

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association between targeted temperature management and reduction of brain death post cardiac arrest

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085851
Article Type:	Original research
Date Submitted by the Author:	27-Feb-2024
Complete List of Authors:	paul, marine; Centre Hospitalier de Versailles, icu hickel, charles; Centre Hospitalier de Versailles Troché, Gilles; Centre Hospitalier de Versailles laurent, virginie; Centre Hospitalier de Versailles richard, olivier; Centre Hospitalier de Versailles merceron, sybille; Centre Hospitalier de Versailles Legriel, Stephane ; Centre Hospitalier de Versailles
Keywords:	Out-of-Hospital Cardiac Arrest, Brain Injuries, Death, Sudden, Cardiac

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez ony

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3 4 5	1	Association between targeted temperature management and reduction of
5 6 7	2	brain death in severe anoxic brain injured patients post cardiac arrest
8 9	3	Marine Paul, MD ^{1,2} , Charles Hickel, MD ¹ , Gilles Troché, MD ¹ , Virginie Laurent, MD ¹ , Olivier
10 11	4	Richard, MD ³ , Sybille Merceron, MD ¹ , and Stéphane Legriel, MD, PhD ^{1,2,4}
12 13	5	¹ Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay,
14 15 16	6	France
17 18	7	² AfterROSC Study Group, Paris, France
19 20	8	³ SAMU 78, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay, France 4
21 22	9	⁴ University Paris-Saclay, UVSQ, INSERM, CESP, Villejuif, France
23 24	10	Correspondent
25 26 27	11	Marine Paul, MD
27 28 29	12	Intensive Care Department, Centre Hospitalier de Versailles - Site André Mignot, 177 Rue de
30 31	13	Versailles, 78150 Le Chesnay, France
32 33	14	mpaul@ght78sud.fr
34 35	15	Twitter: @Marine_PAUL
36 37	16	ORCID: 0000-0002-0717-9555
38	17	What is already known on this topic ? Targeted temperature management could theoretically
40 41	18	limit the evolution to brain death after cardiac arrest decreasing intracranial pressure.
42	19	What is our hypothesis? Some patients with very severe anoxic brain injuries may have been
43 44	20	at risk of progressing towards brain death, but the application of therapeutic hypothermia could
45	21	have prevented this progression, potentially reducing the pool of potential organ donors post
46 47 48	22	cardiac arrest.
49	23	What this study adds ? In this study, targeted temperature management during 24 h after CA
50 51	24	was not associated with evolution to brain death (BD). But BD was associated with longer no-flow
52	25	plus low-flow time, a neurological injury or hanging as the cause of CA, and high PaCO ₂ between
53 54	26	days 1 and 2 after admission.
55 56	27	How this study might affect research, practice or policy? Further studies are warranted to
57 58 59	28	find subgroups of post-CA patients for whom TTM is especially beneficial or futile.
60	29	

30 Abstract

Background : Targeted temperature management (TTM) has recently been challenged after cardiac arrest (CA). It is imperative to question situations where TTM might prove ineffective or even futile. Our hypothesis posits that some patients with very severe anoxic brain injuries may have been at risk of progressing towards brain death (BD), but the application of TTM could have prevented this progression, potentially reducing the pool of potential organ donors. We investigated whether there was a negative association between the use of TTM and BD after CA.

Methods: Monocentric and retrospective study including comatose survivors after CA who died from BD or post-anoxic encephalopathy (PAE) after 24 hours. To identify the independent association between the TTM and BD , we performed a multivariable logistic regression analysis.

Results: Of 256 patients included between 2005 and 2021, 75% of patients received a TTM ≥12 hours, 54,3 % a TTM ≥24 hours and 56 (21.9%) died from BD. In multivariable analysis, TTM ≥24 hours was not associated with decrease of BD (OR 1.08, 95% CI 0.51–2.32] in a multivariate analysis taking into account factors associated with BD occurrence. Factors associated with BD were total duration of no-flow plus low-flow >30 minutes, CA due to neurological cause or hanging (OR 6.49, 95% CI 2.49–17.90, p < 0.001) and a high arterial partial pressure of carbon dioxide (PaCO₂) between days 1 and 2 after admission >45 mmHg (6 kPa) (OR 3.92, 95% CI 1.82–9.00, p < 0.001).

Conclusion : In our selected population of severe brain damage patients post CA, TTM was
 not associated with less BD. Further studies are warranted to find subgroups of post-CA
 patients for whom TTM is especially futile limiting the passage to brain death.

Key words: cardiac arrest, brain death, targeted temperature management, post anoxic
 encephalopathy, organ donor.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

57 Introduction

Despite improved practices, mortality after cardiac arrest (CA) remains very high, with an average hospital survival rate of only 30%.[1] Withdrawal of life-sustaining therapy (WLST) for irreversible post-anoxic encephalopathy (PAE) is the primary reason for death after CA.[2] Targeted temperature management (TTM) has long been considered the only neuroprotective treatment proven to improve neurological outcomes until recently being challenged in comatose survivors after CA [3]. One of the key pathways through which TTM may confer neuroprotection in post cardiac arrest patients is by reducing intracranial pressure and brain edema, maintaining cerebral perfusion and preventing secondary brain injury. [4–6] Identification of subgroups of patients who are better candidates for TTM based on pathophysiology is the new objective.

It is crucial to question the scenarios where TTM might be ineffective or even futile. In cases of severe anoxic brain injury, patients may progress to a state of brain death. Indeed 10% of CA patients died after brain death[7]. Through its mechanisms of action, TTM may prevent or delay the irreversible anoxic neurological damage that leads to brain death in these post CA patients. In this context, it is legitimate to inquire whether the early implementation of TTM in patients with significant cerebral anoxia could potentially prevent this progression towards brain death without necessarily improving neurological outcomes. These patients may subsequently pass away due to Withdrawal of Life-Sustaining Treatment (WLST). Our hypothesis posits that some patients with very severe anoxic brain injuries may have been at risk of progressing towards brain death, but the application of therapeutic hypothermia could have prevented this progression, potentially reducing the pool of potential organ donors from BD. The objective of the study was to evaluate whether there is a negative association between TTM and BD after CA.

2	
3 4	85
5 6	86
7 8	87
9 10	88
11 12	89
13 14	90
15 16	91
17 18	92
19 20	93
21 22	94
23 24 25	95
25 26 27	96
27 28 29	97
30 31	98
32 33	99
34 35	100
36 37	101
38 39	101
40 41	102
42 43	103
44 45	104
46 47	105
48 49	106
50 51	107
52 53	108
54 55	109
56 57	110
58 59	111
60	112

Methods

Patient and public involvement

This single-center, retrospective, observational cohort study was conducted using a prospectively collected dataset from Versailles hospital (NCT03594318). Data collection was approved by the Ethics Committee of the French Intensive Care Society (#CESRLF 20-41) which waived the requirement for written consent in accordance with French law on retrospective studies of anonymized data. The study was conducted according to French health authorities' regulations (French Data Protection Authority #MR004_2209691). The study is reported according to the STROBE statement.

Study Setting and ICU Management

The management protocol for patients admitted to our ICU after CA is in accordance with international guidelines. Before 2016, TTM was induced then maintained by ice packs at the groin and neck and a cold-air tunnel around the patient's body. After, the cooling system was automated temperature controlled with the Criticool ® or Articsun ® device. The targeted temperature was 33°C for patients in coma after an out-of-hospital cardiac arrest (OHCA) and initial shockable rhythm until 2013; after 2013, it was 33°C for patients with OHCA with initial shockable rhythm and 36°C or fever control for other patients during 24 hours. Rewarming was progressive in 0.25–0.5°C increments, passively before 2016 and actively controlled after. During the first 72 hours of ICU stay, treatments were adapted to maintain homeostasis with glucose control, normocapnia with pH stat strategy, inspired fraction of O₂ titrated for arterial saturation of 94-98%, and mean arterial pressure (MAP) 65-75 mmHg. Among patients who were still comatose 72 hours after return of spontaneous circulation (ROSC) and after sedation discontinuation, a multimodal prognostication protocol was used to identify patients with irreversible PAE. This protocol was consistent with international guidelines since 2005[8-11].

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

113 Study Objective

114 Our objective was to search for an independent negative association between TTM and BD in 115 a population of very severe brain damaged patients post CA.

116 Study Population

All adults admitted into the ICU following an OHCA or an in-hospital CA in a comatose state with a sustained ROSC between January 2005 and June 2021 and who ultimately died from BD or PAE were included. This restricted population corresponds to the patients with the most severe brain damage in whom a positive outcome is unlikely an TTM could be potentially futile. We excluded patients whose CA occurred in the ICU, those not in a coma, and patients who died within 24 hours. We did not include patients who were discharged alive from the ICU and those who died from another cause than BD or PAE (refractory shock, recurrence of CA, refractory acute respiratory distress syndrome, WLST due to comorbidities, and secondary shock).

Definitions

PAE deaths corresponded to WLST due to irreversible post-anoxic coma or vegetative state according to prognostication guidelines[8-10]. BD corresponded to the cessation of cerebral vascularization secondary to intra-cranial hypertension. The diagnosis of BD was based on the French definition: clinical diagnosis of deep coma (Glasgow Coma Scale 3), loss of all brainstem reflexes, and the demonstration of apnea during a hypercapnia test with a rise in arterial partial pressure of carbon dioxide (PaCO₂) after a 10-minute disconnection from a base value to ≥50 mmHg (6.6 kPa). Ancillary tests (e.g., cerebral CT angiograph or two isoelectric and unreactive electroencephalograms of 30 minutes duration, 4 hours apart) were used to confirm BD.[12]

136 Data Collection

Demographic characteristics and data related to CA were prospectively collected in an
 below betoe be

Page 7 of 22

BMJ Open

a	s	а	l
gi	С	al	,
D	h	e	r,
2	aı	r	е
ະເ	J	va	a
р	aı	ra	ır
ee	en	(d
(0	nl	ly
f	С	le	2
h	,	w	/6
B	BD)[2	2
ı	0	f	Т
С	e	re	el
e	nt	t	а
nt	ia	ıti	С
а			
or		n	u
• •	di	e	d
bl	e	s	а
n	tif	fy	i
s	ul	bj	e
V	ar	ia	al
J	to)	t
יר	ر ا د		

defibrillations, and administration of epinephrine. The final etiology of CA was so reported, with classification of patients into five groups (cardiac, respiratory, neurolog hanging, or other cause) by two authors (C.H. and M.P.) who were blinded from each of and a third (S.L.) in case of disagreement. This classification is intended to isolate cardiac sts at higher risk of intracranial hypertension such as neurological causes or hanging. In-IC riables were also collected: post-resuscitation shock, use of TTM, secondary brain insult meters (e.g., minimal and maximal serum sodium, temperature, MAP, and PaCO₂ betwe ays 1 and 2 after admission, excluding the PaCO₂ after the apnea test for BD diagnosis). y a TTM ≥24 hours was considered complete. While Witten et al. described cause of ath into five categories, pooling BD and PAE in the same group of neurological death e choose to dichotomize PAE with neurological withdrawal of life-sustaining therapy and]. To further investigate the association of TTM with BD we recorded: depth and duration TM, date of death, and cerebral oedema on the CT scan during the first day of admission. bral oedema was collected from the report of radiologist in the medical record of each patie and CT were not reanalyzed. When reports mentioned a loss of gray-white matter differen on or a brain swelling or a cerebral oedema we considered a presence of cerebral oedema

Statistical Analysis

Values are presented as medians and interguartile ranges (IQRs) o imbers and percentages, as appropriate. Univariate comparisons between patients who from BD or PAE were performed using the Mann–Whitney U test for continuous variab and the Chi-square or Fisher's exact tests for categorical variables, as appropriate. To ide ndependent association between TTM≥ 24 and BD, we compared subjects with BD and ect with PAE using univariate analysis then logistic regression. Before performing the multiv ble analysis, non-log-linear variables were transformed into dummy variables according heir median value. Non-collinear variables that yielded p values < 0.05 by univariate analysis, TTM \geq 24 and variables deemed clinically relevant were considered for the multivariable model. Associations of factors with BD are reported as odds ratios (OR) with their associated 95% confidence intervals (CI). The Hosmer-Lemeshow goodness-of-fit test and area under the Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> receiver operating characteristics curve estimated by the C-statistic were computed on the final models. Missing data were uncommon and were handled using case complete analysis. All tests were two sided and *p* values < 0.05 were considered significant. Finally, we performed a sensitive analysis after exclusion of patients managed with TTM 36°C to assess only TTM 33°C vs no TTM. All analyses were performed using R program version 4.0.1 (R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org; accessed March 13, 2021).

176 Data Availability

The anonymized datasets used and/or analyzed during the current study are available from
the corresponding author upon reasonable request and with permission from the Centre
Hospitalier de Versailles.

181 Results

Figure 1 is the patient flow chart. From January 2005 to June 2021, 918 patients were admitted for CA, among whom 662 were excluded :76 patients CA occurred in the ICU, 40 were not comatose after ROSC, 148 died early within the first 24 hours, 160 died of another cause than BD or PAE and 238 discharged alive from the ICU. Ultimately, 256 patients were retained in the study.

1 187 Patient Features and Outcomes

Among the 256 patients, 75% of patients received a TTM ≥12 hours (60,7% in BD group and 79,0% in PAE group, P=0,005) and 54,3 % a TTM ≥24 hours (44,6% in BD group and 57 % in PAE group, P=0,10). Fifty-six patients (21.9%) died from BD and 200 (78.1%) from PAE within a median (IQR) time of 4 (2–5) and 7 (5–9) days, respectively. The characteristics of patients studied according to their progression to BD or PAE are shown in Table 1. Patients who died from BD were younger (58 vs 65 years, p < 0.001) and less frequently had witnessed CA (64.3% vs 81.5%, p = 0.006) and initial shockable rhythm (16.1% vs 37.0%, p = 0.003) than patients who died from PAE. Median (IQR) no-flow plus low-flow was longer in the BD group (36 [28–45] vs 30 [20–37] minutes, p = 0.001) and admission lactate was higher (6.4

BMJ Open

[4.8–9.4] vs 5.4 [2.9–7.5] mmol/L, p = 0.003). The cause of CA varied significantly between the two groups, with more neurological causes and hangings in patients who died from BD (p < 0.001). When the initial etiologic brain CT scan was performed, cerebral edema was more frequent in the BD group (18/32 (56.3%) vs 18/88 (20.5%), p < 0.001). The CT scan was performed at a median (IQR) of 3 hours [2-11] after cardiac arrest with no difference between groups. TTM ≥24 hours was used somewhat less frequently in the BD vs PAE group (44.6% vs 57.0%), but this was not statistically significant (p = 0.10). The BD group had higher maximal temperature, maximal PaCO₂, maximal MAP, and maximal serum sodium between days 1 and 2 after admission (Table 1). Among 22/56 (39%) patients who gave organ, 12/22 (55%) patients had a cerebral CT angiograph confirming cerebral vascular arrest and 10/22 (45%) patients had 2 EEG confirming isoelectric EEG.

208 Factors Independently associated with BD

TTM \geq 24 hours was not significantly associated with BD (OR 1.08, 95% CI 0.51–2.32, *p* = 0.80; Table 2). The following factors were independently associated with an increase in BD: no-flow plus low-flow duration >30 minutes (OR 3.17, 95% CI 1.48–7.23, *p* = 0.004), CA due to neurological cause or hanging (OR 6.49, 95% CI 2.49–17.90, *p* < 0.001) and a high PaCO₂ between days 1 and 2 after admission >45 mmHg (6 kPa) (OR 3.92, 95% CI 1.82–9.00, *p* < 0.001). After exclusion of patients managed with TTM 36°C, the association between TTM 33 and BD was still not statistically significant (OR 0,43, 95% CI 0.16–1.17, p=0.093) (ESM).

216 Discussion

In this retrospective analysis of 256 patients with severe anoxic cerebral injuries post CA, 56 patients (21.9%) died of BD within a median (IQR) time of 4 (2–5) days and 200 (78.1%) died from PAE in 7 (5–9) days. Whereas TTM \geq 24 hours was not significantly associated with BD, duration of no-flow plus low-flow >30 minutes, CA due to neurological cause or hanging, and highest PaCO₂ >45 mmHg (6 kPa) between days 1 and 2 after admission were independently associated with increased likelihood of BD.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

TTM has sparked debates in recent years as a potential neuroprotective intervention post CA. [14,15] Its effectiveness remains to be determined, especially in a subset of patients. Additionally, TTM is not without cardiac, hemorrhagic, and hydroelectrolytic risks, and it can also delay neurological assessment. Indeed, TTM requires the administration of sedation to tolerate cooling, a debate treatment in 2024 as it is the primary confounding factor in the neurological assessment post-cardiac arrest, which is a cornerstone of post-resuscitation care. Given these complexities, it is imperative to scrutinize situations where TTM may prove futile.

During TTM, the decrease in cerebral blood flow, following the decrease in metabolic consumption, contributes to the decrease in intracranial pressure by direct reduction of the volume of the intravascular compartment. This effect is mediated in particular by the physiological decrease in PaCO₂ following the decrease in temperature. [16] Therefore, TTM at 35–36°C remains one of the treatments for intracranial hypertension, as a "tier-three" option in international recommendations.[17] Based on physiology, we hypothesize that certain patients with extremely severe anoxic brain injuries might have been prone to advancing towards brain death (BD). [18] However, the implementation of TTM could have hindered this progression without enhancing neurological outcomes, thereby delaying neurological assessment and potentially diminishing the pool of potential organ donors from BD. This is, in our opinion, a relevant question, as the main cause of post-CA death is neurological and BD represents 10–12% of CA deaths. [1,2]. WLST patients post CA could potentially become organ donors through the Maastricht III procedure, although this form of donation is less common than donation after BD.

In our study, 139 patients (54.3%) had a complete TTM \ge 24 hours. TTM \ge 24 hours was not statistically associated with a reduction in BD in multivariable analysis (OR 1.08, 95% CI 0.51–2.32, *p* = 0.80). In TTM studies, the authors did not provide any information on death from BD in either group.[14,19] In the HYPERION study, BD accounted for 10.4% and 12.6% of deaths in each group, respectively, without any statistical comparison.[15] A study looked at the risk factors for progression to BD after OHCA based on data at admission to the ICU, without succeeding in demonstrating a significant association. Among 246 patients included,

BMJ Open

71 (29%) had TTM, with less TTM in the BD group (17%) compared to 32% in the Cerebral Performance Category 3-4-5 group without BD, although this difference was not significant.[20] More recently, a French team reported a predictive score for BD post-OHCA based on 1,056 patients, among whom 83.4% received TTM and 161(15.2%) evolved towards BD. TTM was not associated with BD compared with patients who died from another cause.[21,22] The selection of the population did not seem ideal in order to answer the question of the role of TTM in the evolution to BD. In our study, the exclusion of patients who were discharged alive from the ICU and those who died of a cause other than BD or PAE could help us to target the population of interest (i.e., those with severe anoxic brain damage), for whom TTM may have an effect. In addition, the exclusion of patients who died early made the population more homogeneous with respect to TTM exposure.

27 263

We highlight three independent risk factors for BD in this selected population of severe brain damaged patients. Duration of no-flow plus low-flow >30 minutes was associated with increased risk of BD, related to the extent of the initial brain insult. Cour et al. reported a low-flow duration >16 minutes as a risk factor for progression toward BD.[22] CA from neurological cause and hanging was independently associated with BD, as has been reported in literature.[21-23] Neurological causes will directly increase the volume of the parenchymal or cerebrospinal fluid compartment and may be associated with a loss of cerebral autoregulation. Hanging will also add cerebral hypoxia before CA. Unfortunately, subgroup analysis of neurological or hanging causes could not be performed due to the small numbers of patients. Interestingly, maximal PaCO₂ >45 mmHg (6 kPa) during between days 1 and 2 after admission was also associated with progression to BD. PaCO₂ is one of the pillars in the control of secondary brain injury by being the main regulator of cerebral blood flow.[4] In the literature, the occurrence of hypocapnia or hypercapnia within 24 hours after CA is associated with an unfavorable neurological prognosis with an OR >2.[24] Results from a prospective, multicenter, randomized phase II trial of 86 post-CA patients showed that therapeutic mild hypercapnia during the first 24 hours (PaCO₂ 50-55 mmHg (6.6-7.3 kPa)) attenuated neuron-specific

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

enolase release compared with normocapnia (PaCO₂ 35–45 mmHg (4.6-6 kPa)). There was no significant difference in mortality or neurological outcome at 6 months. The authors reported no cases of intracranial hyper pressure and no cases of cerebral edema. No details were given regarding TTM.[25] Finally, in a recent multicenter study, it seems that PaCO₂ has a U-shaped association with in-hospital mortality with a risk for $PaCO_2 < 35$ (4.6) and >55 mmHg (7.3 kPa), without any data on the causes of death. [26] We can assume that, in some post-CA patients, the cerebral protection mechanisms would be exceeded and hypoxic lesions were already too advanced. Patients in the BD group more often had a cerebral edema on their admission CT (56.3% vs 20.5%, p < 0.001). This early edema may reflect a more injured blood-brain barrier after CA, worsened by an altered cerebral autoregulation.[27-29] The initial cerebral oedema could be aggravated by a high PaCO₂ which could favor the evolution towards BD. This evolution could be slowed down in patients undergoing TTM, but the outcome would still be unfavorable with a secondary PAE in this population.

31 293

We acknowledge some limitations. The first limitation of our study is the retrospective nature of the outcome analysis strategy. Second, the study period may reflect variations in practice, particularly after the publication of the TTM and HYPERION trials, which modified the recommendations on post-CA TTM.[14,15] Although in our sensitivity analysis considering only patients managed with TTM 33°C excluding patients managed at TTM 36, we still did not find a significant association between TTM and BD. Thirdly, this is a single-center study, and the recruitment may have been biased because the rate of CA of neurological cause may have been lower due to the absence of neurosurgery in the hospital. However, our recruitment represents a vast geographic area of western Paris. Fourthly, the population was restricted to patients who died from BD or PAE, which does not allow us to compare our population with the literature nor to answer the question of the incidence of post-CA BD. But we wanted to test our hypothesis on the most severely brain injured CA patients. For this reason, we did not include patients who were discharged alive, as their neurological impairment was by definition less severe, and currently, based on the literature, we cannot question the neuroprotective

BMJ Open

3 4	308
5 6	309
7 8	310
9 10	311
11 12	312
13 14	313
15 16	314
17 18	315
19 20	316
21 22 22	317
25 24 25	318
26 27	319
28 29	320
30 31	321
32 33	322
34 35	323
36 37	324
38 39 40	325
40 41 42	326
43 44	327
45 46	328
47 48	329
49 50	330
51 52	331
53 54	332
55 56	333
57 58	334
60 60	335

effect of TTM in this patient population. Fifthly, it cannot be excluded that self-fulfilling prophecy limits the results of the study. Indeed, patients judged to be more severe by the clinician may have been less likely to be put on TTM, which may have been considered futile. For this reason, we decided to exclude – from the outset – patients who died within 24 hours, among whom 17 died of BD. Moreover, we decided to define TTM use with TTM ≥24 hours, we also potentially minimize the effect of TTM on the primary outcome. In the same aspect, the fact that we used TTM 33 and 36°C in the population could be a limitation.

316 Conclusion

In our selected population of severe brain damage patients post CA with unfavorable neurological issue, TTM was not associated with less BD. Further studies are warranted to find subgroups of post-CA patients for whom TTM is especially futile limiting the passage to brain death in patients who will not wake up anyway.

5 323 Glossary

- 7 324 **BD** = brain death; **CA** = cardiac arrest; **CI** = confidence interval; **CPR** = cardiopulmonary
- ⁹ 325 resuscitation; **ICU** = intensive care unit; **IQR** = interquartile range; **MAP** = mean arterial
- ¹ 326 pressure; **OHCA** = out-of-hospital cardiac arrest; **OR** = odds ratio; **PaCO**₂ = arterial partial
- ³ 327 pressure of carbon dioxide; **PAE** = post-anoxic encephalopathy; **ROSC** = return of
- $\frac{1}{2}$ 328 spontaneous circulation; **TTM** = targeted temperature management; **WLST** = Withdrawal of
- 329 life-sustaining therapy.
- **Declarations**
- 52 331 Acknowledgement
- The authors thank the *Centre Hospitalier* de *Versailles* and Jenny Lloyd (MedLink Healthcare
- 56 333 Communications Ltd.) for editorial assistance.
- ⁶⁰ 335 **Conflict of interest statement:**

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

ו ר		
2 3 4	336	No
5 6 7	337	Fo
8 9 10	338	Th
11 12	339	со
13 14	340	
15 16	341	Αι
17 18	342	M
19 20 21	343	fin
21 22 23	344	Μ
23 24 25	345	m
26 27	346	da
28 29	347	Cł
30 31	348	ine
32 33	349	G
34 35	350	ine
36 37	351	VL
38 39	352	ine
40 41 42	353	O
42 43	354	SI
44 45 46	355	ine
40 47 48	356	SL
49 50	357	m
51 52	358	da
53 54	359	Re
55 56	360	1
57 58	361	rel
59 60	363	2
		-

one of the authors has any conflicts of interest to declare.

ormatting of funding sources

- nis research did not receive any specific grant from funding agencies in the public,
- ommercial, or not-for-profit sectors.

uthor contributions

- arine Paul and Charles Hickel wrote the first draft of the paper. All authors approved the
- al version of the manuscript.
- P: Major role in the acquisition of data, Study concept or design, Drafting/revision of the
- anuscript for content, including medical writing for content; Analysis or interpretation of
- ata;
- H: Major role in the acquisition of data, Drafting/revision of the manuscript for content,
- cluding medical writing for content;
- T: Major role in the acquisition of data Drafting/revision of the manuscript for content,
- cluding medical writing for content;
- -: Major role in the acquisition of data Drafting/revision of the manuscript for content,
- cluding medical writing for content;
- R: Major role in the acquisition of data
- M: Major role in the acquisition of data Drafting/revision of the manuscript for content,
- cluding medical writing for content;
- .: Major role in the acquisition of data, Study concept or design, Drafting/revision of the
- anuscript for content, including medical writing for content; Analysis or interpretation of
- ata;
- eferences

Lemiale V, Dumas F, Mongardon N, et al. Intensive care unit mortality after cardiac arrest: the lative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972-

Witten L, Gardner R, Holmberg MJ, et al. Reasons for death in patients successfully

1 2		
2 3 4	364	resuscitated from out-of-hospital and in-hospital cardiac arrest. Resuscitation. 2019;136:93-9.
5 6 7 8 9 10 11	365 366	3 Arrich J, Holzer M, Havel C, <i>et al.</i> Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. <i>Cochrane Database Syst Rev.</i> 2016;2:CD004128.
	367 368 369	4 Vigué B, Ract C, Zlotine N, <i>et al.</i> Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury. <i>Intensive Care Med.</i> 2000;26:722–8.
12 13 14	370 371	5 Wu C, Xu J, Jin X, <i>et al.</i> Effects of therapeutic hypothermia on cerebral tissue oxygen saturation in a swine model of post-cardiac arrest. <i>Exp Ther Med.</i> 2020;19:1189–96.
15 16 17	372 373	6 Andrews PJD, Sinclair HL, Rodriguez A, <i>et al.</i> Hypothermia for Intracranial Hypertension after Traumatic Brain Injury. <i>N Engl J Med.</i> 2015;373:2403–12.
18 19 20 21	374 375 376	Sandroni C, D'Arrigo S, Callaway CW, <i>et al.</i> The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. <i>Intensive Care Med.</i> 2016;42:1661–71.
22 23 24 25	377 378 379	8 Monsieurs KG, Nolan JP, Bossaert LL, <i>et al.</i> European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive Summary. <i>Resuscitation</i> . doi: 10.1016/j.resuscitation.2015.07.038
26 27	380 381	9 Nolan JP, Soar J, Zideman DA, <i>et al.</i> European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. <i>Resuscitation</i> . 2010;81:1219–76.
28 29 30	382 383	10 Nolan J, European Resuscitation Council. European Resuscitation Council guidelines for resuscitation 2005. Section 1. Introduction. <i>Resuscitation</i> . 2005;67 Suppl 1:S3-6.
31 32 33 34	384 385 386	 Nolan JP, Sandroni C, Böttiger BW, <i>et al.</i> European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. <i>Intensive Care Med.</i> Published Online First: 2021. doi: 10.1007/s00134-021-06368-4
35 36 37	387 388	Jousset N, Gaudin A, Mauillon D, <i>et al.</i> Organ donation in France: legislation, epidemiology and ethical comments. <i>Med Sci Law.</i> 2009;49:191–9.
38 39 40 41 42 43 44 45 46	389 390 391 392 393 394 395	13 Nolan JP, Berg RA, Andersen LW, <i>et al.</i> Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). <i>Resuscitation</i> . Published Online First: 27 August 2019. doi: 10.1016/j.resuscitation.2019.08.021
47 48 49	396 397	14 Dankiewicz J, Cronberg T, Lilja G, <i>et al.</i> Hypothermia versus Normothermia after Out-of- Hospital Cardiac Arrest. <i>N Engl J Med.</i> 2021;384:2283–94.
50 51 52	398 399	Lascarrou J-B, Merdji H, Le Gouge A, <i>et al.</i> Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. <i>N Engl J Med.</i> 2019;381:2327–37.
53 54 55	400 401	16 Odri A, Geeraerts T, Vigué B. [Hypothermia and cerebral protection after head trauma. Influence of blood gases modifications]. <i>Ann Fr Anesth Reanim</i> . 2009;28:352–7.
56 57 58 59 60	402 403 404	17 Hawryluk GWJ, Aguilera S, Buki A, <i>et al.</i> A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). <i>Intensive Care Med.</i> 2019;45:1783–94.

Nishikimi M, Ogura T, Nishida K, et al. Differential effect of mild therapeutic hypothermia depending on the findings of hypoxic encephalopathy on early CT images in patients with post-cardiac arrest syndrome. Resuscitation. 2018;128:11-5. Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197-206. Adrie C, Haouache H, Saleh M, et al. An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med. 2008;34:132-7. Madelaine T, Cour M, Roy P, et al. Prediction of Brain Death After Out-of-Hospital Cardiac Arrest: Development and Validation of the Brain Death After Cardiac Arrest Score. Chest. Published Online First: 8 June 2021. doi: 10.1016/j.chest.2021.01.056 Cour M, Turc J, Madelaine T, et al. Risk factors for progression toward brain death after out-of-hospital cardiac arrest. Ann Intensive Care. 2019;9. doi: 10.1186/s13613-019-0520-0 Arnaout M, Mongardon N, Deye N, et al. Out-of-hospital cardiac arrest from brain cause: epidemiology, clinical features, and outcome in a multicenter cohort*. Crit Care Med. 2015;43:453-60. Roberts BW, Kilgannon JH, Chansky ME, et al. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127:2107-13. Eastwood GM, Schneider AG, Suzuki S, et al. Targeted therapeutic mild hypercapnia after cardiac arrest: A phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation. 2016;104:83-90. Zhou D, Li Z, Zhang S, et al. Association between mild hypercapnia and hospital mortality in patients admitted to the intensive care unit after cardiac arrest: A retrospective study. Resuscitation. 2020;149:30-8. Crippa IA, Vincent J-L, Zama Cavicchi F, et al. Cerebral autoregulation in anoxic brain injury patients treated with targeted temperature management. J Intensive Care. 2021;9:67. Beekman R, Maciel CB, Ormseth CH, et al. Early head CT in post-cardiac arrest patients: A helpful tool or contributor to self-fulfilling prophecy? Resuscitation. 2021;165:68-76. Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke J Cereb Circ. 2001;32:128-32.

1		
2		
3	443	
4		
5	444	
6		
/	445	
8		
9	446	
10		
11	447	
12		
14	448	
15		
16	449	
17		
18	450	
19		
20	451	Figure and table legend
21		
22	452	Figure 1 Study flow chart
23		
24		
25		
20		
27		
20		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40 11		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52 52		
55 54		
55		
56		
57		
58		
59		
60		

	Total (N = 256)	Brain death (N = 56)	PAE (N = 200)	p val
Age, y	63 (53–75)	58 (45–65)	65 (55–76)	<0.
Male	167 (65.2)	32 (57.1)	135 (67.5)	0.20
OHCA	214 (83.6)	50 (89.3)	164 (82.0)	0.2
Public place at CA	129 (50.4)	34 (60.7)	95 (47.5)	0.0
Arrest witnessed/monitored	199 (77.7)	36 (64.3)	163 (81.5)	0.0
Bystander CPR	64 (25.0)	13 (23.2)	51 (25.5)	0.7
Shockable first recorded rhythm	83 (32.4)	9 (16.1)	74 (37.0)	0.0
Total number of defibrillations before ROSC	0 (0–2.0)	0 (0–2.0)	0 (0–2.3)	0.0
Use of epinephrine	222 (86.7)	49 (87.5)	173 (86.5)	0.8
Total epinephrine dose before ROSC, mg	3.0 (1.0–5.0)	3.0 (1.0–5.0)	3.0 (1.9–4.0)	0.5
Time from CA to CPR (no-flow), min	5 (0–11)	6 (2–15)	5 (0–10)	0.3
Time from CA to ROSC (low-flow), min	21 (15–30)	26 (20–36)	20 (15–30)	0.0
No-flow + low-flow, min (n = 245)	30 (20-40)	36 (28–45)	30 (20–37)	0.0
Cerebral edema on initial CT scan (n=120)	36/120 (30.0)	18/32 (56.3)	18/88 (20.5)	<0
Time to CT scan, hours after CA	3 (2-11)	3 (2-11)	3 (2-4)	0.4
admission, mmol/L	5.7 (3.2–8.1)	6.4 (4.8–9.4)	5.4 (2.9–7.5)	0.0
Cardiaa	05 (27 1)	15 (26 9)	90 (40 0)	<0
Boopirotony	$\frac{90}{62}(37.1)$	10 (20.0)	<u> </u>	
Neurological	02 (24.4)	11 (19.0)	$\frac{51(25.5)}{6(2.0)}$	
	22 (8.6)	0(16.1)	13 (6 5)	
	$\frac{22}{60}$ (0.0)	9(10.1)	<u> </u>	
First temperature at admission °C	36.2 (36.0-37.0)	36.0 (34.5-36.9)	36 3 (35 1- 37 2)	0 1
TTM	213 (83 2)	38 (67 9)	175 (87 5)	<u> </u>
Time to TTM target hours after CA	<u>2 13 (03.2)</u> 6 (3-7)	5 (3-10)	6 (3-9)	<u> </u>
Duration of TTM hours	<u>26 (20–31)</u>	25 (20-29)	26 (20-32)	0,0
TTM >12 hours	192 (75 0)	34 (60 7)	158 (79 0)	0.0
TTM >24 hours	139 (54 3)	25 (44 6)	114 (57 0)	0.0
33°C	110/139 (79 1)	19/25 (76 0)	91/114 (79.8)	0.7
36°C	29/139 (20.9)	6/25 (24 0)	23/114 (20.2)	0.7
Body temperature between days 1 and 2 after admission, °C	20,100 (20.0)	0.20 (2110)		0.1
Minimal	33.0 (32.1–34.0)	33.0 (31.9–34.5)	33.0 (32.1–34.0)	0.7
Maximal	37.0 (36.4–37.9)	37.4 (36.7–38.0)	37.0 (36.4–37.8)	0.0
PaCO ₂ between days 1 and 2 after admission, mmHg		2		
Minimal	29.0 (26.0–32.0)	29.0 (26.5–35.0)	29.0 (26.0–33.0)	0.5
Maximal Natremia between days 1 and 2 after admission. mmol/L	45.0 (39.0–54.0)	50.0 (42.0–59.0)	44.0 (39.0–52.0)	0.0
Minimal	137.0 (134.8–140.0)	138.0 (135.0–142.0)	137.0 (134.0–140.0)	0.0
Maximal	143.5 (139.0–146.0)	145.0 (141.0–148.0)	143.0 (139.0–144.0)	<0
MAP between days 1 and 2 after admission, mmHg				
Minimal	59 (51–64)	57 (50–62)	59 (51–64)	0.3
Maximal	114 (102–128)	124 (106–141)	113 (101–125)	0.0
Post-resuscitation shock	188 (73.4)	42 (75.0)	146 (73.0)	0.8
Continued epinephrine use	100 (39.1)	26 (46.4)	74 (37.0)	0.2
Renal replacement therapy	37 (14.5)	5 (8.9)	32 (16.0)	0.2
Time between admission and death	6 (4–9)	4 (2–5)	7 (5–9)	<0

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 2 Factors associated with brain death by multivariable analysis^a

	OR (95% CI)	p value
TTM >24 hours	1.08 (0.51–2.32)	0.80
Shockable first recorded rhythm	0.43 (0.16–1.03)	0.068
No-flow + low-flow >30 minutes	3.17 (1.48–7.23)	0.004
Neurological cause of cardiac arrest or hanging	6.49 (2.49–17.90)	<0.001
Maximal PaCO ₂ between days 1 and 2 after admission >45 mmHg	3.92 (1.82–9.00)	<0.001
Maximal natremia between days 1 and 2 after admission >143	1.93 (0.93-4.03)	0.077
Maximal natremia between days 1 and 2 after admission >143 mmol/L	1.93 (0.93–4.03)	0.07

Abbreviations: CI = confidence interval; TTM = targeted temperature management; MAP: mean arterial pressure; OR = odds ratio; $PaCO_2$ = arterial partial pressure of carbon dioxide.

^aVariables included in the model selection process: TTM >24 hours, age >63 years, shockable first recorded

rhythm, no-flow + low-flow >30 min, neurological cause of cardiac arrest or hanging, maximal MAP between days 1 and 2 after admission >114 mmHg, maximal arterial carbon dioxide between days 1 and 2 after admission >45 mmHg, maximal natremia day 1 >143 mmol/L. Goodness-of-fit Hosmer-Lemeshow test, p = 0.82; area under the receiver operating characteristics curve estimated by the C-statistic = 0.81. To be teries only

Electronic supplementary material

Association of targeted temperature management with brain death post cardiac arrest

ESM 1: Neurological prognostication and criteria for WLST

After the initial period of TTM and rewarming, neurological outcome was assessed daily for each patient by ICU physicians until death or ICU discharge. In patients who were still comatose 72 hours after ROSC and after sedation discontinuation, a multimodal prognostication protocol was used, consistent with international guidelines since 2007. Glasgow coma scale, pupillary and corneal reflexes are assessed and an EEG is performed to rule out status epilepticus and assess prognostic tools. Pupillary reflex and corneal reflexes are reported every 3 hours by nurse and 12 hours by physicians. Clinical or electrical status epilepticus was defined as refractory when it did not improve after treatment with 2 lines of major antiepileptic drugs (among phenytoin, phosphenytoin, valproate, phenobarbital, levetiracetam). N20 potentials on SSEP were also tested in a standardized way resulting from the averaging of cortical electrographic responses generated after repetitive electrical stimulations of the median nerve, transmitted to the contralateral post-central gyrus, and represented by a negative deflection on the recording, about 20 ms after the stimulation. We collected information about bilaterally absence N20 component on SSEPs with presence of P14 responses, by the external technicians and interpreted by the external neurophysiologist. Finally neuron-specific enolase (NSE) was dosed in serum at Day 3 post CA with a threshold of 80 ng/mL. When major predictors of poor outcome were not present (i.e., patients with N20 potentials and cranial reflexes preserved, motor GCS more than 2), decisions to withhold or withdraw life-support therapies were systematically delayed in order to search for a confounding factor (sepsis, remaining sedative drug effect, intercurrent disease process, other neurological disease). After this additional delay, an ethic meeting is held to incorporate all prognostic variables in the decision. This decision could be either to withhold or withdraw lifesupport therapies. WLST was always decided after a collegial decision. All deaths associated with end-of-life decisions occurred during the ICU stay.

ESM 2:Factors associated with brain death by multivariate analysis: initial complete model

	Multivaria	ate analysis	
-	OR (95	5%CI)	P valu
TTM >24h	1.07 (0.50)-2.32)	0.
Age > 63 vears	0.70 (0.32	2-1.53)	0.4
Shockable first recorded rhythm	0.42 (0.15	5-1.05)	0.074
No-flow + low-flow >30 min	3.06 (1.42	2-7.00)	0.00
Neurological cause of cardiac arrest or hanging	5.18 (1.89	9-15.1)	0.00
Maximal MAP between day $1-2 > 114 \text{ mmHg}$	1 49 (0 7))-3 17)	0
Maximal arterial carbon dioxide between day $1-2 > 45$ mmHg	3.81 (1.76	5- 8.8 1)	0.00
Maximal natremia day $1-2 > 143$ mmol/L	1.96(0.94	4-4.14)	0.07
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36°	is in a sub group of pat	ients receiving	
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36°	is in a sub group of pat	ients receiving	_
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36° TTM 33° >24 hours	ois in a sub group of pat) OR (95% CI) 0,43 (0.16–1.17)	ients receiving p value 0.093	-
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36° TTM 33° >24 hours Shockable first recorded rhythm	bis in a sub group of pat OR (95% CI) 0,43 (0.16–1.17) 0.48 (0.17–1.24)	ients receiving p value 0.093 0.14	-
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36° TTM 33° >24 hours Shockable first recorded rhythm No-flow + low-flow >30 minutes	Dis in a sub group of pat OR (95% CI) 0,43 (0.16–1.17) 0.48 (0.17–1.24) 2.54 (1.11–6.18)	ients receiving p value 0.093 0.14 0.031	
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36° TTM 33° >24 hours Shockable first recorded rhythm No-flow + low-flow >30 minutes Neurological cause of cardiac arrest or hanging Maximal PaCO2 between days 1 and 2 after admission >45 mmHa	OR (95% CI) 0,43 (0.16–1.17) 0.48 (0.17–1.24) 2.54 (1.11–6.18) 5.64 (2.06–16.40) 3.65 (1.58, 9.16)	ients receiving p value 0.093 0.14 0.031 <0.001 0.004	
ESM 3: Factors associated with brain death by multivariable analys TTM 33° vs no TTM (after exclusion of patients receiving TTM 36° TTM 33° >24 hours Shockable first recorded rhythm No-flow + low-flow >30 minutes Neurological cause of cardiac arrest or hanging Maximal PaCO2 between days 1 and 2 after admission >45 mmHg	is in a sub group of pat OR (95% CI) 0,43 (0.16–1.17) 0.48 (0.17–1.24) 2.54 (1.11–6.18) 5.64 (2.06–16.40) 3.65 (1.58–9.16)	ients receiving p value 0.093 0.14 0.031 <0.001 0.004 	

BMJ Open

Impact of Targeted Temperature Management on Progression to Brain Death after Severe Anoxic Brain Injury Following Cardiac Arrest: An Observational Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085851.R1
Article Type:	Original research
Date Submitted by the Author:	29-Nov-2024
Complete List of Authors:	paul, marine; Centre Hospitalier de Versailles, icu hickel, charles; Centre Hospitalier de Versailles Troché, Gilles; Centre Hospitalier de Versailles laurent, virginie; Centre Hospitalier de Versailles richard, olivier; Centre Hospitalier de Versailles merceron, sybille; Centre Hospitalier de Versailles Legriel, Stephane ; Centre Hospitalier de Versailles
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care
Keywords:	Out-of-Hospital Cardiac Arrest, Brain Injuries, Death, Sudden, Cardiac

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2 3 4	1	Impact of Targeted Temperature Management on Progression to Brain Death
5 6	2	after Severe Anoxic Brain Injury Following Cardiac Arrest: An Observational
7 8	3	Study.
9 10 11	4	Marine Paul, MD ^{1,2} , Charles Hickel, MD ¹ , Gilles Troché, MD ¹ , Virginie Laurent, MD ¹ , Olivier
12 13	5	Richard, MD ³ , Sybille Merceron, MD ¹ , and Stéphane Legriel, MD, PhD ^{1,2,4}
14 15	6	¹ Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay,
16 17	7	France
18 19	8	² AfterROSC Study Group, Paris, France
20 21	9	³ SAMU 78, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay, France 4
22 23 24	10	⁴ University Paris-Saclay, UVSQ, INSERM, CESP, Villejuif, France
24 25 26	11	Correspondent
27 28	12	Marine Paul, MD
29 30	13	Intensive Care Department, Centre Hospitalier de Versailles - Site André Mignot, 177 Rue de
31 32	14	Versailles, 78150 Le Chesnay, France
33 34	15	mpaul@ght78sud.fr
35 36 27	16	Twitter: @Marine_PAUL
37 38 30	17	ORCID: 0000-0002-0717-9555
40 41	18	
42 43	19	
44 45	20	
46 47	21	
48 49	23	
50 51 52	24	
52 53 54	25	
55 56	26	
57 58	27	
59 60	28 29	

1 ว		
2 3	30	Abstract
4 5	31	Objective : This study explores whether TTM in severe anoxic brain injury post-cardiac arrest
6	32	might be futile. We hypothesized that TTM could, through its physiological effects on
/ 8	33	intracranial pressure, impede the progression to BD potentially impacting organ donation
9 10	34	opportunities, without improving neurological outcomes. We investigated whether there is a
10	35	negative association between the use of TTM and the occurrence of BD after CA.
12 13		
14	36	Design : Monocentric, retrospective study.
15 16		
17	37	Setting: ICU, Versailles Hospital, France.
18 19	20	Participants : Comptose survivors of CA who died from BD or post-apovic encephalopathy
20	30	(PAE) after 24 hours
21	55	
23 24	40	Main outcome measures : PAE deaths corresponded to WLST due to irreversible post-
25	41	anoxic coma or vegetative state according to prognostication guidelines. BD corresponded to
26 27	42	the cessation of cerebral vascularization secondary to intra-cranial hypertension. The
28	43	diagnosis of BD was definite by clinical diagnosis of deep coma Glasgow Coma Scale 3, loss
29 30	44	of all brainstem reflexes, and the demonstration of apnea during a hypercapnia test. Cerebral
31 32	45	CT scan or two isoelectric and unreactive electroencephalograms were used to confirm BD.
33	46	To identify the independent association between TTM and BD, we conducted a multivariable
34 35	47	logistic regression analysis.
36		
37 38	48	Results : Out of 256 patients included between 2005 and 2021, 54.3% received TTM for at
39 40	49	for at least 24 hours, and 56 patients (21.9%) died from BD. In the multivariable analysis,
40 41	50	TTM for 24 hours or more was not associated with a decrease in BD (OR 1.08, 95% CI 0.51-
42 43	51	2.32). Factors associated with BD included a total duration of no-flow plus low-flow
44	52	exceeding 30 minutes, CA due to neurological causes or hanging and a high arterial partial
45 46	53	pressure of carbon dioxide (PaCO2) between days 1 and 2 after admission.
47		
48 49	54	Conclusions: This exploratory analysis of post-CA patients with severe anoxic brain injury
50 51	55	did not find an association between TTM ≥24 hours and a reduction in BD. Further studies
52	56	are needed to identify specific subgroups of post-CA patients for whom TTM may be
53 54	57	especially tutile or even harmful.
55	58	Key words: cardiac arrest brain death targeted temperature management post-anoxic
56 57	59	encephalopathy, organ donor.
58		
60	60	Strengths and limitations of this study

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Page 4 of 20

BMJ Open

 This study addresses a unique aspect of TTM by examining its potential futility in patients with severe anoxic brain injury post-cardiac arrest, a perspective underexplored in prior research.

• The population is limited to patients with severe anoxic brain injury who ultimately died, allowing focused analysis of TTM's effects in this specific group.

• The single-center, retrospective design may limit generalizability and restricts the ability to establish causal relationships between TTM and brain death incidence

70 Introduction

Despite improved practices, mortality after cardiac arrest (CA) remains very high, with an average hospital survival rate of only 30%.[1] Withdrawal of life-sustaining therapy (WLST) for irreversible post-anoxic encephalopathy (PAE) is the primary reason for death after CA.[2] Targeted Temperature Management (TTM) has been debated in recent years as a potential neuroprotective treatment in CA patients [3,4]. TTM may reduce neuroinflammation secondary to ischemia-reperfusion injury and prevent neuronal apoptosis . Additionally, TTM requires sedation, which can interfere with neurological examination and neuro prognostication. It is crucial to identify situations where TTM might be ineffective or even futile. TTM is also used in traumatic brain injury as a method to control intracranial hypertension [5,6]. In cases of severe anoxic brain injury post-cardiac arrest, patients may progress to brain death in 10–12% of cases [7]. For patients with severe brain anoxia at risk of progressing towards brain death, TTM may reduce brain edema and intracranial pressure, thus preventing progression to brain death without necessarily improving neurological outcomes, these patients pass away due to Withdrawal of Life-Sustaining Treatment (WLST).

85 We hypothesize that in patients with very severe anoxic brain injuries post-cardiac 86 arrest, TTM could potentially prevent progression to brain death, thereby reducing the pool of

 BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

potential organ donors. The objective of the study was to evaluate whether there is a negative
association between TTM and BD after CA.

90 Methods

91 This single-center, retrospective, observational cohort study was conducted using a 92 prospectively collected dataset from Versailles hospital (NCT03594318). Data collection was 93 approved by the Ethics Committee of the French Intensive Care Society (#CESRLF 20-41) 94 which waived the requirement for written consent in accordance with French law on 95 retrospective studies of anonymized data. The study is reported according to the STROBE 96 statement.

97 Patient and public involvement

98 Patients were not involved in the research.

100 Study Setting and ICU Management

The management protocol for patients admitted to our ICU after CA aligns with international guidelines. Before 2016, TTM was induced and maintained using ice packs at the groin and neck and a cold-air tunnel around the patient's body. After 2016, an automated temperature-controlled system, either the Criticool® or Artic Sun®, was used. was set at 33°C for comatose patients after out-of-hospital cardiac arrest (OHCA) with an initial shockable rhythm until 2013. From 2013 onwards, the target was 33°C for OHCA patients with a shockable rhythm and 36°C or fever control for other patients, maintained for 24 hours. Rewarming was gradual, in increments of 0.25–0.5°C, done passively before 2016 and actively controlled thereafter.

During the first 72 hours in the ICU, treatments were adapted to maintain homeostasis, including glucose control, normocapnia using a pH-stat strategy, titration of inspired oxygen to maintain arterial saturation between 94–98%, and mean arterial pressure (MAP) of 65–75 mmHg. For patients who remained comatose 72 hours after return of spontaneous circulation (ROSC) and after sedation cessation, a multimodal prognostication protocol was applied to

identify cases of irreversible PAE. This protocol has followed international guidelines since2005[8–11].

8 116

117 Study Objective

118 Our objective was to investigate an independent negative association between TTM and BD 119 in a population of post-cardiac arrest patients with very severe anoxic brain injury.

16 120 Study Population

All adults admitted to the ICU in a comatose state following an OHCA or an in-hospital CA, with sustained ROSC between January 2005 and June 2021, who ultimately died from BD or PAE were included. This restricted population represents patients with the most severe brain damage, where a positive outcome is unlikely and TTM could be potentially futile. We excluded patients whose CA occurred in the ICU, those who were not in a coma, and patients who died within 24 hours. Additionally, patients who were discharged alive from the ICU and those who died from another cause than BD or PAE (such as refractory shock, recurrence of CA, refractory acute respiratory distress syndrome, WLST due to comorbidities, and secondary shock) were not included.

37 130 Definitions

Death from persistent PAE occurred in patients who underwent neurological WLST following prognostication of poor long-term outcomes, based on established guidelines. [8-10]. was defined as the cessation of cerebral blood flow due to intracranial hypertension, with diagnosis following French legal criteria. This includes clinical signs of deep coma (Glasgow Coma Scale score of 3), absence of all brainstem reflexes, and apnea demonstrated during a hypercapnia test, in which arterial partial pressure of carbon dioxide (PaCO₂) rises to \geq 50 mmHg (6.6 kPa) after 10 minutes of disconnection. Additional confirmatory tests, such as cerebral CT angiography or two 30-minute isoelectric and unreactive electroencephalograms taken 4 hours apart, were also used to confirm BD.[12–14]

58 140 Data Collection

Page 7 of 20

BMJ Open

ic	;	(
С	co)
n	,	t
P	F	2
st	ra	3.
tc) 1	Fi
hc	or	S
n	i	a
	Ca	а
٦-	IC	2
or	а	iı
25	aC	2
di	а	ç
E	BE)
n	e	ι
X	pl	(
e	С)
С	е	r
r	nc)
с	е	r
Α	n	2
I	ol	~(
s,	а	1
di	ie	(
าด	ł	t

characteristics and CA data were prospectively collected in an electronic Demograph database ad ording to the Utstein style[15]. Information included age, gender, CA setting, initial rhythn time from collapse to cardiopulmonary resuscitation (CPR) initiation (no-flow) time from C initiation to ROSC (low-flow), presence of a witness, number of defibrillations, and adminis tion of epinephrine. The final aetiology of CA was also reported, with patients ive groups (cardiac, respiratory, neurological, hanging, or other causes) by two classified int blinded auth s (C.H. and M.P.) with a third author (S.L.) resolving any disagreements. This classification aimed to isolate CAs at higher risk of intracranial hypertension, such as uses or hanging. neurological

Additional in U variables were collected, including post-resuscitation shock, use of TTM, and secondary b n insult parameters (e.g., minimum and maximum serum sodium, temperature, MAP, and F O2 between days 1 and 2 after admission, excluding PaCO2 from the apnea test for BD of gnosis). Only TTM lasting ≥24 hours was considered complete. While Witten et al. grouped and PAE together as neurological deaths, we opted to dichotomise these as PAE due to urological WLST and BD [2].

ore the association between TTM and BD, we recorded the depth and duration To further ex of TTM, date f death, and presence of cerebral oedema on the CT scan from the first day of admission. ebral oedema was identified based on radiologist reports in patient records; CT scans were t reanalysed. Reports indicating loss of grey-white matter differentiation, brain swelling, or ebral oedema were classified as showing cerebral oedema.

47 161 Statistical Analysis

Values are esented as medians with interguartile ranges (IQRs) or as numbers with s appropriate. Univariate comparisons between patients who died from BD and percentages those who d from PAE were conducted using the Mann–Whitney U test for continuous variables ar the Chi-square or Fisher's exact test for categorical variables, as appropriate. To identify an independent association between TTM \ge 24 hours and BD, we compared subjects with BD to those with PAE using univariate analysis followed by logistic regression.

Prior to the multivariable analysis, non-log-linear variables were transformed into dummy variables based on their median values. Non-collinear variables with p values < 0.05 in the univariate analysis, TTM \geq 24 hours, and clinically relevant variables were considered for inclusion in the multivariable model. Associations between factors and BD are reported as odds ratios (OR) with 95% confidence intervals (CI). The Hosmer-Lemeshow goodness-of-fit test and the area under the receiver operating characteristic curve (C-statistic) were calculated for the final models. Missing data were rare and managed using complete case analysis. All tests were two-sided, and p values < 0.05 were considered significant. Finally, a sensitivity analysis was performed, excluding patients managed with TTM at 36°C to compare only TTM at 33°C versus no TTM. All analyses were conducted using R software, version 4.0.1 (R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org; accessed March 13, 2021). **Data Availability** The anonymized datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request and with permission from the Centre Hospitalier de Versailles. Results Figure 1 presents the patient flow chart. From January 2005 to June 2021, 918 patients were admitted following cardiac arrest (CA), of whom 662 were excluded: 76 had CA in the ICU, 40 were not comatose after ROSC, 148 died within the first 24 hours, 160 died from causes other than BD or PAE, and 238 were discharged alive from the ICU. Ultimately, 256 patients were included in the study. **Patient Features and Outcomes** Among the 256 patients, 75% received TTM for ≥12 hours (60.7% in the BD group and 79.0% in the PAE group, p=0.005) and 54.3% received TTM for ≥24 hours (44.6% in the BD group

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

and 57.0% in the PAE group, p=0.10). Fifty-six patients (21.9%) died from BD, and 200 (78.1%)
died from PAE, with a median (IQR) time to death of 4 days (2–5) and 7 days (5–9),
respectively.

198Table 1 shows the characteristics of patients according to their progression to BD or PAE.199Patients who died from BD were younger (58 vs 65 years, p < 0.001) and had a lower frequency200of witnessed CA (64.3% vs 81.5%, p = 0.006) and initial shockable rhythm (16.1% vs 37.0%,201p = 0.003) compared to those who died from PAE. Median (IQR) no-flow plus low-flow duration202was longer in the BD group (36 [28–45] vs 30 [20–37] minutes, p = 0.001), and admission203lactate levels were higher (6.4 [4.8–9.4] vs 5.4 [2.9–7.5] mmol/L, p = 0.003).

204 Table 1 Patient Characteristics

N (%) or Median (interquartile range)		D a la set	545	
	(N = 256)	(N = 56)	PAE (N = 200)	<i>p</i> value
Age, y	63 (53–75)	58 (45–65)	65 (55–76)	<0.001
Male	167 (65.2)	32 (57.1)	135 (67.5)	0.20
OHCA	214 (83.6)	50 (89.3)	164 (82.0)	0.20
Public place at CA	129 (50.4)	34 (60.7)	95 (47.5)	0.08
Arrest witnessed/monitored	199 (77.7)	36 (64.3)	163 (81.5)	0.006
Bystander CPR	64 (25.0)	13 (23.2)	51 (25.5)	0.70
Shockable first recorded rhythm	83 (32.4)	9 (16.1)	74 (37.0)	0.003
Total number of defibrillations before ROSC	0 (0–2.0)	0 (0–2.0)	0 (0–2.3)	0.053
Use of epinephrine	222 (86.7)	49 (87.5)	173 (86.5)	0.80
Total epinephrine dose before ROSC, mg	3.0 (1.0–5.0)	3.0 (1.0–5.0)	3.0 (1.9–4.0)	0.50
Time from CA to CPR (no-flow), min	5 (0–11)	6 (2–15)	5 (0–10)	0.30
Time from CA to ROSC (low-flow), min	21 (15–30)	26 (20–36)	20 (15–30)	0.006
No-flow + low-flow, min (n = 245)	30 (20–40)	36 (28–45)	30 (20–37)	0.001
Cerebral edema on initial CT scan (n=120)	36/120 (30.0)	18/32 (56.3)	18/88 (20.5)	<0.001
Time to CT scan, hours after CA	3 (2-11)	3 (2-11)	3 (2-4)	0.4
Lactate concentration on ICU admission, mmol/L	5.7 (3.2–8.1)	6.4 (4.8–9.4)	5.4 (2.9–7.5)	0.003
Final identified cause of CA				<0.001
Cardiac	95 (37.1)	15 (26.8)	80 (40.0)	
Respiratory	62 (24.4)	11 (19.6)	51 (25.5)	
Neurological	17 (6.6)	11 (19.6)	6 (3.0)	
Hanging	22 (8.6)	9 (16.1)	13 (6.5)	
Other	60 (23.4)	10 (17.9)	50 (25.0)	
First temperature at admission, °C	36.2 (36.0-37.0)	36.0 (34.5-36.9)	36.3 (35.1-37.2)	0.11
ТТМ	213 (83.2)	38 (67.9)	175 (87.5)	< 0.001
Time to TTM target, hours after CA	6 (3-7)	5 (3-10)	6 (3-9)	0,9
Duration of TTM, hours	26 (20–31)	25 (20–29)	26 (20–32)	0.40
TTM >12 hours	192 (75.0)	34 (60.7)	158 (79.0)	0.005
TTM ≥24 hours	139 (54.3)	25 (44.6)	114 (57.0)	0.10
33°C	110/139 (79.1)	19/25 (76.0)	91/114 (79.8)	0.7

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

_	36°C	29/139 (20.9)	6/25 (24.0)	23/114 (20.2)	0.70
	Body temperature between days 1				
-	Minimal	33.0 (32.1–34.0)	33.0 (31.9–34.5)	33 0 (32 1-34 0)	0.70
-	Maximal	37.0 (36.4–37.9)	37.4 (36.7–38.0)	37.0 (36.4–37.8)	0.028
-	PaCO ₂ between days 1 and 2 after				0.020
_	admission, mmHg				
_	Minimal	29.0 (26.0–32.0)	29.0 (26.5–35.0)	29.0 (26.0–33.0)	0.50
-	Maximai Natromia botwoon days 1 and 2 aftor	45.0 (39.0–54.0)	50.0 (42.0–59.0)	44.0 (39.0–52.0)	0.009
	admission. mmol/L				
-	Minimal	137.0 (134.8–140.0)	138.0 (135.0–142.0)	137.0 (134.0–140.0)	0.078
_	Maximal	143.5 (139.0–146.0)	145.0 (141.0–148.0)	143.0 (139.0–144.0)	<0.00
	MAP between days 1 and 2 after				
-	admission, mmHg Minimal	59 (51_64)	57 (50_62)	59 (51_64)	0.30
-	Maximal	114 (102–128)	124 (106–141)	113 (101–125)	0.30
-	Post-resuscitation shock	188 (73.4)	42 (75.0)	146 (73.0)	0.80
_	Continued epinephrine use	100 (39.1)	26 (46.4)	74 (37.0)	0.20
_	Renal replacement therapy	37 (14.5)	5 (8.9)	32 (16.0)	0.20
	Time between admission and death,	6 (4–9)	4 (2–5)	7 (5–9)	<0.00
າດເ	days"	CPP - cardionulmonan	requisitation: ICLL - int	tonsivo caro unit: IOP -	
207	interguartile range: MAP = mean art	erial pressure: OHCA =	out-of-hospital cardiac	arrest: $PaCO_2 = arterial$	l partia
208	pressure of carbon dioxide; $PAE = p$	ost-anoxic encephalopa	athy; ROSC = return of	spontaneous circulation	; TTM
209	= targeted temperature managemen	nt. 🚺 · · ·			
210	* Time between admission and deat	h corresponds to the da	ate of brain death diagno	osis in BD patients	
211					
212	The cause of CA differed sign	ificantly between th	ne two groups, with	more neurological o	cause
212	The cause of CA differed sign	ificantly between th	ne two groups, with	more neurological o	cause
212 213	The cause of CA differed sign and hangings in the BD grou	ificantly between th ip (p < 0.001). Wh	e two groups, with en the initial aetiolo	more neurological o ogical brain CT sca	cause: an was
212 213	The cause of CA differed sign and hangings in the BD grou	ificantly between th ip (p < 0.001). Whe	e two groups, with en the initial aetiolo	more neurological o ogical brain CT sca	ause:
212 213 214	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema	ificantly between th ip (p < 0.001). Wh was more frequer	ne two groups, with en the initial aetiolo nt in the BD group	more neurological o ogical brain CT sca (18/32 (56.3%) vs	cause: an wa: 18/88
212 213 214	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema	ificantly between th up (p < 0.001). Who was more frequer	ne two groups, with en the initial aetiolo nt in the BD group	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 2 bours [2, 11	cause: an wa: 18/88
212 213 214 214	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s	ificantly between th up (p < 0.001). Whe was more frequer scans were conduct	ne two groups, with en the initial aetiolo nt in the BD group ted at a median (IQ	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	cause an wa: 18/88] post
212 213 214 214 215	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s	ificantly between th up (p < 0.001). Wh was more frequer scans were conduct	te two groups, with en the initial aetiolo nt in the BD group ted at a median (IQ	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	cause an wa 18/8] post
212 213 214 215 216	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between th up (p < 0.001). Wh was more frequer scans were conduct cant difference betw	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ veen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	cause an wa 18/86] post
 212 213 214 215 216 217 	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between th up (p < 0.001). Who was more frequer scans were conduct cant difference betw	ne two groups, with en the initial aetiolo nt in the BD group ted at a median (IQ veen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	cause an wa: 18/8] post
 212 213 214 215 216 217 	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between th up (p < 0.001). Who was more frequer scans were conduct cant difference betw	ne two groups, with en the initial aetiolo nt in the BD group ted at a median (IQ veen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	an wa 18/8] post
 212 213 214 215 216 217 218 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), $p < 0.001$). The CT s cardiac arrest, with no signific	ificantly between th up (p < 0.001). Wh was more frequer scans were conduct cant difference betw	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ veen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	cause an wa 18/8] post
212 213 214 215 216 217 218	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of	ificantly between th up (p < 0.001). Who was more frequer scans were conduct cant difference betw was used less frequ	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ veen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	cause an wa 18/8] post] post
 212 213 214 215 216 217 218 210 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no significe Although TTM for \geq 24 hours of aroup (44.6% vo 57.0%), this	ificantly between th up (p < 0.001). Who was more frequer scans were conduct cant difference betw was used less freque	the two groups, with in en the initial aetiolo at in the BD group ted at a median (IQ ween the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th	e PAI
212 213 214 215 216 217 218 219	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this	aificantly between the up (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less frequer s difference was no	te two groups, with en the initial aetiolo nt in the BD group ted at a median (IQ veen the groups. uently in the BD gro ot statistically signif	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T	an wa 18/84] post e PAE he BE
212 213 214 215 216 217 218 219	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no significe Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter	ificantly between th up (p < 0.001). Who was more frequer scans were conduct cant difference betw was used less frequers s difference was no	the two groups, with the en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T	an wa 18/8] post e PAI he BI
212 213 214 215 216 217 218 217 218 212	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter	ificantly between the up (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less frequer s difference was no mperature, maximal	the two groups, with the en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group ot statistically signif	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	cause an wa 18/8] post] post he BI serun
212 213 214 215 216 217 218 219 220	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), $p < 0.001$). The CT s cardiac arrest, with no significe Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter	ificantly between the up (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less frequer s difference was no mperature, maximal	the two groups, with in en the initial aetiolo at in the BD group ted at a median (IQ ween the groups. uently in the BD group of statistically signif I PaCO2, maximal I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T MAP, and maximal	cause an wa 18/8] posi] posi he BI serun
212 213 214 215 216 217 218 219 220 221	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of	ificantly between the up (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less frequer s difference was no mperature, maximal 1 and 2 after admiss	the two groups, with it en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological optical optical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant ($p = 0.10$). T MAP, and maximal	cause an wa 18/8] posi] posi he BI serun
 212 213 214 215 216 217 218 219 220 221 221 221 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of	ificantly between the up (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less freques s difference was no mperature, maximal 1 and 2 after admiss	te two groups, with i en the initial aetiolo nt in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	cause an wa 18/8] post] post he BI serun
212 213 214 215 216 217 218 220 221 222	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of	ificantly between th up (p < 0.001). Who was more frequer scans were conduct cant difference betw was used less freques difference was no mperature, maximal 1 and 2 after admiss	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD gro of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T MAP, and maximal	an wa 18/8] post he BI serun
212 213 214 215 216 217 218 219 220 221 221 222	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of	ificantly between the up (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less frequer s difference was no mperature, maximal 1 and 2 after admise	the two groups, with in en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological optical optical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T MAP, and maximal	cause an wa 18/8] post e PAE he BE serun
 212 213 214 215 216 217 218 219 220 221 222 223 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), $p < 0.001$). The CT s cardiac arrest, with no significe Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) particular	atients who donate	the two groups, with it en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T MAP, and maximal (55%) had cerebr	cause an wa 18/8] post] post he BI serur
 212 213 214 215 216 217 218 219 220 221 222 223 223 224 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa	atients who donate	the two groups, with it en the initial aetiolo int in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22	more neurological optical optical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant ($p = 0.10$). T MAP, and maximal (55%) had cerebr	an wa 18/8] post e PAI he BI serur
212 213 214 215 216 217 218 219 220 221 222 223 223	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb	atients who donate prain vascular arrest	e two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD gro of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr nad two EEGs cont	cause an wa 18/8] post] post he BI serun
212 213 214 215 216 217 218 217 218 220 221 222 223 224	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb	atients who donate print vascular arrest	e two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr had two EEGs conf	cause an wa 18/8] post] post he BI serun ral C ⁻ firming
212 213 214 215 216 217 218 219 220 221 222 221 222 223 223 224 225	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming ceret isoelectric EEG.	atients who donate	the two groups, with it en the initial aetiolo at in the BD group ted at a median (IQ ween the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr nad two EEGs cont	cause an wa 18/8] post] post he BE serun ral C ⁻ firming
212 213 214 215 216 217 218 217 218 217 218 227 221 222 223 224 225	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), $p < 0.001$). The CT s cardiac arrest, with no significe Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming ceret isoelectric EEG.	atients who donate atients who donate brain vascular arrest	e two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD gro of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr had two EEGs conf	cause an wa 18/8] post] post he BE serun ral C ⁻ firming
212 213 214 215 216 217 218 217 218 217 218 220 221 222 223 224 223 224 225 226	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), $p < 0.001$). The CT s cardiac arrest, with no significe Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb isoelectric EEG.	atients who donate atients who donate brain vascular arrest	e two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological optical optical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant ($p = 0.10$). T MAP, and maximal (55%) had cerebrinad two EEGs cont	cause an wa 18/8] posi e PAI he BI serur ral C firmin

2							
3 4	227	Factors Independently associated with BD					
5 6	228	TTM ≥24 hours was not significantly associated with brain death (BD) in either univariate					
7 8	229	analysis (OR 0.61, 95% CI 0.35–1.10, p = 0.14) or multiva	riate analysis (OR 1.	08, 95% CI			
9 10	230	0.51–2.32, p = 0.80; see Table 2). The following factors we	re independently asso	ociated with			
11 12	231	an increase in BD: no-flow plus low-flow duration >30 minute	es (OR 3.17, 95% CI 1	.48–7.23, <i>p</i>			
13 14	232	= 0.004), CA due to neurological cause or hanging (OR 6.49	9, 95% CI 2.49–17.90	, <i>p</i> < 0.001)			
15 16	233	and a high $PaCO_2$ between days 1 and 2 after admission >4	45 mmHg (6 kPa) (OF	R 3.92, 95%			
17 18	234	CI 1.82–9.00, $p < 0.001$). After exclusion of patients manage	d with TTM 36°C, the	association			
19 20 21	235	between TTM 33 and BD was still not statistically significa	nt (OR 0,43, 95% CI	0.16–1.17,			
21 22 23	236	p=0.093) (ESM).	p=0.093) (ESM).				
24 25	237 238	Table 2 Factors associated with brain death by multivariable	analysis ^a				
26			OR (95% CI)	p value			
27		TTM >24 hours	1.08 (0.51–2.32)	0.80			
28		Shockable first recorded rhythm	0.43 (0.16–1.03)	0.068			
29		No-flow + low-flow >30 minutes	3 17 (1 48–7 23)	0.004			
30		Neurological cause of cardiac arrest or hanging	6 49 (2 49–17 90)	<0.001			
21		Maximal PaCO, between days 1 and 2 after admission >45 mmHg	3 92 (1 82_9 00)	<0.001			
51		Maximal natromia botwoon days 1 and 2 after admission >1/3	1.02(1.02 0.00)	0.077			
32		maximar natrenna between days 1 and 2 arter admission > 145	1.00 (0.00-4.00)	0.077			
33	220	Abbreviations: CL = confidence interval: TTM = targeted temperature man	agement: MAP: mean arte	rial pressure:			
34	235	$\Delta D = odds ratio: PaCO = arterial partial pressure of earbon diavide$	agement, MAF. mean alte	nai pressure,			
35	240	$OR = 0003$ ratio, $FaCO_2$ = alterial partial pressure of Carbon dioxide.	62 years abaakabla first r	agordad			
36	241	rbuthm, po flow + low flow >20 min, pourological course of cardiac arrest of	v honging maximal MAD h				
22	242	1 and 2 after admission >114 mmHq, maximal arterial earban diavide bat	woon days 1 and 2 offer ad	mission >45			
3/	245	mmHa maximal natromia day 1 >142 mmal/L. Coodpass of fit Heamer L	ween days 1 and 2 after ad monopoly toot $p = 0.82$; or	1111551011 ~43			
38	244	receiver exercising observations output optimated by the C statistic = 0.82	p = 0.62, an	ea under the			
39	245	receiver operating characteristics curve estimated by the C-statistic = 0.6					
40	246						
41							
42 43	247	Discussion					
				.			

In this retrospective analysis of 256 patients with severe anoxic brain injuries following cardiac arrest, 56 patients (21.9%) died from BD within a median of 4 days (IQR 2-5), while 200 (78.1%) died from PAE within 7 days. There was no association between TTM and BD. These findings do not support our initial hypothesis that TTM could reduce intracranial hypertension and subsequently lower the incidence of brain death in severe anoxic brain injury. Factors independently associated with an increased likelihood of BD included a cardiac arrest duration of more than 30 minutes, a CA due to neurological causes or hanging, and a maximum PaCO2 of over 45 mmHg (6 kPa) between days 1 and 2 post-admission.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

In recent years, TTM has generated significant debate as a potential neuroprotective intervention following CA. [16,17] Its effectiveness, however, remains uncertain, particularly in specific patient subsets. [18] Furthermore TTM is not without risks, including cardiac complications, bleeding tendencies, and electrolyte imbalances. Additionally, TTM can delay neurological assessments, as it necessitates sedation to manage patient tolerance to cooling. Sedation itself remains a contentious treatment in 2024, as it is the primary confounding factor in post-cardiac arrest neurological assessments—a crucial component of post-resuscitation care. Given these complexities, it is essential to carefully evaluate scenarios in which TTM may ultimately prove futile or even harmful.

During TTM, the reduction in cerebral blood flow—driven by a corresponding decrease in metabolic demand—contributes to lowering intracranial pressure by directly reducing the volume within the intravascular compartment. This effect is partially mediated by the physiological decrease in PaCO₂ that occurs with cooling.[19] As a result, TTM at 35–36°C remains a "tier-three" recommendation for managing intracranial hypertension in international guidelines.[20] Based on these physiological mechanisms, we hypothesize that in certain patients with extremely severe anoxic brain injuries, TTM could potentially impede the progression to BD without improving neurological outcomes, possibly reducing the pool of potential organ donors from BD cases. More than 10% of post-cardiac arrest deaths are due to brain death, occurring at a mean delay of 3 days post-ROSC, and over 40% of brain-dead patients are potential organ donors.[7,21] As the number of patients on transplant waiting lists rises each year, with waiting times growing longer and reducing their chances, it is crucial to recognise that post-cardiac arrest patients who progress to brain death represent a valuable source of potential organ donors. Patients undergoing WLST post-cardiac arrest could potentially become organ donors through the Maastricht III procedure, although this type of donation is less common than donation after BD.

In our study, 139 patients (54.3%) received TTM for ≥24 hours. TTM ≥24 hours was
 not statistically associated with a reduction in BD in multivariable analysis (OR 1.08, 95% CI
 0.51–2.32, p = 0.80). Previous TTM studies have not provided specific information on BD as a

Page 13 of 20

BMJ Open

cause of death in either treatment group.[16,22] In the HYPERION study, BD accounted for 10.4% and 12.6% of deaths in each group, respectively, though no statistical comparison was made.[17] One study examined risk factors for progression to BD after OHCA based on admission data to the ICU but found no significant association. Of the 246 patients included, 71 (29%) received TTM, with a lower TTM rate in the BD group (17%) compared to 32% in the Cerebral Performance Category 3-4-5 group without BD; however, this difference was not statistically significant.[23] More recently, a French team developed a predictive score for BD post-OHCA using data from 1,056 patients, 83.4% of whom received TTM, with 161 (15.2%) progressing to BD. [24,25] In this analysis, TTM was not associated with BD when compared to patients who died from other causes. Notably, the population selection in these studies may not ideally address the role of TTM in BD progression. In our study, we excluded patients discharged alive from the ICU and those who died from causes other than BD or PAE, allowing us to focus on patients with severe anoxic brain injury for whom TTM might have an impact. Additionally, excluding patients who died early created a more homogeneous population with respect to TTM exposure.

We identified three independent risk factors for BD in this selected population of patients with severe brain injury. A combined duration of no-flow and low-flow exceeding 30 minutes was associated with an increased risk of BD, likely due to the extent of the initial brain insult. Cour et al. previously reported that a low-flow duration greater than 16 minutes is a risk factor for progression to BD .[25] CA due to neurological causes or hanging was also independently associated with BD, as documented in the literature.[24-26] Neurological causes can directly increase the volume of the parenchymal or cerebrospinal fluid compartments and may lead to impaired cerebral autoregulation, while hanging introduces cerebral hypoxia before CA. Unfortunately, a subgroup analysis of patients with neurological or hanging causes was not possible due to the small sample size.

Interestingly, a maximum $PaCO_2 > 45$ mmHg (6 kPa) between days 1 and 2 after admission was also associated with progression to BD. PaCO₂ plays a crucial role in managing secondary

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

brain injury, as it is the primary regulator of cerebral blood flow.[5] Literature suggests that both hypocapnia and hypercapnia within the first 24 hours post-CA are associated with poor neurological outcomes, with an odds ratio (OR) greater than 2. [27] A prospective, multicenter, randomized phase of 1700 post-CA patients found that therapeutic mild hypercapnia during the first 24 hours (PaCO₂ 50-55 mmHg (6.6-7.3 kPa)) did not lead to better neurologic outcomes at 6 months than targeted normocapnia in comparison to normocapnia (PaCO₂ 35-45 mmHg (4.6–6 kPa)). The numbers of patients with confirmed brain death leading to organ donation (Table S8) were similar in the two groups.[28] Neurofilament concentration did not differ in a post hoc analysis of the COMACARE trial, which compared two different targets of PaCO₂.[29] Furthermore, a recent multicenter study indicates a U-shaped association between PaCO₂ and in-hospital mortality, with higher risk associated with PaCO₂ levels below 35 mmHg (4.6 kPa) or above 55 mmHg (7.3 kPa), though specific causes of death were not detailed.[30] We can hypothesize that in some post-CA patients, cerebral protective mechanisms may become overwhelmed, with hypoxic damage already too advanced. Patients in the BD group more frequently presented with cerebral edema on admission CT (56.3% vs. 20.5%, p < 0.001). This early edema may reflect a more severely compromised blood-brain barrier post-CA, exacerbated by disrupted cerebral autoregulation.[31-33] Initial cerebral edema could be further aggravated by elevated PaCO₂, potentially accelerating progression toward BD. In patients undergoing TTM, this progression may be slowed, but the outcome remains poor, often resulting in secondary PAE.

We acknowledge several limitations in our study, which should be viewed as an exploratory analysis rather than definitive evidence. First, the retrospective design of the outcome analysis limits our ability to establish causal relationships between TTM and brain death. Second, the long study period may introduce variability due to changes in clinical practices, particularly following the publication of the TTM and HYPERION trials, which revised recommendations for post-CA TTM. [16,17] Although in our sensitivity analysis considering only patients managed with TTM 33°C excluding patients managed at TTM 36, we still did not find a

Page 15 of 20

BMJ Open

significant association between TTM and BD. Thirdly, this is a single-center study, and the recruitment may have been biased because the rate of CA of neurological cause may have been lower due to the absence of neurosurgery in the hospital. However, our recruitment represents a vast geographic area of western Paris. Fourthly, the population was restricted to patients who died from BD or PAE, which does not allow us to compare our population with the literature nor to answer the question of the incidence of post-CA BD. But we wanted to test our hypothesis on the most severely brain injured CA patients. For this reason, we did not include patients who were discharged alive, as their neurological impairment was by definition less severe, and currently, based on the literature, we cannot question the neuroprotective effect of TTM in this patient population. Fifthly, it cannot be excluded that self-fulfilling prophecy limits the results of the study. Indeed, patients judged to be more severe by the clinician may have been less likely to be put on TTM, which may have been considered futile. For this reason, we decided to exclude – from the outset – patients who died within 24 hours, among whom 17 died of BD. Moreover, we decided to define TTM use with TTM ≥24 hours, we also potentially minimize the effect of TTM on the primary outcome. In the same aspect, the fact that we used TTM 33 and 36°C in the population could be a limitation.

Conclusion

Glossary

This exploratory analysis of a retrospective cohort of post-CA patients with severe anoxic brain injury did not find an association between TTM ≥24 hours and a reduction in BD. Further studies are needed to identify specific subgroups of post-CA patients for whom TTM may be especially futile or even harmful and could help refine treatment approaches.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3 4	365	BD = brain death; CA = cardiac arrest; CI = confidence interval; CPR = cardiopulmonary
5 6	366	resuscitation; ICU = intensive care unit; IQR = interquartile range; MAP = mean arterial
7 8	367	pressure; OHCA = out-of-hospital cardiac arrest; OR = odds ratio; PaCO ₂ = arterial partial
9 10	368	pressure of carbon dioxide; PAE = post-anoxic encephalopathy; ROSC = return of
11 12	369	spontaneous circulation; TTM = targeted temperature management; WLST = Withdrawal of
13 14 15	370	life-sustaining therapy.
15 16 17	371	Declarations
17 18 19	372	Contributors
20 21	373	Study conception and design: MP, CH, SL
22	374	Data collection : MP, CH, SL
23 24	375	Analysis and interpretation of results: MP , SL
25 26	376	Draft manuscript preparation: CH MP
27 28	377	All authors reviewed the results and approved the final version of the manuscript.
29 30	378	Marine PAUL (MP) serves as guarantor and accepts full responsibility for the work and/or the
31 32	379	conduct of the study, had access to the data, and controlled the decision to publish.
33 34 35	380	Acknowledgement
35 36 37	381	The authors thank the Centre Hospitalier de Versailles and Jenny Lloyd (MedLink Healthcare
38	382	Communications Ltd.) for editorial assistance.
40 41	383	
42 43	384	Patient and Public Involvement statement
44 45	385	Patients were not involved in the research.
46 47	386	
48 49	387	Conflict of interest statement:
50 51 52 53	388	None of the authors has any conflicts of interest to declare.
55 54 55 56	389	Formatting of funding sources
57 58	390	This research did not receive any specific grant from funding agencies in the public,
59 60	391	commercial, or not-for-profit sectors.

1 ว		
2 3	392	
4 5 6	393	Author contributions
7 8	394	Marine Paul and Charles Hickel wrote the first draft of the paper. All authors approved the
9 10	395	final version of the manuscript.
11 12	396	MP: Major role in the acquisition of data, Study concept or design, Drafting/revision of the
13 14 15	397	manuscript for content, including medical writing for content; Analysis or interpretation of
15 16 17	398	data;
17 18 19	399	CH: Major role in the acquisition of data, Drafting/revision of the manuscript for content,
20 21	400	including medical writing for content;
22 23	401	GT: Major role in the acquisition of data Drafting/revision of the manuscript for content,
24 25	402	including medical writing for content;
26 27	403	VL: Major role in the acquisition of data Drafting/revision of the manuscript for content,
28 29	404	including medical writing for content;
30 31	405	OR: Major role in the acquisition of data
32 33	406	SM: Major role in the acquisition of data Drafting/revision of the manuscript for content,
34 35 26	407	including medical writing for content;
30 37 38	408	SL: Major role in the acquisition of data, Study concept or design, Drafting/revision of the
39 40	409	manuscript for content, including medical writing for content; Analysis or interpretation of
41 42	410	data;
43 44	411	References
45 46	412	1 Lemiale V, Dumas F, Mongardon N, et al. Intensive care unit mortality after cardiac
40 47	413	arrest: the relative contribution of shock and brain injury in a large cohort. <i>Intensive Care</i>
48	414	Med. 2013,39.1972–80. doi: 10.1007/S00134-013-3043-4
49 50	415	2 Witten L, Gardner R, Holmberg MJ, et al. Reasons for death in patients successfully
50	416	resuscitated from out-of-hospital and in-hospital cardiac arrest. Resuscitation.
52	417	2019;136:93–9. doi: 10.1016/j.resuscitation.2019.01.031
53	110	3 Arrich I Holzer M Havel C et al Hypothermia for neuroprotection in adults after
54	410 /10	cardionulmonary resuscitation. Cochrane Database Syst Rev. 2016;2:CD004128. doi:
55 56 57	420	10.1002/14651858.CD004128.pub4
58	421	4 Wu C, Xu J, Jin X, et al. Effects of therapeutic hypothermia on cerebral tissue oxvgen
59	422	saturation in a swine model of post-cardiac arrest. Exp Ther Med. 2020;19:1189–96. doi:
60	423	10.3892/etm.2019.8316

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1			
2 3 4 5 6	424 425 426	5	Vigué B, Ract C, Zlotine N, <i>et al.</i> Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury. <i>Intensive Care Med.</i> 2000;26:722–8. doi: 10.1007/s001340051238
7 8 9 10	427 428 429	6	Andrews PJD, Sinclair HL, Rodriguez A, <i>et al.</i> Hypothermia for Intracranial Hypertension after Traumatic Brain Injury. <i>N Engl J Med</i> . 2015;373:2403–12. doi: 10.1056/NEJMoa1507581
11 12 13 14	430 431 432	7	Sandroni C, D'Arrigo S, Callaway CW, <i>et al.</i> The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. <i>Intensive Care Med.</i> 2016;42:1661–71. doi: 10.1007/s00134-016-4549-3
15 16 17 18	433 434 435	8	Monsieurs KG, Nolan JP, Bossaert LL, <i>et al.</i> European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive Summary. <i>Resuscitation</i> . doi: 10.1016/j.resuscitation.2015.07.038
19 20 21 22	436 437 438	9	Nolan JP, Soar J, Zideman DA, <i>et al.</i> European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. <i>Resuscitation</i> . 2010;81:1219–76. doi: 10.1016/j.resuscitation.2010.08.021
23 24 25 26 27	439 440 441	10	Nolan J, European Resuscitation Council. European Resuscitation Council guidelines for resuscitation 2005. Section 1. Introduction. <i>Resuscitation</i> . 2005;67 Suppl 1:S3-6. doi: 10.1016/j.resuscitation.2005.10.002
27 28 29 30 31	442 443 444	11	Nolan JP, Sandroni C, Böttiger BW, <i>et al.</i> European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. <i>Intensive Care Med.</i> Published Online First: 2021. doi: 10.1007/s00134-021-06368-4
32 33 34 35	445 446 447	12	Jousset N, Gaudin A, Mauillon D, <i>et al.</i> Organ donation in France: legislation, epidemiology and ethical comments. <i>Med Sci Law</i> . 2009;49:191–9. doi: 10.1258/rsmmsl.49.3.191
36 37 38	448 449	13	Greer DM. Determination of Brain Death. <i>N Engl J Med</i> . 2021;385:2554–61. doi: 10.1056/NEJMcp2025326
39 40 41 42	450 451 452	14	Greer DM, Kirschen MP, Lewis A, <i>et al.</i> Pediatric and Adult Brain Death/Death by Neurologic Criteria Consensus Guideline. <i>Neurology</i> . 2023;101:1112–32. doi: 10.1212/WNL.000000000207740
43 44 45 46 47 48 49 50 51 52	453 454 455 456 457 458 459 460	15	Nolan JP, Berg RA, Andersen LW, <i>et al.</i> Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). <i>Resuscitation</i> . Published Online First: 27 August 2019. doi: 10.1016/j.resuscitation.2019.08.021
53 54 55 56	461 462 463	16	Dankiewicz J, Cronberg T, Lilja G, <i>et al.</i> Hypothermia versus Normothermia after Out-of- Hospital Cardiac Arrest. <i>N Engl J Med</i> . 2021;384:2283–94. doi: 10.1056/NEJMoa2100591
57 58 59 60	464 465 466	17	Lascarrou J-B, Merdji H, Le Gouge A, <i>et al.</i> Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. <i>N Engl J Med</i> . 2019;381:2327–37. doi: 10.1056/NEJMoa1906661

1			
2 3 4 5 6 7	467 468 469 470	18	Nishikimi M, Ogura T, Nishida K, <i>et al.</i> Differential effect of mild therapeutic hypothermia depending on the findings of hypoxic encephalopathy on early CT images in patients with post-cardiac arrest syndrome. <i>Resuscitation</i> . 2018;128:11–5. doi: 10.1016/j.resuscitation.2018.04.029
8 9 10 11	471 472 473	19	Odri A, Geeraerts T, Vigué B. [Hypothermia and cerebral protection after head trauma. Influence of blood gases modifications]. <i>Ann Fr Anesth Reanim</i> . 2009;28:352–7. doi: 10.1016/j.annfar.2009.02.023
12 13 14 15 16	474 475 476 477	20	Hawryluk GWJ, Aguilera S, Buki A, <i>et al.</i> A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). <i>Intensive Care Med.</i> 2019;45:1783–94. doi: 10.1007/s00134-019-05805-9
17 18 19 20	478 479 480	21	Sandroni C, Adrie C, Cavallaro F, <i>et al.</i> Are patients brain-dead after successful resuscitation from cardiac arrest suitable as organ donors? A systematic review. <i>Resuscitation</i> . 2010;81:1609–14. doi: 10.1016/j.resuscitation.2010.08.037
21 22 23 24 25	481 482 483	22	Nielsen N, Wetterslev J, Cronberg T, <i>et al.</i> Targeted temperature management at 33°C versus 36°C after cardiac arrest. <i>N Engl J Med</i> . 2013;369:2197–206. doi: 10.1056/NEJMoa1310519
25 26 27 28 29	484 485 486	23	Adrie C, Haouache H, Saleh M, <i>et al.</i> An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. <i>Intensive Care Med</i> . 2008;34:132–7. doi: 10.1007/s00134-007-0885-7
30 31 32 33	487 488 489	24	Madelaine T, Cour M, Roy P, <i>et al.</i> Prediction of Brain Death After Out-of-Hospital Cardiac Arrest: Development and Validation of the Brain Death After Cardiac Arrest Score. <i>Chest.</i> Published Online First: 8 June 2021. doi: 10.1016/j.chest.2021.01.056
34 35 36 37	490 491 492	25	Cour M, Turc J, Madelaine T, <i>et al.</i> Risk factors for progression toward brain death after out-of-hospital cardiac arrest. <i>Ann Intensive Care</i> . 2019;9. doi: 10.1186/s13613-019-0520-0
38 39 40 41	493 494 495	26	Arnaout M, Mongardon N, Deye N, <i>et al.</i> Out-of-hospital cardiac arrest from brain cause: epidemiology, clinical features, and outcome in a multicenter cohort*. <i>Crit Care Med.</i> 2015;43:453–60. doi: 10.1097/CCM.000000000000722
42 43 44 45 46 47	496 497 498 499	27	Roberts BW, Kilgannon JH, Chansky ME, <i>et al.</i> Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. <i>Circulation</i> . 2013;127:2107–13. doi: 10.1161/CIRCULATIONAHA.112.000168
47 48 49 50 51	500 501 502	28	Eastwood G, Nichol AD, Hodgson C, <i>et al.</i> Mild Hypercapnia or Normocapnia after Out- of-Hospital Cardiac Arrest. <i>N Engl J Med</i> . 2023;389:45–57. doi: 10.1056/NEJMoa2214552
52 53 54 55	503 504 505	29	Wihersaari L, Reinikainen M, Furlan R, <i>et al.</i> Neurofilament light compared to neuron- specific enolase as a predictor of unfavourable outcome after out-of-hospital cardiac arrest. <i>Resuscitation</i> . 2022;174:1–8. doi: 10.1016/j.resuscitation.2022.02.024
56 57 58 59 60	506 507 508 509	30	Zhou D, Li Z, Zhang S, <i>et al.</i> Association between mild hypercapnia and hospital mortality in patients admitted to the intensive care unit after cardiac arrest: A retrospective study. <i>Resuscitation</i> . 2020;149:30–8. doi: 10.1016/j.resuscitation.2020.01.036

2		
5 4 5 6	510 511 512	31 Crippa IA, Vincent J-L, Zama Cavicchi F, <i>et al.</i> Cerebral autoregulation in anoxic brain injury patients treated with targeted temperature management. <i>J Intensive Care</i> . 2021;9:67. doi: 10.1186/s40560-021-00579-z
7 8 9 10	513 514 515	32 Beekman R, Maciel CB, Ormseth CH, et al. Early head CT in post-cardiac arrest patients: A helpful tool or contributor to self-fulfilling prophecy? <i>Resuscitation</i> . 2021;165:68–76. doi: 10.1016/j.resuscitation.2021.06.004
11 12 13	516 517	33 Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke J Cereb Circ. 2001;32:128–32.
14 15	518	
16 17	519	
18	520	Figure 1 Study flow chart
19 20	520	Abbraviationa: $DD = brain death: CA = cardiae arreat: C = intensive care unit: DAE = next energies$
21 22	521	Abbreviations: BD = brain death, CA = cardiac arrest, ICO = intensive care unit, PAE = post-anoxic
23 24	522	
25 26	523 524	
20	525 526	
28 29		
30 31		
32		
33 34		
35 36		
37		
38 39		
40 41		
42		
43 44		
45		
46 47		
48 40		
49 50		
51 52		
53		
54 55		
56		
57 58		
59		
60		

BMJ Open

Association of Targeted Temperature Management on Progression to Brain Death after Severe Anoxic Brain Injury Following Cardiac Arrest: An Observational Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085851.R2
Article Type:	Original research
Date Submitted by the Author:	19-Jan-2025
Complete List of Authors:	paul, marine; Centre Hospitalier de Versailles, icu hickel, charles; Centre Hospitalier de Versailles Troché, Gilles; Centre Hospitalier de Versailles laurent, virginie; Centre Hospitalier de Versailles richard, olivier; Centre Hospitalier de Versailles merceron, sybille; Centre Hospitalier de Versailles Legriel, Stephane ; Centre Hospitalier de Versailles
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care
Keywords:	Out-of-Hospital Cardiac Arrest, Brain Injuries, Death, Sudden, Cardiac

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2 3 4	1	Association of Targeted Temperature Management on Progression to Brain
5 6	2	Death after Severe Anoxic Brain Injury Following Cardiac Arrest: An
7 8	3	Observational Study.
9 10 11	4	Marine Paul, MD ^{1,2} , Charles Hickel, MD ¹ , Gilles Troché, MD ¹ , Virginie Laurent, MD ¹ , Olivier
12 13	5	Richard, MD ³ , Sybille Merceron, MD ¹ , and Stéphane Legriel, MD, PhD ^{1,2,4}
14 15	6	¹ Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay,
16 17	7	France
18 19	8	² AfterROSC Study Group, Paris, France
20 21	9	³ SAMU 78, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay, France 4
22 23	10	⁴ University Paris-Saclay, UVSQ, INSERM, CESP, Villejuif, France
24 25 26	11	Correspondent
20 27 28	12	Marine Paul, MD
29 30	13	Intensive Care Department, Centre Hospitalier de Versailles - Site André Mignot, 177 Rue de
31 32	14	Versailles, 78150 Le Chesnay, France
33 34	15	mpaul@ght78sud.fr
35 36	16	Twitter: @Marine_PAUL
37 38	17	ORCID: 0000-0002-0717-9555
39 40	18	
41 42 43	19	
43 44 45	20	
46 47	21	
48	22	
49 50	23	
51 52	24	
53 54	25	
55	26	
56 57	27	
58 50	28	
60	29	
		1

BMJ Open

Abstract
Objective : TTM, through its physiological effects on intracranial pressure, may impede the progression to BD in severe anoxic brain injury post-cardiac arrest. We examined whether
there is a negative association between the use of TTM and the occurrence of BD after CA.
Design : Monocentric, retrospective study.
Setting: ICU, Versailles Hospital, France.
Participants : Comatose survivors of CA who died from BD or post-anoxic encephalopathy (PAE) after 24 hours.
Main outcome measures : PAE deaths corresponded to WLST due to irreversible post- anoxic coma or vegetative state according to prognostication guidelines. BD corresponded to the cessation of cerebral vascularization secondary to intra-cranial hypertension. The diagnosis of BD was definite by clinical diagnosis of deep coma Glasgow Coma Scale 3, loss of all brainstem reflexes, and the demonstration of apnea during a hypercapnia test. Cerebral CT scan or two isoelectric and unreactive electroencephalograms were used to confirm BD. To identify the independent association between TTM and BD, we conducted a multivariable logistic regression analysis.
Results : Out of 256 patients included between 2005 and 2021, 54.3% received TTM for at for at least 24 hours, and 56 patients (21.9%) died from BD. In the multivariable analysis, TTM for 24 hours or more was not associated with a decrease in BD (OR 1.08, 95% CI 0.51–2.32). Factors associated with BD included a total duration of no-flow plus low-flow exceeding 30 minutes, CA due to neurological causes or hanging and a high arterial partial pressure of carbon dioxide (PaCO2) between days 1 and 2 after admission.
Conclusions: This exploratory analysis of post-CA patients with severe anoxic brain injury did not find an association between TTM ≥24 hours and a reduction in BD. Further studies are needed to identify specific subgroups of post-CA patients for whom TTM may be especially futile or even harmful.
Key words : cardiac arrest, brain death, targeted temperature management, post-anoxic encephalopathy, organ donor.
Strengths and limitations of this study
Strengths and limitations of this study
2

Page 4 of 19

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

This study addresses a unique aspect of TTM by examining its potential futility in
 patients with severe anoxic brain injury post-cardiac arrest, a perspective
 underexplored in prior research.

• The population is limited to patients with severe anoxic brain injury who ultimately died, allowing focused analysis of TTM's effects in this specific group.

• The single-center, retrospective design may limit generalizability and restricts the ability to establish causal relationships between TTM and brain death incidence

68 Introduction

Despite improved practices, mortality after cardiac arrest (CA) remains very high, with an average hospital survival rate of only 30%. The primary cause of death in these patients is withdrawal of life-sustaining therapy (WLST) due to irreversible post-anoxic encephalopathy (PAE).[2]

Targeted Temperature Management (TTM) has been widely debated in recent years as a potential neuroprotective treatment for CA patients [3,4]. TTM may reduce neuroinflammation secondary to ischemia-reperfusion injury and prevent neuronal apoptosis . Additionally, TTM requires sedation, which can interfere with neurological examination and prognostication. Therefore, it is essential to identify scenarios where TTM may be ineffective or even futile..

TTM is also used in traumatic brain injury as a method to control intracranial hypertension [5,6]. In severe anoxic brain injury post-cardiac arrest, progression to brain death (BD) occurs in approximately 10–12% of cases.[7]. For these patients, TTM may reduce brain edema and intracranial pressure, potentially preventing progression to brain death without necessarily improving neurological outcomes, these patients pass away due to Withdrawal of Life-Sustaining Treatment (WLST).

In patients with very severe anoxic brain injuries post-cardiac arrest, TTM might
 influence progression to brain death, and consequently, the pool of potential organ donors.

this specific population

 BMJ Open

This study examines the potential association between TTM and progression to brain death in

Methods This single-center, retrospective, observational cohort study was conducted using a prospectively collected dataset from Versailles hospital (NCT03594318). Data collection was approved by the Ethics Committee of the French Intensive Care Society (#CESRLF 20-41) which waived the requirement for written consent in accordance with French law on retrospective studies of anonymized data. The study is reported according to the STROBE statement. Patient and public involvement Patients were not involved in the research. **Study Setting and ICU Management** The management protocol for patients admitted to our ICU after CA aligns with international guidelines. Before 2016, TTM was induced and maintained using ice packs at the groin and neck and a cold-air tunnel around the patient's body. After 2016, an automated temperature-controlled system, either the Criticool® or Artic Sun®, was used. was set at 33°C for comatose patients after out-of-hospital cardiac arrest (OHCA) with an initial shockable rhythm until 2013. From 2013 onwards, the target was 33°C for OHCA patients with a shockable rhythm and 36°C or fever control for other patients, maintained for 24 hours. Rewarming was gradual, in increments of 0.25–0.5°C, done passively before 2016 and actively controlled thereafter. During the first 72 hours in the ICU, treatments were adapted to maintain homeostasis, including glucose control, normocapnia using a pH-stat strategy, titration of inspired oxygen to maintain arterial saturation between 94–98%, and mean arterial pressure (MAP) of 65–75 mmHg. For patients who remained comatose 72 hours after return of spontaneous circulation (ROSC) and after sedation cessation, a multimodal prognostication protocol was applied to

identify cases of irreversible PAE. This protocol has followed international guidelines since 2005[8–11].

Study Objective

Our objective was to investigate an independent negative association between TTM and BD in a population of post-cardiac arrest patients with very severe anoxic brain injury.

Study Population

All adults admitted to the ICU in a comatose state following an OHCA or an in-hospital CA, with sustained ROSC between January 2005 and June 2021, who ultimately died from BD or PAE were included. This restricted population represents patients with the most severe brain damage, where a positive outcome is unlikely and TTM could be potentially futile. We excluded patients whose CA occurred in the ICU, those who were not in a coma, and patients who died within 24 hours. Additionally, patients who were discharged alive from the ICU and those who died from another cause than BD or PAE (such as refractory shock, recurrence of CA, refractory acute respiratory distress syndrome, WLST due to comorbidities, and secondary shock) were not included.

Definitions

We defined PAE as cases where patients died following withdrawal of life-sustaining therapy (WLST) due to irreversible neurological injury, in accordance with prognostication guidelines. [8–10]. On the other hand, BD was defined by the cessation of cerebral blood flow due to intracranial hypertension, with diagnosis following French legal criteria. This includes clinical signs of deep coma (Glasgow Coma Scale score of 3), absence of all brainstem reflexes, and apnea demonstrated during a hypercapnia test, in which arterial partial pressure of carbon dioxide (PaCO₂) rises to \geq 50 mmHg (6.6 kPa) after 10 minutes of disconnection. Additional confirmatory tests, such as cerebral CT angiography or two 30-minute isoelectric and unreactive electroencephalograms taken 4 hours apart, were also used to confirm BD.[12–14] **Data Collection**

Page 7 of 19

BMJ Open

and
tstei
pse
osc
nrine
diac
P.) ۱
te C
ıg.
ie c
eters
ays
ТМ
ethe
T ar
ition
esei
was
Repo
were
odia
ore
or I

Demographic characteristics d CA data were prospectively collected in an electronic database according to the Ut in style[15]. Information included age, gender, CA setting, initial rhythm, time from collar to cardiopulmonary resuscitation (CPR) initiation (no-flow) time from CPR initiation to RC (low-flow), presence of a witness, number of defibrillations, and administration of epineph e. The final aetiology of CA was also reported, with patients classified into five groups (car c, respiratory, neurological, hanging, or other causes) by two blinded authors (C.H. and M. with a third author (S.L.) resolving any disagreements. This classification aimed to isolat CAs at higher risk of intracranial hypertension, such as neurological causes or hangin

Additional in-ICU variables we ollected, including post-resuscitation shock, use of TTM, and secondary brain insult parame s (e.g., minimum and maximum serum sodium, temperature, MAP, and PaCO2 between da 1 and 2 after admission, excluding PaCO2 from the apnea test for BD diagnosis). Only T lasting \geq 24 hours was considered complete. While Witten et al. grouped BD and PAE toge r as neurological deaths, we opted to dichotomise these as PAE due to neurological WLS nd BD [2].

To further explore the associa between TTM and BD, we recorded the depth and duration of TTM, date of death, and pre nce of cerebral oedema on the CT scan from the first day of admission. Cerebral oedema v identified based on radiologist reports in patient records; CT scans were not reanalysed. R orts indicating loss of grey-white matter differentiation, brain swelling, or cerebral oedema e classified as showing cerebral oedema.

, 161 Statistical Analysis

Values are presented as me ans with interquartile ranges (IQRs) or as numbers with ariate comparisons between patients who died from BD and percentages, as appropriate. l those who died from PAE we conducted using the Mann–Whitney U test for continuous variables and the Chi-square Fisher's exact test for categorical variables, as appropriate. To identify an independent association between TTM \ge 24 hours and BD, we compared subjects with BD to those with PAE using univariate analysis followed by logistic regression.

Prior to the multivariable analysis, non-log-linear variables were transformed into dummy variables based on their median values. Non-collinear variables with p values < 0.05 in the univariate analysis, TTM \geq 24 hours, and clinically relevant variables were considered for inclusion in the multivariable model. Associations between factors and BD are reported as odds ratios (OR) with 95% confidence intervals (CI). The Hosmer-Lemeshow goodness-of-fit test and the area under the receiver operating characteristic curve (C-statistic) were calculated for the final models. Missing data were rare and managed using complete case analysis. All tests were two-sided, and p values < 0.05 were considered significant.

Finally, a sensitivity analysis was performed, excluding patients managed with TTM at 36°C to compare only TTM at 33°C versus no TTM. All analyses were conducted using R software, version 4.0.1 (R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org; accessed March 13, 2021).

Data Availability

The anonymized datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request and with permission from the Centre Hospitalier de Versailles.

Results

Figure 1 presents the patient flow chart. From January 2005 to June 2021, 918 patients were admitted following cardiac arrest (CA), of whom 662 were excluded: 76 had CA in the ICU, 40 were not comatose after ROSC, 148 died within the first 24 hours, 160 died from causes other than BD or PAE, and 238 were discharged alive from the ICU. Ultimately, 256 patients were included in the study.

Patient Features and Outcomes

Among the 256 patients, 75% received TTM for ≥12 hours (60.7% in the BD group and 79.0% in the PAE group, p=0.005) and 54.3% received TTM for ≥24 hours (44.6% in the BD group

BMJ Open

and 57.0% in the PAE group, p=0.10). Fifty-six patients (21.9%) died from BD, and 200 (78.1%)
died from PAE, with a median (IQR) time to death of 4 days (2–5) and 7 days (5–9),
respectively.

198Table 1 shows the characteristics of patients according to their progression to BD or PAE.199Patients who died from BD were younger (58 vs 65 years, p < 0.001) and had a lower frequency200of witnessed CA (64.3% vs 81.5%, p = 0.006) and initial shockable rhythm (16.1% vs 37.0%,201p = 0.003) compared to those who died from PAE. Median (IQR) no-flow plus low-flow duration202was longer in the BD group (36 [28–45] vs 30 [20–37] minutes, p = 0.001), and admission203lactate levels were higher (6.4 [4.8–9.4] vs 5.4 [2.9–7.5] mmol/L, p = 0.003).

Table 1 Patient Characteristics

N (%) or Median (Interquartile range)	Tratel	Dusta de ette	DAE	
	1 Otal	Brain death $(N = 56)$		p
	(N = 250)	(de - N)	(N = 200)	value
Age, y	63 (53–75)	58 (45–65)	65 (55–76)	<0.00
Male	167 (65.2)	32 (57.1)	135 (67.5)	0.20
OHCA	214 (83.6)	50 (89.3)	164 (82.0)	0.20
Public place at CA	129 (50.4)	34 (60.7)	95 (47.5)	0.08
Arrest witnessed/monitored	199 (77.7)	36 (64.3)	163 (81.5)	0.006
Bystander CPR	64 (25.0)	13 (23.2)	51 (25.5)	0.70
Shockable first recorded rhythm	83 (32.4)	9 (16.1)	74 (37.0)	0.003
Total number of defibrillations	0 (0–2.0)	0 (0–2.0)	0 (0–2.3)	0.053
before ROSC				
Use of epinephrine	222 (86.7)	49 (87.5)	173 (86.5)	0.80
Total epinephrine dose before	3.0 (1.0–5.0)	3.0 (1.0–5.0)	3.0 (1.9–4.0)	0.50
ROSC, mg				
Time from CA to CPR (no-flow), min	5 (0–11)	6 (2–15)	5 (0–10)	0.30
Time from CA to ROSC (low-flow),	21 (15–30)	26 (20–36)	20 (15–30)	0.006
min				
No-flow + low-flow, min (n = 245)	30 (20–40)	36 (28–45)	30 (20–37)	0.001
Cerebral edema on initial CT scan	36/120 (30.0)	18/32 (56.3) 🛛 🗠	18/88 (20.5)	<0.00
(n=120)				
Time to CT scan, hours after CA	3 (2-11)	3 (2-11)	3 (2-4)	0.4
Lactate concentration on ICU	5.7 (3.2–8.1)	6.4 (4.8–9.4)	5.4 (2.9–7.5)	0.003
admission, mmol/L				
Final identified cause of CA				<0.00
Cardiac	95 (37.1)	15 (26.8)	80 (40.0)	
Respiratory	62 (24.4)	11 (19.6)	51 (25.5)	
Neurological	17 (6.6)	11 (19.6)	6 (3.0)	
Hanging	22 (8.6)	9 (16.1)	13 (6.5)	
Other	60 (23.4)	10 (17.9)	50 (25.0)	
First temperature at admission, °C	36.2 (36.0-37.0)	36.0 (34.5-36.9)	36.3 (35.1-37.2)	0.11
ТТМ	213 (83.2)	38 (67.9)	175 (87.5)	< 0.00
Time to TTM target, hours after CA	6 (3-7)	5 (3-10)	6 (3-9)	0,9
Duration of TTM, hours	26 (20–31)	25 (20–29)	26 (20–32)	0.40
TTM >12 hours	192 (75.0)	34 (60.7)	158 (79.0)	0.005
TTM ≥24 hours	139 (54.3)	25 (44.6)	114 (57.0)	0.10

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

_					
_	36°C	29/139 (20.9)	6/25 (24.0)	23/114 (20.2)	0.70
ا ن_	Body temperature between days 1 and 2 after admission, °C				
_	Minimal	33.0 (32.1–34.0)	33.0 (31.9–34.5)	33.0 (32.1–34.0)	0.70
_	Maximal	37.0 (36.4–37.9)	37.4 (36.7–38.0)	37.0 (36.4–37.8)	0.028
 	PaCO₂ between days 1 and 2 after admission, mmHg				
_	Minimal	29.0 (26.0–32.0)	29.0 (26.5–35.0)	29.0 (26.0–33.0)	0.50
_	Maximal	45.0 (39.0–54.0)	50.0 (42.0–59.0)	44.0 (39.0–52.0)	0.009
	Natremia between days 1 and 2 after				
_	Minimal	137 0 (134 8-140 0)	138 0 (135 0_142 0)	137 0 (134 0_140 0)	0 078
-	Maximal	143.5 (139.0–146.0)	145.0 (141.0–148.0)	143.0 (139.0–144.0)	<0.00
-	MAP between days 1 and 2 after				0.00
	admission, mmHg				
_	Minimal	59 (51–64)	57 (50–62)	59 (51–64)	0.30
_	Maximal	114 (102–128)	124 (106–141)	113 (101–125)	0.004
_	Post-resuscitation shock	188 (73.4)	42 (75.0)	146 (73.0)	0.80
_	Continued epinephrine use	100 (39.1)	26 (46.4)	74 (37.0)	0.20
-	Renal replacement therapy	37 (14.5) 6 (1-9)	<u>(0.9)</u> (2.5)	32 (10.0) 7 (5_0)	0.20
	have*	0 (4-9)	+ (2-3)	1 (0-9)	~ 0.00
06	Abbreviations: CA = cardiac arrest: (CPR = cardiopulmonary	resuscitation: ICU = int	tensive care unit. IOR =	
07	interquartile range; MAP = mean art	erial pressure; OHCA =	out-of-hospital cardiac	arrest; PaCO ₂ = arterial	l partia
80	pressure of carbon dioxide; PAE = p	ost-anoxic encephalopa	athy; ROSC = return of :	spontaneous circulation	; TTM
.09	= targeted temperature management	it. 🚺			
10	* Time between admission and deat	h corresponds to the da	te of brain death diagno	osis in BD patients	
11					
12	The cause of CA differed sign	ificantly between th	e two groups, with	more neurological c	ause
12	The cause of CA differed sign	ificantly between th	e two groups, with	more neurological c	ause
212 213	The cause of CA differed sign and hangings in the BD grou	ificantly between th ip (p < 0.001). Wh	e two groups, with en the initial aetiolo	more neurological c ogical brain CT sca	ause: In wa
212 213 214	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema	ificantly between th ip (p < 0.001). Wh was more frequer	e two groups, with en the initial aetiolo it in the BD group	more neurological c ogical brain CT sca (18/32 (56.3%) vs	ause in wa 18/8
212 213 214 215	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s	ificantly between th p (p < 0.001). Wh was more frequer scans were conduct	he two groups, with en the initial aetiolo ht in the BD group ted at a median (IQ	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	ause in wa: 18/88] post
212 213 214 215	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s	ificantly between th p (p < 0.001). Wh was more frequer scans were conduct ant difference betw	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ	more neurological c ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	ause In wa 18/8] post
212 213 214 215 216	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between th p (p < 0.001). Wh was more frequer scans were conduct ant difference betw	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	ause in wa 18/8] pos
212 213 214 215 216	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between th p (p < 0.001). Wh was more frequer scans were conduct ant difference betw	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	ause in wa 18/8] posi
212 213 214 215 216 217	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between th p (p < 0.001). Wh was more frequer scans were conduct ant difference betw	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	ause in wa 18/8] pos
212 213 214 215 216 217	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference betwe	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ geen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	ause in wa 18/8] pos
212 213 214 215 216 217 218	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours o	ificantly between th up (p < 0.001). Wh was more frequer scans were conduct ant difference betw was used less frequ	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th	ause in wa 18/8] pos e PA
212 213 214 215 216 217 218	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference betwe was used less freque	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11	e PAI
212 213 214 215 216 217 218 219	The cause of CA differed sign and hangings in the BD grou performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference betwe was used less frequer s difference was no	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. uently in the BD gro ot statistically signif	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T	ause in wa 18/8] pos e PAI he BI
212 213 214 215 216 217 218 219	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference between was used less frequer s difference was no	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups.	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T	ause in wa 18/8] pos ⁻ e PAI he BI
212 213 214 215 216 217 218 219 220	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference betwe was used less frequer s difference was not operature, maxima	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD gro of statistically signif	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	ause in wa 18/8] pos] pos] pos] bos Bl be Bl serur
 212 213 214 215 216 217 218 219 220 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference betw was used less freques s difference was no mperature, maxima	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ geen the groups. Uently in the BD group ot statistically signif	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	ause in wa 18/8] pos] pos e PAI he BI serur
 212 213 214 215 216 217 218 219 220 221 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days f	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference betwe was used less freques difference was no mperature, maxima 1 and 2 after admise	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ geen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T MAP, and maximal	ause in wa 18/8] pos ⁻] pos ⁻ serur
212 213 214 215 216 217 218 219 220 221	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days f	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference betwe was used less freques of difference was not perature, maxima 1 and 2 after admise	te two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD gro of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	ause in wa 18/8] pos] pos e PA he Bl serur
212 213 214 215 216 217 218 219 220 221 222	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days 2	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference between was used less freques s difference was no mperature, maxima 1 and 2 after admise	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	e PAl be Bl
212 213 214 215 216 217 218 219 220 221 222	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days 2	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference between was used less freques s difference was no mperature, maxima 1 and 2 after admise	e two groups, with en the initial aetiolo at in the BD group ted at a median (IQ geen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal	ause in wa 18/8] pos ⁻ e PAI he BI serur
 212 213 214 215 216 217 218 219 220 221 222 222 222 223 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days f	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference betwe was used less frequer s difference was no mperature, maxima 1 and 2 after admise	te two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD gro of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological opical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 bup compared to th ficant ($p = 0.10$). T MAP, and maximal	ause in wa 18/8] posi e PAI he BI serur
 212 213 214 215 216 217 218 219 220 221 222 223 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference betwo was used less frequer s difference was no mperature, maxima 1 and 2 after admise atients who donate	e two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1).	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th ficant (p = 0.10). T MAP, and maximal (55%) had cerebr	ause in wa 18/8] pos e PA he Bl serur
 212 213 214 215 216 217 218 219 220 221 222 223 223 224 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours v group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days 4 Among the 22/56 (39%) pa	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference between was used less frequer s difference was no nperature, maxima 1 and 2 after admise atients who donate	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant ($p = 0.10$). T MAP, and maximal (55%) had cerebr	ause in wa 18/8] pos] pos e PAI he BI serur
 212 213 214 215 216 217 218 219 220 221 222 223 224 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference between was used less frequer s difference was no nperature, maxima 1 and 2 after admise atients who donate oral vascular arrest	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr nad two EEGs conf	cause in wa 18/8] pos ⁻ e PAI he BI serur ⁻ al C ⁻ firmin
 212 213 214 215 216 217 218 219 220 221 222 223 224 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference between was used less frequer s difference was no mperature, maxima 1 and 2 after admise atients who donate oral vascular arrest	te two groups, with en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T WAP, and maximal (55%) had cerebr nad two EEGs conf	ause in wa 18/8] pos] pos e PAI he BI serur ral C
 212 213 214 215 216 217 218 219 220 221 222 223 224 225 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for ≥24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb isoelectric EEG.	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct cant difference between was used less freques difference was not preature, maxima 1 and 2 after admission atients who donate oral vascular arrest	te two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ veen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr had two EEGs conf	ause in wa 18/8] pos] pos e PAI he BI serur firmin
 212 213 214 215 216 217 218 219 220 221 222 223 224 225 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb isoelectric EEG.	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference betwe was used less freques difference was no mperature, maxima 1 and 2 after admission atients who donate oral vascular arrest	e two groups, with i en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr had two EEGs conf	ause in wa 18/8] posi e PAI he BI serur
 212 213 214 215 216 217 218 219 220 221 221 222 223 224 225 226 	The cause of CA differed sign and hangings in the BD group performed, cerebral oedema (20.5%), p < 0.001). The CT s cardiac arrest, with no signific Although TTM for \geq 24 hours of group (44.6% vs 57.0%), this group had higher maximal ter sodium levels between days of Among the 22/56 (39%) pa angiography confirming cereb isoelectric EEG.	ificantly between the p (p < 0.001). Whe was more frequer scans were conduct ant difference between was used less frequer s difference was not inperature, maxima 1 and 2 after admission atients who donate oral vascular arrest	e two groups, with en the initial aetiolo at in the BD group ted at a median (IQ reen the groups. Uently in the BD group of statistically signif I PaCO2, maximal I sion (see Table 1). ed organs, 12/22 , and 10/22 (45%) I	more neurological o ogical brain CT sca (18/32 (56.3%) vs R) of 3 hours [2–11 oup compared to th icant (p = 0.10). T MAP, and maximal (55%) had cerebr had two EEGs conf	ause in wa 18/8] posi] posi e PAI he BI serun

9

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2		
3 4	227	Factors Independently associated with BD
5 6	228	TTM ≥24 hours was not significantly associated with brain death (BD) in either univariate
7 8	229	analysis (OR 0.61, 95% CI 0.35-1.10, p = 0.14) or multivariate analysis (OR 1.08, 95% CI
9 10	230	0.51-2.32, p = 0.80; see Table 2). The following factors were independently associated with
11 12	231	an increase in BD: no-flow plus low-flow duration >30 minutes (OR 3.17, 95% CI 1.48–7.23, p
13 14	232	= 0.004), CA due to neurological cause or hanging (OR 6.49, 95% CI 2.49–17.90, <i>p</i> < 0.001)
15 16 17	233	and a high $PaCO_2$ between days 1 and 2 after admission >45 mmHg (6 kPa) (OR 3.92, 95%
17 18 10	234	CI 1.82–9.00, $p < 0.001$). After exclusion of patients managed with TTM 36°C, the association
20 21	235	between TTM 33 and BD was still not statistically significant (OR 0,43, 95% CI 0.16-1.17,
22 23	236	p=0.093) (ESM).
24	227	Table 2 Factors associated with brain death by multivariable analysis

Table 2 Factors associated with brain death by multivariable analysis^a

3		
	OR (95% CI)	p value
TTM >24 hours	1.08 (0.51–2.32)	0.80
Shockable first recorded rhythm	0.43 (0.16–1.03)	0.068
No-flow + low-flow >30 minutes	3.17 (1.48–7.23)	0.004
Neurological cause of cardiac arrest or hanging	6.49 (2.49–17.90)	<0.001
Maximal PaCO ₂ between days 1 and 2 after admission >45 mmHg	3.92 (1.82–9.00)	<0.001
Maximal natremia between days 1 and 2 after admission >143	1.93 (0.93-4.03)	0.077
mmol/L		

Abbreviations: CI = confidence interval; TTM = targeted temperature management; MAP: mean arterial pressure; OR = odds ratio; PaCO₂ = arterial partial pressure of carbon dioxide.

^aVariables included in the model selection process: TTM >24 hours, age >63 years, shockable first recorded rhythm, no-flow + low-flow >30 min, neurological cause of cardiac arrest or hanging, maximal MAP between days 1 and 2 after admission >114 mmHg, maximal arterial carbon dioxide between days 1 and 2 after admission >45 mmHg, maximal natremia day 1 >143 mmol/L. Goodness-of-fit Hosmer-Lemeshow test, p = 0.82; area under the receiver operating characteristics curve estimated by the C-statistic = 0.81.

Discussion

This retrospective analysis of 256 patients with severe anoxic brain injuries following cardiac arrest, revealed that 56 patients (21.9%) died from BD within a median of 4 days (IQR 2-5), while 200 patients (78.1%) died from PAE within 7 days. There was no association between TTM ≥24 hours and BD in multivariable analysis. Factors independently associated with an increased likelihood of BD included a cardiac arrest duration of more than 30 minutes, a CA due to neurological causes or hanging, and a maximum PaCO2 of over 45 mmHg (6 kPa) between days 1 and 2 post-admission.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

In recent years, TTM has generated significant debate as a potential neuroprotective intervention following CA. [16,17] Its effectiveness, however, remains uncertain, particularly in specific patient subsets. [18] Furthermore TTM is not without risks, including cardiac complications, bleeding tendencies, and electrolyte imbalances. Additionally, TTM can delay neurological assessments, as it necessitates sedation to manage patient tolerance to cooling. Given these complexities, it is essential to carefully evaluate scenarios in which TTM may ultimately prove futile or even harmful.

During TTM, the reduction in cerebral blood flow—driven by a corresponding decrease in metabolic demand—contributes to lowering intracranial pressure by directly reducing the volume within the intravascular compartment. This effect is partially mediated by the physiological decrease in PaCO₂ that occurs with cooling.[19] As a result, TTM at 35–36°C remains a "tier-three" recommendation for managing intracranial hypertension in international guidelines.[20] In post CA patients, TTM may also reduce brain edema and intracranial pressure, but this effect might not translate into meaningful clinical benefits in all patients. TTM could potentially be negatively associated with the progression to BD without improving neurological outcomes, possibly reducing the pool of potential organ donors from BD cases. More than 10% of post-cardiac arrest deaths are due to brain death, occurring at a mean delay of 3 days post-ROSC, and over 40% of brain-dead patients are potential organ donors.[7,21] As the number of patients on transplant waiting lists rises each year, with waiting times growing longer and reducing their chances, it is crucial to recognise that post-cardiac arrest patients who progress to brain death represent a valuable source of potential organ donors.

In our exploratory study, 139 patients (54.3%) received TTM for ≥24 hours. TTM ≥24 hours was not statistically associated with a reduction in BD in multivariable analysis (OR 1.08, 95% CI 0.51–2.32, p = 0.80). Previous TTM studies have not provided specific information on BD as a cause of death in either treatment group.[16,22] In the HYPERION study, BD accounted for 10.4% and 12.6% of deaths in each group, respectively, though no statistical comparison was made.[17] One study examined risk factors for progression to BD after OHCA based on admission data to the ICU but found no significant association.[23] More recently, a

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

French team developed a predictive score for BD post-OHCA using data from 1,056 patients, with 15.2% patients progressing to BD, TTM was not associated with BD when compared to patients who died from other causes. [24,25] Compared to these studies, our work uniquely focuses on a homogenous population of patients with severe anoxic brain injury, excluding those who were discharged alive or died early from other causes.

We identified three independent risk factors for BD in this selected population of patients with severe brain injury. A combined duration of no-flow and low-flow exceeding 30 minutes was associated with an increased risk of BD, likely due to the extent of the initial brain insult. Cour et al. previously reported that a low-flow duration greater than 16 minutes is a risk factor for progression to BD .[25] CA due to neurological causes or hanging was also independently associated with BD, as documented in the literature.[24-26] Neurological causes can directly increase the volume of the parenchymal or cerebrospinal fluid compartments and may lead to impaired cerebral autoregulation, while hanging introduces cerebral hypoxia before CA. Unfortunately, a subgroup analysis of patients with neurological or hanging causes was not possible due to the small sample size.

35 298

Interestingly, a maximum PaCO₂ >45 mmHg (6 kPa) between days 1 and 2 after admission was also associated with progression to BD. PaCO₂ plays a crucial role in managing secondary brain injury, as it is the primary regulator of cerebral blood flow.[4] A prospective, multicenter, randomized phase of 1700 post-CA patients found that therapeutic mild hypercapnia during the first 24 hours (PaCO₂ 50-55 mmHg (6.6-7.3 kPa)) did not lead to better neurologic outcomes at 6 months than targeted normocapnia in comparison to normocapnia (PaCO₂ 35-45 mmHg (4.6–6 kPa)). The numbers of patients with confirmed BD leading to organ donation were similar in the two groups.[26] Furthermore, a recent multicenter study indicates a U-shaped association between PaCO₂ and in-hospital mortality, with higher risk associated with PaCO₂ levels below 35 mmHg (4.6 kPa) or above 55 mmHg (7.3 kPa), though specific causes of death were not detailed.[27]

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

We acknowledge several limitations in our study, which should be viewed as an exploratory analysis rather than definitive evidence. First, the retrospective design of the outcome analysis limits our ability to establish causal relationships between TTM and brain death. Second, the long study period may introduce variability due to changes in clinical practices, particularly following the publication of the TTM and HYPERION trials, which revised recommendations for post-CA TTM. [15,16] Although in our sensitivity analysis considering only patients managed with TTM 33°C excluding patients managed at TTM 36, we still did not find a significant association between TTM and BD. Thirdly, this is a single-center study, and the recruitment may have been biased because the rate of CA of neurological cause may have been lower due to the absence of neurosurgery in the hospital. However, our recruitment represents a vast geographic area of western Paris. Fourthly, the population was restricted to patients who died from BD or PAE, which does not allow us to compare our population with the literature nor to answer the question of the incidence of post-CA BD. But we wanted to explore the association on the most severely brain injured CA patients. For this reason, we did not include patients who were discharged alive, as their neurological impairment was by definition less severe, and currently, based on the literature, we cannot question the neuroprotective effect of TTM in this patient population. Fifthly, it cannot be excluded that self-fulfilling prophecy limits the results of the study. Indeed, patients judged to be more severe by the clinician may have been less likely to be put on TTM, which may have been considered futile. For this reason, we decided to exclude – from the outset – patients who died within 24 hours, among whom 17 died of BD. Moreover, we decided to define TTM use as TTM ≥24 hours to ensure consistency in exposure across the cohort. However, this may have minimized the potential effect of shorter durations of TTM on the primary outcome. In the same aspect, the fact that we used TTM 33 and 36°C in the population could be a limitation.

336 Conclusion

BMJ Open

In this exploratory analysis of a retrospective cohort of post-CA patients with severe anoxic
brain injury, no association was found between TTM ≥24 hours and a reduction in progression
to BD. These findings highlight the need for further research to better identify specific
subgroups of post-cardiac arrest patients in whom TTM may offer limited benefit or even
potential harm. Such studies could contribute to refining treatment strategies and optimizing
patient care.

¹ 345 **Glossary**

BD = brain death; CA = cardiac arrest; CI = confidence interval; CPR = cardiopulmonary resuscitation; ICU = intensive care unit; IQR = interquartile range; MAP = mean arterial pressure; OHCA = out-of-hospital cardiac arrest; OR = odds ratio; PaCO₂ = arterial partial pressure of carbon dioxide; PAE = post-anoxic encephalopathy; ROSC = return of

- 350 spontaneous circulation; **TTM** = targeted temperature management; **WLST**= Withdrawal of
- 4 351 life-sustaining therapy.
- 6 352 Declarations
- 8 353 **Contributors**
- ⁰ 354 Study conception and design: MP, CH, SL
- 2 355 Data collection : MP, CH, SL
- 4 356 Analysis and interpretation of results: MP , SL
- 6 357 Draft manuscript preparation: CH MP
- All authors reviewed the results and approved the final version of the manuscript.
- $\frac{1}{50}$ 359 Marine PAUL (MP) serves as guarantor and accepts full responsibility for the work and/or the
- 52 360 conduct of the study, had access to the data, and controlled the decision to publish.
- 54 361 Acknowledgement55
- 56 362 The authors thank the *Centre Hospitalier* de *Versailles* and Jenny Lloyd (MedLink Healthcare
- 58 363 Communications Ltd.) for editorial assistance.
 59

2 3	365	Patient and Public Involvement statement
4 5	366	Patients were not involved in the research.
6 7 8	367	
9 10	368	Conflict of interest statement:
11 12	369	None of the authors has any conflicts of interest to declare.
13 14 15 16	370	Formatting of funding sources
17 18 19	371	This research did not receive any specific grant from funding agencies in the public,
20 21	372	commercial, or not-for-profit sectors.
22 23	373	
24 25 26 27 28 29 30 31	374	Author contributions
	375	Marine Paul and Charles Hickel wrote the first draft of the paper. All authors approved the
	376	final version of the manuscript.
	377	MP: Major role in the acquisition of data, Study concept or design, Drafting/revision of the
32 33	378	manuscript for content, including medical writing for content; Analysis or interpretation of
34 35 36	379	data;
37 38	380	CH: Major role in the acquisition of data, Drafting/revision of the manuscript for content,
39 40	381	including medical writing for content;
41 42	382	GT: Major role in the acquisition of data Drafting/revision of the manuscript for content,
43 44	383	including medical writing for content;
45 46	384	VL: Major role in the acquisition of data Drafting/revision of the manuscript for content,
47 48	385	including medical writing for content;
49 50	386	OR: Major role in the acquisition of data
51 52	387	SM: Major role in the acquisition of data Drafting/revision of the manuscript for content,
55 55	388	including medical writing for content;
56 57	389	SL: Major role in the acquisition of data, Study concept or design, Drafting/revision of the
58 59	390	manuscript for content, including medical writing for content; Analysis or interpretation of
60	391	data;

15

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.	Encomponent Superiour (ARES)

1 2			
2 3 4	392	Re	ferences
5 6 7 8	393 394 395	1	Witten L, Gardner R, Holmberg MJ, <i>et al.</i> Reasons for death in patients successfully resuscitated from out-of-hospital and in-hospital cardiac arrest. <i>Resuscitation</i> . 2019;136:93–9. doi: 10.1016/j.resuscitation.2019.01.031
9 10 11 12	396 397 398	2	Arrich J, Holzer M, Havel C, <i>et al.</i> Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. <i>Cochrane Database Syst Rev.</i> 2016;2:CD004128. doi: 10.1002/14651858.CD004128.pub4
13 14 15 16	399 400 401	3	Wu C, Xu J, Jin X, <i>et al.</i> Effects of therapeutic hypothermia on cerebral tissue oxygen saturation in a swine model of post-cardiac arrest. <i>Exp Ther Med.</i> 2020;19:1189–96. doi: 10.3892/etm.2019.8316
17 18 19 20	402 403 404	4	Vigué B, Ract C, Zlotine N, <i>et al</i> . Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury. <i>Intensive Care Med</i> . 2000;26:722–8. doi: 10.1007/s001340051238
21 22 23 24 25	405 406 407	5	Andrews PJD, Sinclair HL, Rodriguez A, <i>et al</i> . Hypothermia for Intracranial Hypertension after Traumatic Brain Injury. <i>N Engl J Med</i> . 2015;373:2403–12. doi: 10.1056/NEJMoa1507581
26 27 28 29	408 409 410	6	Sandroni C, D'Arrigo S, Callaway CW, <i>et al.</i> The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. <i>Intensive Care Med.</i> 2016;42:1661–71. doi: 10.1007/s00134-016-4549-3
30 31 32 33	411 412 413	7	Monsieurs KG, Nolan JP, Bossaert LL, <i>et al.</i> European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive Summary. <i>Resuscitation</i> . doi: 10.1016/j.resuscitation.2015.07.038
34 35 36 37	414 415 416	8	Nolan JP, Soar J, Zideman DA, <i>et al.</i> European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. <i>Resuscitation</i> . 2010;81:1219–76. doi: 10.1016/j.resuscitation.2010.08.021
38 39 40 41	417 418 419	9	Nolan J, European Resuscitation Council. European Resuscitation Council guidelines for resuscitation 2005. Section 1. Introduction. <i>Resuscitation</i> . 2005;67 Suppl 1:S3-6. doi: 10.1016/j.resuscitation.2005.10.002
42 43 44 45	420 421 422	10	Nolan JP, Sandroni C, Böttiger BW, <i>et al.</i> European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. <i>Intensive Care Med.</i> Published Online First: 2021. doi: 10.1007/s00134-021-06368-4
40 47 48 49 50	423 424 425	11	Jousset N, Gaudin A, Mauillon D, <i>et al.</i> Organ donation in France: legislation, epidemiology and ethical comments. <i>Med Sci Law</i> . 2009;49:191–9. doi: 10.1258/rsmmsl.49.3.191
51 52 53	426 427	12	Greer DM. Determination of Brain Death. <i>N Engl J Med</i> . 2021;385:2554–61. doi: 10.1056/NEJMcp2025326
54 55 56 57	428 429 430	13	Greer DM, Kirschen MP, Lewis A, <i>et al.</i> Pediatric and Adult Brain Death/Death by Neurologic Criteria Consensus Guideline. <i>Neurology</i> . 2023;101:1112–32. doi: 10.1212/WNL.000000000207740
58 59 60	431 432 433	14	Nolan JP, Berg RA, Andersen LW, <i>et al.</i> Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the

2			
3 4 5 6 7 8	434 435 436 437 438		International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). <i>Resuscitation</i> . Published Online First: 27 August 2019. doi: 10.1016/j.resuscitation.2019.08.021
9 10 11 12	439 440 441	15	Dankiewicz J, Cronberg T, Lilja G, <i>et al.</i> Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. <i>N Engl J Med</i> . 2021;384:2283–94. doi: 10.1056/NEJMoa2100591
13 14 15 16	442 443 444	16	Lascarrou J-B, Merdji H, Le Gouge A, <i>et al.</i> Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. <i>N Engl J Med</i> . 2019;381:2327–37. doi: 10.1056/NEJMoa1906661
17 18 19 20 21 22	445 446 447 448	17	Nishikimi M, Ogura T, Nishida K, <i>et al.</i> Differential effect of mild therapeutic hypothermia depending on the findings of hypoxic encephalopathy on early CT images in patients with post-cardiac arrest syndrome. <i>Resuscitation</i> . 2018;128:11–5. doi: 10.1016/j.resuscitation.2018.04.029
23 24 25 26	449 450 451	18	Odri A, Geeraerts T, Vigué B. [Hypothermia and cerebral protection after head trauma. Influence of blood gases modifications]. <i>Ann Fr Anesth Reanim</i> . 2009;28:352–7. doi: 10.1016/j.annfar.2009.02.023
27 28 29 30 31	452 453 454 455	19	Hawryluk GWJ, Aguilera S, Buki A, <i>et al.</i> A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). <i>Intensive Care Med.</i> 2019;45:1783–94. doi: 10.1007/s00134-019-05805-9
32 33 34 35	456 457 458	20	Sandroni C, Adrie C, Cavallaro F, <i>et al.</i> Are patients brain-dead after successful resuscitation from cardiac arrest suitable as organ donors? A systematic review. <i>Resuscitation</i> . 2010;81:1609–14. doi: 10.1016/j.resuscitation.2010.08.037
36 37 38 39	459 460 461	21	Nielsen N, Wetterslev J, Cronberg T, <i>et al.</i> Targeted temperature management at 33°C versus 36°C after cardiac arrest. <i>N Engl J Med.</i> 2013;369:2197–206. doi: 10.1056/NEJMoa1310519
40 41 42 43	462 463 464	22	Adrie C, Haouache H, Saleh M, <i>et al.</i> An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. <i>Intensive Care Med.</i> 2008;34:132–7. doi: 10.1007/s00134-007-0885-7
45 46 47 48	465 466 467	23	Madelaine T, Cour M, Roy P, <i>et al.</i> Prediction of Brain Death After Out-of-Hospital Cardiac Arrest: Development and Validation of the Brain Death After Cardiac Arrest Score. <i>Chest.</i> Published Online First: 8 June 2021. doi: 10.1016/j.chest.2021.01.056
40 49 50 51 52	468 469 470	24	Cour M, Turc J, Madelaine T, <i>et al.</i> Risk factors for progression toward brain death after out-of-hospital cardiac arrest. <i>Ann Intensive Care</i> . 2019;9. doi: 10.1186/s13613-019-0520-0
53 54 55 56	471 472 473	25	Arnaout M, Mongardon N, Deye N, <i>et al.</i> Out-of-hospital cardiac arrest from brain cause: epidemiology, clinical features, and outcome in a multicenter cohort*. <i>Crit Care Med.</i> 2015;43:453–60. doi: 10.1097/CCM.0000000000000722
57 58 59 60	474 475 476	26	Eastwood G, Nichol AD, Hodgson C, <i>et al.</i> Mild Hypercapnia or Normocapnia after Out- of-Hospital Cardiac Arrest. <i>N Engl J Med.</i> 2023;389:45–57. doi: 10.1056/NEJMoa2214552

1 2 3 4 5 6 7	477 478 479 480	27 Zhou D, Li Z, Zhang S, <i>et al.</i> Association between mild hypercapnia and hospital mortality in patients admitted to the intensive care unit after cardiac arrest: A retrospective study. <i>Resuscitation</i> . 2020;149:30–8. doi: 10.1016/j.resuscitation.2020.01.036
8 9	481	
10 11	482	
12 13	483	Figure 1 Study flow chart
14 15	484	Abbreviations: BD = brain death; CA = cardiac arrest; ICU = intensive care unit; PAE = post-anoxic
16	485	encephalopathy.
17 18 19 20 21 22 32 42 52 62 72 82 93 03 132 33 43 53 63 73 83 940 41 42 43 44 56 57 56 57 58 59	483 486 487 488 489	
20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40 41 42 43 44 55 60 51 52 53 54 55 60	487 488 489	

Page 20 of 19

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

