

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of metabolically healthy overweight/obesity with none of metabolic abnormalities with incident hyperglycemia in Chinese adults: a 5-year cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-087307
Article Type:	Original research
Date Submitted by the Author:	09-Apr-2024
Complete List of Authors:	Gao, Qin; Jining Medical College, Liang, Boya; Binzhou Medical University Li, Hongmin; Jining Medical University Xie, Ruining; Jining Medical University Xu, Yaru; Jining Center for Disease Control and Prevention Tong, Yeqing; Hubei Provincial Center for Disease Control and Prevention Jiang , Shunli; Jining Medical University
Keywords:	Obesity, DIABETES & ENDOCRINOLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1		1
2 3		
4	1	Association of metabolically healthy overweight/obesity with none of metabolic
5	2	abnormalities with incident hyperglycemia in Chinese adults: a 5-year cohort
6 7	3	study
8	4	Qin Gao ¹ , Boya Liang ² , Hongmin Li ¹ , Ruining Xie ¹ , Yaru Xu ³ , Yeqing Tong ^{4*} ,
9	5	Shunli Jiang ^{1*}
10	6	* Yeqing Tong and Shunli Jiang contributed equally to this paper.
11	7	1 Public Health School, Jining Medical University, Jining, China
12 13	8	2 Public Health School, Binzhou Medical University, Yantai, China
14	9	3 Jining Center for Disease Control and Prevention, Jining, China
15	10	4 Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
16 17	11	Corresponding Author: Shunli Jiang, 33 Jianshe Road, Rencheng District, Jining,
17 18	12	
19	13	
20	14	
21 22	15	
22	16	
24	17	
25	18	
26 27	19	
27		
29	20	
30	21	
31 32	22	272000, China. E-mail addresses: <u>utopianjiang@163.com</u>
33	23	
34	24	
35	25	
36 37	26	
38	27	
39	28	
40	29	
41 42	30	
42	31	
44	32	
45	33	
46 47	34	
48	35	
49	36	
50	37	
51 52	38	
53	39	
54	40	
55	41	
56 57	42	
58	43	
59	44	
60		

4	45	Abstract
5	46	Objectives: To explore whether metabolically healthy overweight (MHOW) and/or
6	47	metabolically healthy obesity (MHO) increase hyperglycemia risk in a Chinese
7	48	population with a board age range.
8	49	Design: Retrospective cohort study with health check from 2010 to 2016.
9 10	50	Setting and participants: A total of 47391 metabolically healthy participants with none
11		
12	51	of metabolic abnormalities were selected from 32 sites and 11 cities in China. Cox-
13	52	proportional hazard model was employed to estimate the association of MHOW and
14	53	MHO for incident hyperglycemia.
15 16	54	Primary and secondary outcome measures: hyperglycemia include incident diabetes
17	55	and IFG. Diabetes was diagnosed with fasting blood glucose \geq 7.0 mmol/L and/or on
18	56	self-report during follow-up. The FPG level of IFG was from 5.6 to 6.9 mmol/L.
19	57	Results: With an average follow-up of 3.06 years, 5274 participants (11.13%)
20	58	developed hyperglycemia over 144,804 person-years, with an incidence rate of 36.42
21 22	59	per 1000 persons-years. Adjusted model revealed a higher risk of incident
22	60	hyperglycemia in the MHOW group (HR=1.23, 95%CIs: 1.16 to 1.30) and the MHO
24		group (HR=1.49, 95% CI: 1.33 to 1.67) compared with the MHNW group. With 1
25	61	
26	62	unit increase of BMI, the risk of hyperglycemia increased by 6% (HR = 1.06, 95% CI:
27	63	1.04 to 1.07). The stratified analyses and interaction tests showed the robustness of
28 29	64	the association, and there were a stronger association in women (P for interaction
30	65	<0.001).
31	66	Conclusions: The MHOW and MHO phenotypes were positively associated with
32	67	higher risk of hyperglycemia in this population. And the association was particularly
33	68	stronger in women. Early screening and weight management can help lower the
34 35	69	hyperglycemia incidence in metabolically healthy population.
36	70	
37	71	
38	72	
39		
40 41	73	
42	74	
43	75	
44	76	
45	77	Strengths and limitations of this study
46 47	78	1. This retrospective cohort study was representative of Chinese population with a
47	79	large sample size and a broad age range.
49	80	2. The metabolically healthy status was defined strictly based on NCEP ATP-III
50	81	criteria with none of metabolic abnormalities.
51	82	3. The index of WC was not measured at baseline, we cannot predict the risk of
52 53	83	hyperglycemia among abdominally obese individuals.
55		
55	84 05	4. The other confounding factors, such as physical activity and dietary factors were
56	85	not included in analysis.
57	86	
58 59	87	
59 60	88	

89 Introduction

About 537 million adults across the world were diagnosed with diabetes mellitus, and
over 90% was type 2 diabetes mellitus (T2DM)¹. In addition, prediabetes has become
an epidemic phenomenon. In 2021, 6.2% of the adult population in the world are
impaired fasting glucose (IFG) or 10.6% are impaired glucose tolerance (IGT)¹.
Among Chinses adults, the prevalence of diabetes and prediabetes was high and
increased from 2013 to 2018^{2, 3}, with the prevalence was about 12.4% and 38.1% in
2018³.

Global obesity prevalence increased gradually since the early 1980s⁴, which is one
of the critical risk factors of diabetes mellitus. However, some obese individuals, who
do not have other major cardiovascular risk factors, named metabolically healthy
obesity (MHO). However, the MHO phenotype likely evolves towards metabolically
unhealthy obesity, which may increase cardiovascular disease risk and mortality over
time.

Importantly, the definition of MHO is inconsistent at present. The most common
 definition of MHO is based on the criteria provided by the National Cholesterol
 Education Program Adult Treatment Panel III (NCEP ATP-III)⁵, and most definitions

106 require fewer than two of criteria factors except for waist circumference (WC)⁶. A

systematic review reported that MHO prevalence was from 6% to 75%, and this may vary due to unified definition and social demographic⁷. In a Chinese adult population, the MHO prevalence varied between 13.6% when using the homeostasis model assessment criteria, 11.4% using the Chinese Diabetes Society criteria, and 10.3% using ATP-III criteria⁸.

Compared with the metabolic healthy normal weight (MHNW) individuals, whether the risk of diabetes increase of MHO population is interesting. There were some studies indicated that MHO individuals were not at increased risk for diabetes compared with MHNW individuals^{9, 10}, however, other studies showed that MHO was associated with an increased risk of diabetes^{11, 12}. Furtherly, the association was not significant with the MHO defined with none of metabolic abnormalities^{11, 12}. In addition, the inconsistent results were correlated with the different age range of the population. The participants were middle-aged under 60 years in most of the previous studies^{9, 10, 13-15}, however, in China the studies mainly focused on the elderly individuals^{11, 12, 16}.

122 Therefore, we illustrated the association of hyperglycemia (including diabetes and
 123 IFG) among the young, middle-aged and elderly metabolically healthy individuals
 124 without any metabolic abnormalities of the ATP-III criteria from a large cohort
 125 Chinese population.

- 126 Methods
- 127 Subjects

Raw data were download from the "DATADRYAD" database (<u>www.datadryad.org</u>)
provided by Chen et al. ¹⁷. This secondary analysis did not violate the authors rights,
as the authors waived the copyright¹⁷.

BMJ Open

The information of 211,833 individuals was introduced in detail by Chen et al.¹⁷. As this present study focus on metabolically healthy status, we further excluded participants with (1) BMI < 18.5 kg/m² (n=12081); (2) systolic blood pressure (SBP) \geq 130 mmHg and/or diastolic blood pressure (DBP) \geq 85 mmHg or no available blood pressure value (n=61440); (3) fasting plasma glucose (FPG) \geq 5.6 mmol/L (n=1618); (4) triglyceride (TG) > 1.7 mmol/L or no available TG (n=28504); (5) high density lipoprotein cholesterol (HDL-C) ≤ 1.04 mmol/L (men) or ≤ 1.29 mmol/L (women) or no available HLD-C (n=60799), and finally 47391 individuals were included. The flowchart is shown in Fig. 1.

Data collection

As described in the original study, the basic information was collected by questionnaire, and anthropometric data were measured in a standardized way. Blood pressure was measured by standard mercury sphygmomanometers. Fasting blood was collected to measure glucose levels, TG, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), HDL-C, aspartate transaminase (AST), and the alanine transaminase (ALT) by an autoanalyzer (Beckman 5800).

Definitions of obesity, metabolic health

Body weight was categorized based on BMI to normal weight $(18.5-23.9 \text{ kg/m}^2)$. overweight (24.0-27.9 kg/m²), and obese (≥ 28.0 kg/m²). WC was not used due to the collinearity with BMI¹⁴. Metabolically healthy status was defined based on NCEP ATP-III criteria⁵ as the absence of any metabolic abnormalities, which include: (1) systolic BP \geq 130 mmHg and/or diastolic BP \geq 85 mmHg; (2) TG \geq 1.7 mmol/L; (3) FPG \geq 5.6 mmol/L; (4) HDL-C \leq 1.03 mmol/L in men or \leq 1.29 mmol/L in women. According to BMI categories and metabolically healthy status, the participants were divided into three phenotypes: (1) MHNW, (2) MHOW, (3) MHO.

Outcome Measures

Hyperglycemia (dichotomous variable: 0 = non- Hyperglycemia, 1 = Hyperglycemia). In this study, hyperglycemia include incident diabetes and IFG. Diabetes was diagnosed with fasting blood glucose ≥ 7.0 mmol/L and/or on self-report during follow-up. The FPG level of IFG was from 5.6 to 6.9 mmol/l based on the American Diabetes Association criteria¹⁸.

Covariates

The screening of covariates is based on previous literature^{11, 12, 16, 17, 19, 20}, which included: (1) continuous variables: age, ALT, AST, LDL-C, TC, blood urea nitrogen (BUN), and serum creatinine (SCr); (2) categorical variables: gender, smoking status, drinking status, and family history of diabetes.

Missing Data Processing

The missing data for LDL-C: 26 (0.17%), ALT: 35 (0.23%), AST: 8,120 (53.75%), BUN: 354 (2.34%), SCr: 113 (0.75%), drinking status: 10,473 (69.33%), and smoking status: 10,473 (69.33%), respectively. Multiple imputation was used for missing continuous variables in the present study. This module uses a chain algorithm and uses R's MI package for multiple interpolation. Treated as categorical variables for the missing data of categorical variables ²¹.

Statistical Analysis

Basic characteristics were presented as mean \pm SD or percentage. One-way ANOVA or Kruskal-Wallis test for continuous variables and χ^2 test for categorical variables

were analyzed for group comparisons.

Kaplan-Meier survival method and Cox-proportional hazard model were employed to estimate the association of MHOW and MHO for incident hyperglycemia. According to the STROBE statement recommendation²², the crude, minor- and full adjustment models were presented. In addition, a restricted cubic spline (RCS) model was constructed to explore the dose-response relationship between BMI and hyperglycemia prevalence.

- We performed subgroup analyses to verify the modification effects of age, gender and family history of diabetes on the correlation of BMI with hyperglycemia. And the interaction effects were conducted between BMI categories and the corresponding subgroup variable. Sensitivity analysis was performed by considering diabetes or IFG as outcome separately.
- All data were analyzed with R software (version 4.3.3) and Empower Stats (version 4.1). A two-sided *P*-value < 0.05 was set as statistically significant.
- Patient and public involvement
- Patients were not involved in the design, or conduct, or reporting, or dissemination plans of our research, because this program was a retrospective study.
- Results

- **Basic characteristics of the study participants**
- A total of 47391 metabolically healthy participants (47.66% male) were finally included. The mean age and BMI were 40.95 ± 11.05 years and 22.48 ± 2.59 kg/m², respectively. During 3.06 ± 0.95 years follow-up period, 5274 participants (11.13%) developed hyperglycemia. The characteristics stratified by BMI categories and the status of blood glucose were presented in Table 1 and Supplementary Table 1. Participants with higher BMI generally had higher FPG, SBP, DBP, TG, TC, LDL-C, ALT, AST, BUN, SCr, lower HDL-C, and had a higher percentage of male, current smoker and current drinker (P < 0.001; Table 1). During follow-up, all of the characteristics of hyperglycemic participants were different with participants without hyperglycemia (P < 0.05; Supplementary Table 1).
- The univariate analysis for hyperglycemia in the metabolically healthy population
- Supplementary Table 2 showed that higher age, BMI, FPG, DBP, SBP, TG, TC, LDL, AST, ALT, current drinker and smoker, and lower HDL-C were the risk factors of hyperglycemia. The females have a lower risk than the males. In Fig. 2, the Kaplan-Meier curve showed higher hazards were determined among MHOW and MHO (log-rank test, P < 0.001).
- The association of MHOW/MHO and hyperglycemia risk among metabolically healthy participants
- In metabolically healthy participants, 5274 individuals developed hyperglycemia over 144,804 person-years of follow-up, and the overall rate of hyperglycemia was 36.42 per 1000 person-years. The rate of hyperglycemia was 29.35 in MHNW group, 54.07 in MHOW group, and 72.24 in MHO group per 1000 person-years, respectively.

BMJ Open

The hazard ratio (HR) and 95% confidence intervals (CI) of the BMI categories on the incidence of hyperglycemia were listed in Table 2. In the crude model, compared with MHNW participants, the risk of hyperglycemia in MHOW group increased 85% (HR = 1.85, 95% CI:1.75 to 1.97), and the risk in MHO group increased 163% (HR = 1.85, 95% CI:1.75 to 1.97)2.63, 95% CI:2.35 to 2.95), respectively. After adjusted for age, gender, and the family history of diabetes, the HR (95% CI) in MHOW group and MHO group was 1.51 (1.42, 1.60) and 2.10 (1.88, 2.36). Furtherly, after adjusting all the covariates, the relationship still exists, as the HR (95% CI) was 1.23 (1.16-1.30) for MHOW and 1.49 (1.33-1.67) for MHO, P for trend <0.001. By taking BMI as a continuous variable, we furtherly analyzed the correlation between BMI and hyperglycemia risk. The risk of incident of hyperglycemia increased by 6% (HR = 1.06, 95% CI:1.04 to 1.07, P < 0.001) with 1 unit increase of BMI.

The RCS model showed the risk of hyperglycemia increased gradually with increasement of BMI, even the significant relationship was nonlinear (P < 0.001, P-nonlinearity = 0.039, Supplementary Fig.1).

Subgroup analyses and sensitivity analyses

The stratified analyses and interactions effects were performed and the results were summarized in Table 3. The additive interactions between MHOW/MHO and hyperglycemia risk were observed in gender, and stronger correlation was found in female participants. However, no significant interaction was found in age or family history of diabetes.

In addition, the sensitivity analyses of the risk of diabetes and IFG were furtherly performed to inspect the robustness of the results (Supplementary Table 3). After adjusted for the covariates, the HR (95% CI) of incident diabetes was 1.39 (1.05-1.85) for MHOW and 2.91 (1.94-4.37) for MHO, *P* for trend <0.001; the HR (95% CI) of IFG was 1.23 (1.16, 1.31) for MHOW and 1.49 (1.32,1.68) for MHO, P for trend < 0.001.

Discussion

The association between the BMI categories and incident hyperglycemia in the metabolically healthy population was examined in this cohort study. Compared with the MHNW group, the risk of hyperglycemia gradually increased in the MHOW group and MHO group. And, an increasing trend of incidence of hyperglycemia with a higher BMI. This present study suggests that the presence of MHOW/MHO, even with the absence of metabolic risk factors, significantly increased the incidence of hyperglycemia. MHOW and/or MHO should not be treated as a healthy status, and weight management maybe an effective way for prevention of hyperglycemia and its related metabolic diseases among MHOW or MHO individuals.

The BioSHaRE-EU Healthy Obese Project have shown that the MHO prevalence of was 7%-28% for women, and 2%-19% for men²³. The MHO prevalence ranged from 4.2% in a Chinese cohort⁸ to 13.3% among Asian Indians²⁴ and 28.5% in African Americans²⁵. In this study, the prevalence of MHOW (21.93%) and MHO (3.25%) were lower than previous reports, due to metabolically healthy status was strictly defined with none of metabolic abnormalities.

Wu et al. have shown the positive effect of MHO on diabetes based on large

BMJ Open

numbers of epidemiological studies worldwide⁶. However, the correlation was weakened when metabolically healthy status was defined with none of metabolic abnormalities. Evidently, the incidence of diabetes increased by 35-67% with one metabolic abnormality addition among metabolic healthy participants²⁶. For example, Feng et.al found that the risk of diabetes was increased in the MHO individual among 49,702 older people, but the association was not significantly when MHO was characterized with no ATP-III risk factors¹¹. In addition, Wei et.al found the increased risk of diabetes for MHO, but the elevated incidence was not statistically significant among MHO individuals with none of metabolic abnormalities in Dongfeng Tongji cohort study¹².

However, we still found a higher risk of hyperglycemia in MHOW group and MHO group as metabolically healthy status defined without any metabolic abnormalities in our study. What's more, we found the positive association of MHOW/MHO phenotype on diabetes and IFG, respectively. In consistent, compared with MHNW young men, the risk of diabetes among those MHOW or MHO individuals with absence of metabolic abnormalities were 1.89 and 3.88 times²⁶. The results were inconsistent may be related with the following reasons. Firstly, the difference of age may partly explain the inconsistent results. The age of the individuals was 63.2 years¹¹ and 66 (63-71) years¹², while the mean age in our study was 40.95 ± 11.05 years. The young MHO adults conferred a higher hyperglycemia risk, because they are more likely to develop different metabolic abnormalities in the short term, while the middle-aged MHO population who were likely overweight or obese for years without developing diabetes or metabolic disorders. In addition, as is known, the "metabolically health" status without metabolic abnormalities becomes less with aging²³, so the numbers of MHOW and MHO in the former studies^{11, 12} were obviously less than this present study.

Notably, interaction between gender and BMI categories on incident hyperglycemia was significant, as the risk of women was higher than men. This result was in line with some^{27, 28}, but not all previous studies^{29, 30}. A cohort study found that the diabetes risk and IFG in obese women was higher²⁷. Similarly, the other prospective case-cohort study observed that, particularly in women, WC was strongly associated with T2DM ²⁸. However, the greater HRs of diabetes in men with per SD increasement of BMI than in women (P for heterogeneity < 0.001) was found based on China Kadoorie Biobank study³⁰. The previous studies have shown that obesity as the risk factor of diabetes was more common and stronger in women^{31, 32}.

The mechanism of positive association between BMI and hyperglycemia incidence in metabolic healthy population still remains unclear. However, to some content, the correlation may be interpreted by the increased inflammation and insulin resistance of MWOW and/or MHO phenotypes. As we all know, overweight and/or obesity have been always chronic low-grade inflammatory status, especially in insulin sensitive tissues, like liver, muscle and adipose tissues³³. There was evidence showed that, even in MHO subjects, chronic inflammation plays critical role in diabetes development³⁴, ³⁵. Adipose tissue pro-inflammatory macrophages accumulation and infiltration was the most important cause of chronic inflammation³⁶. Pro-inflammatory cytokines

4

5 6

7

8

9

307 mainly secreted from macrophages, such as tumor necrosis factor (TNF- α) and 308 interleukin-1 beta (IL-1 β), can trigger various signal pathway to induce insulin 309 resistance. Critical signal pathways include TNF- α / IKK β /NF- κ B, and TLR4/ 310 NLRP3/caspase-1/IL-1 β , which impair insulin action and modulate pancreas β -cell 311 mass and function³⁷.

10312Study strengths and limitations

11 Apart from a large sample size and a broad age range, this study has several strengths. 313 12 The metabolically healthy individuals were included without any metabolic risk 314 13 factors, as to reveal the independent role of BMI and hyperglycemia risk. Furtherly, 315 14 15 sensitivity analyses, subgroup analyses and interaction effects were examined to attest 316 16 the reliability and stability of the results. There are several limitations of our study. 317 17 Firstly, the index of WC was not measured at baseline, we cannot combine WC and 318 18 19 BMI to distinguish people with abdominally obesity and cannot predict the risk of 319 20 320 hyperglycemia among abdominally obese individuals. In addition, the hyperglycemia 21 321 prevalence may be underestimated as the random plasma glucose and/or postprandial 22 23 plasma glucose level were not collected. Finally, although numerous confounding 322 24 323 factors were included, some potential factors may exist, such as physical activity and 25 324 dietary factors. 26

To conclude, this study demonstrated that MHOW and MHO were independently 27 325 28 positively associated with risk of incident hyperglycemia in absolutely metabolically 326 29 healthy adults, and the correlation was particularly stronger in women. Considering 327 30 the unsteady characteristics of metabolically healthy/obese phenotypes, these findings 328 31 32 stress that early screening and weight control was necessary to lower hyperglycemia 329 33 330 risk and to promote population health. 34

35 331 Acknowledgments

36 332 Thank for the contribution of the field investigators and the cooperation of the
 37 333 participants in the Rich Healthcare Group. And thank for sharing the database by the
 38 334 authors of Chen et al.

40 335 Footnotes

336 Contributions

42
43
44
44
45
45
46
47
47
48
49
49
49
49
40
40
41
42
43
44
45
46
47
47
48
49
49
49
40
40
41
41
42
43
44
45
46
47
47
48
49
49
49
40
40
41
41
42
43
44
45
46
47
47
48
49
49
49
40
40
41
41
42
43
44
44
45
46
47
47
48
49
49
49
40
40
41
41
42
43
44
44
45
46
47
48
49
49
49
40
41
41
42
43
44
44
45
46
47
47
48
49
49
49
49
49
49
49
40
40
41
41
42
43
44
44
44
45
46
47
48
49
49
49
49
49
40
41
41
42
43
44
44
44
45
46
47
48
49
49
49
49
49
49
40
41
41
42
44
44
44
45
46
47
48
49
49
49
49
49
49
49
40
41
41
42
43
44
44
44
<

47 341 Funding

348

This work was supported by the National Natural Science Foundation of China
(82204031), Natural Science Foundation of Shandong Province (ZR2021QH188), and
the Lin He's Academician Workstation of New Medicine and Clinical Translation in
Jining Medical University (JYHL2022MS13).

- ⁵⁴ 346 **Competing interests**: None declared.
- ⁵⁵
 347 Provenance and peer review: Not commissioned; externally peer reviewed.
- 57

41

58349Data availability statement

⁵⁹ 350 Data sharing statement Extra data can be accessed via the Dryad data repository at

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2		
3	351	http://datadryad.org/withthedoi:10.5061/dryad.ft8750v.
4 5	352	Ethics statements
6	353	Patient consent: Not required.
7	354	Ethics approval : This study was approved by the Rich Healthcare Group Review
8		
9	355	Board, and the information was retrieved retrospectively.
10 11	356	
12	357	
13	358	
14	359	
15 16	360	
10	361	
18	362	
19	363	
20	364	
21 22	365	
22	366	
24	367	
25	368	
26 27	369	
27 28		
29	370	
30	371	
31	372	
32 33	373	
34	374	
35	375	
36	376	
37 38	377	
39	378	
40	379	
41	380	
42 43	381	
43 44	382	
45	383	
46	384	
47 48	385	
40 49	386	
50	387	
51	388	
52 52		
53 54	389	
55	390	
56	391	
57	392	
58 59	393	
59 60	394	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2			10
3	395	1.	International Diabetes Federation. IDF Diabetes Atlas 10th Edition [M]. 2021.
4 5	395 396	1. 2.	Wang L, Gao P, Zhang M, et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in
5 6	397	2.	China in 2013. <i>JAMA</i> 2017;317:2515-23.doi.org/10.1001/jama.2017.7596
7	398	3.	Wang L, Peng W, Zhao Z, et al. Prevalence and Treatment of Diabetes in China, 2013-2018.
8	399	5.	<i>JAMA</i> 2021;326:2498-506.doi.org/10.1001/jama.2021.22208
9 10	400	4.	Inoue Y, Qin B, Poti J, Sokol R, Gordon-Larsen P. Epidemiology of Obesity in Adults: Latest
11	401	ч.	Trends. <i>Curr Obes Rep</i> 2018;7:276-88.doi.org/10.1007/s13679-018-0317-8
12	402	5.	Executive Summary of The Third Report of The National Cholesterol Education Program
13 14	403	J.	(NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In
15	404		Adults (Adult Treatment Panel III). JAMA 2001;285:2486-97.
16	405		doi.org/10.1001/jama.285.19.2486
17 18	406	6.	Wu Q, Xia MF, Gao X. Metabolically healthy obesity: Is it really healthy for type 2 diabetes
18	407	0.	mellitus? <i>World J Diabetes</i> 2022;13:70-84.doi.org/10.4239/wjd.v13.i2.70
20	408	7.	Rey-López JP, de Rezende LF, Pastor-Valero M, Tess BH. The prevalence of metabolically
21	409	/•	healthy obesity: a systematic review and critical evaluation of the definitions used. <i>Obes Rev</i>
22 23	410		2014;15:781-90.doi.org/10.1111/obr.12198
24	411	8.	Liu C, Wang C, Guan S, et al. The Prevalence of Metabolically Healthy and Unhealthy
25	412		Obesity according to Different Criteria. Obes Facts 2019;12:78-
26 27	413		90.doi.org/10.1159/000495852
28	414	9.	Meigs JB, Wilson PW, Fox CS, et al. Body mass index, metabolic syndrome, and risk of type
29	415		2 diabetes or cardiovascular disease. J Clin Endocrinol Metab 2006;91:2906-
30 31	416		12.doi.org/10.1210/jc.2006-0594
32	417	10.	Appleton SL, Seaborn CJ, Visvanathan R, et al. Diabetes and cardiovascular disease outcomes
33	418		in the metabolically healthy obese phenotype: a cohort study. <i>Diabetes Care</i> 2013;36:2388-
34 35	419		94.doi.org/10.2337/dc12-1971
36	420	11.	Feng S, Gong X, Liu H, et al. The Diabetes Risk and Determinants of Transition from
37	421		Metabolically Healthy to Unhealthy Phenotypes in 49,702 Older Adults: 4-Year Cohort Study.
38 39	422		Obesity (Silver Spring) 2020;28:1141-8.doi.org/10.1002/oby.22800
40	423	12.	Wei Y, Wang J, Han X, et al. Metabolically healthy obesity increased diabetes incidence in a
41	424		middle-aged and elderly Chinese population. Diabetes Metab Res Rev
42 43	425		2020;36:e3202.doi.org/10.1002/dmrr.3202
44	426	13.	Luo D, Liu F, Li X, et al. Comparison of the effect of 'metabolically healthy but obese' and
45	427		'metabolically abnormal but not obese' phenotypes on development of diabetes and
46 47	428		cardiovascular disease in Chinese. Endocrine 2015;49:130-8.doi.org/10.1007/s12020-014-
48	429		0444-2
49	430	14.	Hinnouho GM, Czernichow S, Dugravot A, et al. Metabolically healthy obesity and the risk of
50 51	431		cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J
52	432		2015;36:551-9.doi.org/10.1093/eurheartj/ehu123
53	433	15.	Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2
54 55	434		diabetes: a meta-analysis of prospective cohort studies. Obes Rev 2014;15:504-
55 56	435		15.doi.org/10.1111/obr.12157
57	436	16.	Liu M, Tang R, Wang J, He Y. Distribution of metabolic/obese phenotypes and association
58	437		with diabetes: 5 years' cohort based on 22,276 elderly. Endocrine 2018;62:107-
59 60	438		15.doi.org/10.1007/s12020-018-1672-7
00			

BMJ Open

1

2

3 439 Chen Y, Zhang XP, Yuan J, et al. Association of body mass index and age with incident 17. 4 440 diabetes in Chinese adults: a population-based cohort study. BMJ Open 5 6 441 2018;8:e021768.doi.org/10.1136/bmjopen-2018-021768 7 442 18. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. 8 443 Diabetes Care 2022;45:S17-s38.doi.org/10.2337/dc22-S002 9 10 444 19. Ye J, Guo K, Li X, Yang L, Zhou Z, The Prevalence of Metabolically Unhealthy Normal 11 445 Weight and Its Influence on the Risk of Diabetes. J Clin Endocrinol Metab 2023;108:2240-12 446 7.doi.org/10.1210/clinem/dgad152 13 447 20. Wang B, Zhang M, Wang S, et al. Dynamic status of metabolically healthy 14 15 448 overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 16 449 diabetes mellitus: A cohort study of a rural adult Chinese population. Obes Res Clin Pract 17 450 2018;12:61-71.doi.org/10.1016/j.orcp.2017.10.005 18 19 451 21. Erviti J, Alonso A, Oliva B, et al. Oral bisphosphonates are associated with increased risk of 20 452 subtrochanteric and diaphyseal fractures in elderly women: a nested case-control study. BMJ 21 453 Open 2013;3.doi.org/10.1136/bmjopen-2012-002091 22 23 454 22. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The 24 455 Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: 25 456 guidelines for reporting observational studies. Int JSurg. 2014;12:1495-26 457 27 9.doi.org/10.1016/j.ijsu.2014.07.013 28 458 23. van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, et al. The prevalence of metabolic 29 459 syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large 30 460 cohort studies. BMC Endocr Disord 2014;14:9.doi.org/10.1186/1472-6823-14-9 31 32 461 24. Geetha L, Deepa M, Anjana RM, Mohan V. Prevalence and clinical profile of metabolic 33 462 obesity and phenotypic obesity in Asian Indians. J Diabetes Sci Technol 2011;5:439-34 463 46.doi.org/10.1177/193229681100500235 35 36 464 25. Cherqaoui R, Kassim TA, Kwagyan J, et al. The metabolically healthy but obese phenotype in 37 465 African Americans. J Clin Hypertens (Greenwich) 2012;14:92-6.doi.org/10.1111/j.1751-38 466 7176.2011.00565.x 39 467 Twig G, Afek A, Derazne E, et al. Diabetes risk among overweight and obese metabolically 26. 40 41 468 healthy young adults. Diabetes Care 2014;37:2989-95.doi.org/10.2337/dc14-0869 42 Vaidya A, Cui L, Sun L, et al. A prospective study of impaired fasting glucose and type 2 469 27. 43 470 diabetes in China: The Kailuan study. Medicine (Baltimore) 44 45 471 2016;95:e5350.doi.org/10.1097/md.000000000005350 46 472 28. Langenberg C, Sharp SJ, Schulze MB, et al. Long-term risk of incident type 2 diabetes and 47 473 measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med 48 49 474 2012;9:e1001230.doi.org/10.1371/journal.pmed.1001230 50 475 29. Zhu Y, Hu C, Lin L, et al. Obesity mediates the opposite association of education and diabetes 51 476 in Chinese men and women: Results from the REACTION study. J Diabetes 2022;14:739-52 477 48.doi.org/10.1111/1753-0407.13325 53 54 478 30. Bragg F, Tang K, Guo Y, et al. Associations of General and Central Adiposity With Incident 55 479 Diabetes Chinese Men and Women. Diabetes 2018;41:494in Care. 56 480 502.doi.org/10.2337/dc17-1852 57 58 481 31. Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, 59 482 Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev 2016;37:278-60

BMJ Open

1 2			12
3	483		316.doi.org/10.1210/er.2015-1137
4 5	484	32.	Logue J, Walker JJ, Colhoun HM, et al. Do men develop type 2 diabetes at lower body mass
6	485		indices than women? <i>Diabetologia</i> . 2011;54:3003-6.doi.org/10.1007/s00125-011-2313-3
7	486	33.	Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between
8 9	487		obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141-
10	488		50.doi.org/10.1016/j.diabres.2014.04.006
11	489	34.	Zhao R, Tang D, Yi S, et al. Elevated peripheral frequencies of Th22 cells: a novel potent
12 13	490		participant in obesity and type 2 diabetes. PLoS One. 2014;9:e85770.
14	491		doi.org/10.1371/journal.pone.0085770
15	492	35.	Jung CH, Lee MJ, Kang YM, et al. The risk of incident type 2 diabetes in a Korean
16 17	493		metabolically healthy obese population: the role of systemic inflammation. J Clin Endocrinol
18	494		Metab. 2015;100:934-41.doi.org/10.1210/jc.2014-3885
19 20	495	36.	Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Meta-Inflammation and
20 21	496		Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of
22	497		Metabolites. Front Immunol. 2021;12:746151.doi.org/10.3389/fimmu.2021.746151
23 24	498	37.	Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related
24 25	499		disorders. Immunity, 2022;55:31-55.doi.org/10.1016/j.immuni.2021.12.013
26	500		
27 28	501		
28 29	502		
30	503		
31 32	504		
33	505		
34	506 507		
35 36	507		
37	509		
38	509 510		
39 40	511		
41	512		
42	513		
43 44	514		
45	515		
46	516		
47 48	517		
49	518		
50	519		
51 52	520		
53	521		
54 55	522		
55 56	523		
57	524		
58 59	525		
60	526		

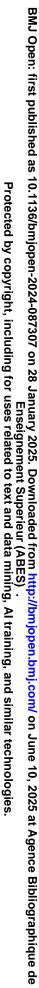
Tal-1 1 TL £ 41 1: C рМI *.*

Μ	ge (years)		MHNW	MHOW	MHO	P-
A M						value
Μ	ae (vears)	47391	34920	10932	1539	
	ge (years)	40.95 ± 11.05	40.10 ± 10.70	43.38 ± 11.60	42.93 ± 12.07	< 0.00
	lale, n (%)	22586 (47.66)	14124 (40.45)	7369 (67.41)	1093 (71.02)	< 0.00
B	$MI (kg/m^2)$	22.48 ± 2.59	21.25 ± 1.48	25.41 ± 1.05	29.56 ± 1.69	< 0.00
FI	PG (mmol/L)	4.82 ± 0.52	4.78 ± 0.52	4.92 ± 0.52	4.99 ± 0.54	< 0.00
SI	BP (mmHg)	110.88 ± 10.24	109.65 ± 10.30	114.07 ± 9.31	116.26 ± 8.63	< 0.00
D	BP (mmHg)	69.23 ± 7.47	68.45 ± 7.43	71.22 ± 7.14	72.63 ± 7.13	< 0.00
T	G (mmol/L)	0.92 ± 0.34	0.87 ± 0.32	1.06 ± 0.33	1.16 ± 0.32	< 0.00
T	C (mmol/L)	4.69 ± 0.80	4.65 ± 0.80	4.79 ± 0.80	4.84 ± 0.79	< 0.00
Η	DL-C (mmol/L)	1.50 ± 0.26	1.53 ± 0.27	1.42 ± 0.23	1.38 ± 0.21	< 0.00
L	DL-C (mmol/L)	2.70 ± 0.62	2.66 ± 0.61	2.80 ± 0.62	2.85 ± 0.63	< 0.00
	LT (mmol/L)	22.49 ± 10.50	21.66 ± 10.15	24.46 ± 10.94	27.46 ± 11.82	< 0.00
	ST (mmol/L)	20.22 ± 18.34	18.05 ± 16.65	25.39 ± 20.72	32.80 ± 23.65	< 0.00
	UN (mmol/L)	4.63 ± 1.16	4.56 ± 1.14	4.84 ± 1.17	4.91 ± 1.13	< 0.00
SC	Cr (mmol/L)	68.87 ± 15.47	67.05 ± 14.79	73.92 ± 16.32	74.36 ± 14.91	< 0.00
	moking status, n (%					< 0.00
	Current smoker	2049 (4.32)	1277 (3.66)	667 (6.10)	105 (6.82)	
ł	Ever smoker	493 (1.04)	284 (0.81)	181 (1.66)	28 (1.82)	
	Never smoker	10221 (21.57)	7600 (21.76)	2313 (21.16)	308 (20.01)	
	rinking status, n (%	· · · · ·				< 0.00
	Current drinker	249 (0.53)	144 (0.41)	85 (0.78)	20 (1.30)	
	Ever drinker	2117 (4.47)	1274 (3.65)	740 (6.77)	103 (6.69)	
	Never drinker	10397 (21.94)	7743 (22.17)	2336 (21.37)	318 (20.66)	
	amily history of dia	· · · · ·	(111)		010 (2000)	0.874
	Yes	1061 (2.24)	789 (2.26)	239 (2.19)	33 (2.14)	0.071

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

nealthy participai	nts		
Case/N	Crude Model	Model I	Model II
	(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)
ı			
5274/47391	1.14 (1.13, 1.15)	1.10 (1.09, 1.11)	1.06 (1.04, 1.07)
3139/34920	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
1798/10932	1.85 (1.75, 1.97)	1.51 (1.42, 1.60)	1.23 (1.16, 1.30)
337/1539	2.63 (2.35, 2.95)	2.10 (1.88, 2.36)	1.49 (1.33, 1.67)
	< 0.001	< 0.001	< 0.001
	Case/N a 5274/47391 3139/34920 1798/10932	(HR, 95% CI) a 5274/47391 1.14 (1.13, 1.15) 3139/34920 1.00 (Ref.) 1798/10932 1.85 (1.75, 1.97) 337/1539 2.63 (2.35, 2.95)	Case/N Crude Model (HR, 95% CI) Model I (HR, 95% CI) a 5274/47391 1.14 (1.13, 1.15) 1.10 (1.09, 1.11) 3139/34920 1.00 (Ref.) 1.00 (Ref.) 1798/10932 1.85 (1.75, 1.97) 1.51 (1.42, 1.60) 337/1539 2.63 (2.35, 2.95) 2.10 (1.88, 2.36)

Table 2 Relationship between BMI categories and the risk of hyperglycemia among the metabolically healthy participants


Model I: we adjusted age, gender and the family history of diabetes;

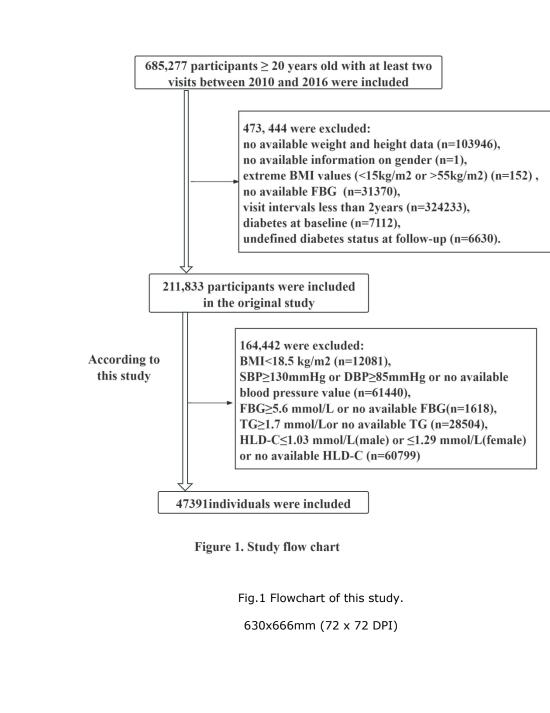

Model II: we further adjusted baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

Table 3 Multivariate-adjusted HR (95% CI) of hyperglycemia among BMI categories in stratified analyses

	MHNW	MHOW	МНО	P interaction
Gender				< 0.001
Male	1.00 (Ref.)	1.11 (1.03, 1.20)	1.32 (1.15, 1.51)	
Female	1.00 (Ref.)	1.43 (1.29, 1.58)	1.88 (1.52, 2.32)	
Age (years)				0.534
< 40	1.00 (Ref.)	1.32 (1.17, 1.48)	1.51 (1.21, 1.89)	
\geq 40	1.00 (Ref.)	1.22 (1.13, 1.31)	1.53 (1.34, 1.75)	
Family history	y of diabetes			0.290
yes	1.00 (Ref.)	1.23 (1.15, 1.30)	1.46 (1.30, 1.65)	
no	1.00 (Ref.)	1.05 (0.71, 1.55)	2.12 (1.07, 4.19)	

Adjusted for maternal gender (except gender subgroup), age (except age subgroup), family history of diabetes (except "family history of diabetes" subgroup), and baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

1.00 -

Survival probability 0.50 0.50 0.25

0.00

Strata

0

ĬŃŎ

1539

0

Number at risk

p < 0.0001

2

34920 10932

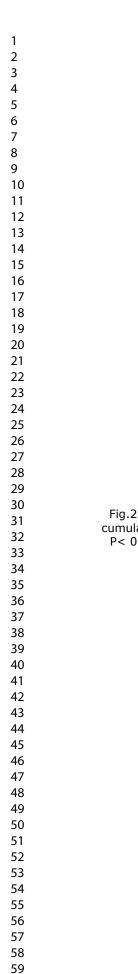
1539

2

4

Follow-up (years)

7019 2142


263

4

Follow-up (years)

MHO group.

173x128mm (96 x 96 DPI)

60

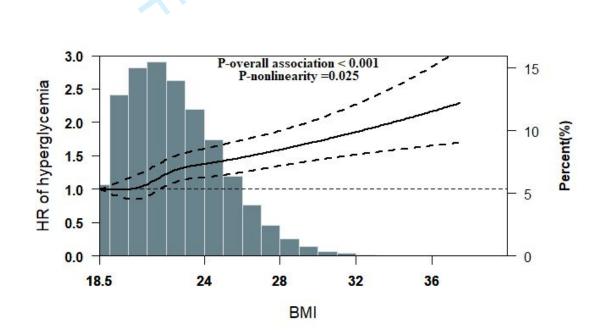
Strata + MHNW + MHOW + MHO 6 8 0 Ò ŏ ŏ ŏ 8 6 Fig.2 Kaplan-Meier curves for cumulative hazards of hyperglycemia incident risk. Figure showed that the cumulative risk of incident hyperglycemia was markedly different among the BMI categories (log-rank test, P< 0.001) and increased gradually with increase of BMI, resulting in maximum risk of prediabetes in the

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Variables	Non-hyperglycemia	Hyperglycemia	P-value
N	42117	5274	
Age (years)	40.25 ± 10.66	46.54 ± 12.48	< 0.001
Male, n (%)	19401 (46.06)	3185 (60.39)	< 0.001
BMI (kg/m ²)	22.35 ± 2.53	23.48 ± 2.81	< 0.001
FPG (mmol/L)	4.77 ± 0.51	5.20 ± 0.51	< 0.001
SBP (mmHg)	110.53 ± 10.26	113.72 ± 9.70	< 0.001
DBP (mmHg)	69.01 ± 7.48	70.95 ± 7.21	< 0.001
TG (mmol/L)	0.91 ± 0.33	1.01 ± 0.34	< 0.001
TC (mmol/L)	4.67 ± 0.80	4.83 ± 0.83	< 0.001
HDL-C (mmol/L)	1.51 ± 0.26	1.46 ± 0.25	< 0.001
LDL-C (mmol/L)	2.69 ± 0.62	2.79 ± 0.63	< 0.001
ALT (mmol/L)	22.35 ± 10.46	23.63 ± 10.71	< 0.001
AST (mmol/L)	19.89 ± 18.03	22.92 ± 20.38	< 0.001
BUN (mmol/L)	4.60 ± 1.15	4.88 ± 1.18	< 0.001
SCr (mmol/L)	68.44 ± 15.46	72.27 ± 15.09	< 0.001
Smoking status, n (%)			< 0.001
Current smoker	1741 (4.13)	308 (5.84)	
Ever smoker	441 (1.05)	52 (0.99)	
Never smoker	9171 (21.78)	1050 (19.91)	
Drinking status, n (%)			0.003
Current drinker	211 (0.50)	38 (0.72)	
Ever drinker	1844 (4.38)	273 (5.18)	
Never drinker	9298 (22.08)	1099 (20.84)	
Family history of diabete	es, n (%)		0.039
Yes	922 (2.19)	139 (2.64)	

2 3			
4			
5 6	Supplementary Table 2		
7	The results of univariate analy	usis for the risk factors of hyp	erolycemia
8	Covariables	HR (95%CI)	<i>P</i> -value
9 10	Age (years)	1.04 (1.03, 1.04)	<0.001
11	Gender	1.04 (1.05, 1.04)	< 0.001
12	Male	Ref.	~0.001
13	Female	0.60 (0.57, 0.64)	
14 15	FPG (mmol/L)	5.95 (5.63, 6.28)	< 0.001
16	SBP (mmHg)	1.03 (1.03, 1.03)	<0.001 <0.001
17	(e /		<0.001 <0.001
18 19	DBP (mmHg)	1.03 (1.02, 1.03)	
20	TG (mmol/L)	2.34 (2.17, 2.53)	< 0.001
21	TC (mmol/L)	1.17 (1.13, 1.20)	< 0.001
22	HDL-C (mmol/L)	0.62 (0.55, 0.68)	< 0.001
23 24	LDL-C (mmol/L)	1.31 (1.26, 1.37)	< 0.001
25	ALT (mmol/L)	1.00 (1.00, 1.00)	< 0.001
26	AST (mmol/L)	1.01 (1.00, 1.01)	< 0.001
27	BUN (mmol/L)	1.16 (1.14, 1.18)	< 0.001
28 29	SCr (mmol/L)	1.01 (1.00, 1.01)	< 0.001
30	Smoking status, n (%)		< 0.001
31	Never smoker	Ref.	
32	Ever smoker	0.93 (0.70, 1.23)	
33 34	Current smoker	1.40 (1.23, 1.59)	
35	Drinking status, n (%)		< 0.001
36	Never drinker	Ref.	
37	Ever drinker	1.15 (1.01, 1.31)	
38 39	Current drinker	1.56 (1.13, 2.15)	
40	Family history of diabetes		0.500
41	No	Ref.	
42	Yes	1.06 (0.90, 1.26)	
43 44			
45			
46			
47			
48 49			
50			
51			
52			

Supplementary Table 3


	Case/N	Crude Model	Model I	Model II
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)
Diabetes				
BMI	239/47391	1.24 (1.20, 1.28)	1.19 (1.14, 1.24)	1.14 (1.09, 1.18)
MHNW	116/34920	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
MHOW	91/10932	2.53 (1.92, 3.32)	1.78 (1.348, 2.36)	1.39 (1.05, 1.85)
MHO	32/1539	6.84 (4.62, 10.11)	4.55 (3.05, 6.78)	2.91 (1.94, 4.37)
P for trend		< 0.001	< 0.001	< 0.001
IFG				
BMI	5035/47152	1.14 (1.13, 1.15)	1.10 (1.09, 1.11)	1.05 (1.04, 1.07)
MHNW	3023/34804	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
MHOW	1707/10841	1.85 (1.74, 1.96)	1.51 (1.42, 1.61)	1.23 (1.16, 1.31)
MHO	305/1507	2.54 (2.26, 2.86)	2.07 (1.83, 2.33)	1.49 (1.32,1.68)
P for trend		< 0.001	< 0.001	< 0.001

Relationship between BMI categories and the risk of diabetes/IFG among the metabolically healthy participants

Model I: we adjusted age, gender and the family history of diabetes;

Model II: we further adjusted baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Supplementary Fig.1 Restricted cubic spline analyses illustrating the dose-response relationship between BMI and the incidence of hyperglycemia.

BMJ Open

BMJ Open

Metabolically healthy overweight/obesity with no metabolic abnormalities and incident hyperglycemia in Chinese adults: analysis of a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-087307.R1
Article Type:	Original research
Date Submitted by the Author:	27-Nov-2024
Complete List of Authors:	Gao, Qin; Jining Medical College, Liang, Boya; Binzhou Medical University Li, Hongmin; Jining Medical University Xie, Ruining; Jining Medical University Xu, Yaru; Jining Center for Disease Control and Prevention Tong, Yeqing; Hubei Provincial Center for Disease Control and Prevention Jiang , Shunli; Jining Medical University, ;
Primary Subject Heading :	Public health
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology
Keywords:	Obesity, DIABETES & ENDOCRINOLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2		
3	1	Metabolically healthy overweight/obesity with no metabolic abnormalities and
4	2	incident hyperglycemia in Chinese adults: analysis of a retrospective cohort
5 6	2	
7		study
8	4	Qin Gao ¹ , Boya Liang ² , Hongmin Li ¹ , Ruining Xie ¹ , Yaru Xu ³ , Yeqing Tong ^{4*} ,
9	5	Shunli Jiang ^{1*}
10	6	* Yeqing Tong and Shunli Jiang contributed equally to this paper.
11	7	1 Public Health School, Jining Medical University, Jining, China
12 13	8	2 Public Health School, Binzhou Medical University, Yantai, China
13	9	3 Jining Center for Disease Control and Prevention, Jining, China
15	10	4 Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
16		
17	11	Corresponding Author: Shunli Jiang, 33 Jianshe Road, Rencheng District, Jining,
18	12	272000, China. E-mail addresses: <u>utopianjiang@163.com</u>
19 20	13	
20 21	14	
22	15	
23	16	
24	17	
25	18	
26		
27 28	19	
20 29	20	
30	21	
31	22	272000, China. E-mail addresses: <u>utopianjiang@163.com</u>
32	23	
33	24	
34 35	25	
36	26	
37	27	
38		
39	28	
40	29	
41 42	30	
43	31	
44	32	
45	33	
46	34	
47 49	35	
48 49	36	
49 50		
51	37	
52	38	
53	39	
54 55	40	
55 56	41	
57	42	
58	43	
59	44	
60	r- T	

45 Abstract

46 Objectives: To explore whether metabolically healthy overweight (MHOW) and/or
47 metabolically healthy obesity (MHO) increase hyperglycemia risk in a Chinese
48 population with a board age range.

49 Design: Retrospective cohort study.

1050Setting: Secondary analysis of data from the DATADRYAD database, comprising1151health check records of participants from 32 regions and 11 cities in China between12522010 and 2016.

Participants: A total of 47391 metabolically healthy participants with none of
 metabolic abnormalities were selected.

- 1055Primary and secondary outcome measures: hyperglycemia include incident diabetes1755Primary and secondary outcome measures: hyperglycemia include incident diabetes1856and IFG. Diabetes was diagnosed with fasting blood glucose \geq 7.0 mmol/L and typical1957clinical symptoms and/or on self-report during follow-up. The FPG level of IFG was2058from 5.6 to 6.9 mmol/L.
- Results: With an average follow-up of 3.06 years, 5274 participants (11.13%) developed hyperglycemia over 144,804 person-years, with an incidence rate of 36.42 per 1000 persons-years. Adjusted model revealed a higher risk of incident hyperglycemia in the MHOW group (HR=1.23, 95%CIs: 1.16 to 1.30) and the MHO group (HR=1.49, 95% CI: 1.33 to 1.67) compared with the metabolic healthy normal weight group. With 1 unit increase of BMI, the risk of hyperglycemia increased by 6% (HR = 1.06, 95% CI: 1.04 to 1.07). The stratified analyses and interaction tests showed the robustness of the association, and there were a stronger association in women (*P* for interaction < 0.001).
 - 68 Conclusions: The MHOW and MHO phenotypes were positively associated with 69 higher risk of hyperglycemia in this population. And the association was particularly 70 stronger in women.

- - 75 Strengths and limitations of this study
 - 76 1. This retrospective cohort study is representative of the Chinese population,77 featuring a large sample size and a broad age range.
 - 78 2. Metabolically healthy status was rigorously defined based on the NCEP ATP-III79 criteria with none of metabolic abnormalities.
 - 80 3. Waist circumference was not measured at baseline, limiting the ability to assess the
 81 risk of hyperglycemia in individuals with abdominal obesity.
 - 4.Other confounding factors, such as physical activity and dietary factors, were not included in the analysis.
- 59 88

89 Introduction

Approximately 537 million adults worldwide have been diagnosed with diabetes mellitus, with over 90% being type 2 diabetes mellitus ¹. In addition, prediabetes has emerged as a global epidemic. In 2021, 6.2% of the adult population had impaired fasting glucose (IFG), and 10.6% had impaired glucose tolerance ¹. Among Chinese adults, the prevalence of diabetes and prediabetes remained high and increased between 2013 and 2018 ^{2,3}, with an estimated prevalence of 12.4% for diabetes and 38.1% for prediabetes in 2018 ³.

97 The global prevalence of obesity has been steadily rising since the early 1980s ⁴, 98 which is one of the key risk factors for diabetes mellitus. However, some obese 99 individuals, classified as having metabolically healthy obesity (MHO), do not present 100 with major cardiovascular risk factors. Nonetheless, the MHO phenotype may 101 progress to metabolically unhealthy obesity over time, increasing the risk of 102 cardiovascular disease and mortality.

A critical issue is the inconsistency in defining MHO. The most common definition of MHO is fewer than two of criteria factors of the metabolic syndrome or fewer than one abnormal factor excluding waist circumference (WC) ^{5,6}. In 2021, Zembic A et.al have proposed a new definition of MHO based on systolic blood pressure, waist-to-hip ratio and diabetes, and found the cardiovascular mortality risk of the MHO group was not increased when compared the metabolic healthy normal weight (MHNW) individuals ⁷. A systematic review reported that the estimated MHO prevalence was about 50% using ≤ 2 metabolic syndrome factors, or 24% using low HOMA-IR, or 13% when defined with no metabolic abnormality⁸. The relationship between MHO and the risk of diabetes remains a topic of interest. Some studies have suggested that MHO individuals are not at increased risk for diabetes compared to their MHNW counterparts ^{9, 10}, while others have shown that MHO is indeed associated with a higher risk of diabetes ^{11, 12}. Moreover, when MHO is defined strictly with no metabolic abnormalities, the association with diabetes risk appears less significant ¹¹, ¹². Recent studies have shown that the multi-organ insulin sensitivity in MHO group was lower than the metabolically healthy and lean group ¹³. These inconsistent findings may be partly due to the differing age ranges studied, as most previous research focused on middle-aged individuals under 60 years ^{9, 10, 14-16}, whereas studies in China predominantly examined older populations ^{11, 12, 17}.

Therefore, we aimed to investigate the association between hyperglycemia (including diabetes and IFG) and metabolically healthy individuals without any metabolic abnormalities, based on ATP-III criteria, across young, middle-aged, and elderly groups in a large cohort of the Chinese population.

52 126 Methods

53 127 Study design and subjects

This study was conducted by the Rich Healthcare Group across 32 sites and 11 cities in China. The subjects who received a health check from 2010 to 2016 were recruited, and the demographic, lifestyle, medical history and family history of chronic disease were collected by questionnaire investigation. As a retrospective cohort study, 685277 participants were selected with at least two visits. After excluding the participant who

BMJ Open

- meet the exclusion criteria, a total of 211833 participants (116123 male and 95710 female) were included (in Figure 1). The information of 211,833 individuals was introduced in detail, and the data were download from the "DATADRYAD" database
 (www.datadryad.org) by Chen et al. ¹⁸.
- For this study, focusing on metabolically healthy status, we excluded participants with body mass index (BMI) < 18.5 kg/m² (n = 12,081); systolic blood pressure (SBP) \geq 130 mmHg and/or diastolic blood pressure (DBP) \geq 85 mmHg, or missing blood pressure values (n = 61,440); fasting plasma glucose (FPG) \geq 5.6 mmol/L (n = 1,618); triglycerides (TG) ≥ 1.7 mmol/L or missing TG values (n = 28,504); or high-density lipoprotein cholesterol (HDL-C) ≤ 1.04 mmol/L (men) or ≤ 1.29 mmol/L (women) or missing HDL-C values (n = 60,799). A total of 47,391 individuals were included. The flowchart is shown in Figure 1.
- 19145Data collection
- As described in the original study, basic information was collected via questionnaire, and anthropometric data were measured in a standardized manner. Blood pressure was measured using standard mercury sphygmomanometers. Fasting blood samples were collected to measure glucose, TG, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), HDL-C, aspartate transaminase (AST), and alanine transaminase (ALT) using an autoanalyzer (Beckman 5800).
- ²⁸ 152 Definitions of obesity, metabolic health
- Body weight was categorized by BMI as follows: normal weight (18.5–23.9 kg/m²), overweight (24.0–27.9 kg/m²), and obese (≥ 28.0 kg/m²). WC was not used due to collinearity with BMI¹⁵. Metabolic health was defined according to the NCEP ATP-III criteria ⁵ as the absence of any metabolic abnormalities, which included: SBP \geq 130 mmHg and/or DBP \geq 85 mmHg; TG \geq 1.7 mmol/L; FPG \geq 5.6 mmol/L; and HDL-C \leq 1.03 mmol/L in men or \leq 1.29 mmol/L in women.
- 159 Based on BMI and metabolic health status, participants were classified into three
 160 phenotypes: (1) MHNW, (2) metabolically healthy overweight (MHOW), and (3)
 161 MHO.
- 41 162 Outcome Measures
- The primary of outcome was hyperglycemia, defined as a dichotomous variable (0 =non-hyperglycemia, 1 = hyperglycemia). In this study, hyperglycemia include incident diabetes and IFG. Diabetes was diagnosed with fasting blood glucose ≥ 7.0 mmol/L and typical clinical symptoms and/or self-report diabetes mellitus during follow-up. The FPG level of IFG was from 5.6 to 6.9 mmol/l based on the American Diabetes Association criteria¹⁹.
- ⁵⁰ 169 Covariates
- ⁵¹ 170 Covariates were selected based on previous literature^{11, 12, 17, 18, 20, 21}, and included ⁵³ 171 continuous variables (age, ALT, AST, LDL-C, TC, blood urea nitrogen [BUN], and ⁵⁴ 172 serum creatinine [SCr]) and categorical variables (gender, smoking status, drinking ⁵⁵ status, and family history of diabetes).
- 57 174 Missing Data Processing
- 58175Missing data were as follows: LDL-C: 26 (0.05%), ALT: 35 (0.07%), AST: 2743359176(57.89%), BUN: 354 (0.75%), SCr: 113 (0.24%), drinking status: 34628 (73.07%),

and smoking status: 34628 (73.07%), respectively. Multiple imputation was applied
for missing continuous variables using a chained equation algorithm with the R's MI
package. Missing categorical variables were treated as categorical in the analysis ²².

181 Statistical Analysis

Basic characteristics were presented as mean \pm SD or percentage. Group comparisons were conducted using one-way ANOVA or the Kruskal-Wallis test for continuous variables, and the χ^2 test for categorical variables. The Kaplan-Meier survival method and Cox-proportional hazard model were used to estimate the association of MHOW and MHO for incident hyperglycemia. According to the STROBE statement recommendation ²³, the crude, minor- and full adjustment models were presented. In addition, a restricted cubic spline model was also constructed to assess the dose-response relationship between BMI and hyperglycemia risk.

Subgroup analyses were performed to assess the modifying effects of age, gender, height, and family history of diabetes on the association between BMI and hyperglycemia. Interaction tests were conducted between BMI categories and these subgroup variables. Sensitivity analyses were carried out to assess the robustness of the findings: 1) we did similar analysis after considering diabetes and IFG as separate outcomes; 2) we excluded the participants with missing smoking and drinking status; 3) we excluded the participants with missing AST.

- All analyses were conducted using R software (version 4.3.3) and Empower Stats
 (version 4.1). A two-sided P-value < 0.05 was considered statistically significant.
- ³² 199 **Patient and public involvement**
 - 200 None.
- ³⁴ 200 None. 35 201 **Results**

³⁶ 202 **Basic characteristics of the study participants**

A total of 47391 metabolically healthy participants (47.66% male) were finally included. The mean age and BMI were 40.95 ± 11.05 years and 22.48 ± 2.59 kg/m², respectively. During a follow-up period of 3.06 ± 0.95 years, 5,274 participants (11.13%) developed hyperglycemia. The characteristics stratified by BMI categories and the status of blood glucose are presented in Table 1 and Table S1. Participants with higher BMI generally had higher FPG, SBP, DBP, TG, TC, LDL-C, ALT, AST, BUN, and SCr levels, lower HDL-C level, and had a higher proportion of males, current smokers, and current drinkers (P < 0.001; Table 1). During follow-up, all characteristics of hyperglycemic participants were different from those of participants without hyperglycemia (P < 0.05; Table S1).

⁵⁰₅₁ 213 Univariate analysis for hyperglycemia in the metabolically healthy population

Table S2 showed that higher age, BMI, FPG, DBP, SBP, TG, TC, LDL, AST, and ALT levels, current drinkers and smokers, and lower HDL-C level were the risk factors of hyperglycemia. Females had a lower risk of hyperglycemia than males. In Figure 2, the Kaplan-Meier curve showed that higher hazards were determined among MHOW and MHO (log-rank test, P < 0.001).

Association of MHOW/MHO and hyperglycemia risk among metabolically
 healthy participants

BMJ Open

In metabolically healthy participants, 5,274 individuals developed hyperglycemia
over 144,804 person-years of follow-up, and the overall rate of hyperglycemia was
36.42 per 1000 person-years. The rate of hyperglycemia was 29.35 in MHNW group,
54.07 in MHOW group, and 72.24 in MHO group per 1000 person-years, respectively.

The hazard ratio (HR) and 95% confidence intervals (CI) of the BMI categories on the incidence of hyperglycemia are listed in Table 2. In the crude model, compared with MHNW participants, the risk of hyperglycemia increased 85% in the MHOW group (HR = 1.85, 95% CI:1.75 to 1.97), and 163% in the MHO group (HR = 2.63, 95% CI:2.35 to 2.95), respectively. After adjusting for age, gender, and family history of diabetes, the risk of hyperglycemia in MHOW group and MHO group was still higher than in MHNW group. Furthermore, after adjusting for all the covariates, the relationship was not completely eliminated, with HRs (95% CI) of 1.23 (1.16–1.30) for MHOW and 1.49 (1.33–1.67) for MHO (P for trend < 0.001). Moreover, we analyzed the correlation between BMI as a continuous variable and the hyperglycemia risk. The risk of incident of hyperglycemia increased by 6% (HR = 1.06, 95% CI:1.04 to 1.07, P < 0.001) with 1 unit increase of BMI.

24 237 The restricted cubic spline model showed the risk of hyperglycemia increased 26 238 gradually with increase in BMI, albeit in a nonlinear manner (P < 0.001, P-27 239 nonlinearity = 0.039, Figure S1).

28 240 Subgroup analyses and sensitivity analyses 29 240 Subgroup analyses and sensitivity analyses

The results of the stratified analyses and interaction effects are presented in Table 3. The additive interactions between MHOW/MHO and hyperglycemia risk were observed in gender, and stronger correlation was found in female participants. However, no significant interaction was found in age, height or family history of diabetes.

In addition, sensitivity analyses were performed for the risk of diabetes and IFG to confirm the robustness of our results (Table S3). After adjusting for covariates, the HR (95% CI) of incident diabetes was 1.39 (1.05-1.85) for MHOW and 2.91 (1.94-4.37) for MHO (P for trend <0.001); the HR (95% CI) of IFG was 1.23 (1.16-1.31) for MHOW and 1.49 (1.32-1.68) for MHO (P for trend <0.001). Furthermore, to verify the association of MHOW/MHO and hyperglycemia, the sensitivity analyses were performed as excluding the individuals with missing data of smoking and drinking status (n=12763, Table S4) or AST (n=19955, Table S5). The positive relationship of MHOW/MHO and hyperglycemia risk was still significant.

48 255 **Discussion**

The association between the BMI categories and incident hyperglycemia in the metabolically healthy population was examined in this cohort study. Compared to the MHNW group, both the MHOW and MHO groups exhibited a progressive increase in the risk of hyperglycemia, revealing a clear trend of rising hyperglycemia incidence with higher BMI. This present study suggests that the presence of MHOW/MHO, even with the absence of metabolic risk factors, significantly elevates the incidence of hyperglycemia. Consequently, MHOW and/or MHO should not be treated as a healthy status. Notably, weight management may serve as an effective strategy for preventing hyperglycemia and its related metabolic diseases among individuals with

³/₄ 265 MHOW or MHO.

The BioSHaRE-EU Healthy Obese Project have shown that the MHO prevalence of was 7%-28% for women, and 2%-19% for men²⁴. The MHO prevalence ranged from 4.2% in a Chinese cohort ⁸ to 13.3% among Asian Indians ²⁵ and 28.5% in African Americans ²⁶. In this study, the prevalence of MHOW (21.93%) and MHO (3.25%) were lower than previous reports, likely due to the strict definition of metabolically healthy status with none of metabolic abnormalities.

Wu et al. highlighted the positive effect of MHO on diabetes based on large numbers of epidemiological studies worldwide ⁶. However, the correlation weakens when metabolically healthy status is strictly defined with none of metabolic abnormalities. Notably, the incidence of diabetes increased by 35-67% with one metabolic abnormality addition among metabolic healthy participants ²⁷. For example, Feng et al. found that the risk of diabetes increased among MHO individuals in a cohort of 49,702 older adults, but the association was not statistically significant when MHO was defined without ATP-III risk factors ¹¹. Similarly, Wei et al. observed an increased diabetes risk among MHO individuals, but this was not statistically significant among those with no metabolic abnormalities in the Dongfeng Tongji cohort study ¹².

Despite these findings, our study identified a higher risk of hyperglycemia in the MHOW and MHO groups, even with the strict definition of metabolically healthy status as the absence of any metabolic abnormalities. Additionally, we found the positive association of MHOW/MHO phenotype on diabetes and IFG, respectively. In consistent, the risk of diabetes for MHOW or MHO individuals with no metabolic abnormalities was 1.89 and 3.88 times higher, respectively, than in MHNW young men ²⁷. These inconsistent results may be attributed to several factors. First, age differences may partly explain the variability in findings. The participants in previous studies had mean ages of 63.2 years ¹¹ and 66 (63–71) years ¹², whereas the mean age in our study was 40.95 ± 11.05 years. Younger MHO adults may present a higher hyperglycemia risk, as they are more likely to develop metabolic abnormalities in the short term. In contrast, middle-aged MHO individuals may have been overweight or obese for years without developing diabetes or metabolic disorders. Moreover, the concept of "metabolically healthy" status tends to diminish with aging ²⁴, which likely accounts for the reduced prevalence of MHOW and MHO in earlier studies ^{11,12}.

Notably, the interaction between gender and BMI categories on incident hyperglycemia was significant, with a higher risk observed in women than in men. This finding aligns with some studies ^{28, 29}, but not all ^{30, 31}. For example, one cohort study found that the risk of diabetes and IFG was higher in obese women ²⁸. Similarly, another prospective case-cohort study noted a strong association between WC and type 2 diabetes mellitus, particularly in women ²⁹. However, the China Kadoorie Biobank study found greater hazard ratios for diabetes associated with BMI increments in men than in women (P for heterogeneity < 0.001)³¹. Previous studies have indicated that obesity is a more common and stronger risk factor for diabetes in women ^{32, 33}.

BMJ Open

The mechanism of positive association between BMI and hyperglycemia incidence in metabolic healthy population still remains unclear. However, it may be partly attributed to increased inflammation and insulin resistance associated with MHOW and/or MHO phenotypes. Overweight and obesity are known to induce chronic low-grade inflammation, particularly in insulin-sensitive tissues such as the liver, muscle, and adipose tissues ³⁴. Evidence suggests that chronic inflammation plays a critical role in diabetes development, even among MHO subjects ^{35, 36}. The accumulation and infiltration of pro-inflammatory macrophages in adipose tissue are significant contributors to chronic inflammation ³⁷. Pro-inflammatory cytokines, mainly secreted by macrophages, such as tumor necrosis factor (TNF-a) and interleukin-1 beta (IL- 1β), can trigger various signaling pathways that induce insulin resistance. Key signaling pathways include TNF- α /IKK β /NF- κ B and TLR4/NLRP3/caspase-1/IL-1 β , which impair insulin action and modulate pancreatic β -cell mass and function ³⁸.

In addition, the prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the obesity epidemic ³⁹. NAFLD is not a consequence of insulin resistance, but it is also a key cause of insulin resistance or diabetes mellitus ⁴⁰. The high prevalence of NAFLD and visceral adiposity was found among the MHOW/MHO group, compared with the MHNW group ⁴¹. In a MR analysis of data from the UK Biobank, the positive relationship of higher liver fat content and the risk of type 2 diabetes was observed ⁴². Previous have shown that the increased hepatic lipogenesis and lipodystrophy-like phenotypes with visceral adiposity, resulted in dysregulated hepatokines and dysregulated adipokines, which might be the main cause of insulin resistance ⁴⁰. However, Wei et.al ¹² found the association of the MHO phenotype and increased diabetes incidence did not differ by the presence or absence of NAFLD.

Study strengths and limitations

In addition to its large sample size and broad age range, this study has several strengths. Metabolically healthy individuals were included without any metabolic risk factors, allowing for the independent assessment of the role of BMI in hyperglycemia risk. Furthermore, sensitivity analyses, subgroup analyses, and interaction effects were examined to validate the reliability and stability of the results. However, there are several limitations to our study. First, WC was not measured at baseline, which prevented us from combining WC and BMI to distinguish individuals with abdominal obesity or predict the risk of hyperglycemia among those with abdominal obesity. Second, hyperglycemia prevalence may be underestimated, as random plasma glucose and/or postprandial plasma glucose levels were not collected. Finally, although numerous confounding factors were included, some potential factors may still be unaccounted for, such as physical activity, blood pressure-and lipids-lowing medicines and dietary habits.

Conclusion

In conclusion, this study demonstrated that MHOW and MHO are independently and positively associated with the risk of incident hyperglycemia in metabolically healthy adults, with a particularly strong correlation observed in women. Given the unsteady characteristics of metabolically healthy obese phenotypes, these findings underscore

2		
3 4	352	the necessity of weight loss, increasing physical activity and diet quality management
5	353	to reduce hyperglycemia risk and promote overall population health.
6	354	Acknowledgments
7	355	We thank the field investigators and participants of the Rich Healthcare Group as well
8 9	356	as Chen et al. for sharing their database. We thank LetPub (<u>www.letpub.com.cn</u>) for
9 10	357	its linguistic assistance during the preparation of this manuscript.
11	358	Footnotes
12	359	Contributions
13 14	360	QG, QTY and SLJ: study design. QG, BYL, HML, RNX and YRX: data cleaning and
14	361	analysis. QG, BYL, HML, RNX and YRX: result interpretation. QG: manuscript
16	362	writing. BYL and HML: manuscript editing. All authors approved the final
17		
18 19	363	manuscript. Guarantor is QG.
20	364	
21	365	This work was supported by the National Natural Science Foundation of China
22	366	(82204031), Natural Science Foundation of Shandong Province (ZR2021QH188), and
23 24	367	the Lin He's Academician Workstation of New Medicine and Clinical Translation in
25	368	Jining Medical University (JYHL2022MS13).
26	369	Competing interests: None declared.
27	370	Provenance and peer review: Not commissioned; externally peer reviewed.
28 29	371	
30	372	Data availability statement
31	373	The data used in this analysis can be accessed via the Dryad data repository at
32	374	http://datadryad.org/withthedoi:10.5061/dryad.ft8750v.
33 34	375	Ethics statements
35	376	Patient consent: Not required.
36	377	Ethics approval: This study was approved by the Rich Healthcare Group Review
37	378	Board, and the information was retrieved retrospectively.
38 39	379	
40	380	
41	381	
42	382	
43 44	383	
45	384	
46	385	
47 48	386	
48 49	387	
50	388	
51	389	
52 53	390	
53 54		
55	391 202	
56	392	
57	393	
58	394	

⁵⁹ 395

1			10
2 3			
4	396		
5	397		
6 7	398	-	
8	399		rences
9	400	1.	International Diabetes Federation. IDF Diabetes Atlas 10th Edition [M]. 2021.
10 11	401	2.	Wang L, Gao P, Zhang M, et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in
12	402		China in 2013. JAMA 2017;317:2515-23.doi.org/10.1001/jama.2017.7596
13	403	3.	Wang L, Peng W, Zhao Z, et al. Prevalence and Treatment of Diabetes in China, 2013-2018.
14	404		JAMA 2021;326:2498-506.doi.org/10.1001/jama.2021.22208
15 16	405	4.	Inoue Y, Qin B, Poti J, Sokol R, Gordon-Larsen P. Epidemiology of Obesity in Adults: Latest
17	406		Trends. Curr Obes Rep 2018;7:276-88.doi.org/10.1007/s13679-018-0317-8
18	407	5.	National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and
19 20	408		Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of
20	409		the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation,
22	410		and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final
23	411		report. Circulation. 2002;106(25):3143-421.
24 25	412	6.	Wu Q, Xia MF, Gao X. Metabolically healthy obesity: Is it really healthy for type 2 diabetes
26	413		mellitus? World J Diabetes 2022;13:70-84.doi.org/10.4239/wjd.v13.i2.70
27	414	7.	Zembic A, Eckel N, Stefan N, et.al. An Empirically Derived Definition of Metabolically Healthy Obesity
28 29	415		Based on Risk of Cardiovascular and Total Mortality. JAMA Netw Open. 2021;4(5):e218505.
30	416		doi:10.1001/jamanetworkopen.2021.8505
31	417	8.	Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: facts and fantasies. J Clin
32 33	418		Invest. 2019;129(10):3978-89. doi: 10.1172/JCI129186.
33 34	419	9.	Meigs JB, Wilson PW, Fox CS, et al. Body mass index, metabolic syndrome, and risk of
35	420		type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab 2006;91:2906-
36	421		12.doi.org/10.1210/jc.2006-0594
37 38	422	10.	Appleton SL, Seaborn CJ, Visvanathan R, et al. Diabetes and cardiovascular disease outcomes
39	423		in the metabolically healthy obese phenotype: a cohort study. Diabetes Care 2013;36:2388-
40	424		94.doi.org/10.2337/dc12-1971
41 42	425	11.	Feng S, Gong X, Liu H, et al. The Diabetes Risk and Determinants of Transition from
43	426		Metabolically Healthy to Unhealthy Phenotypes in 49,702 Older Adults: 4-Year Cohort Study.
44	427		Obesity (Silver Spring) 2020;28:1141-8.doi.org/10.1002/oby.22800
45 46	428	12.	Wei Y, Wang J, Han X, et al. Metabolically healthy obesity increased diabetes incidence in a
46 47	429		middle-aged and elderly Chinese population. Diabetes Metab Res Rev
48	430		2020;36:e3202.doi.org/10.1002/dmrr.3202
49	431	13.	Petersen MC, Smith GI, Palacios HH, et al. Cardiometabolic characteristics of people with
50 51	432		metabolically healthy and unhealthy obesity. Cell Metab. 2024;36(4):745-61.e5.
52	433		doi:10.1016/j.cmet.2024.03.002
53	434	14.	Luo D, Liu F, Li X, et al. Comparison of the effect of 'metabolically healthy but obese' and
54 55	435		'metabolically abnormal but not obese' phenotypes on development of diabetes and
56	436		cardiovascular disease in Chinese. Endocrine 2015;49:130-8.doi.org/10.1007/s12020-014-
57	437		0444-2
58 50	438	15.	Hinnouho GM, Czernichow S, Dugravot A, et al. Metabolically healthy obesity and the risk of
59 60	439		cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1

2 3 2015;36:551-9.doi.org/10.1093/eurhearti/ehu123 440 4 441 16. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 5 6 442 diabetes: a meta-analysis of prospective cohort studies. Obes Rev 2014;15:504-7 443 15.doi.org/10.1111/obr.12157 8 444 17. Liu M, Tang R, Wang J, He Y. Distribution of metabolic/obese phenotypes and association 9 10 445 with diabetes: 5 years' cohort based on 22,276 elderly. Endocrine 2018;62:107-11 446 15.doi.org/10.1007/s12020-018-1672-7 12 447 18. Chen Y, Zhang XP, Yuan J, et al. Association of body mass index and age with incident 13 448 diabetes in Chinese adults: a population-based cohort study. BMJ Open 14 15 449 2018;8:e021768.doi.org/10.1136/bmjopen-2018-021768 16 450 19. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. 17 451 Diabetes Care 2022;45:S17-s38.doi.org/10.2337/dc22-S002 18 19 452 Ye J, Guo K, Li X, Yang L, Zhou Z. The Prevalence of Metabolically Unhealthy Normal 20. 20 453 Weight and Its Influence on the Risk of Diabetes. J Clin Endocrinol Metab 2023;108:2240-21 454 7.doi.org/10.1210/clinem/dgad152 22 23 455 21. Wang B, Zhang M, Wang S, et al. Dynamic status of metabolically healthy 24 456 overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 25 457 diabetes mellitus: A cohort study of a rural adult Chinese population. Obes Res Clin Pract 26 458 27 2018;12:61-71.doi.org/10.1016/j.orcp.2017.10.005 28 459 22. Erviti J, Alonso A, Oliva B, et al. Oral bisphosphonates are associated with increased risk of 29 460 subtrochanteric and diaphyseal fractures in elderly women: a nested case-control study. BMJ 30 461 Open 2013;3.doi.org/10.1136/bmjopen-2012-002091 31 32 462 23. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The 33 463 Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: 34 464 guidelines for studies. Int reporting observational JSurg. 2014;12:1495-35 36 465 9.doi.org/10.1016/j.ijsu.2014.07.013 37 466 24. van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, et al. The prevalence of metabolic 38 467 syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large 39 468 cohort studies. BMC Endocr Disord 2014;14:9.doi.org/10.1186/1472-6823-14-9 40 41 469 25. Geetha L, Deepa M, Anjana RM, Mohan V. Prevalence and clinical profile of metabolic 42 470 obesity and phenotypic obesity in Asian Indians. J Diabetes Sci Technol 2011;5:439-43 471 46.doi.org/10.1177/193229681100500235 44 45 472 26. Cherqaoui R, Kassim TA, Kwagyan J, et al. The metabolically healthy but obese phenotype in 46 473 African Americans. J Clin Hypertens (Greenwich) 2012;14:92-6.doi.org/10.1111/j.1751-47 474 7176.2011.00565.x 48 49 475 27. Twig G, Afek A, Derazne E, et al. Diabetes risk among overweight and obese metabolically 50 476 healthy young adults. Diabetes Care 2014;37:2989-95.doi.org/10.2337/dc14-0869 51 477 28. Vaidya A, Cui L, Sun L, et al. A prospective study of impaired fasting glucose and type 2 52 478 diabetes in China: The Kailuan study. Medicine (Baltimore) 53 54 479 2016;95:e5350.doi.org/10.1097/md.000000000005350 55 480 29. Langenberg C, Sharp SJ, Schulze MB, et al. Long-term risk of incident type 2 diabetes and 56 481 measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med 57 58 482 2012;9:e1001230.doi.org/10.1371/journal.pmed.1001230 59 483 30. Zhu Y, Hu C, Lin L, et al. Obesity mediates the opposite association of education and diabetes 60

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2			
3	484		in Chinese men and women: Results from the REACTION study. J Diabetes 2022;14:739-
4 5	485		48.doi.org/10.1111/1753-0407.13325
6	486	31.	Bragg F, Tang K, Guo Y, et al. Associations of General and Central Adiposity With Incident
7	487	011	Diabetes in Chinese Men and Women. <i>Diabetes Care</i> . 2018;41:494-
8	488		502.doi.org/10.2337/dc17-1852
9 10	489	32.	Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk,
10	490	52.	Pathophysiology and Complications of Type 2 Diabetes Mellitus. <i>Endocr Rev</i> 2016;37:278-
12	491		316.doi.org/10.1210/er.2015-1137
13	491 492	22	0
14 15		33.	Logue J, Walker JJ, Colhoun HM, et al. Do men develop type 2 diabetes at lower body mass
16	493	24	indices than women? <i>Diabetologia</i> . 2011;54:3003-6.doi.org/10.1007/s00125-011-2313-3
17	494	34.	Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between
18	495		obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141-
19 20	496		50.doi.org/10.1016/j.diabres.2014.04.006
21	497	35.	Zhao R, Tang D, Yi S, et al. Elevated peripheral frequencies of Th22 cells: a novel potent
22	498		participant in obesity and type 2 diabetes. PLoS One. 2014;9:e85770.
23	499		doi.org/10.1371/journal.pone.0085770
24 25	500	36.	Jung CH, Lee MJ, Kang YM, et al. The risk of incident type 2 diabetes in a Korean
26	501		metabolically healthy obese population: the role of systemic inflammation. J Clin Endocrinol
27	502		Metab. 2015;100:934-41.doi.org/10.1210/jc.2014-3885
28	503	37.	Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Meta-Inflammation and
29 30	504		Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of
31	505		Metabolites. Front Immunol. 2021;12:746151.doi.org/10.3389/fimmu.2021.746151
32	506	38.	Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and
33 34	507		related disorders. Immunity. 2022;55:31-55.doi.org/10.1016/j.immuni.2021.12.013
34 35	508	39.	European Association for the Study of the Liver (EASL). Electronic address:
36	509		easloffice@easloffice.eu; European Association for the Study of Diabetes (EASD);
37	510		European Association for the Study of Obesity (EASO); European Association for the
38 39	511		Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the
40	512		management of metabolic dysfunction-associated steatotic liver disease (MASLD). J
41	513		Hepatol. 2024;81(3):492-542. doi:10.1016/j.jhep.2024.04.031
42	514	40.	Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in
43 44	515		NAFLD. Cell Metab. 2023;35(2):236-52. doi:10.1016/j.cmet.2023.01.006
45	516	41.	Stefan N, Schick F, Häring HU. Causes, Characteristics, and Consequences of
46	517		Metabolically Unhealthy Normal Weight in Humans. <i>Cell Metab.</i> 2017;26(2):292-300.
47	518		doi:10.1016/j.cmet.2017.07.008
48 49	519	42.	Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas
50	520	121	Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study.
51	521		Diabetes Care. 2022;45(2):460-8. doi:10.2337/dc21-1262
52 53	522		Diabetes Care. 2022, +5(2). +00-6. doi:10.2557/dc21-1202
54	523		
55	523 524		
56	524 525		
57 58			
58 59	526		
60	527		

12	101ui0, II (70
13	BMI (kg/m
14	FPG (mmo
15	SBP (mmH
16	DBP (mmF
17	TG (mmol/
18	
19	TC (mmol/
20	HDL-C (m
21	LDL-C (mi
22	ALT (mmo
23	AST (mmo
24 25	BUN (mmo
25	SCr (mmol
26 27	Smoking st
27	Current sr
28 29	
30	Ever smol
31	Never sm
32	Drinking st
33	Current di
34	Ever drink
35	Never dri
36	Family hist
37	Yes
38	105
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	

6	Table 1 Characteristics	of study participat	nts stratified by	BMI group.
7	Variables	Total	MHNW	MHO

Variables	Total	MHNW	MHOW	MHO	<i>P</i> -
					value
Ν	47391	34920	10932	1539	
Age (years)	40.95 ± 11.05	40.10 ± 10.70	43.38 ± 11.60	42.93 ± 12.07	< 0.001
Male, n (%)	22586 (47.66)	14124 (40.45)	7369 (67.41)	1093 (71.02)	< 0.001
BMI (kg/m^2)	22.48 ± 2.59	21.25 ± 1.48	25.41 ± 1.05	29.56 ± 1.69	< 0.001
FPG (mmol/L)	4.82 ± 0.52	4.78 ± 0.52	4.92 ± 0.52	4.99 ± 0.54	< 0.001
SBP (mmHg)	110.88 ± 10.24	109.65 ± 10.30	114.07 ± 9.31	116.26 ± 8.63	< 0.001
DBP (mmHg)	69.23 ± 7.47	68.45 ± 7.43	71.22 ± 7.14	72.63 ± 7.13	< 0.001
TG (mmol/L)	0.92 ± 0.34	0.87 ± 0.32	1.06 ± 0.33	1.16 ± 0.32	< 0.001
TC (mmol/L)	4.69 ± 0.80	4.65 ± 0.80	4.79 ± 0.80	4.84 ± 0.79	< 0.001
HDL-C (mmol/L)	1.50 ± 0.26	1.53 ± 0.27	1.42 ± 0.23	1.38 ± 0.21	< 0.001
LDL-C (mmol/L)	2.70 ± 0.62	2.66 ± 0.61	2.80 ± 0.62	2.85 ± 0.63	< 0.001
ALT (mmol/L)	22.49 ± 10.50	$\sim 21.66 \pm 10.15$	24.46 ± 10.94	27.46 ± 11.82	< 0.001
AST (mmol/L)	20.22 ± 18.34	18.05 ± 16.65	25.39 ± 20.72	32.80 ± 23.65	< 0.001
BUN (mmol/L)	4.63 ± 1.16	4.56 ± 1.14	4.84 ± 1.17	4.91 ± 1.13	< 0.001
SCr (mmol/L)	68.87 ± 15.47	67.05 ± 14.79	73.92 ± 16.32	74.36 ± 14.91	< 0.001
Smoking status, n (%	%)				< 0.001
Current smoker	2049 (4.32)	1277 (3.66)	667 (6.10)	105 (6.82)	
Ever smoker	493 (1.04)	284 (0.81)	181 (1.66)	28 (1.82)	
Never smoker	10221 (21.57)	7600 (21.76)	2313 (21.16)	308 (20.01)	
Drinking status, n (%	· · · · · · · · · · · · · · · · · · ·	Ň.	,		< 0.001
Current drinker	249 (0.53)	144 (0.41)	85 (0.78)	20 (1.30)	
Ever drinker	2117 (4.47)	1274 (3.65)	740 (6.77)	103 (6.69)	
Never drinker	10397 (21.94)	7743 (22.17)	2336 (21.37)	318 (20.66)	
Family history of di		× /		× /	0.874
Yes	1061 (2.24)	789 (2.26)	239 (2.19)	33 (2.14)	

healthy partic	ipants			
	Case/N	Crude Model	Model I	Model II
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)
Hyperglycem	a			
BMI	5274/47391	1.14 (1.13, 1.15)	1.10 (1.09, 1.11)	1.06 (1.04, 1.07)
MHNW	3139/34920	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
MHOW	1798/10932	1.85 (1.75, 1.97)	1.51 (1.42, 1.60)	1.23 (1.16, 1.30)
MHO	337/1539	2.63 (2.35, 2.95)	2.10 (1.88, 2.36)	1.49 (1.33, 1.67)
P for trend		< 0.001	< 0.001	< 0.001

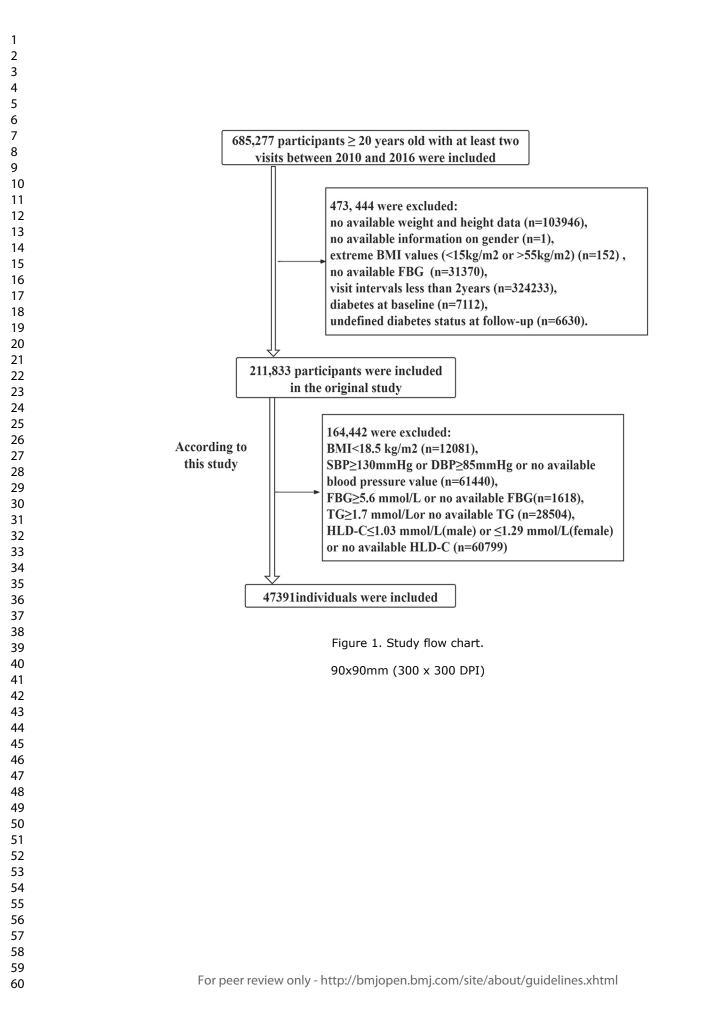
Table 2 Relationship between BMI categories and risk of hyperglycemia among metabolically healthy participants

Model I: adjusted for age, gender and family history of diabetes;

Model II: further adjusted for baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

Table 3 Multivariate-adjusted HR (95% CI) of hyperglycemia among BMI categories in stratified analyses

stratified analyses				
	MHNW	MHOW	MHO	<i>P</i> interaction
Gender		6		< 0.001
Male	1.00 (Ref.)	1.11 (1.03, 1.20)	1.32 (1.15, 1.51)	
Female	1.00 (Ref.)	1.43 (1.29, 1.58)	1.88 (1.52, 2.32)	
Age (years)				0.534
< 40	1.00 (Ref.)	1.32 (1.17, 1.48)	1.51 (1.21, 1.89)	
\geq 40	1.00 (Ref.)	1.22(1.13, 1.31)	1.53 (1.34, 1.75)	
Family history of c	liabetes			0.290
yes	1.00 (Ref.)	1.23 (1.15, 1.30)	1.46 (1.30, 1.65)	
no	1.00 (Ref.)	1.05 (0.71, 1.55)	2.12 (1.07, 4.19)	
Height (cm)		1.31 (1.16, 1.47)	1.75 (1.38, 2.21)	0.056
≤161.90	1.00 (Ref.)	1.31 (1.16, 1.47)	1.75 (1.38, 2.21)	
162.00-169.90	1.00 (Ref.)	1.26 (1.13, 1.40)	1.33 (1.07, 1.64)	
≥ 170.00	1.00 (Ref.)	1.15 (1.04, 1.26)	1.50 (1.26, 1.78)	


Adjusted for gender (except gender subgroup), age (except age subgroup), family history of diabetes (except "family history of diabetes" subgroup), and baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

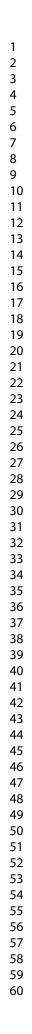

Figure legends:

Figure 1. Study flow chart.

Figure 2. Kaplan-Meier curves for cumulative hazard ratios of incident risk of hyperglycemia. The figure shows that the cumulative risk of incident hyperglycemia was markedly different among the BMI categories (log-rank test, P < 0.001) and increased gradually with increasing BMI, resulting in maximum risk of prediabetes in the MHO group.

Figure S1. Restricted cubic spline analyses ilustrating the dose-response relationshipbetween BMI and incidence of hyperglycemia.

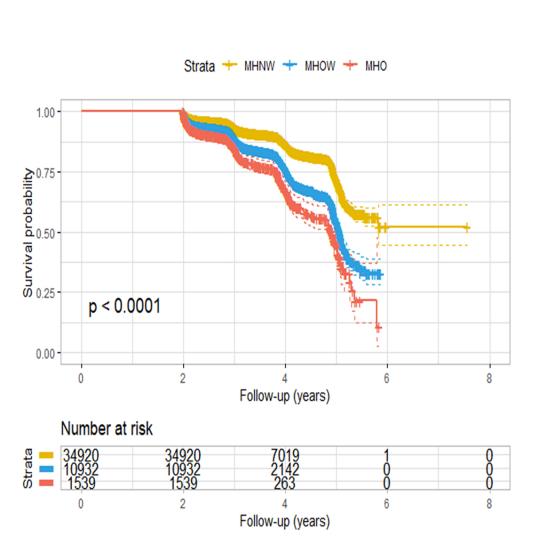


Figure 2. Kaplan–Meier curves for cumulative hazard ratios of incident risk of hyperglycemia. The figure shows that the cumulative risk of incident hyperglycemia was markedly different among the BMI categories (log-rank test, P < 0.001) and increased gradually with increasing BMI, resulting in maximum risk of prediabetes in the MHO group.

90x90mm (300 x 300 DPI)

Variables	Non-hyperglycemia	Hyperglycemia	P-value
Ν	42117	5274	
Age (years)	40.25 ± 10.66	46.54 ± 12.48	< 0.001
Male, n (%)	19401 (46.06)	3185 (60.39)	< 0.001
BMI (kg/m ²)	22.35 ± 2.53	23.48 ± 2.81	< 0.001
FPG (mmol/L)	4.77 ± 0.51	5.20 ± 0.51	< 0.001
SBP (mmHg)	110.53 ± 10.26	113.72 ± 9.70	< 0.001
DBP (mmHg)	69.01 ± 7.48	70.95 ± 7.21	< 0.001
TG (mmol/L)	0.91 ± 0.33	1.01 ± 0.34	< 0.001
TC (mmol/L)	4.67 ± 0.80	4.83 ± 0.83	< 0.001
HDL-C (mmol/L)	1.51 ± 0.26	1.46 ± 0.25	< 0.001
LDL-C (mmol/L)	2.69 ± 0.62	2.79 ± 0.63	< 0.001
ALT (mmol/L)	22.35 ± 10.46	23.63 ± 10.71	< 0.001
AST (mmol/L)	19.89 ± 18.03	22.92 ± 20.38	< 0.001
BUN (mmol/L)	4.60 ± 1.15	4.88 ± 1.18	< 0.001
SCr (mmol/L)	68.44 ± 15.46	72.27 ± 15.09	< 0.001
Smoking status, n (%)			< 0.001
Current smoker	1741 (4.13)	308 (5.84)	
Ever smoker	441 (1.05)	52 (0.99)	
Never smoker	9171 (21.78)	1050 (19.91)	
Drinking status, n (%)			0.003
Current drinker	211 (0.50)	38 (0.72)	
Ever drinker	1844 (4.38)	273 (5.18)	
Never drinker	9298 (22.08)	1099 (20.84)	
Family history of diabe	etes, n (%)		0.039
Yes	922 (2.19)	139 (2.64)	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

The results of univariate analysis for the risk factors of hyperglycemia

Covariables	HR (95%CI)	<i>P</i> -value
Age (years)	1.04 (1.03, 1.04)	< 0.001
Gender		< 0.001
Male	Ref.	
Female	0.60 (0.57, 0.64)	
FPG (mmol/L)	5.95 (5.63, 6.28)	< 0.001
SBP (mmHg)	1.03 (1.03, 1.03)	< 0.001
DBP (mmHg)	1.03 (1.02, 1.03)	< 0.001
TG (mmol/L)	2.34 (2.17, 2.53)	< 0.001
TC (mmol/L)	1.17 (1.13, 1.20)	< 0.001
HDL-C (mmol/L)	0.62 (0.55, 0.68)	< 0.001
LDL-C (mmol/L)	1.31 (1.26, 1.37)	< 0.001
ALT (mmol/L)	1.00 (1.00, 1.00)	< 0.001
AST (mmol/L)	1.01 (1.00, 1.01)	< 0.001
BUN (mmol/L)	1.16 (1.14, 1.18)	< 0.001
SCr (mmol/L)	1.01 (1.00, 1.01)	< 0.001
Smoking status, n (%)		< 0.001
Never smoker	Ref.	
Ever smoker	0.93 (0.70, 1.23)	
Current smoker	1.40 (1.23, 1.59)	
Drinking status, n (%)		< 0.001
Never drinker	Ref.	
Ever drinker	1.15 (1.01, 1.31)	
Current drinker	1.56 (1.13, 2.15)	
Family history of diabetes		0.500
No	Ref.	
Yes	1.06 (0.90, 1.26)	

Table S3

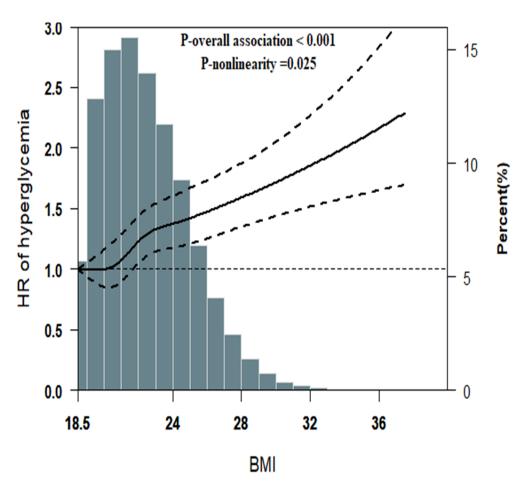
Relationship between BMI categories and the risk of diabetes/IFG among the metabolically healthy participants

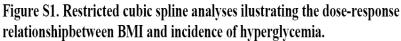
participants					
	Case/N	Crude Model	Model I	Model II	
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)	
Diabetes					
BMI	239/47391	1.24 (1.20, 1.28)	1.19 (1.14, 1.24)	1.14 (1.09, 1.18)	
MHNW	116/34920	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	
MHOW	91/10932	2.53 (1.92, 3.32)	1.78 (1.35, 2.36)	1.39 (1.05, 1.85)	
МНО	32/1539	6.84 (4.62, 10.11)	4.55 (3.05, 6.78)	2.91 (1.94, 4.37)	
P for trend		< 0.001	< 0.001	< 0.001	
IFG					
BMI	5035/47152	1.14 (1.13, 1.15)	1.10 (1.09, 1.11)	1.05 (1.04, 1.07)	
MHNW	3023/34804	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	
MHOW	1707/10841	1.85 (1.74, 1.96)	1.51 (1.42, 1.61)	1.23 (1.16, 1.31)	

MHO	305/1507	2.54 (2.26, 2.86)	2.07 (1.83, 2.33)	1.49 (1.32,1.
<i>P</i> for trend		<0.001	<0.001	< 0.001
		and the family histor	ry of diabetes; (, BUN, SCr, smoking)	status and drink
us.			, 201, 201, 5	

Table S4

Relationship between BMI categories and the risk of hyperglycemia among the metabolically healthy participants without missing data of smoking and drinking status


	Case/N	Crude Model	Model I	Model II
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)
BMI	1410/12763	1.12 (1.10, 1.14)	1.09 (1.07, 1.11)	1.05 (1.03, 1.07)
MHNW	844/9161	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
MHOW	485/3161	1.73 (1.55, 1.94)	1.43 (1.27, 1.60)	1.16 (1.03, 1.30)
MHO	81/441	2.14 (1.70, 2.69)	1.75 (1.39, 2.21)	1.28 (1.01, 1.61)
P for trend		< 0.001	< 0.001	< 0.001


Table S5

participants w	ithout missing da	ta of smoking and drink	ing status		 7
	Case/N	Crude Model	Model I	Model II	rote
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI))cte
BMI	1410/12763	1.12 (1.10, 1.14)	1.09 (1.07, 1.11)	1.05 (1.03, 1.07)	d by
MHNW	844/9161	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	cop
MHOW	485/3161	1.73 (1.55, 1.94)	1.43 (1.27, 1.60)	1.16 (1.03, 1.30)	yrig
МНО	81/441	2.14 (1.70, 2.69)	1.75 (1.39, 2.21)	1.28 (1.01, 1.61)	ht, i
P for trend		<0.001	< 0.001	< 0.001	nclu
5	0,0	r and the family histo seline FPG, ALT, AS	T, BUN, SCr, smoking	status and drinking stat	Protected by copyright, including for uses related to text and data mining, Al training, and similar techn
Table S5					ıg, ar
-		-	of hyperglycemia among	the metabolically health	ıy <mark>ıd</mark>
participants v	vithout missing da				mila
	Case/N	Crude Model	Model I	Model II	r tec
	0717/10055	(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)	hno
BMI	2717/19955	1.14 (1.12, 1.15)	1.11 (1.09, 1.12)	1.05 (1.04, 1.07)	ologies.
MHNW	1604/14558	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	ies.
MHOW	945/4742	1.85 (1.70, 2.01)	1.54 (1.42, 1.67)	1.23 (1.13, 1.34)	
MHO	168/655	2.51 (2.15, 2.95)	2.06 (1.75, 2.46)	1.49 (1.27, 1.76)	
<i>P</i> for trend		< 0.001	< 0.001	< 0.001	
N 1 1 T 1		1 1 0 1 1 1	C 1' 1 /		

Model I: adjusted for age, gender and family history of diabetes;

Model status.	II: further	adjusted	for baselin	e FPG,	ALT, A	ST, BUN	, SCr,	smoking	status ar

90x90mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2024-087307 on 28 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

BMJ Open

Metabolically healthy overweight/obesity with no metabolic abnormalities and incident hyperglycemia in Chinese adults: analysis of a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-087307.R2
Article Type:	Original research
Date Submitted by the Author:	13-Dec-2024
Complete List of Authors:	Gao, Qin; Jining Medical College, Liang, Boya; Binzhou Medical University Li, Hongmin; Jining Medical University Xie, Ruining; Jining Medical University Xu, Yaru; Jining Center for Disease Control and Prevention Tong, Yeqing; Hubei Provincial Center for Disease Control and Prevention Jiang , Shunli; Jining Medical University, ;
Primary Subject Heading :	Public health
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology
Keywords:	Obesity, DIABETES & ENDOCRINOLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

2		
3	1	Metabolically healthy overweight/obesity with no metabolic abnormalities and
4	2	incident hyperglycemia in Chinese adults: analysis of a retrospective cohort
5		
6 7	3	study
7 8	4	Qin Gao ¹ , Boya Liang ² , Hongmin Li ¹ , Ruining Xie ¹ , Yaru Xu ³ , Yeqing Tong ^{4*} ,
9	5	Shunli Jiang ^{1*}
10	6	
11	7	1 Public Health School, Jining Medical University, Jining, China
12	8	2 Public Health School, Binzhou Medical University, Yantai, China
13		
14	9	3 Jining Center for Disease Control and Prevention, Jining, China
15	10	4 Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
16 17	11	
17 18	12	* Yeqing Tong and Shunli Jiang contributed equally to this paper.
19	13	
20		Correspondence to
21	14	Correspondence to:
22	15	Shunli Jiang, 33 Jianshe Road, Rencheng District, Jining, 272000, China
23	16	E-mail addresses: <u>utopianjiang@163.com</u>
24	17	
25	18	
26 27	19	
28	20	
29		
30	21	
31	22	
32	23	E-mail addresses: <u>utopianjiang@163.com</u>
33	24	
34 35	25	
36	26	
37	27	
38	28	
39		
40	29	
41	30	
42 43	31	
43 44	32	
45	33	
46	34	
47	35	
48		
49	36	
50 51	37	
52	38	
53	39	
54	40	
55	41	
56	42	
57		
58 59	43	
59 60	44	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

82

60

Abstract 45 46 **Objectives:** To explore whether metabolically healthy overweight (MHOW) and/or metabolically healthy obesity (MHO) increase hyperglycemia risk in a Chinese 47 population with a board age range. 48 49 Design: Retrospective cohort study. 50 Setting: Secondary analysis of data from the DATADRYAD database, comprising health check records of participants from 32 regions and 11 cities in China between 51 2010 and 2016. 52 Participants: A total of 47391 metabolically healthy participants with none of 53 metabolic abnormalities were selected. 54

55 Outcome measures: Hyperglycemia include incident diabetes and IFG. Diabetes was
56 diagnosed with fasting blood glucose ≥7.0 mmol/L and typical clinical symptoms
57 and/or on self-report during follow-up. The FPG level of IFG was from 5.6 to 6.9
58 mmol/L.

Results: With an average follow-up of 3.06 years, 5274 participants (11.13%) 59 developed hyperglycemia over 144,804 person-years, with an incidence rate of 36.42 60 61 per 1000 persons-years. Adjusted model revealed a higher risk of incident 62 hyperglycemia in the MHOW group (HR=1.23, 95%CIs: 1.16 to 1.30) and the MHO group (HR=1.49, 95% CI: 1.33 to 1.67) compared with the metabolic healthy normal 63 weight group. With 1 unit increase of BMI, the risk of hyperglycemia increased by 6% 64 (HR = 1.06, 95% CI: 1.04 to 1.07). The stratified analyses and interaction tests 65 showed the robustness of the association, and there were a stronger association in 66 women (*P* for interaction <0.001). 67

68 **Conclusions:** The MHOW and MHO phenotypes were positively associated with 69 higher risk of hyperglycemia in this population. And the association was particularly 70 stronger in women.

75 Strengths and limitations of this study

* This retrospective cohort study is representative of the Chinese population,
 featuring a large sample size and a broad age range.

* Metabolically healthy status was rigorously defined based on the NCEP ATP-III
 criteria with none of metabolic abnormalities.

Waist circumference was not measured at baseline, limiting the ability to assess
 the risk of hyperglycemia in individuals with abdominal obesity.

* Missing information about blood pressure- and lipid-lowing medications may have interfered with appropriate exclusions from the MHOW/MHO groups.

INTRODUCTION

Approximately 537 million adults worldwide have been diagnosed with diabetes mellitus, with over 90% being type 2 diabetes mellitus ¹. In addition, prediabetes has emerged as a global epidemic. In 2021, 6.2% of the adult population had impaired fasting glucose (IFG), and 10.6% had impaired glucose tolerance ¹. Among Chinese adults, the prevalence of diabetes and prediabetes remained high and increased between 2013 and 2018 ^{2,3}, with an estimated prevalence of 12.4% for diabetes and 38.1% for prediabetes in 2018 ³.

97 The global prevalence of obesity has been steadily rising since the early 1980s ⁴, 98 which is one of the key risk factors for diabetes mellitus. However, some obese 99 individuals, classified as having metabolically healthy obesity (MHO), do not present 100 with major cardiovascular risk factors. Nonetheless, the MHO phenotype may 101 progress to metabolically unhealthy obesity over time, increasing the risk of 102 cardiovascular disease and mortality.

A critical issue is the inconsistency in defining MHO. The most common definition of MHO is fewer than two of criteria factors of the metabolic syndrome or fewer than one abnormal factor excluding waist circumference (WC) ^{5,6}. In 2021, Zembic A et.al have proposed a new definition of MHO based on systolic blood pressure, waist-to-hip ratio and diabetes, and found the cardiovascular mortality risk of the MHO group was not increased when compared the metabolic healthy normal weight (MHNW) individuals ⁷. The estimated MHO prevalence was about 50% using < 2 metabolic syndrome factors, or 24% using low HOMA-IR, or 13% when defined with no metabolic abnormality⁸. The relationship between MHO and the risk of diabetes remains a topic of interest. Some studies have suggested that MHO individuals are not at increased risk for diabetes compared to their MHNW counterparts ^{9, 10}, while others have shown that MHO is indeed associated with a higher risk of diabetes ^{11, 12}. Moreover, when MHO is defined strictly with no metabolic abnormalities, the association with diabetes risk appears less significant ^{11, 12}. Recent studies have shown that the multi-organ insulin sensitivity in MHO group was lower than the metabolically healthy and lean group ¹³. These inconsistent findings may be partly due to the differing age ranges studied, as most previous research focused on middle-aged individuals under 60 years 9, 10, 14-16, whereas studies in China predominantly examined older populations ^{11, 12, 17}.

Therefore, we aimed to investigate the association between hyperglycemia (including diabetes and IFG) and metabolically healthy individuals without any metabolic abnormalities, based on ATP-III criteria, across young, middle-aged, and elderly groups in a large cohort of the Chinese population.

51 126

127 METHODS

128 Study design and participants

This study was conducted by the Rich Healthcare Group across 32 sites and 11 cities in China. The subjects who received a health check from 2010 to 2016 were recruited, and the demographic, lifestyle, medical history and family history of chronic disease were collected by questionnaire investigation. As a retrospective cohort study, 685277

BMJ Open

- participants were selected with at least two visits. After excluding the participant who
 meet the exclusion criteria, a total of 211833 participants (116123 male and 95710
 female) were included (in Figure 1). The information of 211,833 individuals was
 introduced in detail, and the data were download from the "DATADRYAD" database
 (www.datadryad.org) by Chen et al. ¹⁸.
- For this study, focusing on metabolically healthy status, we excluded participants with body mass index (BMI) < 18.5 kg/m² (n = 12,081); systolic blood pressure (SBP) \geq 130 mmHg and/or diastolic blood pressure (DBP) ≥ 85 mmHg, or missing blood pressure values (n = 61,440); fasting plasma glucose (FPG) \geq 5.6 mmol/L (n = 1,618); triglycerides (TG) ≥ 1.7 mmol/L or missing TG values (n = 28,504); or high-density lipoprotein cholesterol (HDL-C) $\leq 1.04 \text{ mmol/L}$ (men) or $\leq 1.29 \text{ mmol/L}$ (women) or missing HDL-C values (n = 60,799). A total of 47,391 individuals were included. The flowchart is shown in Figure 1.

20
21146Data collection

- As described in the original study, basic information was collected via questionnaire, and anthropometric data were measured in a standardized manner. Blood pressure was measured using standard mercury sphygmomanometers. Fasting blood samples were collected to measure glucose, TG, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), HDL-C, aspartate transaminase (AST), and alanine transaminase (ALT) using an autoanalyzer (Beckman 5800).
- **Definitions of obesity and metabolic health**
- Body weight was categorized by BMI as follows: normal weight (18.5–23.9 kg/m²), overweight (24.0–27.9 kg/m²), and obese (≥ 28.0 kg/m²). WC was not used due to collinearity with BMI¹⁵. Metabolic health was defined according to the NCEP ATP-III criteria ⁵ as the absence of any metabolic abnormalities, which included: SBP >130 mmHg and/or DBP \geq 85 mmHg; TG \geq 1.7 mmol/L; FPG \geq 5.6 mmol/L; and HDL-C \leq 1.03 mmol/L in men or \leq 1.29 mmol/L in women. Based on BMI and metabolic health status, participants were classified into three
- Based on BMI and metabolic health status, participants were classified into three
 phenotypes: (1) MHNW, (2) metabolically healthy overweight (MHOW), and (3)
 MHO.
 Outcome measures

Outcome measures

- The primary of outcome was hyperglycemia, defined as a dichotomous variable (0 =non-hyperglycemia, 1 = hyperglycemia). In this study, hyperglycemia include incident diabetes and IFG. Diabetes was diagnosed with fasting blood glucose ≥ 7.0 mmol/L and typical clinical symptoms and/or self-report diabetes mellitus during follow-up. The FPG level of IFG was from 5.6 to 6.9 mmol/l based on the American Diabetes Association criteria¹⁹.
- 51 170 **Covariates**
- 171 Covariates were selected based on previous literature^{11, 12, 17, 18, 20, 21}, and included
 172 continuous variables (age, ALT, AST, LDL-C, TC, blood urea nitrogen [BUN], and
 173 serum creatinine [SCr]) and categorical variables (gender, smoking status, drinking
 174 status, and family history of diabetes).
- 58 175 Missing data processing
- ⁵⁹ 176 Missing data were as follows: LDL-C: 26 (0.05%), ALT: 35 (0.07%), AST: 27433

(57.89%), BUN: 354 (0.75%), SCr: 113 (0.24%), drinking status: 34628 (73.07%),
and smoking status: 34628 (73.07%), respectively. Multiple imputation was applied
for missing continuous variables using a chained equation algorithm with the R's MI
package. Missing categorical variables were treated as categorical in the analysis ²².

181 Statistical analysis

Basic characteristics were presented as mean \pm SD or percentage. Group comparisons were conducted using one-way ANOVA or the Kruskal-Wallis test for continuous variables, and the χ^2 test for categorical variables. The Kaplan-Meier survival method and Cox-proportional hazard model were used to estimate the association of MHOW and MHO for incident hyperglycemia. According to the STROBE statement recommendation ²³, the crude, minor- and full adjustment models were presented. In addition, a restricted cubic spline model was also constructed to assess the dose-response relationship between BMI and hyperglycemia risk.

190 Subgroup analyses were performed to assess the modifying effects of age, gender, 191 height, and family history of diabetes on the association between BMI and 192 hyperglycemia. Interaction tests were conducted between BMI categories and these 193 subgroup variables. Sensitivity analyses were carried out to assess the robustness of 194 the findings: 1) we did similar analysis after considering diabetes and IFG as separate 195 outcomes; 2) we excluded the participants with missing smoking and drinking status.

All analyses were conducted using R software (version 4.3.3) and Empower Stats
(version 4.1). A two-sided P-value < 0.05 was considered statistically significant.

- **Patient and public involvement**
- 199 None.

RESULTS

202 Characteristics of the study participants

A total of 47391 metabolically healthy participants (47.66% male) were finally included. The mean age and BMI were 40.95 ± 11.05 years and 22.48 ± 2.59 kg/m², respectively. During a follow-up period of 3.06 ± 0.95 years, 5,274 participants (11.13%) developed hyperglycemia. The characteristics stratified by BMI categories and the status of blood glucose are presented in Table 1 and Table S1. Participants with higher BMI generally had higher FPG, SBP, DBP, TG, TC, LDL-C, ALT, AST, BUN, and SCr levels, lower HDL-C level, and had a higher proportion of males, current smokers, and current drinkers (P < 0.001; Table 1). During follow-up, all characteristics of hyperglycemic participants were different from those of participants without hyperglycemia (P < 0.05; Table S1).

⁵⁰ 213 Univariate analysis for hyperglycemia in the metabolically healthy population

Table S2 showed that higher age, BMI, FPG, DBP, SBP, TG, TC, LDL, AST, and ALT levels, current drinkers and smokers, and lower HDL-C level were the risk factors of hyperglycemia. Females had a lower risk of hyperglycemia than males. In Figure 2, the Kaplan-Meier curve showed that higher hazards were determined among MHOW and MHO (log-rank test, P < 0.001).

Association of MHOW/MHO and hyperglycemia risk among metabolically
 healthy participants

BMJ Open

In metabolically healthy participants, 5,274 individuals developed hyperglycemia over 144,804 person-years of follow-up, and the overall rate of hyperglycemia was 36.42 per 1000 person-years. The rate of hyperglycemia was 29.35 in MHNW group, 54.07 in MHOW group, and 72.24 in MHO group per 1000 person-years, respectively. The hazard ratio (HR) and 95% confidence intervals (CI) of the BMI categories on the incidence of hyperglycemia are listed in Table 2. In the crude model, compared with MHNW participants, the risk of hyperglycemia increased 85% in the MHOW group (HR = 1.85, 95% CI:1.75 to 1.97), and 163% in the MHO group (HR = 2.63, 95% CI:2.35 to 2.95), respectively. After adjusting for age, gender, and family history of diabetes, the risk of hyperglycemia in MHOW group and MHO group was still higher than in MHNW group. Furthermore, after adjusting for all the covariates, the relationship was not completely eliminated, with HRs (95% CI) of 1.23 (1.16-1.30) for MHOW and 1.49 (1.33–1.67) for MHO (P for trend < 0.001). Moreover, we analyzed the correlation between BMI as a continuous variable and the hyperglycemia risk. The risk of incident of hyperglycemia increased by 6% (HR = 1.06, 95% CI:1.04 to 1.07, P < 0.001) with 1 unit increase of BMI.

- The restricted cubic spline model showed the risk of hyperglycemia increased gradually with increase in BMI, albeit in a nonlinear manner (P < 0.001, P-nonlinearity = 0.039, Figure S1).
- Subgroup analyses and sensitivity analyses
- The results of the stratified analyses and interaction effects are presented in Table 3. The additive interactions between MHOW/MHO and hyperglycemia risk were observed in gender, and stronger correlation was found in female participants. However, no significant interaction was found in age, height or family history of diabetes.
- In addition, sensitivity analyses were performed for the risk of diabetes and IFG to confirm the robustness of our results (Table S3). After adjusting for covariates, the HR (95% CI) of incident diabetes was 1.39 (1.05-1.85) for MHOW and 2.91 (1.94-4.37) for MHO (*P* for trend <0.001); the HR (95% CI) of IFG was 1.23 (1.16-1.31) for MHOW and 1.49 (1.32-1.68) for MHO (P for trend <0.001). Furthermore, to verify the association of MHOW/MHO and hyperglycemia, the sensitivity analyses were performed as excluding the individuals with missing data of smoking and drinking status (n=12763, Table S4) or AST (n=19955, Table S5). The positive relationship of MHOW/MHO and hyperglycemia risk was still significant.
 - DISCUSSION

The association between the BMI categories and incident hyperglycemia in the metabolically healthy population was examined in this cohort study. Compared to the MHNW group, both the MHOW and MHO groups exhibited a progressive increase in the risk of hyperglycemia, revealing a clear trend of rising hyperglycemia incidence with higher BMI. This present study suggests that the presence of MHOW/MHO, even with the absence of metabolic risk factors, significantly elevates the incidence of hyperglycemia. Consequently, MHOW and/or MHO should not be treated as a healthy status. Notably, weight management may serve as an effective strategy for

preventing hyperglycemia and its related metabolic diseases among individuals with MHOW or MHO. The BioSHaRE-EU Healthy Obese Project have shown that the MHO prevalence of was 7%-28% for women, and 2%-19% for men²⁴. The MHO prevalence ranged from 4.2% in a Chinese cohort ⁸ to 13.3% among Asian Indians ²⁵ and 28.5% in African Americans ²⁶. In this study, the prevalence of MHOW (21.93%) and MHO (3.25%) were lower than previous reports, likely due to the strict definition of metabolically healthy status with none of metabolic abnormalities.

Wu et al. highlighted the positive effect of MHO on diabetes based on large numbers of epidemiological studies worldwide ⁶. However, the correlation weakens when metabolically healthy status is strictly defined with none of metabolic abnormalities. Notably, the incidence of diabetes increased by 35-67% with one metabolic abnormality addition among metabolic healthy participants ²⁷. For example, Feng et al. found that the risk of diabetes increased among MHO individuals in a cohort of 49,702 older adults, but the association was not statistically significant when MHO was defined without ATP-III risk factors ¹¹. Similarly, Wei et al. observed an increased diabetes risk among MHO individuals, but this was not statistically significant among those with no metabolic abnormalities in the Dongfeng Tongji cohort study ¹². Despite these findings, our study identified a higher risk of hyperglycemia in the MHOW and MHO groups, even with the strict definition of metabolically healthy status as the absence of metabolic abnormalities. However, information about blood pressure- and lipid-lowing medication was missing, and some participants who used these medications would in fact be metabolically unhealthy and should have been excluded. This might partly interpret the positive association of MHOW/MHO and hyperglycemia risk, and the correlation needs to be furtherly explored.

Additionally, we found the positive association of MHOW/MHO phenotype on diabetes and IFG, respectively. In consistent, the risk of diabetes for MHOW or MHO individuals with no metabolic abnormalities was 1.89 and 3.88 times higher, respectively, than in MHNW young men ²⁷. These inconsistent results may be attributed to several factors. First, age differences may partly explain the variability in findings. The participants in previous studies had mean ages of 63.2 years ¹¹ and 66 (63-71) years ¹², whereas the mean age in our study was 40.95 ± 11.05 years. Younger MHO adults may present a higher hyperglycemia risk, as they are more likely to develop metabolic abnormalities in the short term. In contrast, middle-aged MHO individuals may have been overweight or obese for years without developing diabetes or metabolic disorders. Moreover, the concept of "metabolically healthy" status tends to diminish with aging ²⁴, which likely accounts for the reduced prevalence of MHOW and MHO in earlier studies ^{11,12}.

Notably, the interaction between gender and BMI categories on incident hyperglycemia was significant, with a higher risk observed in women than in men. This finding aligns with some studies ^{28, 29}, but not all ^{30, 31}. For example, one cohort study found that the risk of diabetes and IFG was higher in obese women ²⁸. Similarly, another prospective case-cohort study noted a strong association between

BMJ Open

WC and type 2 diabetes mellitus, particularly in women ²⁹. However, the China Kadoorie Biobank study found greater hazard ratios for diabetes associated with BMI increments in men than in women (P for heterogeneity < 0.001) ³¹. Previous studies have indicated that obesity is a more common and stronger risk factor for diabetes in women ^{32, 33}.

The mechanism of positive association between BMI and hyperglycemia incidence in metabolic healthy population still remains unclear. However, it may be partly attributed to increased inflammation and insulin resistance associated with MHOW and/or MHO phenotypes. Overweight and obesity are known to induce chronic low-grade inflammation, particularly in insulin-sensitive tissues such as the liver, muscle, and adipose tissues ³⁴. Evidence suggests that chronic inflammation plays a critical role in diabetes development, even among MHO subjects ^{35, 36}. The accumulation and infiltration of pro-inflammatory macrophages in adipose tissue are significant contributors to chronic inflammation ³⁷. Pro-inflammatory cytokines, mainly secreted by macrophages, such as tumor necrosis factor (TNF- α) and interleukin-1 beta (IL-1B), can trigger various signaling pathways that induce insulin resistance. Key signaling pathways include TNF-α/IKKβ/NF-κB and TLR4/NLRP3/caspase-1/IL-1β, which impair insulin action and modulate pancreatic β -cell mass and function ³⁸.

In addition, the prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the obesity epidemic³⁹. NAFLD is not a consequence of insulin resistance, but it is also a key cause of insulin resistance or diabetes mellitus ⁴⁰. The high prevalence of NAFLD and visceral adiposity was found among the MHOW/MHO group, compared with the MHNW group ⁴¹. In a MR analysis of data from the UK Biobank, the positive relationship of higher liver fat content and the risk of type 2 diabetes was observed ⁴². Previous have shown that the increased hepatic lipogenesis and lipodystrophy-like phenotypes with visceral adiposity, resulted in dysregulated hepatokines and dysregulated adipokines, which might be the main cause of insulin resistance ⁴⁰. However, Wei et.al ¹² found the association of the MHO phenotype and increased diabetes incidence did not differ by the presence or absence of NAFLD.

42 339 Study strengths and limitations

In addition to its large sample size and broad age range, this study has several strengths. Metabolically healthy individuals were included without any metabolic risk factors, allowing for the independent assessment of the role of BMI in hyperglycemia risk. Furthermore, sensitivity analyses, subgroup analyses, and interaction effects were examined to validate the reliability and stability of the results. However, there are several limitations to our study. First, WC was not measured at baseline, which prevented us from combining WC and BMI to distinguish individuals with abdominal obesity or predict the risk of hyperglycemia among those with abdominal obesity. Second, the missing data on blood pressure- and lipid-lowering medications could have impacted the accuracy of the MHOW/MHO categories, as some participants on these medications may have been inappropriately considered metabolically healthy. Third, hyperglycemia prevalence may be underestimated, as random plasma glucose and/or postprandial plasma glucose levels were not collected. Finally, although

numerous confounding factors were included, some potential factors may still be unaccounted for, such as physical activity and dietary habits.

CONCLUSION

In conclusion, this study demonstrated that MHOW and MHO are independently and positively associated with the risk of incident hyperglycemia in metabolically healthy adults, with a particularly strong correlation observed in women. Given the unsteady characteristics of metabolically healthy obese phenotypes, these findings underscore the necessity of weight loss, increasing physical activity and diet quality management to reduce hyperglycemia risk and promote overall population health.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	264	Asknowledgements
4	364	Acknowledgements We there the field investigators and norticipants of the Dish Uppltheory Crown or well
5	365	We thank the field investigators and participants of the Rich Healthcare Group as well
6 7	366	as Chen et al. for sharing their database. We thank LetPub (<u>www.letpub.com.cn</u>) for
8	367	its linguistic assistance during the preparation of this manuscript.
9	368	Contributors
10	369	QG, QTY and SLJ: study design. QG, BYL, HML, RNX and YRX: data cleaning and
11 12	370	analysis. QG, BYL, HML, RNX and YRX: result interpretation. QG: manuscript
13	371	writing. BYL and HML: manuscript editing. All authors approved the final
14	372	manuscript. Guarantor is QG.
15	373	Funding
16 17	374	This work was supported by the National Natural Science Foundation of China
18	375	(82204031), Natural Science Foundation of Shandong Province (ZR2021QH188), and
19	376	the Lin He's Academician Workstation of New Medicine and Clinical Translation in
20	377	Jining Medical University (JYHL2022MS13).
21 22	378	Competing interests
23	379	None declared.
24	380	Provenance and peer review
25 26	381	Not commissioned; externally peer reviewed.
20	382	Data availability statement
28	383	The data used in this analysis can be accessed via the Dryad data repository at
29	384	http://datadryad.org/withthedoi:10.5061/dryad.ft8750v.
30 31	385	Patient consent
32	386	Not required.
33	387	Ethics approval
34 35	388	This study was approved by the Rich Healthcare Group Review Board, and the
36	389	information was retrieved retrospectively.
37	390	
38	391	References
39 40	392	1. International Diabetes Federation. IDF Diabetes Atlas 10th Edition [M]. 2021.
41	393	2. Wang L, Gao P, Zhang M, et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in
42	394	China in 2013. JAMA 2017;317:2515-23.doi.org/10.1001/jama.2017.7596
43	395	3. Wang L, Peng W, Zhao Z, et al. Prevalence and Treatment of Diabetes in China, 2013-2018.
44 45	396	<i>JAMA</i> 2021;326:2498-506.doi.org/10.1001/jama.2021.22208
46	397	4. Inoue Y, Qin B, Poti J, Sokol R, Gordon-Larsen P. Epidemiology of Obesity in Adults: Latest
47	398	Trends. <i>Curr Obes Rep</i> 2018;7:276-88.doi.org/10.1007/s13679-018-0317-8
48 49	399	 National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and
49 50	400	Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of
51	401	the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation,
52 52	401	and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final
53 54	403	report. <i>Circulation</i> . 2002;106(25):3143-421.
55	404	 6. Wu Q, Xia MF, Gao X. Metabolically healthy obesity: Is it really healthy for type 2 diabetes
56	404	mellitus? <i>World J Diabetes</i> 2022;13:70-84.doi.org/10.4239/wjd.v13.i2.70
57 58	403	 7. Zembic A, Eckel N, Stefan N, et.al. An Empirically Derived Definition of Metabolically Healthy Obesity
58 59	400	Based on Risk of Cardiovascular and Total Mortality. JAMA Netw Open. 2021;4(5):e218505.
60	т 07	β

3 408 doi:10.1001/jamanetworkopen.2021.8505 4 409 8. Schulze MB, Stefan N. Metabolically healthy obesity: from epidemiology and mechanisms to 5 410 clinical implications. Nat Rev Endocrinol. 2024;20(11):633-646. doi: 10.1038/s41574-024-6 7 411 01008-5. 8 412 9. Meigs JB, Wilson PW, Fox CS, et al. Body mass index, metabolic syndrome, and risk of type 9 413 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab 2006;91:2906-10 11 414 12.doi.org/10.1210/jc.2006-0594 12 415 10. Appleton SL, Seaborn CJ, Visvanathan R, et al. Diabetes and cardiovascular disease outcomes 13 416 in the metabolically healthy obese phenotype: a cohort study. Diabetes Care 2013:36:2388-14 15 417 94.doi.org/10.2337/dc12-1971 16 418 11. Feng S, Gong X, Liu H, et al. The Diabetes Risk and Determinants of Transition from 17 419 Metabolically Healthy to Unhealthy Phenotypes in 49,702 Older Adults: 4-Year Cohort Study. 18 19 420 Obesity (Silver Spring) 2020;28:1141-8.doi.org/10.1002/oby.22800 20 421 12. Wei Y, Wang J, Han X, et al. Metabolically healthy obesity increased diabetes incidence in a 21 422 middle-aged population. and elderly Chinese Diabetes Metab Res Rev 22 423 2020;36:e3202.doi.org/10.1002/dmrr.3202 23 24 424 13. Petersen MC, Smith GI, Palacios HH, et al. Cardiometabolic characteristics of people with 25 425 metabolically healthy and unhealthy obesity. Cell Metab. 2024;36(4):745-61.e5. 26 426 doi:10.1016/j.cmet.2024.03.002 27 28 427 14. Luo D, Liu F, Li X, et al. Comparison of the effect of 'metabolically healthy but obese' and 29 428 'metabolically abnormal but not obese' phenotypes on development of diabetes and 30 429 cardiovascular disease in Chinese. Endocrine 2015;49:130-8.doi.org/10.1007/s12020-014-31 430 32 0444-2 33 431 15. Hinnouho GM, Czernichow S, Dugravot A, et al. Metabolically healthy obesity and the risk of 34 432 cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J 35 433 2015;36:551-9.doi.org/10.1093/eurheartj/ehu123 36 37 434 16. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 38 435 diabetes: a meta-analysis of prospective cohort studies. Obes Rev 2014;15:504-39 436 15.doi.org/10.1111/obr.12157 40 41 437 17. Liu M, Tang R, Wang J, He Y. Distribution of metabolic/obese phenotypes and association 42 438 with diabetes: 5 years' cohort based on 22,276 elderly. Endocrine 2018;62:107-43 439 15.doi.org/10.1007/s12020-018-1672-7 44 440 18. Chen Y, Zhang XP, Yuan J, et al. Association of body mass index and age with incident 45 46 441 diabetes in Chinese adults: a population-based cohort study. BMJ Open 47 442 2018;8:e021768.doi.org/10.1136/bmjopen-2018-021768 48 443 19. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. 49 50 444 Diabetes Care 2022;45:S17-s38.doi.org/10.2337/dc22-S002 51 Ye J, Guo K, Li X, Yang L, Zhou Z. The Prevalence of Metabolically Unhealthy Normal 445 20. 52 446 Weight and Its Influence on the Risk of Diabetes. J Clin Endocrinol Metab 2023;108:2240-53 54 447 7.doi.org/10.1210/clinem/dgad152 55 448 21. Wang B, Zhang M, Wang S, et al. Dynamic status of metabolically healthy 56 449 overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 57 450 diabetes mellitus: A cohort study of a rural adult Chinese population. Obes Res Clin Pract 58 59 451 2018;12:61-71.doi.org/10.1016/j.orcp.2017.10.005 60

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2			
3	452	22.	Erviti J, Alonso A, Oliva B, et al. Oral bisphosphonates are associated with increased risk of
4	453		subtrochanteric and diaphyseal fractures in elderly women: a nested case-control study. <i>BMJ</i>
5 6	454		Open 2013;3.doi.org/10.1136/bmjopen-2012-002091
7	455	23.	von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The
8		23.	
9	456		Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement:
10	457		guidelines for reporting observational studies. Int J Surg. 2014;12:1495-
11 12	458		9.doi.org/10.1016/j.ijsu.2014.07.013
13	459	24.	van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, et al. The prevalence of metabolic
14	460		syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large
15	461		cohort studies. BMC Endocr Disord 2014;14:9.doi.org/10.1186/1472-6823-14-9
16 17	462	25.	Geetha L, Deepa M, Anjana RM, Mohan V. Prevalence and clinical profile of metabolic
17	463		obesity and phenotypic obesity in Asian Indians. J Diabetes Sci Technol 2011;5:439-
19	464		46.doi.org/10.1177/193229681100500235
20	465	26.	Cherqaoui R, Kassim TA, Kwagyan J, et al. The metabolically healthy but obese phenotype in
21	466		African Americans. J Clin Hypertens (Greenwich) 2012;14:92-6.doi.org/10.1111/j.1751-
22 23	467		7176.2011.00565.x
24	468	27.	Twig G, Afek A, Derazne E, et al. Diabetes risk among overweight and obese metabolically
25	469	27.	healthy young adults. <i>Diabetes Care</i> 2014;37:2989-95.doi.org/10.2337/dc14-0869
26	470	20	
27 28		28.	Vaidya A, Cui L, Sun L, et al. A prospective study of impaired fasting glucose and type 2
28 29	471		diabetes in China: The Kailuan study. <i>Medicine (Baltimore)</i>
30	472		2016;95:e5350.doi.org/10.1097/md.00000000005350
31	473	29.	Langenberg C, Sharp SJ, Schulze MB, et al. Long-term risk of incident type 2 diabetes and
32	474		measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med
33 34	475		2012;9:e1001230.doi.org/10.1371/journal.pmed.1001230
35	476	30.	Zhu Y, Hu C, Lin L, et al. Obesity mediates the opposite association of education and diabetes
36	477		in Chinese men and women: Results from the REACTION study. J Diabetes 2022;14:739-
37	478		48.doi.org/10.1111/1753-0407.13325
38 39	479	31.	Bragg F, Tang K, Guo Y, et al. Associations of General and Central Adiposity With Incident
39 40	480		Diabetes in Chinese Men and Women. Diabetes Care. 2018;41:494-
41	481		502.doi.org/10.2337/dc17-1852
42	482	32.	Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk,
43	483		Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev 2016;37:278-
44 45	484		316.doi.org/10.1210/er.2015-1137
46	485	33.	Logue J, Walker JJ, Colhoun HM, et al. Do men develop type 2 diabetes at lower body mass
47	486	55.	indices than women? <i>Diabetologia</i> . 2011;54:3003-6.doi.org/10.1007/s00125-011-2313-3
48	487	24	
49 50		34.	Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between
51	488		obesity, metabolic syndrome and type 2 diabetes. <i>Diabetes Res Clin Pract.</i> 2014;105:141-
52	489	• -	50.doi.org/10.1016/j.diabres.2014.04.006
53	490	35.	Zhao R, Tang D, Yi S, et al. Elevated peripheral frequencies of Th22 cells: a novel potent
54 55	491		participant in obesity and type 2 diabetes. PLoS One. 2014;9:e85770.
55 56	492		doi.org/10.1371/journal.pone.0085770
57	493	36.	Jung CH, Lee MJ, Kang YM, et al. The risk of incident type 2 diabetes in a Korean
58	494		metabolically healthy obese population: the role of systemic inflammation. J Clin Endocrinol
59	495		Metab. 2015;100:934-41.doi.org/10.1210/jc.2014-3885
60			

BMJ Open

		2						
9 Metabolites. Proof. Barrophages in Diabetes and Obesity: The Importance of Metabolites. Proof. Barrow Immunol. 2021;12:746151.doi.org/10.3389/fimmu.2021.746151 9 93 Rohm TV, Mcier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31-55.doi.org/10.1016/j.immuni.2021.12.013 10 501 39. European Association for the Study of the Liver (FASL). Electronic address: easloffice@easloffice.eu; European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO); European Association for the Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the Hapatol. 2024;81(3):492-542. doi:10.1016/j.jhep.2024.04.031 16 507 40. Stefan N, Schick F, Birkenfeld AL, Haring HU, White MF. The role of hepatokines in NAELD. Cell Metab. 2023;35(2):236-52. doi:10.1016/j.cmet.2031.0060 17 504 Stefan N, Schick F, Häring HU. Causes, Characteristics, and Consequences of Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. doi:10.1016/j.cmet.2017.07.008 18 512 42. Matin S, Sorokin EP, Thornas EL, et al. Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Diabetes Care. 2022;45(2):460-8. doi:10.237/dc21-1262 19 514 0.95 ± 11.05 40.10 ± 10.70 43.83 ± 11.60 42.93 ± 12.07 <0.001 10 47391	497 Metabolics. Exercise immunol. 2011;12:746151 doi:reg10.3389;fimum.2021.746151 498 Metabolics. Exercise immunol. 2011;12:746151 doi:reg10.3389;fimum.2021.746151 499 38. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31-55 doi:org/10.1016/j.immuni.2021.12.013 500 related disorders. Immunity. 2022;55:31-55 doi:org/10.1016/j.immuni.2021.12.013 501 39. European Association for the Study of the Liver (EASL). Electronic address: easloffice@lasaloffice.eu; European Association for the 5 503 European Association for the Study of Obesity (EASO). European Association for the 5 504 Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 2024;8(3):492-482. doi:10.1016/j.inet.2023.01.006 508 NAFLD. Cell Metab. 2023;5(2):236-52. doi:10.1016/j.inet.2023.01.006 509 41. Stefan N, Schick F, Häring HU. Causes, Characteristics, and Consequences of Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. 511 doi:10.1016/j.inet.2017.07.008 4512 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. 513 Volume and Fat Content on Risk of Dia	3	4 96 37.	Russo S, Kwiatkowski I	M, Govorukhina N, Bi	schoff R, Melgert BN.	Meta-Inflammation	and
			497	Metabolic Reprogramm	ing of Macrophages	in Diabetes and Obes	sity: The Importance	of
7 499 38. Rohm TV, Meier DT, Olefsky JM, Donath MY, Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31-55 doi.org/10.1016/j.immuni.2021.12.013 500 19. European Association for the Study of the Liver (FASL). Electronic address: easloffice@easloffice.eu; European Association for the Study of Diabetes (EASD); 501 202 easloffice@easloffice.eu; European Association for the Study of Diabetes (EASD); 503 European Association for the Study of Obesity (EASO). European Association for the Study of the Liver (FASL). EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 506 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 507 40. Stefan N, Schick F, Birkenfeld AL, Härig HU, White MF. The role of hepatokines in NAELD. Cell Metab. 2023;32():236-52. doi:10.1016/j.emet.2023.01.006 509 41. Stefan N, Schick F, Häring HU. Causes, Characteristics, and Consequences of Metabolically Unfieatily Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. 511 doi:10.1016/j.emet.2017.07.008 512 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. 513 S14 S14 S14 S14 S14 S14 S14 S15 S15 <	7 499 38. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. <i>Immunity</i> , 2022;553:1-55.40i org/10.1016/j.immuni.2021.12.013 90 501 39. European Association for the Study of the Liver (EASL). Electronic address: 102 easloffice@easloffice.eu; European Association for the Study of Diabetes (EASD); 113 503 Furopean Association for the Study of Obesity (FASO); European Association for the 114 504 Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelmes on the 114 507 40. Stefan N, Schick F, Birkenfeld AL, Härng HU, White MF. The role of hepatokines in 115 507 40. Stefan N, Schick F, Birkenfeld AL, Härng HU, White MF. The role of hepatokines in 116 507 40. Stefan N, Schick F, Birkenfeld AL, Härng HU, White MF. The role of hepatokines in 116 508 NAFLD. Cell Metabe. 2023;52(2):245-52. doi:10.1016/j.cmet.2017.00.006 121 42. Martin S, Sorokin FP, Thomas FL, et al. Estimating the Effect of Liver and Pancreas 123 518 513 Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. 123 518 519 510 MiHOW Provalue 124 N<		498	Metabolites. Front Imm	unol. 2021:12:746151.0	doi.org/10.3389/fimmu	.2021.746151	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-		and
501 39. European Association for the Study of the Liver (EASL). Electronic address: 11 502 eastoffice.cu; European Association for the Study of Diabetes (EASD); 12 503 European Association for the Study of Obesity (EASO); European Association for the 13 504 Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the 14 504 Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the 15 505 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 16 506 Hepatol. 2024;81(3):492-542. doi:10.1016/j.met.2023.01.006 17 508 NAFLD. Cell Metab. 2023;35(2):236-52. doi:10.1016/j.met.2023.01.006 18 507 40. Stefan N, Schick F, Häring HU. Causes, Characteristics, and Consequences of 10 Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. doi:10.1016/j.met.2017.07.008 12 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas 13 Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. 14 Diabetes Care. 2022;45(2):460-8 doi:10.2337/dc21-1262 15 516 16 517 17 <td>501 39. European Association for the Study of the Liver (EASL). Electronic address: 502 easloffice.eq: European Association for the Study of Dibetes (EASD); 503 European Association for the Study of Obesity (EASO); European Association for the 504 Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the 505 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 606 Hepatol. 2024;81(3):492-542. doi:10.1016/j.tmct.2023.01.006 707 40. Stefan N, Schick F, Birkenfeld AL, Haring HU. Causes, Characteristics, and Consequences of 509 41. Stefan N, Schick F, Birkenfeld AL, Itaring HU. Causes, Characteristics, and Consequences of 511 doi:10.1016/j.tmct.2017.07.008 512 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas 513 Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. 514 Diabetes Care. 2022;45(2):460-8; doi:10.2337/dc21-1262 515 520 516 516 517 518 518 518 519 510 510 0.952 ± 11.05 40.10 ± 10.70 40.338 ± 11.60 42.93 ± 12.07 <0.</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>3 / /</td> <td></td>	501 39. European Association for the Study of the Liver (EASL). Electronic address: 502 easloffice.eq: European Association for the Study of Dibetes (EASD); 503 European Association for the Study of Obesity (EASO); European Association for the 504 Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the 505 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 606 Hepatol. 2024;81(3):492-542. doi:10.1016/j.tmct.2023.01.006 707 40. Stefan N, Schick F, Birkenfeld AL, Haring HU. Causes, Characteristics, and Consequences of 509 41. Stefan N, Schick F, Birkenfeld AL, Itaring HU. Causes, Characteristics, and Consequences of 511 doi:10.1016/j.tmct.2017.07.008 512 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas 513 Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. 514 Diabetes Care. 2022;45(2):460-8; doi:10.2337/dc21-1262 515 520 516 516 517 518 518 518 519 510 510 0.952 ± 11.05 40.10 ± 10.70 40.338 ± 11.60 42.93 ± 12.07 <0.				2		3 / /	
11 502 easloffice@easloffice.eu; European Association for the Study of Diabetes (EASD); 12 503 European Association for the Study of Obesity (EASO); European Association for the 14 504 Study of the Liver (EASL): EASL-EASD-EASO Clinical Practice Guidelines on the 14 505 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 16 507 40. Stefan N, Schick F, Birkenfeld AL, Härnig HU, White MF. The role of hepatokines in 508 NAFLD. Cell Metab. 2023;35(2):236-52. doi:10.1016/j.emet.2023.01.006 509 41. Stefan N, Schick F, Birkenfeld AL, Härnig HU, White MF. The role of hepatokines in 508 NAFLD. Cell Metab. 2023;3(2):236-52. doi:10.1016/j.emet.2023.01.006 509 41. Stefan N, Schick F, Birkenfeld AL, Härnig HU, White MF. The role of hepatokines in 508 NAFLD. Cell Metab. 2017;07:008 Cell Metab. 2017;26(2):292-300. 512 42. Mattin S, Storkin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas 513 Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Diabetes Care. 2022;45(2):460-8. doi:10.2337/dc21-1262 516 520 516 521 521 521 523 518 519 514					•	•		200.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 100 \\ 100 $			-	•			
504 Study of the Liver (EASL). EASL-EASD Clinical Practice Guidelines on the 15 505 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 16 506 Hepatol. 2024;81(3):492-542. doi:10.1016/j.jhep.2024.04.031 17 507 40. Stefan N, Schick F, Birkendel AL, Härng HU, White MF. The role of hepatokines in 18 507 40. Stefan N, Schick F, Birkendel AL, Härng HU, White MF. The role of hepatokines in 10 S08 NAFLD. Cell Metab. 2023;35(2):236-52. doi:10.1016/j.cmet.2023.01.006 509 10 Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. 511 doi:10.1016/j.cmet.2017.07.008 21 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas 513 Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Table 1. Characteristics of study participants, stratified by BMI group Variables Total MHNW MHOW Pator Mitor Total MHNW MHO value Table 1. Characteristics of study participants, stratified by BMI group Variable	504 Study of the Liver (EASL). EASD-EASD Clinical Practice Guidelines on the 15 505 management of metabolic dysfunction-associated steatotic liver disease (MASLD). J 16 506 Hepatol. 2024;81(3):492-542. doi:10.1016/j.jhep.2024.04.031 17 507 40. Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in 17 Stefan N, Schick F, Birkenfeld AL, Häring HU, Waite MF. The role of hepatokines in 18 Stefan N, Schick F, Birkenfeld AL, Häring HU, Waite MF. The role of hepatokines in 19 Stefan N, Schick F, Birkenfeld AL, Häring HU, Waite MF. The role of hepatokines in 19 Stefan N, Schick F, Birkenfeld AL, Häring HU, Waite MF. The role of hepatokines in 10 Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. Stift of Study participants, stratified by BMI group Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Stift Stift Stift Stift Stift Stift Stift Stift			0	· •	•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•				
$ \begin{array}{c} 1000 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	•		r disease (MASLD). J
19 508 NAFLD. Cell Metab. 2023;35(2):236-52. doi:10.1016/j.cmet.2023.01.006 20 509 41. Stefan N, Schick F, Haring HU. Causes, Characteristics, and Consequences of Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26(2):292-300. doi:10.1016/j.cmet.2017.07.008 21 42. Martin S, Sorokin EP, Thomas EL, et al. Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Diabetes Care. 2022;45(2):460-8. doi:10.2337/dc21-1262 28 516 517 30 518 518 31 519 518 32 518 522 7 512 40.95 ± 11.05 40.10 ± 10.70 43.38 ± 11.60 42.93 ± 12.07 <0.001 41 Male, n (%) 22.586 (47.66) 14124 (40.45) 7369 (67.41) 1093 (71.02) <0.001 43 Male, n (%) 22.586 (47.66) 14124 (40.45) 7369 (67.41) 1093 (71.02) <0.001 44 Male, n (%) 22.586 (47.66) 14124 (40.45) 7369 (67.41) 1093 (71.02) <0.001 55 BBI (Mcg/m²) 22.48 ± 2.59 21.25 ± 1.48 25.41 ± 1.05 29.56 ± 1.69 <0.001 58	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-	s in
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		508		, , ,	5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		509 41.	Stefan N, Schick F,	Häring HU. Caus	es, Characteristics,	and Consequences	of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		510	Metabolically Unhealt	hy Normal Weight in	n Humans. Cell Meta	b. 2017;26(2):292-3	00.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		511	doi:10.1016/j.cmet.201	7.07.008			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		512 42.	Martin S, Sorokin EP,	Thomas EL, et al. I	Estimating the Effect	of Liver and Pancr	eas
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		513	Volume and Fat Con	tent on Risk of Dia	betes: A Mendelian	Randomization Stu	dy.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		514	Diabetes Care. 2022;45	5(2):460-8. doi:10.233	7/dc21-1262		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	DIA		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				ipants, stratified by	Divil gloup	MIIO	<u>מ</u>
N473913492010932153943Age (years) 40.95 ± 11.05 40.10 ± 10.70 43.38 ± 11.60 42.93 ± 12.07 <0.001 44Male, n (%) $22586 (47.66)$ $14124 (40.45)$ $7369 (67.41)$ $1093 (71.02)$ <0.001 45BMI (kg/m²) 22.48 ± 2.59 21.25 ± 1.48 25.41 ± 1.05 29.56 ± 1.69 <0.001 47FPG (mmol/L) 4.82 ± 0.52 4.78 ± 0.52 4.92 ± 0.52 4.99 ± 0.54 <0.001 48SBP (mmHg) 110.88 ± 10.24 109.65 ± 10.30 114.07 ± 9.31 116.26 ± 8.63 <0.001 49DBP (mmHg) 69.23 ± 7.47 68.45 ± 7.43 71.22 ± 7.14 72.63 ± 7.13 <0.001 50TG (mmol/L) 0.92 ± 0.34 0.87 ± 0.32 1.06 ± 0.33 1.16 ± 0.32 <0.001 51TC (mmol/L) 1.50 ± 0.26 1.53 ± 0.27 1.42 ± 0.23 1.38 ± 0.21 <0.001 52HDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 53LDL-C (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 54ALT (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 56AST (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 <td>42N473913492010932153943Age (years)$40.95 \pm 11.05$$40.10 \pm 10.70$$43.38 \pm 11.60$$42.93 \pm 12.07$$<0.001$44Male, n (%)$22586$ (47.66)14124 (40.45)7369 (67.41)1093 (71.02)$<0.001$45BMI (kg/m²)$22.48 \pm 2.59$$21.25 \pm 1.48$$25.41 \pm 1.05$$29.56 \pm 1.69$$<0.001$46FPG (mmol/L)$4.82 \pm 0.52$$4.78 \pm 0.52$$4.92 \pm 0.52$$4.99 \pm 0.54$$<0.001$48SBP (mmHg)$110.88 \pm 10.24$$109.65 \pm 10.30$$114.07 \pm 9.31$$116.26 \pm 8.63$$<0.001$49DBP (mmHg)$69.23 \pm 7.47$$68.45 \pm 7.43$$71.22 \pm 7.14$$72.63 \pm 7.13$$<0.001$50TG (mmol/L)$0.92 \pm 0.34$$0.87 \pm 0.32$$1.06 \pm 0.33$$1.16 \pm 0.32$$<0.001$51TC (mmol/L)$4.69 \pm 0.80$$4.65 \pm 0.80$$4.79 \pm 0.80$$4.84 \pm 0.79$$<0.001$52HDL-C (mmol/L)$1.50 \pm 0.26$$1.53 \pm 0.27$$1.42 \pm 0.23$$1.38 \pm 0.21$$<0.001$53LDL-C (mmol/L)$2.70 \pm 0.62$$2.66 \pm 0.61$$2.80 \pm 0.62$$2.85 \pm 0.63$$<0.001$54ALT (mmol/L)$20.22 \pm 18.34$$18.05 \pm 16.65$$25.39 \pm 20.72$$32.80 \pm 23.65$$<0.001$56AST (mmol/L)$4.63 \pm 1.16$$4.56 \pm 1.14$$4.84 \pm 1.17$$4.91 \pm 1.13$$<0.001$58SCr (mmol/L)$68.87 \pm 15.47$$67.05 \pm 14.79$$73.92 \pm 16.32$$74.36 \pm 14.91$$<0.001$59<</td> <td></td> <td>variables</td> <td>Total</td> <td></td> <td>MILOW</td> <td>МПО</td> <td></td>	42N473913492010932153943Age (years) 40.95 ± 11.05 40.10 ± 10.70 43.38 ± 11.60 42.93 ± 12.07 <0.001 44Male, n (%) 22586 (47.66) 14124 (40.45) 7369 (67.41) 1093 (71.02) <0.001 45BMI (kg/m²) 22.48 ± 2.59 21.25 ± 1.48 25.41 ± 1.05 29.56 ± 1.69 <0.001 46FPG (mmol/L) 4.82 ± 0.52 4.78 ± 0.52 4.92 ± 0.52 4.99 ± 0.54 <0.001 48SBP (mmHg) 110.88 ± 10.24 109.65 ± 10.30 114.07 ± 9.31 116.26 ± 8.63 <0.001 49DBP (mmHg) 69.23 ± 7.47 68.45 ± 7.43 71.22 ± 7.14 72.63 ± 7.13 <0.001 50TG (mmol/L) 0.92 ± 0.34 0.87 ± 0.32 1.06 ± 0.33 1.16 ± 0.32 <0.001 51TC (mmol/L) 4.69 ± 0.80 4.65 ± 0.80 4.79 ± 0.80 4.84 ± 0.79 <0.001 52HDL-C (mmol/L) 1.50 ± 0.26 1.53 ± 0.27 1.42 ± 0.23 1.38 ± 0.21 <0.001 53LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 54ALT (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 56AST (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59<		variables	Total		MILOW	МПО	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N	47391	34920	10932	1539	value
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							<0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		• • •					
46FPG (mmol/L) 4.82 ± 0.52 4.78 ± 0.52 4.92 ± 0.52 4.99 ± 0.54 <0.001 48SBP (mmHg) 110.88 ± 10.24 109.65 ± 10.30 114.07 ± 9.31 116.26 ± 8.63 <0.001 49DBP (mmHg) 69.23 ± 7.47 68.45 ± 7.43 71.22 ± 7.14 72.63 ± 7.13 <0.001 50TG (mmol/L) 0.92 ± 0.34 0.87 ± 0.32 1.06 ± 0.33 1.16 ± 0.32 <0.001 51TC (mmol/L) 4.69 ± 0.80 4.65 ± 0.80 4.79 ± 0.80 4.84 ± 0.79 <0.001 52HDL-C (mmol/L) 1.50 ± 0.26 1.53 ± 0.27 1.42 ± 0.23 1.38 ± 0.21 <0.001 53LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 54ALT (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 56AST (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001	46FPG (mmol/L) 4.82 ± 0.52 4.78 ± 0.52 4.92 ± 0.52 4.99 ± 0.54 <0.001 48SBP (mmHg) 110.88 ± 10.24 109.65 ± 10.30 114.07 ± 9.31 116.26 ± 8.63 <0.001 49DBP (mmHg) 69.23 ± 7.47 68.45 ± 7.43 71.22 ± 7.14 72.63 ± 7.13 <0.001 50TG (mmol/L) 0.92 ± 0.34 0.87 ± 0.32 1.06 ± 0.33 1.16 ± 0.32 <0.001 51TC (mmol/L) 4.69 ± 0.80 4.65 ± 0.80 4.79 ± 0.80 4.84 ± 0.79 <0.001 52HDL-C (mmol/L) 1.50 ± 0.26 1.53 ± 0.27 1.42 ± 0.23 1.38 ± 0.21 <0.001 53LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 54ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 55ALT (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49DBP (mmHg) 69.23 ± 7.47 68.45 ± 7.43 71.22 ± 7.14 72.63 ± 7.13 <0.001 50TG (mmol/L) 0.92 ± 0.34 0.87 ± 0.32 1.06 ± 0.33 1.16 ± 0.32 <0.001 51TC (mmol/L) 4.69 ± 0.80 4.65 ± 0.80 4.79 ± 0.80 4.84 ± 0.79 <0.001 52HDL-C (mmol/L) 1.50 ± 0.26 1.53 ± 0.27 1.42 ± 0.23 1.38 ± 0.21 <0.001 53LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 54ALT (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 56AST (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001 <0.001		· · · · · · · · · · · · · · · · · · ·					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50TG (mmol/L) 0.92 ± 0.34 0.87 ± 0.32 1.06 ± 0.33 1.16 ± 0.32 <0.001 51TC (mmol/L) 4.69 ± 0.80 4.65 ± 0.80 4.79 ± 0.80 4.84 ± 0.79 <0.001 52HDL-C (mmol/L) 1.50 ± 0.26 1.53 ± 0.27 1.42 ± 0.23 1.38 ± 0.21 <0.001 53LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 54ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001 <0.001		(e /					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	0.92 ± 0.34	0.87 ± 0.32	1.06 ± 0.33	1.16 ± 0.32	< 0.001
53InDu C (minor L) 1.50 ± 0.20 1.65 ± 0.27 1.42 ± 0.25 1.50 ± 0.21 40.001 54LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 55ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001	53IDD C (Infibilit) 1.50 ± 0.20 1.55 ± 0.27 1.42 ± 0.25 1.50 ± 0.21 <0.001 54LDL-C (mmol/L) 2.70 ± 0.62 2.66 ± 0.61 2.80 ± 0.62 2.85 ± 0.63 <0.001 55ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001 <0.001		TC (mmol/L)	4.69 ± 0.80	4.65 ± 0.80	4.79 ± 0.80	4.84 ± 0.79	< 0.001
54 LDL-C (IIIII0I/L) 2.70 ± 0.62 2.80 ± 0.61 2.80 ± 0.62 2.83 ± 0.63 <0.001 55 ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56 AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57 BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58 SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001	54LDL-C (IIIII0I/L) 2.70 ± 0.62 2.60 ± 0.61 2.80 ± 0.62 2.83 ± 0.63 <0.001 55ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001 <0.001		HDL-C (mmol/L)	1.50 ± 0.26		1.42 ± 0.23	1.38 ± 0.21	< 0.001
55ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001	55ALT (mmol/L) 22.49 ± 10.50 21.66 ± 10.15 24.46 ± 10.94 27.46 ± 11.82 <0.001 56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001		· · · · ·					
56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001	56AST (mmol/L) 20.22 ± 18.34 18.05 ± 16.65 25.39 ± 20.72 32.80 ± 23.65 <0.001 57BUN (mmol/L) 4.63 ± 1.16 4.56 ± 1.14 4.84 ± 1.17 4.91 ± 1.13 <0.001 58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001 <0.001		· · · · · ·					
58 SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 $74.36 \pm 14.91 < 0.001$	58SCr (mmol/L) 68.87 ± 15.47 67.05 ± 14.79 73.92 ± 16.32 74.36 ± 14.91 <0.001 59Smoking status, n (%) <0.001	56	· · · · · ·					
	⁵⁹ Smoking status, n (%) <0.001		· · · · · · · · · · · · · · · · · · ·					
$50 - 0 - 1^{-1} + 4 - (0/1)$					67.05 ± 14.79	$7/3.92 \pm 16.32$	$7/4.36 \pm 14.91$	
$\mathbf{O}_{\mathbf{U}} \mathbf{O}_{\mathbf{U}} \mathbf{O}$	~~	59 60	Smoking status, n	(%)				<0.001

1						14
2						
3	Current smoker	2049 (4.32)	1277 (3.66)	667 (6.10)	105 (6.82)	
4 5	Ever smoker	493 (1.04)	284 (0.81)	181 (1.66)	28 (1.82)	
6	Never smoker	10221 (21.57)	7600 (21.76)	2313 (21.16)	308 (20.01)	
7	Drinking status, n (%)				< 0.001
8	Current drinker	249 (0.53)	144 (0.41)	85 (0.78)	20 (1.30)	
9	Ever drinker	2117 (4.47)	1274 (3.65)	740 (6.77)	103 (6.69)	
10	Never drinker	10397 (21.94)	7743 (22.17)	2336 (21.37)	318 (20.66)	
11	Family history of d	iabetes, n (%)				0.874
12 13	Yes	1061 (2.24)	789 (2.26)	239 (2.19)	33 (2.14)	

1 /

	ected by cop
	ected by copyright, including for uses
	ing for uses
	related to text
	and data
Table 2. Relationship between BMI categories and risk of hyperglycemia among meta healthy participants	ibolically <u>g</u> <u>P</u>

	Case/N	Crude Model	Model I	Model II	
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)	
Hyperglycemia					9
BMI	5274/47391	1.14 (1.13, 1.15)	1.10 (1.09, 1.11)	1.06 (1.04, 1.07)	
MHNW	3139/34920	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	
MHOW	1798/10932	1.85 (1.75, 1.97)	1.51 (1.42, 1.60)	1.23 (1.16, 1.30)	
MHO	337/1539	2.63 (2.35, 2.95)	2.10 (1.88, 2.36)	1.49 (1.33, 1.67)	
P for trend		< 0.001	< 0.001	< 0.001	(

Model I: adjusted for age, gender and family history of diabetes;

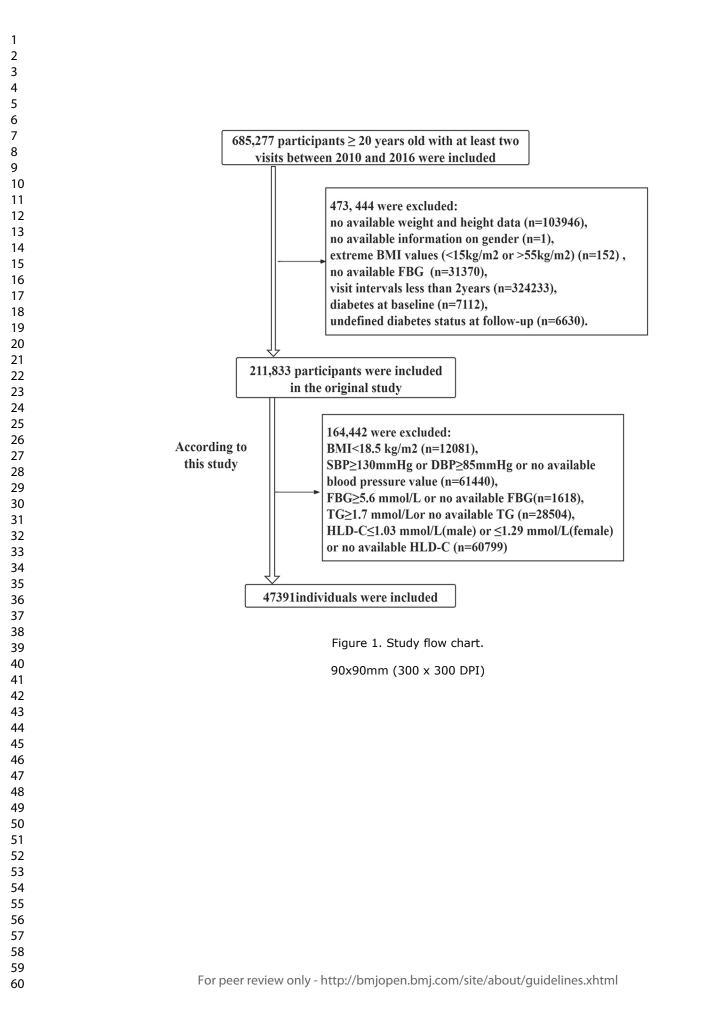
Model II: further adjusted for baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

Table 3. Multivariate-adjusted HR (95% CI) of hyperglycemia among BMI categories in stratified analyses

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	5
- 1	Э.
-	•

	MHNW	MHOW	МНО	<i>P</i> interaction
Gender				< 0.001
Male	1.00 (Ref.)	1.11 (1.03, 1.20)	1.32 (1.15, 1.51)	
Female	1.00 (Ref.)	1.43 (1.29, 1.58)	1.88 (1.52, 2.32)	
Age (years)				0.534
< 40	1.00 (Ref.)	1.32 (1.17, 1.48)	1.51 (1.21, 1.89)	
\geq 40	1.00 (Ref.)	1.22(1.13, 1.31)	1.53 (1.34, 1.75)	
Family history of di	abetes			0.290
yes	1.00 (Ref.)	1.23 (1.15, 1.30)	1.46 (1.30, 1.65)	
no	1.00 (Ref.)	1.05 (0.71, 1.55)	2.12 (1.07, 4.19)	
Height (cm)		1.31 (1.16, 1.47)	1.75 (1.38, 2.21)	0.056
≤ 161.90	1.00 (Ref.)	1.31 (1.16, 1.47)	1.75 (1.38, 2.21)	
162.00-169.90	1.00 (Ref.)	1.26 (1.13, 1.40)	1.33 (1.07, 1.64)	
\geq 170.00	1.00 (Ref.)	1.15 (1.04, 1.26)	1.50 (1.26, 1.78)	


Adjusted for gender (except gender subgroup), age (except age subgroup), family history of diabetes (except "family history of diabetes" subgroup), and baseline FPG, ALT, AST, BUN, SCr, smoking status and drinking status.

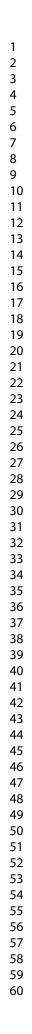

FIGURE LEGENDS

Figure 1. Study flowchart.

Figure 2. Kaplan-Meier curves for cumulative hazard ratios of incident risk of hyperglycemia. The figure shows that the cumulative risk of incident hyperglycemia was markedly different among the BMI categories (log-rank test, P < 0.001) and increased gradually with increasing BMI, resulting in maximum risk of prediabetes in the MHO group.

Suppelmentary Figure S1. Restricted cubic spline analyses ilustrating the doseresponse relationshipbetween BMI and incidence of hyperglycemia.

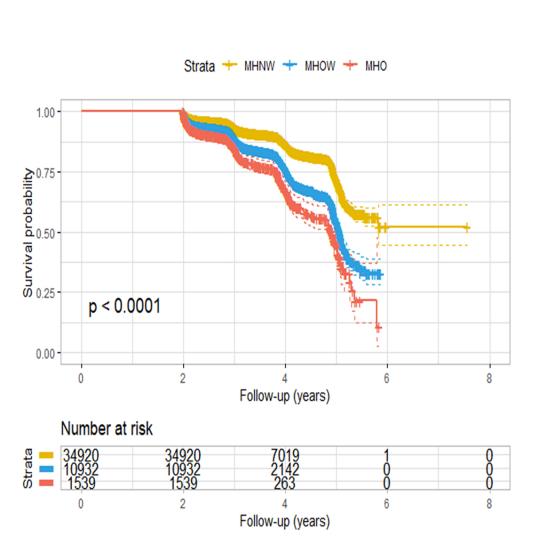


Figure 2. Kaplan–Meier curves for cumulative hazard ratios of incident risk of hyperglycemia. The figure shows that the cumulative risk of incident hyperglycemia was markedly different among the BMI categories (log-rank test, P < 0.001) and increased gradually with increasing BMI, resulting in maximum risk of prediabetes in the MHO group.

90x90mm (300 x 300 DPI)

Variables	Non-hyperglycemia	Hyperglycemia	P-value
Ν	42117	5274	
Age (years)	40.25 ± 10.66	46.54 ± 12.48	< 0.001
Male, n (%)	19401 (46.06)	3185 (60.39)	< 0.001
BMI (kg/m ²)	22.35 ± 2.53	23.48 ± 2.81	< 0.001
FPG (mmol/L)	4.77 ± 0.51	5.20 ± 0.51	< 0.001
SBP (mmHg)	110.53 ± 10.26	113.72 ± 9.70	< 0.001
DBP (mmHg)	69.01 ± 7.48	70.95 ± 7.21	< 0.001
TG (mmol/L)	0.91 ± 0.33	1.01 ± 0.34	< 0.001
TC (mmol/L)	4.67 ± 0.80	4.83 ± 0.83	< 0.001
HDL-C (mmol/L)	1.51 ± 0.26	1.46 ± 0.25	< 0.001
LDL-C (mmol/L)	2.69 ± 0.62	2.79 ± 0.63	< 0.001
ALT (mmol/L)	22.35 ± 10.46	23.63 ± 10.71	< 0.001
AST (mmol/L)	19.89 ± 18.03	22.92 ± 20.38	< 0.001
BUN (mmol/L)	4.60 ± 1.15	4.88 ± 1.18	< 0.001
SCr (mmol/L)	68.44 ± 15.46	72.27 ± 15.09	< 0.001
Smoking status, n (%)			< 0.001
Current smoker	1741 (4.13)	308 (5.84)	
Ever smoker	441 (1.05)	52 (0.99)	
Never smoker	9171 (21.78)	1050 (19.91)	
Drinking status, n (%)			0.003
Current drinker	211 (0.50)	38 (0.72)	
Ever drinker	1844 (4.38)	273 (5.18)	
Never drinker	9298 (22.08)	1099 (20.84)	
Family history of diabe	etes, n (%)		0.039
Yes	922 (2.19)	139 (2.64)	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

60

The results of univariate analysis for the risk factors of hyperglycemia

Covariables	HR (95%CI)	<i>P</i> -value
Age (years)	1.04 (1.03, 1.04)	< 0.001
Gender		< 0.001
Male	Ref.	
Female	0.60 (0.57, 0.64)	
FPG (mmol/L)	5.95 (5.63, 6.28)	< 0.001
SBP (mmHg)	1.03 (1.03, 1.03)	< 0.001
DBP (mmHg)	1.03 (1.02, 1.03)	< 0.001
TG (mmol/L)	2.34 (2.17, 2.53)	< 0.001
TC (mmol/L)	1.17 (1.13, 1.20)	< 0.001
HDL-C (mmol/L)	0.62 (0.55, 0.68)	< 0.001
LDL-C (mmol/L)	1.31 (1.26, 1.37)	< 0.001
ALT (mmol/L)	1.00 (1.00, 1.00)	< 0.001
AST (mmol/L)	1.01 (1.00, 1.01)	< 0.001
BUN (mmol/L)	1.16 (1.14, 1.18)	< 0.001
SCr (mmol/L)	1.01 (1.00, 1.01)	< 0.001
Smoking status, n (%)		< 0.001
Never smoker	Ref.	
Ever smoker	0.93 (0.70, 1.23)	
Current smoker	1.40 (1.23, 1.59)	
Drinking status, n (%)		< 0.001
Never drinker	Ref.	
Ever drinker	1.15 (1.01, 1.31)	
Current drinker	1.56 (1.13, 2.15)	
Family history of diabetes		0.500
No	Ref.	
Yes	1.06 (0.90, 1.26)	

Table S3

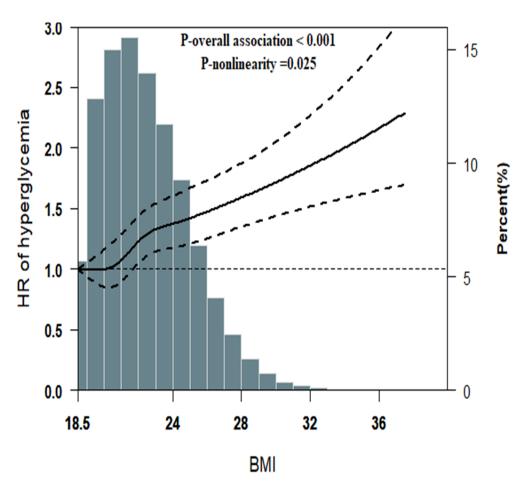
Relationship between BMI categories and the risk of diabetes/IFG among the metabolically healthy participants

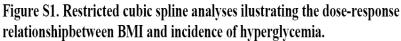
participants					
	Case/N	Crude Model	Model I	Model II	
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)	
Diabetes					
BMI	239/47391	1.24 (1.20, 1.28)	1.19 (1.14, 1.24)	1.14 (1.09, 1.18)	
MHNW	116/34920	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	
MHOW	91/10932	2.53 (1.92, 3.32)	1.78 (1.35, 2.36)	1.39 (1.05, 1.85)	
МНО	32/1539	6.84 (4.62, 10.11)	4.55 (3.05, 6.78)	2.91 (1.94, 4.37)	
P for trend		< 0.001	< 0.001	< 0.001	
IFG					
BMI	5035/47152	1.14 (1.13, 1.15)	1.10 (1.09, 1.11)	1.05 (1.04, 1.07)	
MHNW	3023/34804	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	
MHOW	1707/10841	1.85 (1.74, 1.96)	1.51 (1.42, 1.61)	1.23 (1.16, 1.31)	

MHO	305/1507	2.54 (2.26, 2.86)	2.07 (1.83, 2.33)	1.49 (1.32,1.
<i>P</i> for trend		<0.001	< 0.001	< 0.001
-		and the family histor	y of diabetes; ⁽ , BUN, SCr, smoking	status and drink
us.	iner adjusted ba		, Dert, Sei, sinoking	status and armix

Table S4

Relationship between BMI categories and the risk of hyperglycemia among the metabolically healthy participants without missing data of smoking and drinking status


	Case/N	Crude Model	Model I	Model II
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)
BMI	1410/12763	1.12 (1.10, 1.14)	1.09 (1.07, 1.11)	1.05 (1.03, 1.07)
MHNW	844/9161	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
MHOW	485/3161	1.73 (1.55, 1.94)	1.43 (1.27, 1.60)	1.16 (1.03, 1.30)
MHO	81/441	2.14 (1.70, 2.69)	1.75 (1.39, 2.21)	1.28 (1.01, 1.61)
P for trend		< 0.001	< 0.001	< 0.001


Table S5

participants wi	ithout missing da	ta of smoking and drink	ing status		 v
	Case/N	Crude Model	Model I	Model II	rote
		(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)	
BMI	1410/12763	1.12 (1.10, 1.14)	1.09 (1.07, 1.11)	1.05 (1.03, 1.07)	d by
MHNW	844/9161	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)	cop
MHOW	485/3161	1.73 (1.55, 1.94)	1.43 (1.27, 1.60)	1.16 (1.03, 1.30)	yrig
MHO	81/441	2.14 (1.70, 2.69)	1.75 (1.39, 2.21)	1.28 (1.01, 1.61)	ht, ir
P for trend		<0.001	< 0.001	< 0.001	ncluo
5	0 / 0	r and the family histo seline FPG, ALT, AS	T, BUN, SCr, smoking	status and drinking stat	Protected by copyright, including for uses related to text and data mining, AI training, and similar techn
Table S5					ıg, ar
-		-	of hyperglycemia among	the metabolically health	hy <mark>si</mark>
participants w	vithout missing da		N 1 1 Y		nila
	Case/N	Crude Model	Model I	Model II	r tec
	2717/10055	(HR, 95% CI)	(HR, 95% CI)	(HR, 95% CI)	hno
BMI	2717/19955	1.14(1.12, 1.15) 1.00(Pof)	1.11 (1.09, 1.12) 1.00 (Paf)	1.05(1.04, 1.07) 1.00(Ref)	ologies.
MHNW	1604/14558 945/4742	1.00 (Ref.) 1.85 (1.70, 2.01)	1.00 (Ref.) 1.54 (1.42, 1.67)	1.00 (Ref.)	es.
MHOW			1.54 (1.42, 1.67)	1.23 (1.13, 1.34)	
MHO D for trand	168/655	2.51 (2.15, 2.95) <0.001	2.06 (1.75, 2.46)	1.49 (1.27, 1.76) <0.001	
<i>P</i> for trend		<u>\0.001</u>	<0.001	<u>\0.001</u>	

Model I: adjusted for age, gender and family history of diabetes;

Model II: status.	further adjuste	ed for baseline FPG	G, ALT, AST, BU	N, SCr, smoking s	tatus and

90x90mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2024-087307 on 28 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.