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ABSTRACT
Objective  This study developed and validated a stacked 
ensemble machine learning model to predict the risk of 
acute kidney injury in patients with acute pancreatitis 
complicated by sepsis.
Design  A retrospective study based on patient data from 
public databases.
Participants  This study analysed 1295 patients with 
acute pancreatitis complicated by septicaemia from the US 
Intensive Care Database.
Methods  From the MIMIC database, data of patients with 
acute pancreatitis and sepsis were obtained to construct 
machine learning models, which were internally and 
externally validated. The Boruta algorithm was used to 
select variables. Then, eight machine learning algorithms 
were used to construct prediction models for acute 
kidney injury (AKI) occurrence in intensive care unit (ICU) 
patients. A new stacked ensemble model was developed 
using the Stacking ensemble method. Model evaluation 
was performed using area under the receiver operating 
characteristic curve (AUC), precision-recall (PR) curve, 
accuracy, recall and F1 score. The Shapley additive 
explanation (SHAP) method was used to explain the 
models.
Main outcome measures  AKI in patients with acute 
pancreatitis complicated by sepsis.
Results  The final study included 1295 patients with 
acute pancreatitis complicated by sepsis, among whom 
893 cases (68.9%) developed acute kidney injury. We 
established eight base models, including Logit, SVM, 
CatBoost, RF, XGBoost, LightGBM, AdaBoost and MLP, as 
well as a stacked ensemble model called Multimodel. 
Among all models, Multimodel had an AUC value of 
0.853 (95% CI: 0.792 to 0.896) in the internal validation 
dataset and 0.802 (95% CI: 0.732 to 0.861) in the external 
validation dataset. This model demonstrated the best 
predictive performance in terms of discrimination and 
clinical application.
Conclusion  The stack ensemble model developed by 
us achieved AUC values of 0.853 and 0.802 in internal 
and external validation cohorts respectively and also 

demonstrated excellent performance in other metrics. It 
serves as a reliable tool for predicting AKI in patients with 
acute pancreatitis complicated by sepsis.

INTRODUCTION
Acute pancreatitis (AP) is a common 
acute abdomen condition characterised 
by acute inflammation of the pancreas 
and surrounding tissues, accompanied by 
abnormal activation and release of pancre-
atic enzymes, leading to tissue inflammation 
and necrosis. AP is a complex condition with 
varying degrees of severity and is a common 
cause of hospital admission in countries 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ Stacking ensemble combines the predictions of 
multiple base models to significantly enhance over-
all predictive performance and generalisation ability 
while reducing the risk of overfitting.

	⇒ The Boruta algorithm exhibits greater robustness 
and flexibility compared with traditional variable 
selection methods, effectively handling high-
dimensional data and non-linear relationships.

	⇒ The regularisation techniques and hyperparameter 
optimisation employed in this study can enhance 
model performance, reduce overfitting and improve 
generalisation and stability.

	⇒ This study employs the Shapley additive explana-
tion (SHAP) method to interpret the predictions of 
the machine learning model and uses the SHAP 
force plot tool for visualisation, which facilitates 
understanding and provides information for clinical 
recommendations.

	⇒ The limitations of this study include missing values 
in the original data, a small external validation co-
hort and the findings based on the intensive care 
unit limiting their applicability to general wards.
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like the USA.1 About 25% of AP patients may progress 
to severe acute pancreatitis,2 which may involve systemic 
inflammatory response syndrome (SIRS) and multiple 
organ dysfunction syndrome. Sepsis is a life-threatening 
SIRS caused by dysregulated host response to infection, 
ultimately leading to septic shock and multiple organ 
failure.3 AP can lead to sepsis,4 with many patients devel-
oping AP-related infections in the later stages and severe 
cases progressing to sepsis.5 6 Studies have shown that the 
development of sepsis from AP can worsen the condition 
and increase the risk of mortality.7

In some patients, acute pancreatitis can lead to acute 
kidney injury (AKI), possibly due to systemic inflamma-
tory response with increased vascular permeability.8 AKI 
is a common syndrome in intensive care units, character-
ised by elevated serum creatinine and decreased urine 
output.9 Several studies have shown a significant increase 
in mortality rates among AP patients with AKI.10 11 Sepsis-
related AKI is also a common condition among critically 
ill patients, with high incidence and mortality rates.12–14 
Therefore, early identification and risk assessment of AKI 
in patients with acute pancreatitis complicated by sepsis 
are clinically significant for preventing patient losses and 
deaths.

Research has explored the influencing factors of AKI 
in patients with AP and constructed a predictive model. 
However, there are issues such as small sample size and 
insufficient model accuracy.15–17 Predicting AKI in septic 
patients has also been a hot topic in medical research. 
Some predictive models based on traditional methods, 
such as logistic regression and Cox proportional hazards 
model, have been used to predict the development of 
AKI in septic patients. Fan et al18 applied logistic regres-
sion to construct a predictive model of AKI in 15 726 
septic patients, which showed good predictive accuracy. 
However, the relationship between variables, including 
linear or non-linear relationships, involves linear regres-
sion’s (LR) default handling of linear relationships 
between independent and dependent variables, which 
may overly simplify complex non-linear relationships. In 
addition, LR is susceptible to multicollinearity among 
variables, which may reduce the model’s performance.19

In recent years, machine learning (ML) has attracted 
widespread attention from clinical physicians. Machine 
learning is a branch of artificial intelligence that involves 
computer simulations or implementations of human 
learning behaviours. It enables computers to learn from 
data and improve performance based on their experi-
ences. Machine learning algorithms continuously train to 
discover patterns and correlations from large databases, 
then make optimal decisions and predictions based on 
the data analysis results. Its applications are extensive and 
commonly used in various fields of medical research,20 
such as disease diagnosis, personalised treatment and 
patient risk prediction. Machine learning algorithms 
often outperform traditional LR or Cox regression anal-
yses,21 22 as shown in studies like that of Chiofolo et al,23 who 
used the random forest algorithm to establish a predictive 

model for AKI in critically ill patients, achieving good early 
identification of high-risk patients. Yue et al19 employed 
machine learning algorithms to construct seven models 
for predicting the development of AKI in septic patients, 
aiming to identify the model with the best predictive 
performance. Currently, risk prediction models for AKI 
in acute pancreatitis and sepsis are based on fundamental 
machine learning algorithms such as logistic regression 
and random forest.24 However, more powerful algorithms 
like stacked ensemble machine learning (SIML) have not 
been extensively explored yet.

We noticed a research gap in predicting AKI in patients 
with AP combined with sepsis. AP patients often develop 
sepsis in the intensive care unit (ICU), resulting in higher 
mortality rates. However, early and accurate diagnosis of 
AKI in AP patients with sepsis remains challenging. There-
fore, this study used a large database to develop and vali-
date a superior performing stacked ensemble machine 
learning predictive model. The aim was to predict the 
occurrence of AKI during ICU hospitalisation in patients 
with AP complicated by sepsis, using key risk factors deter-
mined through feature selection. This model can assist 
clinicians in assessing the risk of acute kidney injury in 
patients and implementing appropriate interventions 
and treatment measures, thus, achieving early interven-
tion and treatment goals.

METHOD
Data source
The research data originates from the MIMIC database, 
and this study is a retrospective cohort study. The MIMIC 
database is an open database system based on a large 
biomedical dataset, primarily used to simulate patient 
conditions in the ICU. (dataset)MIMIC-III25 collected 
data from 53 423 adult patients admitted to the ICU at 
Beth Israel Deaconess Medical Centre (BIDMC) from 
June 2001 to October 2012, as well as data from 7870 
neonatal intensive care patients admitted from 2001 to 
2008. The (dataset)MIMIC-IV database,26 an improve-
ment over MIMIC-III, gathered clinical data from over 
190 000 patients and 450 000 hospitalisations at BIDMC 
from 2008 to 2019. The database records detailed infor-
mation such as patients’ demographic data, laboratory 
tests, medication records, vital signs, surgical procedures, 
disease diagnoses, medication management, follow-up 
survival status and more. We used patient data from the 
MIMIC-IV database for model development and internal 
validation, followed by external validation using patient 
data from the MIMIC-III database. All patient informa-
tion in the database has undergone de-identification 
processing, eliminating the need for individual patient 
consent or ethical review board approval.

Study population
We first extracted data from the MIMIC database for all 
patients diagnosed with acute pancreatitis. Subsequently, 
we further screened this data to select patients who met 
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the diagnostic criteria for sepsis, which served as the 
target population for the subsequent study.

Our study aimed to assess the occurrence of AKI within 
7 days of ICU admission in patients with AP combined with 
sepsis. According to the Third International Consensus 
Definitions for Sepsis and Septic Shock (Sepsis-3), sepsis 
patients were screened based on the presence of docu-
mented or suspected infection and a Sequential Organ 
Failure Assessment (SOFA) score greater than 2. The 
SOFA score (Sequential Organ Failure Assessment score) 
is a clinical scoring system designed to assess the degree 
of multiple organ dysfunction in critically ill patients. The 
SOFA score is based on the functional status of six major 
organ systems: respiratory, circulatory, hepatic, neurolog-
ical, renal and haematological systems, with each system 
assigned a score corresponding to its functional state. 
Specifically, the scoring ranges from 0 to 4, where 0 indi-
cates no dysfunction and 4 signifies the most severe organ 
dysfunction. The total SOFA score can be used to evaluate 
the overall condition of the patient. A total score greater 
than 2 is generally considered to indicate an increased 
risk of organ dysfunction, with higher scores correlating 
with a greater likelihood of poor prognosis.

According to the Kidney Disease: Improving Global 
Outcomes (KDIGO) classification system for kidney 
diseases, AKI was diagnosed if there was an increase 
in serum creatinine (Scr) of more than 0.3 mg/dL 
within 48 hours, an increase of ≥1.5 times baseline 
within 7 days or urine output less than 0.5 mL/kg/h 
for more than 6 hours. The first Scr value on admis-
sion was used as the baseline Scr, and AKI was evalu-
ated based on the worst serum creatinine and urine 
output within 72 hours of suspected sepsis diagnosis 
and ICU admission. We excluded patients who were 
under 18 years old, had a SOFA score less than 2, were 
admitted to the ICU for less than 24 hours, already 
had AKI on ICU admission or had a history of renal 
failure. The flowchart is depicted in figure 1.

Data extraction
This study extracted rich variables from multiple 
aspects, including (1) demographic information: age, 
gender, race, weight, height and comorbidities such 
as cerebrovascular disease, diabetes and chronic lung 
disease; (2) vital signs: including heart rate, respi-
ratory rate, systolic blood pressure, diastolic blood 
pressure, partial pressure of carbon dioxide, partial 
pressure of oxygen and oxygen saturation; and (3) 
laboratory test indicators (including maximum and 
minimum values): albumin, anion gap, lymphocytes, 
neutrophils, monocytes, bicarbonate, bilirubin, serum 
calcium, serum chloride, serum potassium, serum 
sodium, serum creatinine, haematocrit, haemoglobin, 
lactate dehydrogenase, serum magnesium, mean 
corpuscular haemoglobin concentration, pH value, 
platelets, prothrombin time, activated partial throm-
boplastin time, blood urea nitrogen, white blood 
cells, red blood cells, glucose, lactate, Glasgow Coma 

Scale score and urine output. Additionally, factors 
such as whether vasopressors were used, whether 
continuous renal replacement therapy was received, 
whether invasive mechanical ventilation was used and 
whether antibiotics were used were also considered. 
The comprehensive consideration of these variables 
provides robust data support for the study, aiding in 
a more accurate assessment of the risk factors for AKI 
in patients with AP complicated by sepsis.

To reduce the bias caused by missing data, we used 
the missingno module in Python 3.10 software to filter 
out missing data. In figure 2, each column represents 
a clinical variable, with white lines indicating missing 
data. The more white lines in a column, the more 
missing values for that variable. We excluded variables 
with a missing rate exceeding 30%, such as height 
and serum albumin levels, to ensure the accuracy 
of the study and models. The remaining variables’ 
missing values were imputed using the mice package 
in Python software for multiple imputation (MI). 
Multiple imputation is an effective statistical method 
that allows for reasonable estimation of missing data 
while preserving the structure and characteristics 
of the dataset. We performed subsequent analyses 
based on the multiple imputed datasets generated, 
thereby, reducing bias associated with missing values 
and enhancing the robustness and credibility of the 
results. Vital signs and relevant laboratory parameters 
were characterised using maximum and minimum 
values, treated as independent features and included 
in the study.

Statistical analysis
This study used R (version 4.3.2) statistical software 
for data analysis. For continuous variables following a 
normal distribution, the mean and SD were used for 
representation, while for non-normally distributed 
variables, the median and quartiles were used. Cate-
gorical variables were represented using percentages. 
In inter-group comparisons, paired t-tests or Mann-
Whitney U tests were employed for continuous vari-
ables, while χ² tests or Fisher’s exact tests were used 
for categorical variables.

The variable selection stage employed the Boruta 
algorithm. This algorithm operates by randomly 
sampling the original features and generating random 
features to construct a random forest model. Using 
the random forest algorithm, it computes the impor-
tance score (z-value) for each original feature and 
generates a set of ‘shadow’ features combined with the 
original ones. Subsequently, it calculates the impor-
tance score for the combined features and identifies 
important features by comparing the z-values of the 
original and ‘shadow’ features. Through recursively 
removing non-important features and recalculating 
the importance scores of the new feature sets until all 
features are classified as important or non-important. 
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Finally, variables with a p value <0.05 are selected as 
inputs for subsequent analysis.

RESULTS
Baseline characteristics
Patient baseline characteristics differences are shown in 
table 1. During ICU hospitalisation, male patients were 
more prone to AKI than female patients. AKI patients 
had higher age and weight; higher incidence of comor-
bidities such as diabetes and chronic lung disease; and a 
greater number of individuals using antibiotics, vasopres-
sors and mechanical ventilation compared with non-AKI 

patients. The average length of hospital stay for AKI 
group patients was 13.95 days, with an average ICU stay 
of 4.59 days, significantly higher than the average hospital 
stay (7.66 days) and average ICU stay (2.23 days) for non-
AKI group patients.

Feature selection
We excluded several variables from the original data, 
such as alkaline phosphatase, alanine aminotransferase 
and aspartate aminotransferase, due to the presence of 
high collinearity issues in the assessment of liver function. 
The results of feature selection based on the Boruta algo-
rithm are shown in figure 3. We employed the following 

Figure 1  Research workflow diagram.
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parameter settings: first, we specified the model formula 
in the form of ‘status ~ .’ where ‘status’ refers to the 
outcome event to extract all variables from the data and 
treat them as independent variables. To ensure signifi-
cance, we set the p value threshold at 0.05 and enabled 
multiple comparison adjustments (mcAdj=TRUE) to 
reduce the type I error rate using the Bonferroni method. 
Furthermore, we established the maximum number of 
iterations at 500 (maxRuns=500) to enhance the stability 
and accuracy of feature selection, while setting the 
detailed output during runtime to 0 (doTrace=0) to keep 
the results concise. To preserve the importance history 
for each iteration, we set the holdHistory parameter to 
TRUE, allowing us to analyse the variability of variable 
importance across different iterations. Lastly, to compute 
feature importance, we used the getImpRfZ function, 
which provides an effective assessment of feature impor-
tance by running a random forest model and collecting 
the Z scores of average accuracy decreases. The entire 
process was conducted using RStudio software.

The 19 variables most closely associated with AKI are 
weight, GCS (Glasgow Coma Scale), urine output, vaso-
pressin, mechanical ventilation, antibiotics, minimum 
systolic blood pressure (SBP), minimum and maximum 
white blood cell count (WBC), minimum and maximum 
blood urea nitrogen (BUN), minimum and maximum 
serum creatinine, minimum and maximum neutrophils 
count, minimum and maximum prothrombin time (PT) 
and minimum and maximum partial thromboplastin 
time (PTT).

Model development
After completing feature selection, the machine learning 
predictive model was developed using Python (3.10).

The AKI screening data from the MIMIC-IV database 
was randomly allocated to training and testing datasets 

in a 7:3 ratio. The training dataset was used for algorithm 
development, while the testing dataset was employed 
to evaluate algorithm performance. Initially, eight 
machine learning models were constructed, including 
logistic regression, support vector machine, CatBoost, 
random forest, XGBoost, LightGBM, AdaBoost and MLP 
(multilayer perceptron). To optimise the overall model 
performance, we implemented feature selection during 
the modelling process to reduce model complexity and 
enhance generalisation capability. Additionally, we intro-
duced some regularisation methods such as L1 and L2 to 
address overfitting issues. In online supplemental file 1, 
we describe in detail how to use regularisation techniques 
when building machine learning models. In online 
supplemental file 2, we present the parameters used 
in the construction of each model, along with detailed 
explanations.

Based on these models, a Stacking ensemble model 
named ‘Multimodel’ was built. Hyperparameter tuning 
was conducted using GridSearchCV, wherein a parameter 
space was defined for each model, allowing for training 
with various parameter combinations to select the optimal 
hyperparameter set. Stratified K-Fold cross-validation was 
employed to ensure that the class distribution remained 
consistent across each training and testing split; all 
models in this study used 10-fold cross-validation. The 
models were ultimately trained by inputting the training 
data along with the parameter space to identify the model 
with the best performance.

We implemented the model fusion process (Ensemble 
Learning) using a Stacking Classifier. First, we created a list 
of model names, ‘model_names’, and used joblib to load 
the eight previously trained models via the load function. 
We then defined a collection of base models, ‘estimators’, 
composed of the loaded models, each associated with 

Figure 2  Missing data distribution plot. (Each column represents a clinical variable, with white lines indicating missing data. 
The more white lines in a column, the more missing values for that variable.).
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Table 1  Comparison of patient baseline data

Characteristics

AP and sepsis in MIMIC-IV database
(n=823)

AP and sepsis in MIMIC-III database
(n=472)

AKI (n=555) Non-AKI (n=268) P value AKI (n=338) Non-AKI (n=134) P value

Age 61.0 (48.0; 74.0) 57.0 (46.0; 70.0) 0.01 62.0 (49.0; 75.0) 57.0 (43.2; 70.0) 0.023

Gender 0.731 0.766

 � Male 313 (56.4%) 147 (54.9%) 191 (56.5%) 73 (54.5%)

 � Female 242 (43.6%) 121 (45.1%) 147 (43.5%) 61 (45.5%)

Race 0.047 0.312

 � White 412 (74.2%) 183 (68.3%) 273 (80.8%) 100 (74.6%)

 � Black 53 (9.55%) 41 (15.3%) 30 (8.88%) 17 (12.7%)

 � Other 90 (16.2%) 44 (16.4%) 35 (10.4%) 17 (12.7%)

Weight 85.0 (70.0;103) 75.0 (64.0;85.0) <0.001 83.9 (71.5;98.4) 73.7 (62.4;83.7) <0.001

GCS 14.0 (9.00; 14.0) 14.0 (13.0; 15.0) <0.001 15.0 (14.0; 15.0) 14.0 (13.0; 15.0) 0.005

Ne <0.001 <0.001

 � No 296 (53.3%) 223 (83.2%) 168 (49.7%) 113 (84.3%)

 � Yes 259 (46.7%) 45 (16.8%) 170 (50.3%) 21 (15.7%)

Crrt_mode_flag <0.001 0.002

 � No 519 (93.5%) 268 (100%) 311 (92.0%) 134 (100%)

 � Yes 36 (6.49%) 0 (0.00%) 27 (7.99%) 0 (0.00%)

Ventilation_use <0.001 <0.001

 � No 300 (54.1%) 197 (73.5%) 109 (32.2%) 84 (62.7%)

 � Yes 255 (45.9%) 71 (26.5%) 229 (67.8%) 50 (37.3%)

Cerebrovascular_disease 0.399 1

 � No 509 (91.7%) 251 (93.7%) 166 (49.1%) 66 (49.3%)

 � Yes 46 (8.29%) 17 (6.34%) 172 (50.9%) 68 (50.7%)

Diabetes 0.306 1

 � No 536 (96.6%) 263 (98.1%) 328 (97.0%) 131 (97.8%)

 � Yes 19 (3.42%) 5 (1.87%) 10 (2.96%) 3 (2.24%)

Chronic_pulmonary 1 0.233

 � No 436 (78.6%) 210 (78.4%) 281 (83.1%) 118 (88.1%)

 � Yes 119 (21.4%) 58 (21.6%) 57 (16.9%) 16 (11.9%)

Antibiotic <0.001 0.759

 � No 47 (8.47%) 68 (25.4%) 233 (68.9%) 95 (70.9%)

 � Yes 508 (91.5%) 200 (74.6%) 105 (31.1%) 39 (29.1%)

HR_min 79.0 (66.0; 90.0) 77.0 (66.0; 88.2) 0.405 78.5 (67.0; 91.0) 79.0 (68.0; 92.8) 0.603

HR_max 113 (99.0; 128) 110 (96.8; 125) 0.11 114 (98.2; 129) 114 (99.2; 127) 0.554

RR_min 13.0 (10.0; 15.0) 13.0 (11.0; 16.0) 0.505 13.5 (11.0; 16.0) 13.5 (11.0; 16.0) 0.975

RR_max 29.0 (25.0; 34.0) 27.0 (24.4; 32.2) 0.011 29.0 (24.0; 33.0) 28.0 (25.0; 33.0) 0.254

SBP_min 90.0 (79.5; 100) 98.0 (87.0; 109) <0.001 89.0 (79.0; 102) 102 (90.0; 114) <0.001

SBP_max 146 (134; 164) 152 (134; 168) 0.104 150 (137; 168) 153 (137; 168) 0.628

DBP_min 47.0 (40.0; 55.0) 50.0 (44.0; 59.2) <0.001 45.0 (38.0; 52.0) 48.0 (39.2; 57.0) 0.017

DBP_max 86.0 (76.0; 101) 92.5 (80.0; 108) 0.002 83.0 (73.2; 94.8) 86.5 (76.0; 99.0) 0.088

Spo2_min 92.0 (90.0; 94.0) 93.0 (91.0; 95.0) 0.035 92.0 (89.0; 94.0) 92.0 (90.0; 95.0) 0.054

Spo2_max 100 (99.0; 100) 100 (99.0; 100) 0.219 100 (99.0; 100) 100 (99.0; 100) 0.631

ph_min 7.31 (7.23; 7.38) 7.34 (7.27; 7.40) <0.001 7.36 (7.29; 7.42) 7.34 (7.28; 7.41) 0.607

ph_max 7.41 (7.36; 7.45) 7.41 (7.37; 7.45) 0.526 7.44 (7.39; 7.48) 7.43 (7.39; 7.48) 0.652

Continued

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 11, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
26 F

eb
ru

ary 2025. 
10.1136/b

m
jo

p
en

-2024-087427 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


7Li F, et al. BMJ Open 2025;15:e087427. doi:10.1136/bmjopen-2024-087427

Open access

Characteristics

AP and sepsis in MIMIC-IV database
(n=823)

AP and sepsis in MIMIC-III database
(n=472)

AKI (n=555) Non-AKI (n=268) P value AKI (n=338) Non-AKI (n=134) P value

Haemoglobin_min 10.0 (8.40; 11.8) 10.5 (9.00; 11.9) 0.038 10.2 (8.90; 11.6) 10.4 (8.93; 11.8) 0.525

Haemoglobin_max 11.8 (10.1; 13.4) 11.7 (10.1; 12.9) 0.454 12.0 (10.7; 13.3) 11.8 (10.4; 13.1) 0.372

Platelets_min 160 (106; 226) 148 (108; 233) 0.733 170 (101; 231) 172 (119; 269) 0.136

WBC_min 10.1 (7.10; 14.9) 8.95 (5.77; 12.8) 0.001 10.7 (7.20; 15.5) 10.9 (6.50; 14.9) 0.42

WBC_max 14.5 (10.2; 20.0) 12.0 (7.90; 16.4) <0.001 14.7 (10.0; 20.2) 13.3 (8.40; 19.3) 0.114

Bicarbonate_min 20.0 (17.0; 23.5) 22.0 (18.0; 24.0) 0.008 21.0 (17.0; 24.0) 21.0 (18.0; 24.0) 0.05

Bicarbonate_max 23.0 (20.0; 26.0) 24.0 (22.0; 27.0) 0.002 24.0 (20.0; 27.0) 24.0 (22.0; 26.8) 0.327

BUN_min 17.0 (12.0; 30.0) 12.0 (8.00; 20.0) <0.001 19.0 (12.0; 29.0) 14.0 (9.00; 22.0) <0.001

BUN_max 22.0 (15.0; 36.0) 16.0 (10.8; 26.0) <0.001 23.0 (15.0; 36.0) 18.0 (11.2; 27.0) <0.001

Calcium_min 7.70 (7.10; 8.20) 7.80 (7.38; 8.20) 0.026 7.90 (7.30; 8.30) 7.70 (7.40; 8.20) 0.122

Calcium_max 8.30 (7.80; 8.80) 8.30 (7.80; 8.80) 0.913 8.50 (8.00; 9.00) 8.30 (7.90; 8.80) 0.033

Chloride_min 102 (98.0; 107) 102 (98.0; 106) 0.677 104 (100; 107) 103 (99.0; 107) 0.52

Chloride_max 106 (103; 111) 107 (103; 111) 0.907 108 (105; 112) 108 (104; 112) 0.443

Creatinine_min 0.90 (0.70; 1.40) 0.75 (0.60; 1.00) <0.001 0.90 (0.70; 1.30) 0.80 (0.60; 1.10) 0.012

Creatinine_max 1.10 (0.80; 1.80) 0.90 (0.70; 1.20) <0.001 1.10 (0.80; 1.70) 0.90 (0.70; 1.20) 0.002

Urine output 1350 (820; 1980) 2380 (1739; 3402) <0.001 1428 (914; 2185) 2400 (1675; 3134) <0.001

Glucose_min 111 (91.0; 133) 106 (90.0; 125) 0.115 102 (83.0; 123) 100 (87.2; 116) 0.585

Glucose_max 155 (119; 212) 138 (111; 190) 0.005 176 (132; 237) 146 (120; 189) 0.001

Sodium_min 137 (134; 140) 136 (134; 139) 0.679 137 (134; 140) 137 (134; 140) 0.687

Sodium_max 140 (137; 143) 139 (137; 142) 0.841 140 (138; 143) 141 (138; 143) 0.97

Potassium_min 3.70 (3.40; 4.10) 3.60 (3.30; 4.00) 0.005 3.55 (3.23; 3.90) 3.60 (3.30; 3.88) 0.762

Potassium_max 4.40 (4.00; 4.90) 4.20 (3.90; 4.60) <0.001 4.40 (4.00; 4.97) 4.20 (3.90; 4.60) 0.006

Lymphocytes_min 0.92 (0.57; 1.51) 1.00 (0.59; 1.57) 0.606 0.94 (0.54; 1.57) 0.73 (0.49; 1.31) 0.074

Lymphocytes_max 1.07 (0.69; 1.75) 1.07 (0.70; 1.70) 0.938 1.10 (0.69; 1.70) 0.99 (0.61; 1.46) 0.141

Neutrophils_min 9.90 (6.60; 14.6) 8.38 (5.23; 12.3) <0.001 9.99 (6.30; 14.2) 9.49 (6.27; 14.5) 0.811

Neutrophils_max 11.0 (7.51; 16.0) 8.85 (5.61; 13.5) <0.001 10.5 (6.81; 15.4) 10.4 (7.10; 15.4) 0.87

PT_min 14.1 (12.6; 16.3) 13.6 (12.2; 14.8) <0.001 14.2 (13.1; 15.9) 13.9 (13.0; 14.9) 0.027

PT_max 15.4 (13.3; 19.4) 14.3 (12.9; 16.6) <0.001 15.3 (13.9; 18.9) 14.6 (13.3; 17.0) 0.004

PTT_min 29.3 (25.8; 34.0) 28.2 (25.7; 31.4) 0.006 29.6 (26.1; 35.0) 28.4 (25.4; 33.8) 0.082

PTT_max 33.2 (28.3; 43.5) 30.9 (27.9; 37.3) 0.001 34.2 (28.8; 49.5) 31.9 (27.7; 39.3) 0.016

Bilirubin_min 1.10 (0.50; 2.80) 0.80 (0.50; 2.00) 0.002 1.20 (0.60; 3.30) 1.10 (0.52; 2.48) 0.04

Bilirubin_max 1.50 (0.70; 3.90) 1.05 (0.60; 2.62) 0.001 1.70 (0.80; 4.68) 1.50 (0.70; 3.27) 0.023

Hospital_time 13.2 (7.77; 23.9) 6.96 (4.32; 10.7) <0.001 14.7 (7.88; 23.7) 8.36 (4.92; 14.5) <0.001

ICU_time 3.99 (2.09; 9.93) 1.90 (1.38; 2.91) <0.001 5.19 (2.73; 13.8) 2.56 (1.60; 4.14) <0.001

Aki_stage

 � Stage1 387 (69.7%) 0 (.%) 81 (24.0%) 0 (.%)

 � Stage2 162 (29.2%) 0 (.%) 150 (44.4%) 0 (.%)

 � Stage3 6 (1.08%) 0 (.%) 150 (44.4%) 0 (.%)

AKI, acute kidney injury; AP, acute pancreatitis; BUN, blood urea nitrogen; DBP, diastolic blood pressure; GCS, Glasgow Coma Scale; HR, 
heart rate; ICU, intensive care unit; NE, vasopressors; PT, prothrombin time; PTT, activated partial thromboplastin time; RR, respiratory rate; 
SBP, systolic blood pressure; WBC, white blood cell count.

Table 1  Continued
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its respective name. The base models included logistic 
regression (Logit), support vector machine (SVM), 
classification tree (Cat), random forest (RF), XGBoost, 
LightGBM, AdaBoost and multilayer perceptron (MLP). 
During the construction of the ensemble model, itera-
tive computations revealed that using logistic regression 
as the meta-learner yielded the best results, Therefore, 
logistic regression (LogisticRegression) was used as the 
final model (final_estimator). By calling the fit method, 
the training data (x_train) and the corresponding labels 
(y_train) were input into the stacking classifier (clf). The 
stacking classifier automatically trains the base models 
internally and uses their predicted results as new features 
for the final model to make the ultimate predictions. This 
process enhances classification performance through the 
method of model fusion. By leveraging the strengths of 
multiple base classifiers, the stacking classifier integrates 
the outputs of these models, thereby, improving the 
overall accuracy and robustness of the predictions. In this 
process, labels such as ‘model_names’, ‘estimators’, ‘x_
train’ and ‘y_train’ are defined by us and can be modified 
as needed. Figure 4 illustrates the algorithmic composi-
tion of the stacked ensemble model (‘Multimodel’). In 
online supplemental file 3, we demonstrates the perfor-
mance of the ensemble model when using different base 
models as meta-learners.

Model validation
To validate the generalisation and predictive ability 
of the stacked ensemble model we constructed on 
other datasets, we first conducted internal validation 
using 30% of the testing dataset from the MIMIC-IV 
database. Subsequently, we treated MIMIC-III as an 
independent database and used its data for external 
validation of the model. During the external valida-
tion process, we applied the model to patient data 
from the MIMIC-III database and assessed its perfor-
mance and generalisation ability. By combining 
internal and external validation, we were able to 
comprehensively evaluate the performance of the 
constructed stacked ensemble model on different 
datasets, providing reliable support and guidance for 
further clinical applications.

Performance comparison of the model on the internal 
validation set
We developed nine machine learning models to 
predict the development of AKI in patients. Figure 5 
displays the discriminative performance of these 
nine models on the ROC curve. The ROC curve, also 
known as the receiver operating characteristic curve, 
is a comprehensive indicator reflecting the sensitivity 
(true positive rate) and specificity (true negative 

Figure 3  Feature election ased on Boruta lgorithm. (The x-axis represents the names of each variable, while the y-axis 
represents the z-values of each variable. Green boxes denote important variables selected by the algorithm, yellow boxes 
represent tentative variables and red boxes indicate unimportant variables. BUN, blood urea nitrogen; DBP, diastolic blood 
pressure; GCS, Glasgow Coma Scale; HR, heart rate; INR, International Normalised Ratio of Coagulation Function; PT, 
prothrombin time; PTT, partial thromboplastin time; RRespiratory ate; SBP).sba, rr, systolic blood pressure
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rate) of continuous variables. It describes the classi-
fier’s performance changes at different thresholds. 
The closer the curve is to the upper-left corner, 
the better the classifier’s performance. In practical 
scenarios, due to sample imbalance, the curve may 
lean towards a certain class. In such cases, the area 
under the curve (AUC) is used to evaluate the classi-
fier’s performance. AUC closer to 1 indicates better 
classifier performance. In addition, we evaluated and 
compared the model’s performance using metrics 
such as precision, accuracy, recall and F1 score.

Among the eight base models, the Logit model 
(AUC=0.824, precision=0.865, recall=0.749, F1 
score=0.803) demonstrated better predictive 
performance for AKI in AP patients with sepsis, 
followed by the RF model (AUC=0.822, preci-
sion=0.794, recall=0.877, F1 score=0.833), SVM 
model (AUC=0.821, precision=0.875, recall=0.696, 

F1 score=0.775), CatBoost model (AUC=0.815, preci-
sion=0.851, recall=0.766, F1 score=0.806), XGBoost 
model (AUC=0.813, precision=0.761, recall=0.930, 
F1 score=0.837), MLP model (AUC=0.812, preci-
sion=0.810, recall=0.871, F1 score=0.839), AdaBoost 
model (AUC=0.805, precision=0.802, recall=0.830, 
F1 score=0.816) and LightGBM model (AUC=0.803, 
precision=0.803, recall=0.813, F1 score=0.808). Using 
the SVM model (AUC=0.821) as a reference, both the 
Logit and RF models exhibited superior predictive 
abilities for AKI in AP patients with sepsis, while the 
abilities of the CatBoost, XGBoost, MLP, AdaBoost and 
LightGBM models were inferior to the SVM model. 
The performance of the ensemble model (Multi-
model) surpassed that of any single base learner, with 
an AUC value as high as 0.853 (0.792–0.896), indi-
cating stronger predictive capability. Table 2 provides 
detailed performance metrics for the nine models.

Figure 4  Composition of stacked ensemble model algorithm.
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The discriminative performance of the ensemble 
model (Multimodel) was the best, with the highest 
accuracy (0.798) and F1 score (0.853). From the 
precision-recall curve (figure  6), it can be observed 

that the Multimodel outperformed other models, 
demonstrating better classification performance and 
suggesting it as the optimal model with significant 
clinical utility.

Figure 5  Receiver operating characteristic curves of the nine models.

Table 2  Performance metrics of the model on the internal validation set

Models AUC Precision Accuracy Recall F1 score

Logit 0.824 0.865 0.745 0.749 0.803

SVM 0.821 0.875 0.721 0.696 0.775

Cat 0.815 0.851 0.745 0.766 0.806

RF 0.822 0.794 0.757 0.877 0.833

XGBoost 0.813 0.761 0.749 0.930 0.837

LightGBM 0.803 0.803 0.733 0.813 0.808

AdaBoost 0.805 0.802 0.741 0.830 0.816

MLP 0.812 0.810 0.769 0.871 0.839

Multimodel 0.853 0.858 0.798 0.848 0.853

AUC, area under the curve; MLP, multilayer perceptron.
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Performance comparison of the model on the external 
validation set
Online supplemental table 1 presents detailed perfor-
mance metrics for the nine models on the external vali-
dation set.

During the external validation stage, the stacked 
ensemble model exhibited an AUC value of 0.802 (0.732–
0.861), an accuracy of 0.715 and an F1 score of 0.834.

Model Interpretability
We developed a stacked ensemble model named ‘Multi-
model’ comprising eight machine learning algorithms. 
Given the opaque black-box nature of machine learning, 
we employed the Kernel-SHAP method for model inter-
pretation. The Kernel-SHAP method estimates the influ-
ence of features on prediction outcomes by computing 
the expected marginal contributions of feature values. 
It uses a kernel function to approximate Shapley values, 
thereby, avoiding the computational complexity of 
considering all possible feature subsets.

Through an analysis of feature importance based on 
Shapley additive explanation (SHAP) values, we demon-
strated the 19 predictive factors crucial for AKI occurrence 
(online supplemental figure 1a) and ranked the feature 
importance for each variable. Additionally, via a summary 
plot of SHAP values (online supplemental figure 1b), we 
described the contributions of each predictive factor to 
the outcome. In this plot, SHAP values exceeding 0 indi-
cate an increased risk of AKI occurrence, while values 
below 0 indicate a decreased risk.

The SHAP force plot visualises the model predictions 
as the results of feature contributions. By demonstrating 
how the stacked ensemble model generates predictions 
for four representative individuals, the model provides 
clinicians and patients with intuitive guidance, enhancing 
their understanding of how the model makes specific 
predictions.

In the internal validation set, we randomly selected 
four samples for individualised prediction of AKI. Online 

Figure 6  Precision-recall curve. (The relationship between precision and recall is described, where higher values indicate 
better classification performance of the model.).
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supplemental figure 2a,b display the SHAP force plots 
for two patients who experienced AKI. According to 
our model predictions, the first patient developed AKI 
during ICU stay, with a weight of 124 kg, vasopressor use 
during hospitalisation, a urine output of only 1546 mL, a 
minimum creatinine value of 55 µmol/L and a maximum 
white blood cell count of 22.1×109 /L, all higher than 
normal levels. On the other hand, the second patient 
who experienced AKI had a urine output of 1259 mL, 
a minimum PTT value of 23.6 s, a maximum creatinine 
value of 15 µmol/L, a minimum neutrophil count of 
10.058×109 /L and a minimum white blood cell count 
of 9.9×109 /L, all of which increased the risk of AKI 
occurrence. Online supplemental figure 2c,d depict 
two patients who did not develop AKI. The first patient 
had a maximum white blood cell count of 3.8×109 /L, a 
minimum creatinine value of 7.0 µmol/L and a minimum 
neutrophil count of 4.3092×109 /L, significantly lower 
than the levels seen in patients who developed AKI. This 
patient had a urine output of 2645 mL, higher than that 
of patients who developed AKI, and a GCS score of 14. 
According to the model prediction, this patient did not 
develop AKI. Meanwhile, the second patient who did not 
develop AKI had a weight of 73 kg, a maximum white 
blood cell count of 6.8×109 /L, a minimum creatinine 
value of 6.0 µmol/L, a minimum systolic blood pressure 
of 111 mm Hg, a urine output of 2200 mL and a GCS 
score of 14. The actual outcomes were consistent with the 
model predictions.

DISCUSSION
In identifying high-risk patients for AKI, the applica-
tion of artificial intelligence and machine learning algo-
rithms is somewhat limited, often built on the foundation 
of previous-generation models. Compared with more 
advanced algorithms, their accuracy tends to be rela-
tively limited. To enhance predictive efficiency, this study 
proposes the use of the SIML method, which involves 
integrating multiple algorithms.

Integrated technology refers to the utilisation of various 
machine learning algorithms or models to generate an 
optimal predictive model. Compared with using indi-
vidual base learners alone, the generated model typi-
cally exhibits better performance. Integrated technology 
mainly includes methods such as Bagging, Boosting and 
Stacking. In this study, Stacking method was chosen. 
Stacking technology can combine the prediction results 
of various models to form a more powerful meta-learning 
model. In this approach, the meta-learner uses predictions 
from different weak learners as feature inputs, learning 
how to best combine these input predictions to produce 
superior output predictions. By parallelly integrating 
predictions from different models, Stacking technology 
helps improve prediction accuracy, reduce variance, 
mitigate overfitting and enhance the robustness of the 
model.27 The process of stacking technology involves two 
key levels: first, training multiple independent machine 

learning models in the first level to obtain their respec-
tive performance scores; second, composing a meta-
learner in the second level that uses the predictions of 
the first-level models for training to enhance overall 
performance. Stacking method has the characteristic of 
integrating multiple classifiers while ensuring excellent 
performance.

This study is based on the MIMIC database and uses 
the Boruta algorithm for variable selection. Subsequently, 
multiple machine learning algorithms are employed to 
construct a prediction model, and a stacked ensemble 
model is successfully developed. Through repeated 
computations and validations, our model demonstrates 
excellent performance in both the training and valida-
tion sets. We constructed a prediction model based on 19 
key variables selected by the Boruta algorithm. In internal 
validation, the AUC value of this model reached 0.853, 
and it also performed well on other evaluation metrics. In 
external validation, our model achieved an AUC value of 
0.802, indicating good generalisation ability and effective 
prediction of the risk of AKI occurrence in AP combined 
with Sepsis patients. These results fully demonstrate 
the reliability and effectiveness of our model, providing 
important reference value for further research and clin-
ical practice.

We use SHAP values to reveal the black box of machine 
learning. SHAP values28 are a technique for explaining 
the prediction results of machine learning models. By 
calculating the contribution of each feature to the model’s 
prediction results, SHAP values reveal the prediction 
process of the model. The SHAP summary plot is a visu-
alisation used to show the contribution of each feature 
to the model’s prediction results. In the SHAP summary 
plot, the SHAP value of each feature is typically displayed, 
along with the direction of the feature’s impact on the 
prediction results (positive or negative). By observing the 
SHAP summary plot, one can intuitively understand the 
importance of each feature to the final prediction results, 
as well as how changes in feature values affect the predic-
tion results. This study revealed several key variables 
related to the risk of AKI occurrence in patients through 
the SHAP summary plot. Among these, an increase in 
urine output is associated with a decreased risk of AKI, 
while an increase in body weight is associated with an 
increased risk of AKI. Increases in white blood cells, 
neutrophils, serum creatinine, blood urea nitrogen, PT 
and PTT values are associated with an increased risk of 
AKI. Additionally, a decrease in minimum systolic blood 
pressure is associated with an increased risk of AKI occur-
rence in patients. The use of vasopressors and mechan-
ical ventilation is associated with an increased risk of AKI. 
Avoiding the use of antibiotics is associated with a reduced 
risk of AKI in patients. Higher GCS scores are associated 
with a decreased risk of AKI occurrence in patients.

Low blood pressure is considered essential for organ 
perfusion; therefore, hypotension is associated with poor 
prognosis. Currently, most studies focus on the relation-
ship between mean arterial pressure (MAP) and AKI. 
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A prospective observational study29 demonstrated that 
patients who developed AKI had significantly lower time-
adjusted MAP compared with those who did not prog-
ress to AKI (74.4 mm Hg vs 78.6 mm Hg, p<0.001). An 
MAP below 73 mm Hg was identified as an independent 
predictor of AKI progression. Low MAP may be insuffi-
cient to protect renal function, while elevated MAP is asso-
ciated with improved tubular function and lower serum 
creatinine levels.30 An experimental study31 revealed that 
animals in the low MAP group had higher median plasma 
creatinine levels than those in the high MAP group, with 
AKI incidence rates of 50% and 38% respectively at 12 
hours post-untreated sepsis. Almost all studies suggest 
that the kidneys’ autoregulatory capability is impaired 
under low MAP conditions, leading to inadequate renal 
perfusion. Furthermore, in cases of severe infection or 
shock, changes in microcirculation and reduced vascular 
reactivity may raise the autoregulatory threshold of the 
kidneys in response to MAP. Baek et al32 explored the 
optimal SBP range for patients with acute kidney injury 
in a retrospective study, finding a U-shaped relationship 
between SBP and the severity of AKI or 90-day mortality 
within 48 hours after AKI onset, indicating that both 
low and high blood pressures may have adverse effects. 
We propose that the kidneys are highly sensitive organs 
regarding blood flow perfusion, and early sepsis patients 
often exhibit hypotension, affecting the glomerular filtra-
tion rate. Systemic vasodilation and capillary leakage can 
reduce effective circulating blood volume, further exacer-
bating hypotension and organ perfusion deficits, thereby 
triggering or worsening AKI. Although these haemody-
namic changes activate the renin-angiotensin system, 
leading to renal vasoconstriction, this constriction may be 
insufficient to entirely compensate for reduced blood flow 
in the early stages. Moreover, early decreases in systolic 
blood pressure may worsen the microcirculatory dysfunc-
tion caused by the systemic inflammatory response in 
sepsis, adversely affecting the supply of oxygen and nutri-
ents to the kidneys, further aggravating renal injury.

Patients with pancreatitis complicated by sepsis often 
require vasopressor support, as fluid therapy alone is 
insufficient to correct the systemic vasodilation and 
endothelial dysfunction induced by sepsis.33 Addition-
ally, septic patients typically have low urine output, and 
aggressive fluid resuscitation or diuretic therapy can lead 
to an increased risk of fluid retention. Fluid overload is 
associated with poorer patient outcomes; in a retrospec-
tive study, Legrand et al34 identified a correlation between 
new-onset or persistent AKI and elevated central venous 
pressure (CVP), with venous congestion induced by fluid 
resuscitation increasingly recognised as a contributing 
factor to renal injury. Norepinephrine is the first-line 
agent for patients with sepsis, and its increasing dosage 
has been linked to a higher incidence of AKI progres-
sion, potentially due to excessive vasoconstriction in 
regional vascular beds. Furthermore, some studies indi-
cate that the use of diuretics may be associated with an 
increased risk of AKI. Loop diuretics can inhibit sodium 

reabsorption in the macula densa, thereby stimulating 
the renin-angiotensin-aldosterone system (RAAS) and 
leading to AKI, while some cases of AKI may stem from 
the combined effects of diuretics and other medications, 
including antibiotics, contrast agents and ACE inhibi-
tors/ARBs.35 Thus, appropriate fluid resuscitation can 
correct fluid losses and improve microcirculation and 
tissue oxygenation.

Previous studies have reported that the incidence of 
AKI within the first 48 hours of mechanical ventilation 
ranges from 15.5% to 17.1%.36 In the context of the patho-
physiology of sepsis, factors associated with AKI include 
impaired gas exchange and severe hypoxemia. Mechan-
ical ventilation may lead to haemodynamic changes,37 
such as hypotension and fluid-responsive shock, which 
affect tubular perfusion and decrease glomerular filtra-
tion rate (GFR) by reducing cardiac output and stimu-
lating hormonal and sympathetic nervous responses, 
ultimately resulting in AKI. Increasing evidence suggests 
that the pro-inflammatory effects of positive pressure 
ventilation (PPV) may be a contributing factor to AKI. 
Douillet et al38 demonstrated that mechanical ventilation 
can alter the expression of nucleotide and purinergic 
receptors in the kidneys, and inappropriate mechan-
ical ventilation strategies can induce the production of 
various inflammatory cytokines (such as IL-8 and mono-
cyte chemotactic protein), leading to apoptosis of renal 
epithelial cells.

Dysregulation of the immune system and the release 
of inflammatory factors are direct pathophysiological 
mechanisms underlying sepsis-related kidney injury.39 
Abnormal white blood cell counts, reflecting cellular 
immune dysregulation, may exacerbate the risk of AKI. 
Our study indicated that white blood cell count is a risk 
factor for the occurrence of AKI in sepsis patients, consis-
tent with previous research. Elevated white blood cell 
counts indicate the body’s response to infection but also 
signify the persistence of the inflammatory process.40 The 
release of inflammatory mediators may have direct toxic 
effects on the kidneys. When white blood cells become 
activated or accumulate in the microvasculature, this can 
further obstruct microcirculation, exacerbating renal 
hypoxia and damage, thereby promoting the onset of 
AKI.

The use of antibiotics in sepsis patients may lead to 
renal toxicity, particularly with certain classes such as 
aminoglycosides and β-lactams. Therefore, avoiding their 
use can alleviate renal burden, especially in cases where 
renal function is already compromised due to infection. 
Patients who do not receive antibiotics may, to some extent, 
maintain their immune balance, relying on their immune 
response to address mild or early infections, which can 
help reduce systemic inflammation and decrease the 
risk of AKI. Furthermore, antibiotics may disrupt the gut 
microbiome balance, and a healthy microbiome is crucial 
for regulating immune responses and combating infec-
tions. Patients not receiving antibiotics typically exhibit 
milder infection symptoms, which may correlate with 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 11, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
26 F

eb
ru

ary 2025. 
10.1136/b

m
jo

p
en

-2024-087427 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


14 Li F, et al. BMJ Open 2025;15:e087427. doi:10.1136/bmjopen-2024-087427

Open access�

other favourable baseline characteristics and a lower risk 
of AKI. It is important to note that the observed associa-
tion based on SHAP values from model visualisation does 
not necessarily imply that antibiotic use directly leads to 
an increase in AKI. Our conclusions primarily suggest 
a potential relationship between the two, rather than a 
direct causal link. Future research should focus on the 
use of specific antibiotics and their specific impact on the 
risk of AKI, as well as a deeper exploration of the under-
lying mechanisms.

In summary, weight gain is associated with an increased 
risk of AKI, therefore, clinicians should develop person-
alised fluid management plans based on individual 
patient characteristics. In particular, for obese patients, 
careful assessment of fluid intake and medication 
dosages is necessary to avoid excessive fluid overload and 
the subsequent risk of AKI. Physicians should regularly 
monitor blood pressure in septic patients and, if neces-
sary, take timely measures for fluid resuscitation and the 
use of vasoactive medications to ensure adequate renal 
perfusion. When using diuretics, it is essential to carefully 
evaluate their necessity, especially in patients with insuf-
ficient fluid load, and prioritise alternative management 
strategies to avoid impacting renal function. Given that 
fluid overload is associated with poor outcomes in AKI, 
fluid therapy should involve individualised management, 
with regular assessments of the patient’s fluid status. In 
particular, after large-volume fluid resuscitation, ongoing 
monitoring of central venous pressure (CVP) and urine 
output is crucial for the timely detection and correction 
of fluid overload. If mechanical ventilation is required, 
attention should be paid to the choice of ventilation 
strategy to optimise ventilation modes and minimise 
potential adverse effects on the kidneys while enhancing 
haemodynamic management. Additionally, monitoring 
of the inflammatory status in septic patients should be 
strengthened to promptly identify bacterial infections 
and inflammatory responses and to develop effective anti-
inflammatory strategies. Given the association between 
AKI and coagulopathy, enhanced monitoring of coagula-
tion function is needed, along with heightened vigilance 
regarding the risk of bleeding.

Our model successfully predicted whether patients 
would experience AKI during their ICU stay. This study 
provides strong support for identifying the likelihood of 
AKI occurrence in AP patients with concomitant Sepsis, 
aiding in better prevention and management of such 
complications in clinical practice.

In this study, there are several noteworthy limitations. 
(1) Given the use of a large public database with many 
missing values in patient medical records, the perfor-
mance of our model largely depends on the accuracy of 
data recording, which may introduce some degree of bias. 
(2) While feature selection was performed during model 
construction to reduce complexity and improve generali-
sation, and L1 and L2 regularisation methods were intro-
duced to prevent overfitting, in the external validation 
cohort, although the AUC value of the ensemble model 

was relatively high, it did not reach the optimal level. This 
could be attributed to the smaller sample size and poorer 
data quality during both model construction and external 
validation. (3) Theoretically, all sepsis patients should 
receive antibiotic treatment, however, in the MIMIC-IV 
database, not all patients received antibiotics, leading to 
potential discrepancies from theoretical expectations, 
while the lower antibiotic usage rate in the MIMIC-III 
database can be partially attributed to its smaller sample 
size. (4) The model still has certain shortcomings in 
explaining the pathophysiology of disease occurrence. 
(5) Due to the inability to obtain patients’ BMI data, 
there may be some differences in the study conclusions 
compared with existing research.

CONCLUSION
The stacked ensemble model, named ‘Multimodel,’ 
developed in this study, achieved AUC values of 0.853 and 
0.802 in internal and external validation cohorts, respec-
tively. It performed excellently on other metrics as well, 
making it a reliable tool for predicting AKI in patients 
with acute pancreatitis complicated by sepsis. Addition-
ally, the SHAP model explanation method aids physicians 
in understanding and evaluating prediction results, thus, 
facilitating the development of personalised treatment 
plans.
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