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ABSTRACT
Objective  Malaria is a major public health concern in 
most developing countries, with children under 5 years 
being mainly at risk. We investigated the contribution 
of individual and community-level covariates to the risk 
of malaria infection (treatment with artemisinin-based 
combination therapy for fever or tested positive for malaria 
via a rapid diagnostic test within 2 weeks prior to the 
survey) in children under 5 years in Ghana.
Design  Population-based secondary cross-sectional study 
on the 2019 Ghana Malaria Indicator Survey
Setting  Ghana.
Participants and methods  Secondary malaria data 
on 3004 mothers and their children under 5 years from 
the recent 2019 Ghana Malaria Indicator Survey were 
analysed. Bayesian multilevel modelling under Hamiltonian 
Monte Carlo is applied to malaria data.
Results  The results indicate a weighted malaria 
prevalence of 29.7% (95% CI: 0.28 to 0.31) among 
children under 5, and nearly 10% (8.9%) of the risk 
of malaria infection significantly varied by community 
differences. The average annual rainfall positively 
correlates with the prevalence of malaria in a community, 
while temperature and the built-population index inversely 
influence it. At the cluster level, the average annual rainfall 
significantly increased the risk of malaria infection among 
children under 5 years (adjusted OR (aOR)=17.46, 95% CrI: 
1.86 to 167.34). Malaria infections among children under 5 
are attributed to household/individual and community-level 
characteristics. Children from rich households (aOR=0.66, 
95% CrI: 0.50 to 0.87), who sleep under insecticide-
treated nets (ITNs) (aOR=0.79, 95% CrI: 0.65 to 0.95) 
and are not anaemic have significantly reduced the risk 
of malaria infection than those from poor households, 
children with severe anaemia and those who do not sleep 
under ITNs at night. Children under 5 years from Gurma 
(aOR=1.82, 95% CrI: 1.92 to 2.86) ethnic backgrounds are 
linked to a high risk of contracting malaria, while those 
from the Mole-Dagbani (aOR=0.70, 95% CrI: 0.51 to 0.98) 
and Grusi (aOR=0.55, 95% CrI: 0.32 to 0.93) ethnic groups 
have significantly reduced the risk of malaria infection. All 
other considered factors were not significantly associated 
with malaria risk among children under 5 years in this 
study.
Conclusion  Malaria remains a serious health burden to 
children under 5 years. These findings call for individual 

and community-level measures, including improved 
sanitation and preventive education campaigns, to help 
reduce malaria infections among children under 5 in 
Ghana, to mitigate malaria infections among children 
under 5 in Ghana, thereby promoting their health and 
quality of life (Sustainable Development Goal 3).

INTRODUCTION
Malaria remains a serious public health 
concern that accounts for most of the 
morbidity and mortality cases worldwide, 
and more particularly in sub-Saharan Africa 
(SSA).1 Malaria is caused mainly by the Plas-
modium parasite, mainly spread in human 
populations through the bite of the female 
Anopheles mosquito.1 2

Although malaria is a curable and prevent-
able disease, it remains and continues to have 
devastating effects on human health world-
wide, especially among children and women 
in developing countries.2 3 The burden of 
malaria infection affects population groups 
disproportionally.4 In recent reports by the 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The multilevel modelling framework quantifies dis-
parity in the risk of malaria infection among under-5 
children due to the clustering effects.

	⇒ Multilevel models examine the contribution of both 
community and individual-level factors on malaria 
risk among children under 5.

	⇒ Nationally representative cross-sectional data en-
sure validity of generalisations of study findings to 
all children under 5 years.

	⇒ The study is limited in scope due to a lot of missing 
or incomplete values at cluster-level covariates.

	⇒ Not all children who were treated with artemisinin-
based combination therapy were confirmed by a 
malaria test in the laboratory, and, therefore, the 
malaria prevalence reported in this study may differ 
from what is reported in the Ghana Malaria Indicator 
Survey (GMIS) 2019 report.
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WHO in 2019 and 2022, the burden of malaria is more 
prevalent among children, pregnant women, travellers 
and persons with HIV or AIDS. Again, the WHO reported 
that out of the 247 million malaria cases and 619 000 
deaths worldwide in 2021, the African region alone is 
responsible for 95% and 96% of cases and deaths, respec-
tively.4 Furthermore, children under 5 accounted for 
80% of all malaria deaths in Africa.4 The high number 
of malaria cases recorded in a country has significant 
negative effects on the country in several ways. These 
adverse impacts of the malaria burden are multifaceted 
and impede the country’s efforts to achieve national and 
sustainable development goals. The economic and human 
costs of malaria are numerous and primarily result in the 
loss of productive hours and household income due to 
the cost of malaria infection treatment or the inability to 
work.5 6 Furthermore, the direct and indirect costs associ-
ated with malaria result in a vicious poverty cycle in poor 
households. Thus, in addition to the health burden of 
malaria, it hinders growth and development, particularly 
in malaria-endemic countries, including Ghana.7

In most of the malaria-endemic regions, mainly in 
Africa, malaria infections are higher in rural areas than 
in urban areas, which may be attributed to poor housing 
quality, inadequate drainage systems and higher vector 
density associated with rural settings.8 Malaria risk factors 
in human populations range from socio-economic, demo-
graphic, environmental to climatic conditions. Studies 
have examined the link between the risk of malaria inci-
dence and socio-economic and demographic characteris-
tics such as poor sanitation conditions in households and 
staying outdoors to play in the night.8 Moreover, Mafwele9 
and Mohammadkhani et al10 observed significant contri-
butions of climatic conditions, especially temperature 
and rainfall, to the transmission of malaria in human 
populations. Furthermore, significant changes in climatic 
conditions, particularly temperature and rainfall due to 
human activities, have affected the dynamics of malaria 
transmission dynamics in SSA.9 11

Malaria infections in Ghana are generally perennial 
and widespread, with significant differences associated 
with variations in seasons.12 Moreover, malaria remains 
endemic across all regions in Ghana, with prevalence 
ranging between 3% and 31%, and it continues to be a 
significant cause of childhood morbidity and mortality.13 
The association between malaria and deaths of children 
under 5 has negative implications for Ghana’s efforts at 
achieving the Sustainable Development Goal 3 (SDG 3), 
specifically target 3.2, which aims to end all avoidable 
deaths of neonates and children under 5 years by 2030.14 15 
The dynamics of malaria transmissions in Ghana also vary 
due to differences in geographical regions and climatic 
factors like temperature, rainfall and humidity.16 Existing 
literature shows that a high number of malaria infections 
are often recorded after high rainfall as in most African 
regions.17

Despite the numerous studies on malaria incidence 
and its associated risks in Ghana, most of these studies18–21 

have usually focused on the demographic and socio-
economic risk factors for malaria incidence among chil-
dren below 5 years. The occurrence of malaria infections 
among children under 5 remains a serious health threat 
to their growth, development and survival.22 Further-
more, due to the disproportionately high share of malaria 
burden among children under 5 years in SSA including 
Ghana, investigating the contribution of attributes at the 
individual and group (community) level to the risk or 
likelihood of malaria incidence among children under 5 
in Ghana is limited in the literature. This study aimed at 
modelling the incidence of malaria among children aged 
under 5 years as a function of covariates at the community 
and individual level within the Bayesian multilevel frame-
work that will present new insights for malaria eradication 
fights in Ghana. The multilevel modelling framework was 
applied in this study due to the hierarchical structure 
of the malaria indicator survey data to account for the 
nesting structure inherent in the data to avoid obtaining 
biased estimates and subsequent erroneous conclu-
sions.23 24 Moreover, multilevel models (MLMs) can show-
case contextual differences and effects across different 
communities that could be undetected using traditional 
models.25 Additionally, the Bayesian modelling approach 
is flexible and powerful and allows for the incorporation 
of prior knowledge into parameter estimation, yielding 
estimates with greater precision compared with the 
frequentist approach.26–29 The results of the Bayesian 
model are compared with the results from the maximum 
likelihood estimation (MLE) for precision and reliability 
of parameter estimates. The results of the study will 
further help Ghana to accelerate efforts to ensure quality 
health for all, including children who are most vulnerable 
to infections such as malaria, and, more importantly, the 
results of the study will provide further useful informa-
tion for malaria control in Ghana.

METHODS
Data and study design
The analysis for this study was performed on data from 
the 2019 National Malaria Indicator Survey (2019 MIS) 
collected by the Demographic and Health Survey (DHS) 
programme. The DHS in Ghana was carried out through 
collaborative efforts of the Ghana Health Services, the 
Ghana Statistical Service and the Ministry of Health, 
with financial and technical support from ICF Interna-
tional through the DHS programme.30 The two-stage 
sampling procedure was used in the nationwide survey. 
These involved the initial selection of 200 enumeration 
areas (EAs) called clusters and the subsequent random 
selection of households (HHs) and reproductive women 
(15–49 years) eligible for interview, and children below 
age 5 (6–59 months) for malaria and anaemia tests with 
the consent from parents or caregivers.30 The DHS data 
set contains geocoded information for clusters and not 
households or individuals. In this study, a sample of 3004 
mothers and their children is analysed. Data collection 
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was carried out in all 200 clusters from 25 September to 24 
November 2019 after the household listing exercise that 
was carried out from 24 June to 10 August 2019.30 The 
study sample of 3004 children is considered a representa-
tive of the population of children below 5 years in Ghana. 
Moreover, sampling weights were employed to ensure 
representativeness of survey results at the national level 
due to possible differences in response rates across urban 
and rural areas. The data extracted for this study were 
assessed on 14 March 2023 and did not directly involve 
respondents (women and children below age 5). Data 
variables extracted include malaria status (fever within 
the last two weeks or positive test result for malaria via a 
rapid diagnostic test) as the outcome variable, individual-
level covariates (age group of children (months), anaemia 
status of child, child slept under insecticide-treated net 
(ITN), wealth status of household) and community-
level variables such as malaria prevalence, land surface 
temperature, rainfall, built-population indices of clusters 
which were extracted from the Geospatial covariates file 
associated with the 2019 GMIS. Other possible cluster-level 
variables with at least 20% missing values were excluded 
from this study. For individual and household-level 
variables, only variables with complete data were used, 
resulting in a complete-case analysis study. Details of the 
outcome and covariates at the individual/household and 
community levels are given below. The set of individual 
and community-level covariates for this study is based on 
the literature; age of child,19 20 31 place of residence,31–33 
wealth status,32–34 anaemia status19 20 and ownership and 
use of ITNs (households of children under 5 years with 
at least one ITN as solicited by the DHS and reported in 
the 2019 GMIS report)35 36 and the completeness of the 
information in the survey. The data for this study were 
accessed from the DHS programme.37

Study variables description and classification
Dependent variable
Malaria status of children below 5 years is the dependent 
variable for this study. Children who tested positive for 
malaria based on a rapid diagnostic test or were treated 
with artemisinin-based combination therapy (ACT) 
within 2 weeks before the day of the interview as yes and 
those with a negative test and without treatment with ACT 
as no.

Individual and household-level covariates
Age of child (months) (categorised as ≤12 (ref), 13–24, 
25–36, 37–48, 49–60 months), anaemia status (not 
anaemic, mild, moderate and severe), use of ITN (no, 
yes), wealth status (poor, middle, rich) and ethnicity 
(Akan, Ga/Dangme, Ewe, Guan, Mole-Dagbani, Grusi, 
Gurma, Mande, Others).

Community-level covariates
Malaria prevalence, built-up population index, rainfall 
and mean temperature.

Operational definition
Anaemia status
Based on the DHS standard, children with haemoglobin 
‍≤ 119‍ g/L as anaemic, haemoglobin between 100 and 
119 indicate mild anaemia, haemoglobin between 70 and 
99 g/L represent moderate anaemia and children with 
haemoglobin below 70 g/L as severe anaemia.

Malaria prevalence
Mean parasite rate of Plasmodium falciparum in children 
aged 2–10 years within 10 km (rural) or 2 km (urban).

Built-up population index
Measures the extent of development that falls between 
0.00 (extremely rural) and 1.00 (extremely urban).

Rainfall
Average annual amount of rainfall (mm) of cluster.

Temperature
Mean surface temperature of the cluster in °C.

Patient and public involvement
No patient was involved in this study.

STATISTICAL ANALYSIS
The multilevel modelling
MLMs are used to examine hierarchical data structures, in 
which observations are nested. The lowest level, level 1, is 
nested in the higher level of the hierarchy. The different 
levels in the hierarchical data result in random and fixed 
effects in a typical MLM. The use of MLMs is recom-
mended for data where there exists a multilevel structure, 
which is measured by the intraclass correlation coeffi-
cient (ICC). The ICC quantifies the proportion of vari-
ance in the dependent variable of interest explained by 
the clustering effects in the communities.38–40 According 
to Hayes,41 MLMs are recommended when the measured 
ICC value is at least 0.05. In practice, random effects are 
specified in a hierarchical model in three forms based on 
the existing association between variables: (1) random 
intercept, (2) random slope and (3) random intercept 
and random slopes.42 In the random intercept model, 
each grouping variable is allowed to have its own inter-
cept, but an equivalent slope. Thus, the average of each 
group is different; however, the relationship with the 
covariates is not different. Random intercept and slope 
models allow each group to have its unique intercept and 
association with the covariates.

In this article, the response variable is the status of 
malaria infection (yes/no), which is binary in nature for 
each sampled child. We let ‍Pij = P(Yij = 1 | xij)‍ represent 
the probability of the ith child from the jth cluster have 
had malaria and ‍xij ‍ refers to the attributes associated with 
the selected child. It follows that ‍1 − Pij = P(Yij = 0 | xij)‍ 
is the likelihood of no malaria infection. The ‍Pij ‍, which 
follows a Bernoulli distribution, is formulated using the 
logit function as a random intercept and random slope 
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model with variables measured at the individual and 
cluster levels. The random intercept and slope model 
accounts for the unobserved heterogeneous effects of 
both the community and individual/household-level 
characteristics on the likelihood of under-5 children to 
have malaria infection or not. The probability that a child 
will test positive for malaria is not essentially the same for 
every child sampled from the same group, but the proba-
bility is influenced by the characteristics of the child and 
those of the cluster in which the child lives. The random 
intercept and slope model for a given child is defined as

	﻿‍
Logit

(
Pij

)
= β0 +

k∑
h=1

βhjXhij + µoj +
k∑

h=1
µhjXhij

‍�  
(1)

where ‍Xhij =
(
X1ij, X2ij, · · · , Xkij

)
‍ denote the indi-

vidual/household and cluster-level covariates for the 
‍k‍ variables, ‍β =

(
β0, β1, · · · , βk

)
‍ represent parame-

ters for fixed effects and ‍µoj, µ1j, . . . , µkj‍ are parame-
ters denoting cluster-level random effects that assume 
a Gaussian distribution. And ‍

(
µoj, µ1j

)
‍ are bivar-

iate normally distributed such that 
‍
µ0j ∼ N

(
0,σ2

u0

)

‍
, 

‍
µ1j ∼ N

(
0,σ2

u1

)
‍
 and ‍Cov

(
µ0j, µ1j

)
= σµ01‍. The likeli-

hood function of (1) is of the form

	﻿‍

L =
nj∏
i=1

N∏
j=1




e
β0+

k∑
h=1

βhjXhij+µoj+
k∑

h=1
µhjXhij

1 + e
β0+

k∑
h=1

βhjXhij+µoj+
k∑

h=1
µhjXhij




yij


 1

1+e
β0+

k∑
h=1

βhjXhij+µoj+
k∑

h=1
µhjXhij




1−yij

‍�

(2)

Bayesian method of parameter estimation
The Bayesian method of parameter estimation is an alter-
native method of model parameter estimation which 
has attracted increased attention in recent times across 
several disciplines.43 44 The advantages presented by the 
Bayesian approach are the ability to include background 
information in the parameter estimation process and 
its ability to handle complex models often difficult to 
handle in the classical domain.27 45 The Bayesian method 
combines the relevant prior knowledge or experience of 
the investigator, called the ‘prior’ of the observed data, 
with the likelihood to produce the posterior distribution 
of the form, ‍P

(
θ|y

)
‍.
44 46–48 The Bayesian method is simpli-

fied as follows:

	﻿‍
P
(
θ|y

)
=

P
(
θ
)

P
(
y|θ

)
´

P
(
θ
)

P
(
y|θ

)
dθ

∝ P
(
θ
)

P
(
y|θ

)
‍�

(3)

where ‍y‍ represents the observed sampled data, ﻿‍ θ‍ a 
vector of population parameters, ‍P

(
θ
)
‍ denote the prior 

distribution and the likelihood of the data, ‍P
(
y|θ

)
‍, also 

known as the generative model or sampling distribu-
tion through which the observed data affect the poste-
rior distribution. The posterior distribution, ‍P

(
θ|y

)
‍, is 

often expressed as proportional to the product of the 

likelihood of the data given the model parameters and 
the prior distribution.47–49

Priors within Bayesian methods are specified for each 
of the parameters and updated through the likelihood of 
the data to generate posterior distributions. In Liang,48 
when data sample sizes are relatively large, prior knowl-
edge is often outweighed by information from the data. 
Prior distributions can be classified as (1) non-informative 
priors which are used when there is no sufficient prior 
information to generate the posterior for valid infer-
ences,50 51 (2) weakly informative priors required in situ-
ations where there is little but insufficient information 
concerning model parameters52 or (3) informative used 
when expert knowledge regarding the unknown parame-
ters of interest and associated with small variances.44 Given 
the likelihood of the MLM in (2), the prior is combined 
with the likelihood of the data to produce the posterior 
estimates distribution for the model parameters.

The parameters ‍β =
(
β0, β1, · · · , βk

)
‍, ‍σ

2
β , σ2

µ‍ and ‍σ
2
e ‍ 

have prior distributions specified as

‍P
(
β0

)
∝ 1, P

(
β1

)
∝ 1, . . . , P

(
βk
)
∝ 1‍ and ‍P

(
Ω
)
‍ 

follows the inverse Wishart, IW‍
(
Σ, m

)
‍ where ﻿‍Ω‍ present 

the variance–covariance matrix, ﻿‍Σ‍ is the estimate for ﻿‍Ω‍ 
and ‍m ‍ is the df of ﻿‍Ω‍. This implies that the prior is diffuse 
(uninformative) in nature. The Wishart distribution in 
statistics is a multivariate version of the χ2 distribution 
for non-integer df and is a generalisation of the Gamma 
distribution for integer df.53

The posterior distribution for the parameters 

‍β =
(
β0, β1, · · · , βk

)
‍ is given as

	﻿‍

P
(
β0, β1, · · · , βk|Ω, yij

)

∝
nj∏
i=1

N∏
j=1


 e

β0+
k∑

h=1
βhjXhij+µoj+

k∑
h=1

µhjXhij

1+e
β0+

k∑
h=1

βhjXhij+µoj+
k∑

h=1
µhjXhij




yij


 1

1+e
β0+

k∑
h=1

βhjXhij+µoj+
k∑

h=1
µhjXhij




1−yij

‍�

(5)

Therefore, the complete conditional distribution for ﻿‍Ω‍ 
is therefore of the form in (6):

	
‍P
(
β0, β1, · · · , βk|Ω, yij

)
∝ P

(
yij| β0, β1, · · · , βk, Ω

)
P
(
Ω
)
‍

� (6)

The Hamiltonian Monte Carlo approach
The Hamiltonian Monte Carlo (HMC) is an improved 
Markov Chain Monte Carlo (MCMC) approach that has 
worked better than the popular Metropolis-Hastings algo-
rithm through the MCMC method, which is based funda-
mentally on the concepts of Hamiltonian dynamics.54 
The HMC basically tries to modify the process in the 
MH algorithm using two key components: Hamiltonian 
dynamics and a stochastic momentum (velocity) vector, 
‍ω‍. The momentum component is required at any given 
coordinate position, ﻿‍θ‍. Thus, if ‍θ ∈ Rd ‍, then a vector of ‍d ‍ 
elements is needed for the momentum. The momentum 
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vector examines how to move during the dynamics, and 
the randomness is a result of the random momentum 
vector.

In the Hamiltonian MC, the two components contained 
in the Hamiltonian are the potential energy ‍U

(
θ
)
‍ and 

kinetic energy ‍V
(
ω
)
‍ incorporated into the HMC through 

the Hamiltonian system:

	﻿‍ H
(
x, ω

)
= −log π

(
θ
)

+ V
(
ω
)
≡ U

(
θ
)

+ V
(
ω
)
‍�

where ‍U
(
θ
)
‍ is the potential energy and ‍V

(
ω
)
‍ represents 

the kinetic energy of the system. The leapfrog discretisa-
tion integration is applied to obtain good approximations 
for the Hamiltonian system.54 Further details of how the 
leapfrog integration technique works are discussed exten-
sively in refs.54–56

The HMC technique is, however, dependent on the 
tuning for the hyperparameters ‍h ‍ and ﻿‍L ‍ which are usually 
user-defined and could lead to significantly high auto-
corrections between successive iterations if not appro-
priately defined.39 54 56 To overcome this bottleneck, the 
No-U-Turn Sampler developed by Hoffman, Gelman 
and others39 is employed to automatically choose the 
appropriate values for ﻿‍L ‍ and ‍h ‍ in each iteration to maxi-
mise the distance at each leapfrog step to avoid random 
walk behaviour throughout the entire procedure.56 For 
the proposed model, the parameters ‍β‍, ‍σ

2
β , σ2

µ‍ and ‍σ
2
e ‍ 

constitute the potential energy, ﻿‍θ‍, and the sampled data 
represent the kinetic energy. The results of the Bayesian 
MLMs are validated using expected log predictive density 
(ELPD), leave-one-out information criterion (LOOIC) 
and the Pareto k estimate statistic. A higher ELPD value 
indicates better predictive performance of the model; 
however, a lower LOOIC value indicates a good model 
fit and Pareto k estimates<0.5 show fast convergence and 
stability of posterior estimates.57 In all, four chains with 
a total of 4000 iterations are used to generate posterior 
parameter estimates, where the first 2000 iterations are 
used as burn-in samples. The convergence of the poste-
rior distribution was assessed numerically by the Gelman-
Rubin shrink factor, ‍̂R ‍,58 and visually.57 The Pearson’s 
correlation analysis was used to assess the association 
between malaria prevalence and each of the cluster-level 
covariates. The Rao-Scott χ2 test of independence was 
employed to examine the association between malaria 
risk and socio-demographic variables. This was performed 
to adjust for the complex survey design effect and dispro-
portionate sampling of the DHS data set using the survey 
and Srvyr packages which makes use of sample weights. 
Multicollinearity among predictors was assessed based on 
the variance inflation factors (VIFs), with VIF values less 
than 5 suggesting no significant correlation among model 
predictors. All analyses were performed in R V.4.1.3.32 
R-codes for all analyses can be found at https://github.​
com/KA-asosega/Bayesian-classical-multilevel.

RESULTS
From the 3004 under-5 children in this analysis (table 1), 
the socio-demographic makeup of children under 5 years 
and their households are presented. This study included 
nearly an even sex distribution of the children under 5, 
with 50.4% of males and 49.6% of females. The owner-
ship of ITNs was very encouraging as 86.1% of HHs have 
at least one ITN compared with 13.9% of those who do 
not have ITN.

However, only 1936 (64.4%) of children under 5 years 
of age sleep under ITNs, while 1068 (35.6%) do not sleep 
under ITNs at night. This suggests that the ownership of 
ITNs does not necessarily imply the use of ITNs in the 
study population. Regarding the anaemia status of the 
children, 1198 (39.9%) were not anaemic, 26.9% had 
mild anaemia, 31.7% had moderate anaemia and 1.8% 
were severely anaemic.

The results further show that the majority (60.1%) of 
children aged below 5 years have some level of anaemia. 
Over half (53.4%) of the children under 5 years are from 
poor households, while nearly 20% are from middle-
wealth HHs and more than a quarter (26.8%) are from 
rich HHs. The age distribution of the children shows that 
23.7% are 12 months or younger, 19.8% within 13 and 
24 months, 20.4% between 25 and 36 months, 19.2% 
between 37 and 48 months and 16.9% within 49 and 
59 months. Of the 3004 children under 5 years of age 
considered, 2928 (97.5%) indicated their malaria status. 
Of the 2928 children, 31.7% had malaria and 68.3% had 
no malaria. It is important to state that the further anal-
ysis on the malaria risk will be based on only the 2928 
valid cases on the status of malaria in children aged below 
5 years. The majority of the children under 5 belong to 
the Akan ethnic group (34%), followed by Mole-Dagbani 
(32.4%), Ewe (12.4%), with the Mande ethnic group as 
the least (1.2%).

The weighted percentage of malaria infection among 
children under 5 years was 29.7%. Significant variations 
were observed based on socio-demographic character-
istics. The risk of malaria infection was higher among 
severely anaemic (54%) and moderately anaemic (37%) 
children compared with those with mild or without 
anaemia (26%). A high risk of contracting malaria is asso-
ciated with under-5 children from poor (32%) and middle-
wealth (33%) category households than under-fives from 
rich households (24%). Households with at least one ITN 
are slightly less likely to contract malaria (29%) compared 
with children under 5 years in households without ITNs 
(32%). However, the risk of contracting malaria among 
under-5 children who sleep under ITNs (29%) is nearly 
similar to those who do not sleep under ITNs. The analysis 
further showed that the risk of malaria infection increases 
with an increase in the age of the child till the third year 
and declines afterwards as those aged ‘≤12 months’ 
(25%), ‘13–24 months’ (33%), ‘25–36 months’ (35%), 
‘37–48 months’ (29%) and ‘49–59 months’ (25%). A 
high risk of malaria was observed among children under 
5 years of the Gurma (46%), Mande (39%), Ga/Dangme 
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(33%) and Akan (30%) ethnic backgrounds than those 
of Grusi (20%) and other (21%) ethnic groups in Ghana. 
Moreover, the χ2 tests established a significant association 

between malaria infection risk among children under 5 
years and anaemia status, household wealth bracket, age 
of children (months) and ethnic backgrounds.

Table 2  Statistics of cluster-level variables

Variable Mean (SD) Minimum Maximum

Malaria prevalence 0.27 (0.11) 0.04 0.55

Built-up population 0.27 (0.35) 0.00 1.00

Annual temperature (°C) 26.14 (2.14) 21.63 30.45

Log (rainfall) (mm) 2.99 (0.07) 2.80 3.20

Table 1  Socio-demographic characteristics and risk of malaria among children under 5 in Ghana

Variable Frequency (%), n=3004 Weighted proportion with malaria (95% CI) P value

Place of residence  �   �

 � Rural 1834 (61.1) 0.30 (0.26, 0.34) 0.862

 � Urban 1170 (38.9) 0.29 (0.26, 0.32)

Sex of child  �   �

 � Male 1513 (50.4) 0.29 (0.25, 0.32) 0.278

 � Female 1491 (49.6) 0.31 (0.28, 0.34)

Household has insecticide-treated net

 � No 418 (13.9) 0.32 (0.27, 0.37) 0.337

 � Yes 2586 (86.1) 0.29 (0.26, 0.32)

Child slept under insecticide-treated net  �

 � No 1068 (35.6) 0.30 (0.27, 0.33) 0.690

 � Yes 1936 (64.4) 0.29 (0.26, 0.33)

Anaemia status  �   �

 � Severe 54 (1.8) 0.54 (0.40, 0.68) <0.001

 � Moderate 953 (31.7) 0.37 (0.33, 0.41)

 � Mild anaemia 799 (26.6) 0.26 (0.22, 0.30)

 � Not anaemic 1198 (39.9) 0.26 (0.23, 0.30)

Household wealth  �   �

 � Poor 1604 (53.4) 0.32 (0.28, 0.37) 0.005

 � Middle 596 (19.8) 0.33 (0.27, 0.38)

 � Rich 804 (26.8) 0.24 (0.21, 0.28)

Age of child (months)  �   �

 � ≤12 712 (23.7) 0.25 (0.21, 0.29) 0.002

 � 13–24 595 (19.8) 0.33 (0.28, 0.38)

 � 25–36 613 (20.4) 0.35 (0.30, 0.40)

 � 37–48 577 (19.2) 0.29 (0.25, 0.34)

 � 49–59 507 (16.9) 0.25 (0.20, 0.29)

Ethnicity

 � Akan 1021 (34) 0.30 (0.27, 0.33) 0.018

 � Ga/Dangme 147 (4.9) 0.33 (0.24, 0.43)

 � Ewe 371 (12.4) 0.26 (0.18, 0.34)

 � Guan 75 (2.5) 0.25 (0.14, 0.36)

 � Mole-Dagbani 974 (32.4) 0.28 (0.23, 0.32)

 � Grusi 116 (3.9) 0.20 (0.08, 0.31)

 � Gurma 182 (6.1) 0.46 (0.36, 0.56)

 � Mande 35 (1.2) 0.39 (0.28, 0.50)

 � Other 83 (2.8) 0.21 (0.05, 0.37)

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 7, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
27 M

arch
 2025. 

10.1136/b
m

jo
p

en
-2024-088910 o

n
 

B
M

J O
p

en
: first p

u
b

lish
ed

 as 

http://bmjopen.bmj.com/


7Asosega KA, et al. BMJ Open 2025;15:e088910. doi:10.1136/bmjopen-2024-088910

Open access

Cluster-level variables are summarised in table 2. The 
mean annual malaria prevalence across all 200 EAs was 
0.27 and ranged from 0.04 to 0.55. The built-up popu-
lation had a mean of 0.27 with some very urbanised 
communities (1.00) as well as very rural communities 
(0.00). Annual land surface temperature ranged from 
a minimum of 21.63°C to a maximum of 30.45°C, with 
an average of 26.14°C across the study area. The log of 
annual rainfall ranged from 2.80 mm to 30.45 mm and a 
mean of 2.99 (0.07).

Pearson’s correlation analysis on the covariates at the 
cluster level showed a significant relationship between 
malaria prevalence at the community level and the mean 
annual rainfall, mean temperature and built population 
index as shown in figure 1. The built population index 
and the mean surface temperature of the clusters are 
inversely related to the prevalence of malaria within the 
clusters. The mean annual rainfall, on the other hand, 
is positively correlated with malaria prevalence in the 
community. The results indicate that a high built popu-
lation index and high mean temperature at the cluster 
level could reduce the prevalence of malaria, while a high 
amount of rainfall is associated with a high prevalence of 
malaria at the cluster level.

Based on the computed ICC value of 0.088 and a design 
effect index of 2.32, both satisfy the recommendations of 
ICC value of at least 0.05 and a design effect index of at 
least 1.1 in refs. 59 and 60, respectively. Furthermore, the 
autocorrelations and trace graphs generated as presented 
in figure 2 established that the posterior distribution of 
the parameter estimates of the Bayesian MLM converged 
quickly (mixed very well). The ELPD value for the final 
model shows an improvement in predictive performance 
over the null model. Moreover, the low LOOIC of the 
final model indicates good model fit, and the Pareto k 
estimates of <0.05 also show that the posterior estimates 
are stable (converged faster).57

The Bayesian MLM results for the risk of under-5 
malaria incidence are presented in table  3. The results 

Figure 1  Correlation plot for cluster-level covariates and 
malaria prevalence.

Figure 2  Density plot of the posterior distribution (left 
panel) and trace plots showing the Hamiltonian Monte Carlo 
convergence (right panel) of the fitted model.
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show the significant contribution of individual/house-
hold and community-level characteristics to the risk of 
malaria in under-5 children. At the individual level, the 
age (months) and whether the child slept under ITN or 

not significantly influence the chance of malaria infec-
tion. The results show that the risk of malaria increases as 
the child grows in age from 12 months to 5 years.

Table 3  Bayesian multilevel parameter estimates

Variable Estimate SE aOR (95% CrI)

SD(Intercept) 0.48 0.07

Individual level

 � Intercept −9.29 4.11 0 (0.0, 0.30)*

Age group

 � ≤12 Ref

 � 13–24 0.45 0.13 1.57 (1.22, 2.01)*

 � 25–36 0.63 0.13 1.88 (1.46, 2.41)*

 � 37–48 0.34 0.13 1.40 (1.09, 1.80)*

 � 49–59 0.11 0.14 1.12 (0.84, 1.48)

Wealth status

 � Poor Ref

 � Middle 0.02 0.13 1.02 (0.79, 1.31)

 � Rich −0.42 0.14 0.66 (0.50, 0.87)*

Anaemia status

 � Severe Ref

 � Moderate −0.61 0.3 0.54 (0.30, 0.96)*

 � Mild −1.01 0.3 0.36 (0.20, 0.64)*

 � Not anaemic −1.1 0.3 0.33 (0.18, 0.64)*

Child sleeps under insecticide-treated net

 � No Ref

 � Yes −0.24 0.1 0.79 (0.65, 0.95)*

Ethnicity

 � Akan Ref

 � Ga/Dangme 0.05 0.21 1.05 (0.69, 1.62)

 � Ewe −0.08 0.16 0.92 (0.67, 1.26)

 � Guan −0.65 0.34 0.52 (0.26, 1.02)

 � Mole-Dagbani −0.35 0.17 0.70 (0.51, 0.98)*

 � Grusi −0.59 0.28 0.55 (0.32, 0.93)*

 � Gurma 0.6 0.22 1.82 (1.19, 2.86)*

 � Mande 0.14 0.4 1.15 (0.53, 2.69)

 � Other −0.11 0.29 0.90 (0.50, 1.58)

Cluster level

 � Built population 0.18 0.22 1.20 (0.77, 1.84)

 � Land surface temperature 0.03 0.04 1.03 (0.96, 1.12)

 � Log (rainfall) 2.86 1.16 17.46 (1.86, 167.34)*

Model ealuation statistics

Null model Final model

Estimate (SE) Estimate (SE)

Expected log-predictive density −1835.796 (21.03) −1800.7 (23.4)

Leave-one-out information criterion 3671.592 (42.05) 3601.3 (46.7)

Pareto k estimates <0.5 <0.5

*Statistically significant at α=0.05.
aOR, adjusted OR; Crl, credible interval.
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The risk of malaria infection for children between 13 
and 24 months is 57% (aOR=1.57, 95% CrI: 1.22, 2.01) 
higher than for children aged 12 months and below. 
The risk increased further to 88% (aOR=1.88, 95% CrI: 
1.46, 2.41) for children aged 25–36 months. The risk 
of malaria incidence among children aged 37–48 and 
49–59 months was 40% (aOR=1.40, 95% CrI: 1.09, 1.80) 
and 12% (aOR=1.12, 95% CrI: 0.84, 1.48), respectively, 
higher than children 12 months and younger. Children 
aged below 5 years who slept under ITNs at night have 
a reduced risk of malaria incidence by 21% (aOR=0.79, 
95% CrI: 0.65, 0.95) compared with children who do not 
sleep under ITNs.

The results of the Bayesian model further show a signifi-
cant relationship between the risk of malaria infection and 
the status of anaemia among children under 5 years. Chil-
dren under age 5 with moderate, mild and non-anaemic 
conditions had a reduced risk of 46% (aOR=0.54, 95% 
CrI: 0.30, 0.96), 64% (aOR=0.36, 95% CrI: 0.20, 0.64) 
and 67% (aOR=0.33, 95% CrI: 0.18, 0.64), respectively, of 
being infected with malaria. The risk of malaria incidence 
among children under 5 from households in the middle-
wealth category is not significantly different from those 
in poor households. However, the risk of malaria among 
children from households in the rich (upper wealth) 
category is significantly reduced by 34% (aOR=0.66, 95% 
CrI: 0.50, 0.87) compared with children below age 5 from 
poor households.

Moreover, under-5-year-old children from the Gurma 
ethnic group have an 82% (aOR=1.82, 95% CrI: 1.92–
2.86) increased risk of contracting malaria than children 
of the Akan background. However, children from the 
Mole-Dagbani Grusi ethnic groups are linked to 30% 
(aOR=0.70, 95% CrI: 0.51–0.98) and 45% (aOR=0.55, 
95% CrI: 0.32–0.93) reduced risk respectively of malaria 
infection compared with their Akan counterparts.

At the community level, the risk of malaria among chil-
dren under 5 years is 17 times more likely in children with 
an increase in mean rainfall (aOR=17.46, 95% CrI: 1.86, 
167.34). This could be as a result of the favourable condi-
tions provided for the breeding of mosquitoes that are 
the main agents of malaria transmission. The relatively 
low (<5) VIFs for all predictors indicated that predictors 
are not highly correlated to have any effect on parameter 
estimates of the model (table 4).

A comparison of the Bayesian multilevel estimates to 
those of the classical (MLE) approach (table 5) shows 
that parameter estimates and odds (risks) are very iden-
tical except that parameter estimates and their asso-
ciated SEs of the MLE approach are relatively smaller 
(underestimated). Moreover, the credible intervals for 
the ORs of the Bayesian method are mostly narrower or 
similar to the CIs of the MLE approach. The relatively 
narrow intervals from the Bayesian method suggest high 
precision or reliability compared with estimates from 
the MLE procedure. However, significantly different 
estimates and intervals were observed for the rainfall 
variable.

DISCUSSION
In this study, we examined the influence of individual/
household and community-level characteristics on the 
risk of malaria occurrence in under-5-year-old children. 
The results showed a weighted malaria prevalence of 
29.7% (95% CI: 0.28, 0.31). The risk of malaria infec-
tion among children under 5 years is significantly lower 
among children from rich households compared with 
those from poor and middle-class households. This 
could be attributed to the fact that children from wealthy 
backgrounds reside in affluent neighbourhoods, which 
are often associated with clean surroundings and effec-
tive drainage systems, thereby discouraging mosquito 
breeding.61 In addition, wealthy households have the 
means to afford and encourage the use of ITNs that 
significantly minimise mosquito bites, reducing the like-
lihood of malaria incidence in children below 5 years.62 
The findings of this study support earlier results observed 
elsewhere, where children from rich HHs are associated 
with a significantly reduced risk of malaria burden.35

The results of the study showed that children under 5 
years who sleep under ITNs at night have a low risk of 
malaria burden in Ghana. This suggests that the use of 
ITNs is very protective against malaria infection among 
children under 5 years of age. This may be attributed to 
the significant reduction in exposure to mosquito bites, 
as observed in previous studies.18 63 64 However, Isiko et 
al65 observed that children under 5 in Nigeria who consis-
tently used ITNs had an increased risk of contracting 
malaria, which contradicts the findings of this present 
study. Environmental factors or the over-reliance on ITNs 
alone as the main preventive measure, while ignoring 
other malaria preventive strategies could account for 
the disparity in ITN effectiveness. This further highlights 
the importance of the effective and proper use of ITNs 
together with other preventive measures to help in the 
control and elimination of malaria infections. Enhancing 
education on the appropriate and effective use of 
ITNs among parents/caregivers could be intensified to 
support efforts aimed at combating malaria among chil-
dren under 5 years, who are particularly most vulnerable 
to severe illness and death from malaria.

Table 4  Collinearity test statistics

Variable
Variance 
inflation factor

Variance inflation 
factor 95% CI

Age group 1.11 (1.08, 1.16)

Wealth status 1.62 (1.55, 1.70)

Anaemia status 1.13 (1.10, 1.18)

Child slept under 
insecticide-treated net

1.12 (1.09, 1.17)

Ethnicity 2.02 (1.93, 2.13)

Built population 1.68 (1.61, 1.77)

Temperature 2.32 (2.21, 2.45)

Log (rainfall) 1.66 (1.58, 1.74)
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This study’s results indicate that children under 5 
who have mild, moderate or non-anaemic conditions 
are comparatively less vulnerable to malaria than those 
with severe anaemia. This observation is in line with find-
ings from White’s study,66 which found a significant link 
between the occurrence of malaria in children under 5 
years of age and anaemia status. Moreover, findings of 
this study collaborate with those observed in previous 
studies such as Aheto et al67 in Ghana, Ehouman et al68 in 
Côte d’Ivoire and McCuskee and colleagues69 within the 
African region.

Furthermore, the risk of malaria infection in children 
under 5 increases significantly from their first birthday 

to after their fourth birthday (37–48 months). This 
observation could be linked to the immunity possessed 
and acquired from their mothers at birth as well as the 
enhanced care and attention usually given to newborns. 
This acquired immunity wanes over time, particularly 
when they are no longer breastfed and are therefore more 
susceptible to malaria infection.70 Findings in this study 
corroborate findings observed among children under 5 
years in Nigeria.65 This highlights the necessity for age-
specific interventions in malaria control and prevention 
strategies, along with efforts to tailor these measures to 
specific vulnerable groups and immunity profiles across 
various age groups.

Table 5  Maximum likelihood estimation (classical) multilevel parameter estimates

Variable Estimate SE aOR (95% CI)

SD(Intercept) 0.48

Individual level

 � Intercept −8.74 3.84 0.00 (0, 0.30)

Age group

 � ≤12

 � 13–24 0.44 0.13 1.55 (1.20, 2.00)*

 � 25–36 0.62 0.13 1.86 (1.44, 2.40)*

 � 37–48 0.34 0.13 1.40 (1.09, 1.81)*

 � 49–59 0.11 0.14

Wealth status

 � Poor

 � Middle 0.02 0.13 1.02 (0.79, 1.32)

 � Rich −0.42 0.14 0.66 (0.50, 0.86)*

Anaemia status

 � Severe

 � Moderate −0.58 0.3 0.56 (0.31, 1.01)*

 � Mild −0.98 0.3 0.38 (0.21, 0.68)*

 � Not anaemic −1.06 0.3 0.35 (0.19, 0.62)*

Child sleeps under insecticide-treated net

 � No

 � Yes −0.24 0.09 0.79 (0.66, 0.94)*

Ethnicity

 � Akan  �

 � Ga/Dangme 0.05 0.21 1.05 (0.70, 1.59)

 � Ewe −0.08 0.16 0.92 (0.67, 1.26)

 � Guan −0.63 0.33 0.53 (0.27, 1.02)

 � Mole-Dagbani −0.34 0.16 0.71 (0.52, 0.97)*

 � Grusi −0.57 0.27 0.57 (0.33, 0.96)*

 � Gurma 0.59 0.21 1.80 (1.19, 2.72)*

 � Mande 0.15 0.39 1.16 (0.54, 2.50)

 � Other −0.11 0.28 0.11 (0.51, 1.55)

Cluster level

 � Built population 0.17 0.21 1.18 (0.78, 1.78)

 � Land surface temperature 0.03 0.04 1.03 (0.95, 1.11)

 � Log (rainfall) 2.7 1.08 14.8 (1.79, 123.57)*

aOR, adjusted OR.
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In addition, the study revealed an association between 
ethnicity and the risk of contracting malaria among chil-
dren under 5 years. Children belonging to the Gurma 
ethnic group faced an elevated risk of malaria compared 
with Akan children, whereas those from the Mole-Dagbani 
and Grusi ethnic groups experienced a reduced risk 
relative to their Akan counterparts. This emphasises the 
interethnic differences in malaria risk and transmission, 
suggesting variations in susceptibility to malaria infection 
and parasite diversity due to genetic differences. The 
varying risks of contracting malaria associated with race 
impact initiatives aimed at controlling and eradicating the 
illness. This underscores the significance of considering 
genetics in strategies to combat and eliminate malaria, 
as various ethnic groups may exhibit divergent responses 
to interventions.71 This finding echoes observations from 
Burkina Faso, where the Fulani ethnic group has a lower 
risk of malaria morbidity compared with the Mossi and 
Rimàibe groups.72–74 Furthermore, understanding the 
ethnic disparity in the risk of malaria, including immune-
epidemiology, could be essential to provide insights into 
the mechanism of protection or immunity differences to 
inform control strategies.

Climatic conditions, such as rainfall and temperature, 
have been established to have significant effects on the 
incidence of malaria in human populations.9 75 76 More-
over, temperature and rainfall are key drivers of climatic 
and environmental conditions and are therefore related to 
malaria spread, especially in the tropics.9 The study results 
showed that the average amount of rainfall recorded in a 
community affects malaria transmission by providing suit-
able breeding sites for mosquitoes, increasing the risk of 
malaria infections.10 Although the results of the correla-
tion analysis showed a significant association between 
temperature and malaria prevalence in a community, as 
observed in earlier studies9 11 by reducing the transmis-
sion rate. However, Bayesian multilevel results showed an 
insignificant reduction in the risk of malaria infection in 
children aged below five. Moreover, climatic conditions in 
most SSA countries, including Ghana, have been greatly 
altered due to human activities, and these have also 
affected the dynamics of malaria transmission in SSA as 
a result of the high exposure and vulnerability to climate 
change coupled with the high malaria burden.11 75

The results of the Bayesian models further provide 
important information on the fight against malaria in 
Ghana and other malaria-endemic countries in SSA that 
share similar climatic and environmental conditions. The 
significant impact of the wealth of HHs in minimising 
the risk of malaria incidence among children under 5 
years calls for an integrated strategic poverty reduction 
intervention, especially in rural settings, which could 
have significant effects on the quality of food and effec-
tive use of ITNs. Furthermore, the wealth of households 
has a significant influence on the decision to sleep under 
ITN at night as observed in the literature.77–79 Again, the 
Bayesian MLM produced relatively more precise esti-
mates than the MLE method, which supports findings in 

ref.80 in which estimates from the Bayesian approach are 
more precise.

Limitations of the study
Despite the important insights of findings presented by 
the application of Bayesian multilevel modelling on the 
malaria incidence dynamics among under-5 children, 
the study is limited in scope due to a lot of missing or 
incomplete values at cluster-level covariates. The missing 
information in some cluster-level variables may limit the 
findings of study results as some of the excluded variables 
could have provided further insights on malaria infection 
among children. Although missing data analysis tech-
niques could have been used to input the missing informa-
tion, with over 20% of missing values, it could undermine 
the statistical power of generated results, especially when 
missing data are not at random. The study used data on 
children under 5 years, and as such, findings and conclu-
sions are not generalisable to all children, especially those 
above 5 years. Therefore, the findings of this study should 
be interpreted with caution as they may not be appli-
cable to other children outside the under-5-year group. 
Again, not all children who were treated with ACT were 
confirmed by a malaria test in the laboratory, and there-
fore, the malaria prevalence reported in this study may 
differ from what is reported in the GMIS 2019 report. 
Furthermore, relying on parental- or caregiver-reported 
fever as a proxy for malaria infection without confirming 
with a test may be problematic, as fever can also indicate 
other illnesses in children.

CONCLUSION
The burden of malaria among under-5-year-old children 
is very immense and remains a threat to their survival. 
This study examined the influence of household/indi-
vidual and community-level characteristics on the risk 
of malaria incidence among children aged below 5 years 
through a multilevel Bayesian modelling approach. 
Bayesian MLM produced relatively more precise esti-
mates than the MLE method. The study showed that 
children between 24 and 48 months, from rich HHs, 
belonging to the Mole-Dagbani and Grusi ethnic groups, 
sleeping under ITN and non-anaemic have a reduced risk 
of malaria infection. High rainfall at the community level 
is associated with a high risk of malaria in children aged 
below 5 years. Continuous sleeping in ITNs, particularly 
for children below 5 years, should be encouraged among 
caregivers/parents to minimise malaria infections. 
Furthermore, personal and community hygienic prac-
tices should be encouraged to keep homes and commu-
nities free from mosquito breeding hot spots. Effective 
and strategic poverty reduction interventions in rural 
settings can significantly help reduce malaria infections 
in under-5 children. Minimising malaria cases in chil-
dren under 5 years will promote healthy life and survival 
of children, which is crucial in efforts to achieve SDG 3 
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aimed at ensuring quality and healthy populations by the 
end of 2030.

X Kassim Tawiah @Kassim Tawiah
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