497	18	Sakhaee K, Adams-Huet B, Moe OW, <i>et al.</i> Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. <i>Kidney Int.</i> 2002;62:971–9. doi: 10.1046/j.1523-1755.2002.00508.x
0	498 499	19	Torricelli FCM, De S, Gebreselassie S, <i>et al.</i> Type-2 diabetes and kidney stones: impact of diabetes medications and glycemic control. <i>Urology</i> . 2014;84:544–8. doi:
2 3	500		10.1016/j.urology.2014.02.074
4 5 6	501 502	20	Wollin DA, Skolarikos A, Preminger GM. Obesity and metabolic stone disease. <i>Curr Opin Urol.</i> 2017;27:422–7. doi: 10.1097/MOU.0000000000427
/ 8 9 0	503 504	21	Obesity and weight gain increase risk of kidney stones. Mayo Clin Womens Healthsource. 2005;9:3.
 2 3	505 506	22	Torricelli FCM, De SK, Gebreselassie S, <i>et al.</i> Dyslipidemia and kidney stone risk. <i>J Urol.</i> 2014;191:667–72. doi: 10.1016/j.juro.2013.09.022
+ 5 5 7	507 508	23	Masterson JH, Woo JR, Chang DC, <i>et al.</i> Dyslipidemia is associated with an increased risk of nephrolithiasis. <i>Urolithiasis</i> . 2015;43:49–53. doi: 10.1007/s00240-014-0719-3
3	509 510	24	Inci M, Demirtas A, Sarli B, <i>et al.</i> Association between body mass index, lipid profiles, and types of urinary stones. <i>Ren Fail</i> 2012;34:1140–3. doi: 10.3109/0886022X.2012.713298
) <u>2</u>	510	25	Chang C-W. Ke H-L. Lee J-I. <i>et al.</i> Metabolic Syndrome Increases the Risk of Kidney Stone
	512 513		Disease: A Cross-Sectional and Longitudinal Cohort Study. <i>J Pers Med.</i> 2021;11:1154. doi: 10.3390/jpm11111154
	514 515 516	26	Ye Z, Wu C, Xiong Y, <i>et al.</i> Obesity, metabolic dysfunction, and risk of kidney stone disease: a national cross-sectional study. <i>Aging Male.</i> 2023;26:2195932. doi: 10.1080/13685538.2023.2195932
	517 518 519	27	Association between metabolic syndrome components and the risk of developing nephrolithiasis: A systematic review and bayesian meta-analysis - PubMed. https://pubmed.ncbi.nlm.nih.gov/34804491/ (accessed 19 September 2024)
	520 521 522	28	Lee Y-C, Huang S-P, Juan Y-S, <i>et al.</i> Impact of metabolic syndrome and its components on kidney stone in aging Taiwanese males. <i>Aging Male.</i> 2016;19:197–201. doi: 10.1080/13685538.2016.1174987
	523 524 525	29	Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan - PubMed. https://pubmed.ncbi.nlm.nih.gov/23433467/ (accessed 19 September 2024)
	526 527 528	30	Stepanova N. Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of Key Findings and Perspectives. <i>Biomedicines</i> . 2023;11:1654. doi: 10.3390/biomedicines11061654
	529 530 531	31	Perinpam M, Enders FT, Mara KC, <i>et al.</i> Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease. <i>Clin Biochem.</i> 2017;50:1014–9. doi: 10.1016/j.clinbiochem.2017.07.017
	532 533 534	32	Waikar SS, Srivastava A, Palsson R, <i>et al.</i> Association of Urinary Oxalate Excretion With the Risk of Chronic Kidney Disease Progression. <i>JAMA Intern Med.</i> 2019;179:542–51. doi: 10.1001/jamainternmed.2018.7980
	535 536	33	Uribarri J. Chronic kidney disease and kidney stones. Curr Opin Nephrol Hypertens. 2020;29:237-42. doi: 10.1097/MNH.00000000000582

BMJ Open

34 Uribarri J, Oh MS, Pak CY. Renal stone risk factors in patients with type IV renal tubular acidosis.
 Am J Kidney Dis. 1994;23:784–7. doi: 10.1016/s0272-6386(12)80129-6

- 35 Bao D, Zhang H, Wang J, *et al.* Determinants on urinary excretion of oxalate and other key factors
 related to urolithiasis among patients with chronic kidney disease: a single center study. *Urolithiasis*. 2023;51:88. doi: 10.1007/s00240-023-01458-y
- S42 36 Rule AD, Roger VL, Melton LJ, *et al.* Kidney stones associate with increased risk for myocardial
 S43 infarction. *J Am Soc Nephrol.* 2010;21:1641–4. doi: 10.1681/ASN.2010030253
- 54437Association of nephrolithiasis with the risk of cardiovascular diseases: a longitudinal follow-up545study using a national health screening cohort PubMed.546https://pubmed.ncbi.nlm.nih.gov/33191264/ (accessed 19 September 2024)
- 547 548
 548 38 Reiner AP, Kahn A, Eisner BH, *et al.* Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. *J Urol.* 2011;185:920–5. doi: 10.1016/j.juro.2010.10.086
- 39 Rs H, Aj S, Ml S, *et al.* Coronary Artery Calcium Score and Association with Recurrent Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. *The Journal of urology*. 2016;195. doi: 10.1016/j.juro.2015.10.001
 - 40 Devarajan A. Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between
 kidney stone formation and cardiovascular diseases. *Clin Sci (Lond)*. 2018;132:615–26. doi:
 10.1042/CS20171574
 - 41 Bargagli M, Moochhala S, Robertson WG, *et al.* Urinary metabolic profile and stone composition
 in kidney stone formers with and without heart disease. *J Nephrol.* 2022;35:851–7. doi:
 10.1007/s40620-021-01096-w
 - 42 Hamano S, Nakatsu H, Suzuki N, *et al.* Kidney stone disease and risk factors for coronary heart
 disease. *Int J Urol.* 2005;12:859–63. doi: 10.1111/j.1442-2042.2005.01160.x
 - 43 Patel ND, Ward RD, Calle J, *et al.* Vascular Disease and Kidney Stones: Abdominal Aortic
 Calcifications Are Associated with Low Urine pH and Hypocitraturia. *J Endourol.* 2017;31:956–
 61. doi: 10.1089/end.2017.0350
- 46
 47 563
 44 Increased prevalence of cardiovascular-kidney-metabolic syndrome during COVID-19: A
 48 564 propensity score-matched study PubMed. https://pubmed.ncbi.nlm.nih.gov/39536978/ (accessed
 565 23 February 2025)
 - 45 Cardiovascular-Kidney-Metabolic (CKM) syndrome: A state-of-the-art review PubMed.
 https://pubmed.ncbi.nlm.nih.gov/38103820/ (accessed 23 February 2025)
 - 46 Shaito A, Aramouni K, Assaf R, *et al.* Oxidative Stress-Induced Endothelial Dysfunction in
 Cardiovascular Diseases. *Front Biosci (Landmark Ed).* 2022;27:105. doi: 10.31083/j.fbl2703105
 - 570 47 Strohmaier WL, Wrobel BM, Schubert G. Overweight, insulin resistance and blood pressure
 571 (parameters of the metabolic syndrome) in uric acid urolithiasis. *Urol Res.* 2012;40:171–5. doi:
 572 10.1007/s00240-011-0403-9
 - Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal
 models, and tissue-culture studies. *Clin Exp Nephrol*. 2004;8:75–88. doi: 10.1007/s10157-0040292-0
 - 49 Yencilek E, Sarı H, Yencilek F, *et al.* Systemic endothelial function measured by flow-mediated
 dilation is impaired in patients with urolithiasis. *Urolithiasis*. 2017;45:545–52. doi:
 10.1007/s00240-016-0941-2

Figure legends Figure 1: Flowchart of participant selection for the study. Figure 2: Prevalence of kidney stones across CKM syndrome stages. Abbreviations: CKM, cardiovascular-kidney-metabolic Figure 3. Forest plot illustrating the odds ratios (ORs) and 95% confidence intervals (CIs) for kidney stone prevalence across CKM syndrome stages. Abbreviations: OR, Odd ratio; CI, confidence interval; CKM, cardiovascular-kidney-metabolic. Data are presented as OR (95% CI) unless indicated otherwise; Model 1 was adjusted as age (20-39, 40-59, or \geq 60), sex (male or female), and race/ethnicity (Non-Hispanic White, Non-Hispanic Black, or Other race);

- 589 Model 2 was adjusted as model 1 plus education level (below high school, high school, or above high
- school), family PIR ($\leq 1.0, 1.1-3.0, \text{ or } > 3.0$), drinking status (nondrinker, low-to-moderate drinker, or heavy
- 591 drinker), smoking status (never smoker, former smoker, or current smoker), physical activity (inactive,
- 592 insufficiently active, or active), total energy intakes (in quartiles); Model 3 was adjusted as model 2 plus

er review only

593 serum calcium (in quartiles), serum phosphorus (in quartiles), and urinary creatinine (in quartiles).

For peer review only

Page 26 of 30

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1	
2	
3	
4	
5	
ر د	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
57	
J∠ 52	
53	
54	
55	

60

A: Crude	OR (95% CI)		P for trend	B: Model 1	OR (95% CI)	P for trend
CKM syndro	ome stages		< 0.001	CKM syndro	ome stages	<0.001
Stage 0	1.00 [Reference]			Stage 0	1.00 [Reference]	•
Stage 1	1.34 (0.94–1.91)	H II H		Stage 1	1.27 (0.89–1.82)	₽■→
Stage 2	2.19 (1.64-2.93)	H		Stage 2	1.84 (1.37–2.48)	⊦∎⊣
Stage 3	3.28 (2.29-4.71)	⊢∎		Stage 3	2.24 (1.48-3.40)	⊢ ∎—-i
Stage 4	3.69 (2.68-5.09)	┝─╋──≯		Stage 4	2.63 (1.87-3.72)	⊢∎1
	(Ċ	0 1 2 3 4
C: Model 2	OR (95% CI)		P for trend	D: Model 3	OR (95% CI)	P for trend
CKM syndro	ome stages		< 0.001	CKM syndro	ome stages	<0.001
Stage 0	1.00 [Reference]	•		Stage 0	1.00 [Reference]	•
Stage 1	1.25 (0.88–1.79)	H II -1		Stage 1	1.18 (0.83-1.68)	HER
Stage 2	1.80 (1.34-2.42)	⊢∎⊣		Stage 2	1.72 (1.28-2.32)	H∎→I
Stage 3	2.08 (1.35-3.22)	⊢ ∎1		Stage 3	2.00 (1.29-3.10)	⊢ ∎−−+
G: 1	245(171-351)			Stage 4	236(164-340)	

Figure 3. Forest plot illustrating the odds ratios (ORs) and 95% confidence intervals (CIs) for kidney stone prevalence across CKM syndrome stages.

159x99mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Online Supplementary Material

Association of Cardiovascular-Kidney-Metabolic Syndrome with Kidney Stones: A

Population-based Study

Materials and methods

Assessment of cardiovascular-kidney-metabolic syndrome stages

Cardiovascular-kidney-metabolic (CKM) syndrome stages were classified using NHANES 2017-2018 data, in line with the 2023 AHA Presidential Advisory on CKM Health [1]. This classification system was specifically adapted to the NHANES dataset for this analysis. Definitions were adapted to the available data as follows:

CKM Stage 0: Participants with a normal BMI (<25 kg/m²), waist circumference (<88 cm for women, <102 cm for men), normoglycemia (fasting glucose <100 mg/dL, HbA1c <5.7%), normal blood pressure (systolic <130 mmHg, diastolic <80 mmHg), a healthy lipid profile (triglycerides <135 mg/dL), and no signs of CKD or cardiovascular disease (CVD).

CKM Stage 1: Individuals with an elevated BMI ($\geq 25 \text{ kg/m}^2$), increased waist circumference ($\geq 88 \text{ cm}$ for women, $\geq 102 \text{ cm}$ for men), or prediabetes (HbA1c 5.7%-6.4% or fasting glucose 100-125 mg/dL), but without other metabolic risk factors or CKD.

CKM Stage 2: Participants with additional metabolic risk factors or moderate-to-high-risk CKD, as defined by KDIGO guidelines [2]. Risk factors included elevated triglycerides (\geq 135 mg/dL), hypertension, diabetes, or metabolic syndrome, characterized by at least three of the following: 1/4

BMJ Open

increased waist circumference, low HDL (men <40 mg/dL, women <50 mg/dL), high triglycerides (\geq 150 mg/dL), elevated blood pressure (systolic \geq 130 mmHg, diastolic \geq 80 mmHg), or prediabetes.

CKM Stage 3: Those classified with very-high-risk CKD based on KDIGO criteria, or with a high 10year CVD risk (≥20%), calculated using the AHA PREVENT risk equations (based on recommended thresholds [https://professional.heart.org/en/guidelines-and-statements/prevent-calculator]) [3].

CKM Stage 4: Individuals with self-reported established CVD, including coronary heart disease, angina, myocardial infarction, heart failure, or stroke. Data for atrial fibrillation and peripheral artery disease were unavailable and not included.

Assessment of Other Covariates

This study included several confounding variables such as family poverty-to-income ratio (PIR), drinking status, smoking status, physical activity, and total energy intake, which were defined as follows:

Family poverty income ratio Income was assessed using the poverty income ratio (PIR, the ratio of family income divided by a poverty threshold specific for family size using guidelines from the US Department of Health and Human Services) and categorized as ≤ 1.0 , 1.1-3.0 and > 3.0 [4].

Drinking status Drinking status was classified as nondrinker, low-to-moderate drinker (<2 drinks/day in men and <1 drink/day in women), or heavy drinker (≥ 2 drinks/day in men and ≥ 1 drinks/day in women) [5].

BMJ Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Smoking status Never smokers were classified as those who reported smoking <100 cigarettes during their lifetime. Those who smoked >100 cigarettes in their lifetime were considered as current smokers, and those who smoked >100 cigarettes and had quit smoking were considered as former smokers [5].

Physical activity Physical activity was categorized as inactive group (no leisure-time physical activity), insufficiently active group (leisure time moderate activity 1–5 times per week with MET ranging from 3 to 6 or leisure-time vigorous activity 1–3 times per week with MET >6), or active group (those who had more leisure-time moderate-or-vigorous activity than above) [6].

Dietary total energy intakes Dietary intake was assessed through two 24-hour recalls—one conducted in person at the NHANES Mobile Examination Center (MEC) and the second by telephone 3 to 10 days later. Participants reported all foods and beverages consumed during the 24-hour period, and total energy intake was estimated using the USDA Automated Multiple-Pass Method (AMPM) and analyzed via the Food and Nutrient Database for Dietary Studies (FNDDS). The average of the two recalls was used for analysis. Further details on dietary assessment can be found at: https://wwwn.cdc.gov/nchs/nhanes/tutorials/dietaryanalyses.aspx

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Open: first published as 10.1136/bmjopen-2024-096533 on 16 May 2025. Downloaded from http://bmjopen.bmj.com/ on June 7, 2025 at Agence Biblio
---	---

References

Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, Coresh J, Baker-Smith 1. CM, Carnethon MR, Després JP et al: A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement From the American Heart Association. Circulation 2023, (20):1636-1664. 2. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. *Kidney international* 2021, **100**(4s):S1-s276. Khan SS, Matsushita K, Sang Y, Ballew SH, Grams ME, Surapaneni A, Blaha MJ, Carson 3. AP, Chang AR, Ciemins E et al: Development and Validation of the American Heart Association's PREVENT Equations. Circulation 2024, 149(6):430-449. Services USDoHaH. Guidelines, 4. Poverty Research, and Measurement http://aspe.hhs.gov/POVERTY/index.shtml.] Qiu Z, Chen X, Geng T, Wan Z, Lu Q, Li L, Zhu K, Zhang X, Liu Y, Lin X et al: Associations 5. of Serum Carotenoids With Risk of Cardiovascular Mortality Among Individuals With Type 2 Diabetes: Results From NHANES. Diabetes Care 2022, 45(6):1453-1461. Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T: Physical activity and mortality in 6. chronic kidney disease (NHANES III). Clin J Am Soc Nephrol 2009, 4(12):1901-1906.