

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

The Effect of Combined Non-Severe Aortic Stenosis and Mitral Regurgitation on Clinical Outcomes

	bmjopen-2023-080914
Article Type:	
	Original research
Date Submitted by the Author:	13-Oct-2023
	Granot, Yoav; affiliated to the Faculty of Medicine, Department of Cardiology; Icahn School of Medicine at Mount Sinai Sapir, Orly Ran; Tel Aviv Sourasky Medical Center, Department of Cardiology; Mayo Clinic, Department of Cardiovascular Medicine Laufer-Perl, Michal; Tel Aviv Sourasky Medical Center Cardiology Division Viskin, Dana; Tel Aviv Sourasky Medical Center, Cardiology Banai, Shmuel; Tel-Aviv Medical Centre, Department of Cardiology Topilsky, Yan; Tel Aviv Sourasky Medical Center, Cardiology Havakuk, Ofer; Tel Aviv Sourasky Medical Center
Keywords:	Heart failure < CARDIOLOGY, Adult cardiology < CARDIOLOGY, Echocardiography < CARDIOLOGY, Valvular heart disease < CARDIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

The Effect of Combined Non-Severe Aortic Stenosis and Mitral Regurgitation on Clinical Outcomes

Yoav Granot, MD¹², Orly Ran Sapir¹³, MD¹, Michal Laufer Perl MD¹, Dana Viskin MD¹, Shmuel Banai MD¹, Yan Topilsky, MD¹ and Ofer Havakuk MD¹

From ¹ Department of Cardiology, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

² Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai,New York, NY, United States

³ Division of preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest: none declared

Word Count - 2356

Corresponding author: Yoav Granot, MD, Department of Cardiology, Tel Aviv Medical Center, 6 Weizmann Street. Tel Aviv 6423906, Israel. Email: yoavgran@gmail.com

BMJ Open

Abstract

Objectives: Though the concomitant occurrence of non-severe aortic stenosis (AS) and mitral regurgitation (MR) is highly prevalent, there are limited data to guide clinical decision-making in this condition. Here, we attempt to determine cut-off values associated with worse clinical outcomes in patients with combined non-severe AS and MR

Methods: Included were consecutive patients who underwent echocardiography examination in 2010-2021 with evidence of combined non severe AS and MR. We excluded patients with \geq moderate aortic valve regurgitation or mitral stenosis, as well as patients who underwent any aortic or mitral intervention either prior or following our assessment (n=372).

Results: The final cohort consisted of 2933 patients with non-severe AS, 506 of them with >mild MR. Patient with both pathologies had lower cardiac output and worse diastolic function.

Patients with an aortic valve area (AVA) ≤ 1.35 cm² in the presence of >mild MR had the highest

rates of HF hospitalizations (HR 3.1, IQR 2.4-4, P < 0.001) or mortality (HR 2, IQR 1.8-2.4,

P<0.001), that remained significant after adjusting for clinical and echocardiographic parameters.

Conclusion: Patients with combined non-severe AS and MR have a higher rate of HF

hospitalizations and mortality. An AVA≤1.35cm² in the presence of >mild MR is associated with worse clinical outcomes.

Keywords: Aortic stenosis, Mitral regurgitation, Heart failure, Mortality

Key messages

What is already known on this topic – Current guidelines recommend intervention only when these valvular lesions are severe and limited data exist for the management of patients with combined non-severe AS and MR

What this study adds – In patients with combined non-severe AS and MR, an AVA between

1.0-1.35cm² in the presence of >mild MR is associated with worse clinical outcomes

How this study might affect research, practice or policy – We suggest an AVA cutoff value

of 1.35cm² for further evaluation and careful consideration of early intervention

Introduction

Multiple valvular heart disease (mVHD) is defined as the combination of stenotic or regurgitant lesions occurring in ≥ 2 cardiac valves [1]. The presence of mVHD may significantly affect the evaluation of each valvular lesion severity by affecting left ventricular filling pressures, preload and afterload. Moreover, mVHD was associated with worse outcomes. In the Euro Heart Survey (EHS), mVHD was observed in 20% of the patients with native VHD [2], whereas in a Swedish nationwide study, mVHD was present in 11% of patients, with high prevalence of combined aortic stenosis (AS) and mitral regurgitation (MR) [3]. Notably, definition and specific cutoff values for mVHD currently lack and are based on local practice or registries. As the impact of combined non-severe mVHD has not been appropriately defined or evaluated, contemporary guideline documents [4-5] focus mainly on mVHD in which at least one of the

lesions involved is defined as severe. Therefore, in this study, we chose to evaluate the presence and the impact of non-severe mVHD on patients' outcomes in a large tertiary center.

Material and Methods

We used a retrospective analysis performed in a single university-affiliated large tertiary care hospital. The study was reviewed and approved by the Institutional Review Board with a waiver of informed consent.

Study Population

Adult patients who underwent an echocardiography at our center between January 2010 and March 2021, with evidence of less than severe AS combined with less than severe MR were included in the initial cohort.

Patients with \geq moderate aortic valve regurgitation (AR) or \geq moderate mitral stenosis (MS) and those in whom an aortic or mitral valve intervention was done (n=372) were excluded from the analysis.

Doppler Echocardiography

To evaluate the presence of mVHD, all patients underwent a comprehensive two-dimensional and Doppler echocardiographic study with multiple windows during the same examination. Echocardiography was performed according to contemporary ESC guideline [6]. All measurements were retrieved from the echocardiography reporting system.

Stroke volume was calculated as the product of left ventricular outflow tract (LVOT) area and the time-velocity integral of the aortic flow velocity. Cardiac output (CO) measured as stroke volume multiplied by heart rate.

Aortic valve area (AVA) was calculated using continuity equation from the flow through the LVOT with respect to the flow through the aortic valve. Aortic valve velocities were obtained from multiple windows for the highest obtained peak velocity and mean gradient. Severe AS was defined as a peak velocity >4m/s, mean gradient >40mmHg or estimated AVA<1cm².

MR severity was determined by an integrative, semi-quantitative and quantitative approach, including assessment of vena contracta width, valve morphology, chamber size, jet area, jet density and contour, and when available, effective orifice area (ERO) and regurgitant volume. After excluding those defined as severe MR, we grouped those these patients into: MR≤mild and MR>mild.

Pulsed-wave Doppler was performed in the apical 4-chamber view to obtain mitral inflow velocities to assess LV filling. A 1-mm to 3-mm sample volume was placed between the mitral leaflet tips at end-expiration and during diastole after optimizing spectral gain, wall filter

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

settings, and setting sweep speeds of 100 mm/s. Recordings were averaged over 3 consecutive
cardiac cycles during sinus rhythm and over 5 cycles during atrial fibrillation (AF).
Measurements of mitral inflow included the peak early filling (E wave) and late diastolic filling
(A wave) velocities, the E/A ratio, and deceleration time (DT) of early filling velocity. Early
diastolic mitral annular velocities (e') was measured in the apical 4-chamber view. The e' was
measured from septal and lateral annulus. The ratio of peak E to peak e' was calculated (mitral
E/e' ratio) from the average of at least 3 cardiac cycles. Left atrium volume was calculated by
tracing the endocardial borders at end-systole in the apical four-and two-chamber views, with LA
volume index calculated by adjusting to the patient's body surface index (BSA).
Systolic pulmonary arterial pressure (sPAP) was determined by the maximal tricuspid
regurgitant velocity (calculated based on the simplified Bernoulli equation) and an estimation of
right atrial pressure according to the vena cava width and responsiveness.
LV diameters including left ventricle end systolic and diastolic diameter (LVESd, LVEDd) were
measured using lineal 2D echocardiography or M-mode parallel to the mitral valve annulus.
Right ventricular (RV) size and function assessment was based on multiple views of the RV. An
integrative qualitative grading of RV function was formulated by a specialized imaging
cardiologist responsible for the echocardiographic study.

Clinical data and outcome measures

Baseline characteristics including age, sex and major co-morbidities were extracted from the electronic health record (EMR). Hospitalization for heart failure (HF) at our medical center were retrieved from the electronic health record. The date of mortality (if occurred) was automatically updated in the hospital records via the Ministry of Health.

Statistical Analysis

Categorical variables are reported as numbers and percentages, and continuous variables are reported as means and standard deviations or medians and interquartile ranges (IQRs), as appropriate. Continuous variables were tested for normal distribution using histograms, Q-Q Plots and normality tests (Kolmogorov-Smirnov and Shapiro-Wilk). Continuous variables were compared between groups using independent Mann-Whitney test, post-hoc Bonferroni correction applied to analyze subgroup comparison. Categorical variables were compared using Chi-square test or Fisher's exact test, post-hoc Bonferroni correction applied to analyze subgroup comparison.

The AVA was divided into categories by means of a classification and regression model (CART) for the prediction of HF hospitalization, with a minimum of 100 cases in parent node and minimum of 50 cases in child node. The analysis selects the best predictor for splitting the data into child nodes. A P value is given for each branch.

Long-term outcome (all-cause mortality or HF hospitalization) assessed using a Cox regression model, also adjusted for clinical and echocardiographic parameters. The following variables were included:

Clinical variables: Age, sex, chronic renal failure (CRF), hypertension, ischemic heart disease (IHD), AF, HF, chronic obstructive pulmonary disease (COPD).

Echocardiographic variables: ejection fraction (EF), LVEDd, LVESd, degree of AR, RV function and RV size. Of note, due to the expected effect of mVHD on LV filling indices and forward flow (stroke volume), as the major hemodynamic consequences leading to HF hospitalization, these parameters we evaluated in the COX regression model separately.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

All statistical tests were two-sided, and a P-value of < .05 was considered statistically significant. SPSS software was used for all statistical analysis (IBM SPSS statistics, version 25, Armnok, NY, USA, 2017).

Results

Patient Clinical Characteristics

The study cohort included 2933 patients with non-severe AS. Of whom, 2427 had ≤mild MR and 506 >mild MR. Table 1 provides the patients' clinical characteristics.

The median follow-up time of the entire cohort was 1127 days (IQR 392-1999), during which 1572 patients (53.6%) had died and 435 patients (14.8%) had experienced a HF hospitalization. Compared with patients with \leq mild MR, patient with >mild MR were older (80.1 years, IQR 72.4-86.2 vs 83.2 years, IQR 76.3-88.6, P < 0.001), with a predominance female population (45.8% vs 53%, P = 0.03) respectively.

In addition, patients with >mild MR were more likely to have a history of AF (36.8% versus 22.4%, P < 0.001), CRF (21.7% versus 12.9, P < 0.001), hypertension (71.3% versus 62.5%, P < 0.001) and IHD (45.5% versus 37.1%, P < 0.001).

Examining outcomes, patient with >mild MR experienced a higher rate of HF hospitalizations (23.9% versus 12.9%, P < 0.001) and increased all-cause mortality (66.2% versus 53.6%,

P<0.001).

Patient echocardiographic measurements

Patients' echocardiographic measurements in the entire cohort and according to severity of MR are presented in table 2.

Patients with >mild MR had slightly lower cardiac output values (5.03ml/m2, IQR 4.29-6.18 versus 5.64 (IQR 4.78-6.61, P < 0.001) and a greater left ventricle end-systolic (31mm, IQR 26-38, versus 28, IQR 25-33, P < 0.001) and end-diastolic diameters (49mm, IQR 45-54 versus 47, IQR 43-51, P < 0.001).

Proximal isovelocity hemispheric surface area (PISA) data were available only in a portion of patients with >mild MR. These patients had an ERO area of 0.1 cm^2 (IQR 0.1-0.2, n=184/514) with a regurgitant volume of 26ml (IQR 17-35ml, n=105/330).

As expected, patients with >mild MR had an overall worse diastolic indices with a larger LA volume index, shorter deceleration time, higher E/A ratio and elevated SPAP compared with patient with \leq mild MR. The average e' for the entire cohort was mildly reduced (6, IQR 4.93-7.21), with no difference between MR severity groups.

Higher rates of RV dysfunction and RV dilatation were found in patients with >mild MR (Table 2).

Aortic valve area optimal cutoff value

In patients with >mild MR, a classification tree analysis revealed a cutoff value of 1.35cm² to be predictive for HF hospitalizations. Accordingly, we further divided both MR groups according to the suggested AS cutoff value. Patients' clinical and echocardiographic measurements in these 4 sub-groups are presented in table 3.

Hemodynamic impact of AVA in patient with >mild MR

Among patients with \geq mild MR, those with AVA \leq 1.35cm² were older compared with patients with AVA \geq 1.35cm² (84.4 years, IQR 77.5-89.2 vs 81.2 years, IQR 73.6-87.3 respectively, P =

BMJ Open

0.002). There were no other statistically significant differences in baseline clinical characteristics between these two sub-groups.

Patient with AVA \leq 1.35 cm² had lower CO compared with patients with an AVA>1.35cm² (4.77 l/min, IQR 4.03-5.7 vs 5.93 l/min, IQR 4.85-6.62 respectively, P < 0.001) and had elevated sPAP values (49mmHg, IQR 39-59 compared with 42mmHg, IQR 34-54 p<0.001), whereas other diastolic or RV function indices did not significantly differ between the two groups (Table 3).

Effect of AVA and MR severity on clinical outcomes

The impact of MR grade and AVA on HF hospitalizations within each subgroup is presented in table 4.

In univariate Cox regression analysis (Figure 1), patients with >mild MR and an AVA \leq 1.35cm² had the highest rate of HF hospitalizations compared with patients \leq mild MR and an AVA>1.35cm² (HR 3.1, IOR 2.4-4, P < 0.001).

AVA had more impact on patients' outcomes, since the presence of significant MR in patients with an AVA>1.35cm² was associated with increased rates of HF hospitalizations in univariate analysis (group 1 versus group 3, HR 1.6, IQR 1.1-2.3, P=0.007), this effect was lost after adjusting for echocardiographic parameters and/or clinical parameters. Furthermore, following adjustment for either clinical comorbidities or echocardiographic parameters only patients with a combination of >mild MR and AVA \leq 1.35cm² had a higher HF hospitalizations rate.

Analysis concerning all-cause mortality is available in Table S1 and Figure 1S. Patients with >mild MR and AVA≤1.35cm² had higher mortality rates compared with patients with ≤mild MR and AVA>1.35cm², even after adjusting for clinical and/or echocardiographic parameters

The effect of diastolic function on outcome is presented in table 4 and the effect of surgical AV replacement on outcomes is presented in tables S2,S3 and figure S2.

Discussion

This study sought to describe the clinical outcomes of patients with combined non-severe AS and low-grade MR. Our major findings are:

- These patients have lower CO with worse diastolic function.
- AVA between 1.0-1.35cm² in the presence of >mild MR is associated with worse clinical outcomes even after adjusting for clinical and/or echocardiographic parameters.
- In contrast, patients with an AVA>1.35cm² have similar clinical outcomes regardless of (non-severe) MR grade.

AS and MR are the most prevalent valvular heart diseases in high-income countries [7]. However, unless the patient is planned for an aortic or coronary surgery, current guidelines recommend intervention only when these valvular lesions are severe [4-5] and limited recommendations exist for the management of patients with combined non-severe AS and MR. The hemodynamic effects of AS result from chronic increased afterload that leads to LV hypertrophy, diastolic dysfunction and increased systolic intra-ventricular pressures. MR, on the other hand, reduces afterload, SV and CO, but increases preload. The net effect of both lesions will reduce the net forward flow with augmentation of diastolic pressures [8-9], a finding compatible with our results.

Recent data show that compared with no or mild AS, moderate AS was found to be associated with increased mortality risk [10-11]. A recent meta-analysis by Coisne et al. [12] showed that

BMJ Open

the rate difference of all-cause mortality was -3.9 (95% CI: -6.7 to -1.1) for no or mild AS compared with moderate AS. An additional retrospective analysis of 148 patients with moderate AS [13] studied predictors of poor clinical outcomes (composite of CV death, HF admission and AV replacement), and showed that ≥moderate MR, as well as lower range AVA was associated with worse outcomes. A study by Tastet et al. [14] retrospectively analyzed 735 patient with at least moderate aortic stenosis (AVA<1.5cm²) followed in the heart valve clinics of four highvolume centers. The patients were classified according to degree of cardiac structural abnormalities; with stage 2 classified as either LA enlargement or >mild MR (9 patients in total), both shown to predict higher all-cause mortality rates. A follow-up study by Amanullah et al [15] showed that stage 2 patients ($\sim 20\%$ of them with significant MR) had worse clinical outcomes including increased all-cause mortality and HF events. Finally, Benfari et al. [16] showed that in patients with trans-aortic velocity>2.5m/s and AVA>1cm², an MR ERO area >0.1cm² was associated with a higher rates of HF hospitalizations or death. In clinical practice, it is challenging to determine the optimal timing for valvular correction of mVHD. Our data, encompassing almost 3,000 patients with comprehensive echocardiographic evaluation and valid clinical outcomes, suggest that patients with combined >mild MR and AVA≤1.35cm² have worse clinical outcomes and as such could benefit from close follow-up visits and frequent serial evaluation by a multidisciplinary heart valve team. It remains to be seen, however, whether early interventions could improve the clinical outcome of these patients.

Several important limitations should be addressed. First, this is a single-center retrospective study; thus, prospective data are needed to further establish its findings. Second, due to relatively small number of patient with combined non-severe AS and MR we did not divide our cohort into

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text and

a learning and validation groups, consequently reducing the internal validity of the study. Last, as we excluded patient with other left sided valvular abnormalities, the current finding should not be applied to other mVHD.

In conclusion, combined low grade AS with MR is associated with adverse outcomes. We suggest an AVA cutoff value of 1.35cm² for further evaluation and careful consideration of early intervention.

to occurrent on the second

BMJ Open

References

- DOI: 10.1161/CIRCIMAGING.118.007862. Unger P, Pibarot P, Tribouilloy C, Lancellotti P, Maisano F, Iung B, Piérard L; European Society of Cardiology Council on Valvular Heart Disease. Multiple and Mixed Valvular Heart Diseases. Circ Cardiovasc Imaging. 2018 Aug;11(8)
- DOI: 10.1016/s0195-668x(03)00201-x. Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, Ravaud P, Vahanian A. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003 Jul;24(13):1231-43.
- DOI: 10.1136/heartjnl-2016-310894. Andell P, Li X, Martinsson A, Andersson C, Stagmo M, Zöller B, Sundquist K, Smith JG. Epidemiology of valvular heart disease in a Swedish nationwide hospital-based register study.Heart. 2017; 103:1696–1703.
- 4. DOI: 10.1161/CIR.0000000000000932. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C, O'Gara PT, Rigolin VH, Sundt TM 3rd, Thompson A, Toly C. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021 Feb 2;143(5):e35-e71.
- DOI: 10.1093/eurheartj/ehab395. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, Capodanno D, Conradi L, De Bonis M, De Paulis R, Delgado V, Freemantle N, Gilard M, Haugaa KH, Jeppsson A, Jüni P, Pierard L, Prendergast BD, Sádaba JR, Tribouilloy C, Wojakowski W; ESC/EACTS Scientific Document Group.

Protected by copyright, including for uses related to text and

data mining, AI training, and similar technologies

BMJ Open

2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022 Feb 12;43(7):561-632.

- 6. DOI: 10.1016/j.echo.2005.10.005. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63.
- 7. DOI: 10.3390/medsci10020032. Aluru JS, Barsouk A, Saginala K, Rawla P, Barsouk A. Valvular Heart Disease Epidemiology. Med Sci (Basel). 2022 Jun 15;10(2):32.
- 8. DOI: 10.1016/j.ccl.2019.09.002. Unger P, Tribouilloy C. Aortic Stenosis with Other Concomitant Valvular Disease: Aortic Regurgitation, Mitral Regurgitation, Mitral Stenosis, or Tricuspid Regurgitation. Cardiol Clin. 2020 Feb;38(1):33-46.
- 9. DOI: 10.3389/fcvm.2021.744497. Mantovani F, Fanti D, Tafciu E, Fezzi S, Setti M, Rossi A, Ribichini F, Benfari G. When Aortic Stenosis Is Not Alone: Epidemiology, Pathophysiology, Diagnosis and Management in Mixed and Combined Valvular Disease. Front Cardiovasc Med. 2021 Oct 15;8:744497.
- 10. DOI: 10.1016/j.echo.2021.02.014. Mann TD, Loewenstein I, Ben Assa E, Topilsky Y. Natural History of Moderate Aortic Stenosis with Preserved and Low Ejection Fraction. J Am Soc Echocardiogr. 2021 Jul;34(7):735-743. Epub 2021 Feb 27. PMID: 33652083.

BMJ Open

11. DOI: 10.1136/openhrt-2021-001743. Pankayatselvan V, Raber I, Playford D, Stewart S, Strange G, Strom JB. Moderate aortic stenosis: culprit or bystander? Open Heart. 2022 Jan;9(1):e001743. 12. DOI: 10.1016/j.jcin.2022.06.022. Coisne A, Scotti A, Latib A, Montaigne D, Ho EC, Ludwig S, Modine T, Généreux P, Bax JJ, Leon MB, Bauters C, Granada JF. Impact of Moderate Aortic Stenosis on Long-Term Clinical Outcomes: A Systematic Review and Meta-Analysis. JACC Cardiovasc Interv. 2022 Aug 22;15(16):1664-1674. 13. DOI: 10.1532/hsf.2971. Bae HJ, Hwang J, Han S, Hur SH, Chung JW, Kim H. Long Term Clinical Outcomes in Patients with Moderate Aortic Stenosis. Heart Surg Forum. 2020 May 28;23(3):E358-E365. 14. DOI: 10.1016/j.jacc.2019.04.065. Tastet L, Tribouilloy C, Maréchaux S, Vollema EM, Delgado V, Salaun E, Shen M, Capoulade R, Clavel MA, Arsenault M, Bédard É, Bernier M, Beaudoin J, Narula J, Lancellotti P, Bax JJ, Généreux P, Pibarot P. Staging Cardiac Damage in Patients With Asymptomatic Aortic Valve Stenosis. J Am Coll Cardiol. 2019 Jul 30;74(4):550-563. 15. DOI: 10.1016/j.jcmg.2021.04.009. Amanullah MR, Pio SM, Ng ACT, Sin KYK, Marsan NA, Ding ZP, Leon MB, Généreux P, Delgado V, Ewe SH, Bax JJ. Prognostic Implications of Associated Cardiac Abnormalities Detected on Echocardiography in Patients With Moderate Aortic Stenosis. JACC Cardiovasc Imaging. 2021 Sep;14(9):1724-1737. 16. DOI: 10.1016/j.amjcard.2020.09.016 rBenfari G, Setti M, Nistri S, Fanti D, Maffeis C, Tafciu E, Pighi M, Cicoira M, Ribichini FL, Rossi A. Relevance of Functional Mitral Regurgitation in Aortic Valve Stenosis. Am J Cardiol. 2020 Dec 1;136:115-121.

Table 1 Patien ⁺	ts' clinical Characterist	ics in the entire cohort and a		7 al
regurgitation	All patients	Patients with up to mild	Patient with greater than	P value
<u> </u>	(n=2933)	MR (n=2427)	mild MR (n=506)	<0.001
Age (years) ^a	80.64 (73.16-86.7)	80.11 (72.42-86.24)	83.15 (76.3-88.57) 721.52 (150.39-1471.61)	<0.001
Follow-up (days) ^a	1127.54 (392.45- 1998.65)	1227.27 (488.60-2100.26)	/21.32 (130.39-14/1.01)	
Sex (Female)	1379 (47)	1111 (45.8)	268 (53)	0.03
Deceased during Follow-up	1571 (53.6)	1236 (50.9)	335 (66.2)	<0.001 <0.001 Freeceded 0.03 Ed by <0.001 copyright, <0.001 copyri
Heart Failure admission	435 (14.8)	314 (12.9)	121 (23.9)	<0.001 jnt,
AF	657 (22.4)	471 (19.4)	186 (36.8)	<0.001 pr
CRF	423 (14.4)	313 (12.9)	110 (21.7)	<0.001
Malignancy	642 (21.9)	528 (21.8)	114 (22.5)	0.702
Hypertension	1877 (64)	1516 (62.5)	361 (71.3)	<0.001 ses n
DM	965 (32.9)	801 (33)	164 (32.4)	o.//o atec
CVA/TIA	379 (12.9)	305 (12.6)	74 (14.6)	0.209 6x1 and
IHD	1131 (38.6)	901 (37.1)	230 (45.5)	<0.001 and a
COPD	269 (9.2)	223 (9.2)	46 (9.1)	0.945 a
percentages AF – Atrial fibri Cerebrovascular	llation; CRF – Chronic	ther values represent the nur c renal failure; DM – Diabeter ent ischemic attack; IHD – Is se	s mellitus; CVA –	, Al tra
				d simi
				ar te
)chn
				gies
				•

Table 2 | Patients' echocardiographic measurements in the entire cohort and according toseverity of mitral regurgitation

		All patients (n=2933)	Patients with up to mild MR	Patient with greater than mild MR	P value
			(n=2427)	(n=506)	
Ejection Fraction a		60 (55-60)	60 (55-60)	55 (45-60)	<0.001
Cardiac output (liter/min) a		5.56 (4.67-6.53)	5.64 (4.78-6.61)	5.03 (4.29-6.18)	<0.001
LVEDd (mm) a		47 (43-51)	47 (43-51)	49 (45-54)	<0.001
LVESd (mm) a		29 (25-34)	28 (25-33)	31 (26-38)	< 0.001
Aortic valve area (cm2) a		1.4 (1.2-1.6)	1.4 (1.2-1.7)	1.3 (1.1-1.5)	<0.001
Peak aortic gradient (mmHg	;) a	26 (21-34)	27 (22-35)	26 (21-33)	0.045
Mean aortic gradient (mmF	lg) a	15 (12-20)	15 (12-20)	15 (11-19)	0.018
LAVI (ml/m2) a	\mathbf{O}	42.7 (33.5-53.5)	40.3 (32.2-50.8)	53.1 (44-65.7)	<0.001
Deceleration time (ms) a		219 (174-274)	225 (180-275)	187 (153-241)	<0.001
E/e' a		14.02 (10.97-18.34)	13.62 (10.54-17.7)	17.05 (13.18-22.39)	<0.001
Average e' a	•	6 (4.93-7.21)	6 (4.96-7.2)	6 (4.73-7.35)	0.452
E/A ratio a		0.8 (0.7-1.1)	0.8 (0.6-1.1)	1.1 (0.9-1.6)	<0.001
sPAP (mmHg) a		36 (30-47)	34 (29-44)	46 (37-58)	<0.001
Aortic valve regurgitation	None	1485 (50.6)	1288 (53.1)	197 (38.9)	<0.001
	minimal	577 (19.7)	478 (19.7)	99 (19.6)	
	mild	685 (23.4)	532 (21.9)	153 (30.2)	
	mild to moderate	186 (6.3)	129 (5.3)	57 (11.3)	
Right Ventricle function	Normal	2668 (91)	2264 (93.3)	404 (79.8)	< 0.001
	Mild dysfunction	207 (7.1)	131 (5.4)	76 (15)	
	Moderate dysfunction	51 (1.7)	29 (1.2)	22 (4.3)	
	Severe dysfunction	7 (0.2)	3 (0.1)	4 (0.8)	1
Right Ventricle size	Normal	2593 (88.4)	2208 (91)	385 (76.1)	<0.001
	Mild dilatation	257 (8.8)	165 (6.8)	92 (18.2)]
	Moderate dilatation	63 (2.1)	41 (1.7)	22 (4.3)]
	Severe dilatation	20 (0.7)	13 (0.5)	7 (1.4)	1

^aMedian and interquartile range. All other values represent the number of patients and percentages

LVEDd – Left ventricle end diastolic diameter; LVESd – Left ventricle end systolic diameter; LAVI – Left atrial volume index; sPAP – Systolic pulmonary artery pressure;

1								19	BMJ Open: first published
2 3 Table 3 Pati	ents' clinica	al and echoca	rdiograph	nic measurer	nents accor	ding to N	IR severity	and	pen: f
4 Aortic valve a			0 1			C	2		irst p
6 7]	MR <= mild		N	/IR > Mild				ublis
8	AVA >	AVA		AVA >	AVA				shed
9 10	1.35	≤1.35		1.35	≤1.35				as 1
11									as 10.1136/bmjopen-2023-080944 on 29.March Protected by Ccopyright, including for Uses
12 13	Group 1	Group 2	Р	Group 3	Group 4	Р	P C 2	P	P cteg
14	N=1333	N=1094		N=211	N=295		Group 2- 4	Group 1-3	
15		04.46	0.001	04.4.		0.00 0			
Mage (years) ^a	79.29	81.46	< 0.001	81.17	84.42	0.002	< 0.001	0.027	<050015
18	(70.70- 85.62)	(74.49- 86.71)		(73.62- 87.38)	(77.51- 89.21)				23-0
19 Follow-up (days) ^a	1392.46	1107.03	0.002	1005.51	573.56	0.003	< 0.001	< 0.001	<0000000
20 1 ())	(540.49-	(431.58-		(242.21-	(111.7-				14 o
22	2178.28)	1955.41)		1750.63)	1249.36)				g fo
Sex (Female)	527	584 (53.4)	< 0.001	103	165	NS	NS	NS	<0 <u>5</u> 00 т
Deceased during	(39.5) 647	589 (53.8)	< 0.001	(48.8)	(55.9) 211	0.017	< 0.001	0.035	
Follow-up	(48.4)	569 (55.6)	<0.001	(58.8)	(71.5)	0.017	<0.001	0.035	ch-2024. Downleaded s∰gnem∰nt Su∰erieu s ⊯latedTo text and d
Heart Failure admission	176	138 (12.6)	NS	38 (18)	83	0.024	< 0.001	NS	
29	(13.2)	, , ,			(28.1)				o tex
30F 31	257	214 (19.6)	NS	78 (37)	108	NS	0.012	< 0.001	
	(19.3)	141 (12.0)	NC	51 (24.2)	(36.6)	NC	0.012	< 0.001	
32 RF	(12.9)	141 (12.9)	NS	51 (24.2)	59 (20)	NS	0.012	<0.001	
34 ₃∱alignancy	295	233 (21.3)		45 (21.3)	69				
36	(22.1)	, , , , , , , , , , , , , , , , , , ,			(23.4)				ng,
HTN .	853 (64)	663 (60.6)	NS	145	216	NS	< 0.001	NS	
38	420	2(2(221)		(68.7)	(73.2)				aine
₿M	439 (32.9)	362 (33.1)		70 (33.2)	94 (31.9)				0.982
41 42VA/TIA	167	138 (12.6)		26 (12.3)	48				0.35
43	(12.5)				(16.3)				simi
44HD	512	389 (35.6)	NS	99 (46.9)	131	NS	0.032	NS	raine 0.82 0.55 0.85 0.85 0.85 0.80 0.80 0.80 0.80
45 46	(38.4)				(44.4)				
46 47 OPD	139 (10.4)	84 (7.7)		15 (7.1)	31 (10.5)				0.0 0 0/
48 49V EF ª	60 (55-	60 (55-60)	1	60 (45-	55 (45-	0.514	< 0.001	0.001	<u>ເຊັ່ວ</u> <0200ອົ
50	60)	00 (00 00)	1	60)	60)	0.011	-0.001	0.001	—
Cardiac output (liter/min)	6.05	5.01 (4.3-	< 0.001	5.93	4.77	< 0.001	0.058	0.001	<0.00
§ 2 53	(5.13-7)	5.93)		(4.85-	(4.03-				ICe E
54 J ₅ VEDd (mm) ^a	47 (42			6.62)	5.7)				Bibli
	47 (43- 51)	46 (42-51)	0.019	50 (46- 55)	48 (44- 54)	0.18	< 0.001	< 0.001	30 300 0>
56 57	51)	TU (T2-31)	0.017	557	J ⁻ J	0.10	100.07	-0.001	Agence Bibliographique de l
58									que
59 60	For peer re	view only - http	o://bmiope	n.bmi.com/sit	e/about/quic	lelines.xhtr	ml		de l
00		,,		,, j, j					—

0	Δ
,	()
┙	v

1 2									20	BMJ Open:
LVESd (m	nm) ^a	29 (25-			31 (27-	31 (26-				n: fi
4		33)	28 (25-33)	0.334	39)	38)	1	< 0.001	< 0.001	<0.00
Aortic val	ve area (cm ²) ^a	1.6 (1.5-	1.2 (1.1-	< 0.001	1.6 (1.4-	1.13	< 0.001	1	0.725	<0.00 g
7 8		1.9)	1.3)		1.8)	(1.08- 1.26)				< 0.00 published
Peak aortic	•	24 (20- 30)	31 (24-40)	< 0.001	23 (19- 29)	29 (22- 38)	< 0.001	0.001	0.491	<0.00%
	ic gradient	14 (11-	18 (14-24)	< 0.001	13 (11-	17 (13-	< 0.001	< 0.001	0.294	10.1436/bmjopen-2023-080914.on Protected by copyright, including
(jmmHg) a	_	17)			16)	21)				6/bi
14AVI (ml	/m²) a	40	40.8	1	54.1	52.1	1	< 0.001	< 0.001	<0200 g.
15 16		(32.1-	(32.4-51)		(44.66.2)	(44.2-				cop
		50.6)				65)				-20) yrig
Pecelerati	on time (ms) ^a	225	224 (180-	1	208	180	0.056	< 0.001	0.001	<0ឝ្វី00ដ្ដី
19		(182-	277)		(162-	(148-				inc
20		275)		0.001	254)	229)	0.425	.0.001	-0.001	
2∄/e' ^a 22		13.23	14 (11-	0.001	16.3	17.58	0.425	< 0.001	< 0.001	<05006
22		(10.18-17.07)	18.16)		(12.56-21.95)	(14.03-22.64)				29 N
24 Average e	'a	6.2 (5.1-	5.8 (4.7-7)	< 0.001	6 (4.7-	6 (4.7-	1	1	1	
	-	7.4)	3.8 (4.7-7)	<0.001	7.5)	7.2)	1	1	1	
26 17/A ratio ^a	3	0.8 (0.7-	0.8 (0.6-	1	1.1 (0.8-	1.2 (0.9-	0.451	< 0.001	< 0.001	
28		1.1)	1.1)		1.5)	1.7)	0.401	\$0.001	\$0.001	
SPAP (mm	ıHg) a	34 (28-	35 (29-45)	0.089	42 (34-	49 (39-	< 0.001	< 0.001	< 0.001	
30	-	43)			54)	59)				load training and the second
MR ERO	(cm ²) ^a	NÁ	NA		0.1 (0.1-	0.1 (0.1-	0.148			nd of the second s
33	`				0.2)	0.2)				froi lr (A lata
3MAR Rvol (35	(ml) ^a	NA	NA		25 (17- 35)	26 (17- 34)	0.893			m http (BES) (minin
³⁶ AR	None	739	549 (50.2)	NS	82 (38.9)	115 (39)	NS	0.005	<0.001	<0.00
37 		(55.4)								njoj VI tra
39 40	minimal	253 (19)	225 (20.6)		30 (14.2)	69 (23.4)				29 March 2024. Downloaded from http://语mjopen.bmj.com/ on Juneउ3, 2025 at Agence 臣殿eignement Superieur (ABES) for uses related to ext and data miningÇAI training, and similar tecbologies.
41	mild	266 (20)	266 (24.3)		72 (34.1)	81				, an
42					(•,	(27.5) 🗢				d si
- 43 - 44	mild to	75 (5.6)	54 (4.9)		27 (12.8)	30				mii n
44	moderate					(10.2)				Jur ar te
46 RV	Normal	1245	1019	NS	173 (82)	231	NS	<0.001	< 0.001	< 9.004
47 function 48		(93.4)	(93.1)		- (-)	(78.3)	_			nolo
48 49	Mild	72 (5.4)	59 (5.4)		31 (14.7)	45				025 gie
50	-				- ()	(15.3)				s. at /
51	Moderate	15 (1.1)	14 (1.3)		6 (2.8)	16 (5.4)				ge
52	Severe	1 (0.1)	2 (0.2)		1 (0.5)	3 (1)				nce
53 5₽V size	Normal	1221	987 (90.2)	NS	167	218	NS	<0.001	<0.001	<0.00
55		(91.6)			(79.1)	(73.9)				lio
56	1	1/	1	1	····/	1.2.2/	1	1	1	liographique de l
57										ohiq
58 59										ue
60		For peer re	view only - http	p://bmjope	n.bmj.com/sit	e/about/guid	delines.xhti	nl		de l
				-		-				

2							-
3	Mild	83 (6.2)	82 (7.5)	33 (15.6)	59 (20)		
4 5	Moderate	24 (1.8)	17 (1.6)	9 (4.3)	13 (4.4)		
6	Severe	5 (0.4)	8 (0.7)	2 (0.9)	5 (1.7)		
7							
8		·				- 1 · 1	

^aMedian and interquartile range. All other values represent the number of patients and percentages

AF – Atrial fibrillation; CRF – Chronic renal failure; DM – Diabetes mellitus; CVA –

Cerebrovascular accident; TIA - transient ischemic attack; IHD - Ischemic heart disease; COPD

- Chronic obstructive pulmonary disease; LVEDd - Left ventricle end diastolic diameter;

LVESd - Left ventricle end systolic diameter; LAVI - Left atrial volume index; sPAP - Systolic

pulmonary artery pressure; MR - Mitral Regurgitation; RV – Rigth Ventricle; AR – Aortic regurgitation; LV EF – Left ventricle ejection fraction

	HR	95% CI	Р
Up to mild MR + AVA ≤ 1.35 cm ² versus AVA > 1.35 cm ²			
Univariate analysis	1.036	0.829-1.295	0.754
Greater than mild MR +			
$AVA \le 1.35$ cm ² versus $AVA > 1.35$ cm ²			
Univariate	1.893	1.288-2.781	0.001
Adjusted for all clinical*	1.941	1.309-2.880	< 0.00
Adjusted for all echocardiographic ⁺	1.672	1.097-2.548	0.017
Adjusted for both *†	1.774	1.157-2.72	0.009
Adjusted for Diastolic parameter # + Cardiac output	1.555	0.833-2.904	0.166
AVA > 1.35cm ² + MR up to mild versus greater than mild			
Univariate analysis	1.624	1.143-2.308	0.007
Adjusted for all clinical*	1.249	0.873-1.788	0.223
Adjusted for all echocardiographic	0.992	0.652-1.508	0.969
Adjusted for both *†	0.881	0.572-1.358	0.567
Adjusted for Diastolic parameter # + Cardiac	0.645	0.356-1.168	0.148
output	•		
·			
AVA ≤ 1.35cm ² +			
MR greater than mild versus up to mild	4		
Univariate analysis	3.056	2.324-4.018	< 0.00
Adjusted for all clinical*	2.241	1.689-2.973	< 0.00
Adjusted for all echocardiographic ⁺	2.162	1.545-3.025	< 0.00
Adjusted for both *†	1.625	1.163-2.271	0.004
Adjusted for Diastolic parameter # + Cardiac output	1.816	1.135-2.906	0.013
Greater than mild MR + AVA ≤ 1.35cm ² versus Up to mild MR + AVA > 1.35cm ²			
Univariate analysis	3.089	2.374-4.019	< 0.00
Adjusted for all clinical*	2.164	1.641-2.852	< 0.00
Adjusted for all echocardiographic [†]	1.67	1.205-2.314	0.002
Adjusted for both *†	1.296	0.941-1.784	0.112
Adjusted for Diastolic parameter # + Cardiac output	1.175	0.708-1.948	0.533

* For clinical variables – Age, Sex, Atrial fibrillation, chronic renal failure Hypertension, Ischemic heart disease, COPD

† For Echocardiographic variables – Ejection fraction, Left ventricle end diastolic diameter, Left ventricle end systolic diameter, Aortic valve regurgitation grade, right ventricle size, right ventricle function

For Diastolic parameter - LAVI, DT, Average E/e', E/A ratio, sPAP

for oper terien only

	HR	95% CI	Р
Up to mild MR +			
$AVA \le 1.35$ cm ² versus $AVA > 1.35$ cm ²			
Univariate	1.223	1.094-1.368	< 0.001
Adjusted for all clinical*	1.15	1.027-1.288	0.015
Adjusted for all echocardiographic ⁺	1.168	1.032-1.321	0.014
Adjusted for both *†	1.116	0.984-1.266	0.087
Adjusted for Diastolic parameter # + Cardiac output	0.985	0.815-1.191	0.878
Greater than mild MR + AVA ≤ 1.35 cm ² versus AVA > 1.35 cm ²			
Univariate	1.426	1.142-1.78	0.002
Adjusted for all clinical*	1.324	1.053-1.664	0.016
Adjusted for all echocardiographic ⁺	1.242	0.969	1.592
Adjusted for both *†	1.23	0.954-1.586	0.11
Adjusted for Diastolic parameter # + Cardiac output	1.176	0.818-1.689	0.382
AVA > 1.35cm ² +			
MR up to mild versus greater than mild			
Univariate analysis	1.431	1.181-1735	< 0.001
Adjusted for all clinical*	1.22	1.003-1.484	0.046
Adjusted for all echocardiographic [†]	1.317	1.057-1.639	0.014
Adjusted for both *†	1.191	0.95-1.493	0.129
Adjusted for Diastolic parameter # + Cardiac	1	0.74-1.353	0.998
output			
$AVA \leq 1.35 \text{cm}^2 +$			
MR up to mild versus greater than mild			
Univariate analysis	1.684	1.438-1.972	< 0.001
Adjusted for all clinical*	1.388	1.18-1.632	< 0.001
Adjusted for all echocardiographic ⁺	1.409	1.167-1.701	< 0.001
Adjusted for both *†	1.196	0.99-1.444	0.064
Adjusted for Diastolic parameter # + Cardiac output	1.055	0.798-1.395	0.706
Greater than mild MR + AVA ≤ 1.35 cm ² versus			
Up to mild MR + AVA > 1.35cm ²			
Univariate analysis	2.049	1.753-2.396	< 0.001

Adjusted for all clinical*	1.543	1.312-1.815	< 0.001
Adjusted for all echocardiographic ⁺	1.737	1.446-2.086	< 0.001
Adjusted for both *†	1.377	1.144-1.657	< 0.001
Adjusted for Diastolic parameter # + Cardiac	1.127	0.84-1.513	0.425
output			

* For clinical variables – Age, Sex, Atrial fibrillation, chronic renal failure Hypertension, Ischemic heart disease, COPD

† For Echocardiographic variables – Ejection fraction, Left ventricle end diastolic diameter, Left ventricle end systolic diameter, Aortic valve regurgitation grade, right ventricle size, right ventricle function

For Diastolic parameter – LAVI, DT, Average E/e', E/A ratio, sPAP

Page 27 of 37

BMJ Open

Table S2 | Patients' clinical and echocardiographic measurements according to Intervention(Surgical AVR) in patient with MR>mild and AVA<1.35cm²</td>

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7				
10No intervention (n=295)SAVR (n=10)P 11 intervention (n=295)(n=10) 13 (n=295)(63.3- 14 (65.77)(63.3- 16 (89.21)(68.93)Wex (Female)165 (55.9)5 (50)0.71 18 (90.002)(20.001) 18 (165 (55.9)5 (50)0.389 19 (171.5)4 (40)0.032 19 (108 (36.6)5 (50)0.389 19 (20)2 (20)1 19 (167.3.2)7 (70)0.821 12 (17.3.2)7 (70)0.821 12 (17.3.2)7 (70)0.821 12 (14.3.9)5 (50)0.228 19 (20.11)131 (44.4)6 (60)0.33 13 (27.7.7)(3.42-70)0.217 13 110.5)00.279 13 113 (4.4.5)51 (49-57)0.097 13 113 (14.4.5)51 (49-57)0.097 13 113 (10.8-1.15 (1.1-0.775 12 113 (10.8-1.15 (1.1-0.775 12 113 (14.2-47.5)0.01 13 113 (14.2-47.5)0.01 14 17 (13-21)23 (18-28)0.009 14 129 (22-38(39 (37-45))0.01 14 17 (13-21)23 (18-28)0.009 14 17 17.58 19.370.327		MR > mile	$d + AVA \le 1.3$	35cm ²	
11intervention (n=295)(n=10) (n=295)13rage (years) a84.4265.77<0.001					
13 C 65.77 <0.001		intervention	(n=10)		
type type (years) a84.4265.77 (G3.3-<0.00115(77.51- (G3.3-)(68.93)1689.21)68.93)18165 (55.9)5 (50)190.032Heart Failure admission83 (28.1)111 (10)0.20728F108 (36.6)5 (50)190.0821911216 (73.2)7 (70)0.8211911216 (73.2)177 (70)0.8211894 (31.9)5 (50)0.22819VA/TIA48 (16.3)00.16519131 (44.4)6 (60)0.331300PD31 (10.5)00.27913V EF a55 (45-60)60 (45-60)0.4851477 (4.03-5.420.174155.7)(4.45-7)35161.13 (1.08-1.15 (1.1-170.09731 (26-38(181.26)1.2)12121.2612121.2612121.26121223 (18-28)13101.15 (1.1-1429 (22-38(39 (37-45)151.201.2316292.2512142.47.514292.25152292351422923514142915229235141417		(n=295)			
15(77.51- (63.3- (68.93)(63.3- (68.93)Sex (Female)165 (55.9)5 (50)0.71Beceased during 100w-up211 (71.5)4 (40)0.032Heart Failure admission83 (28.1)1 (10)0.207 $2\mathbf{AF}$ 108 (36.6)5 (50)0.389Verker59 (20)2 (20)1Malignancy69 (23.4)00.082HTN216 (73.2)7 (70)0.821J2M94 (31.9)5 (50)0.228J9VA/TIA48 (16.3)00.165J9ID131 (10.5)00.279J3V EF °55 (45-60)60 (45-60)0.485Wardiac output (liter/min)4.77 (4.03-5.420.174J55.77)(4.45-7)1.15 (1.1-0.775J5VEDd (mm) °48 (44-54)51 (49-57)0.097J8VESd (mm) °31 (26-38(31 (28-37)0.88839ortic valve area (cm2) °1.13 (1.08-1.15 (1.1-0.7751.26)1.2)1.201.23 (18-28)0.009Mean aortic gradient29 (22-38(39 (37-45))0.01MarmHg) °180 (148-197 (173-0.327251229)23522923534/et ° °17.5819.370.09253(14.03-(17.92-17.92-	13	84.42	65 77	<0.001	
1689.21) 68.93)3ex (Female)165 (55.9)5 (50) 0.71 3ecated during211 (71.5)4 (40) 0.032 follow-up3eart Failure admission83 (28.1)1 (10) 0.207 2F108 (36.6)5 (50) 0.389 2RF59 (20)2 (20)1201alignancy69 (23.4) 0 0.0821 3PM94 (31.9)5 (50) 0.228 3PVA/TIA48 (16.3) 0 0.165 3PUD31 (10.5) 0 0.279 3COPD31 (10.5) 0 0.279 3SOPD31 (26.38)31 (28-37) 0.888 4Pardiac output (liter/min) 4.77 (4.03- 5.42 0.174 35 5.77 $(4.45-7)$ 37 37 VEDd (mm) a31 (26-38)31 (28-37) 0.888 3Portic valve area (cm2) a 1.13 (1.08- 1.15 (1.1- 0.775 126 1.20 1.20 1.20 1.20 128 aortic gradient 17 (13-21) 23 (18-28) 0.009 48 (48.4) 48.4 48.4 48.4 39 coclearation time (ms) a 180 (148- 197 (173- 0.327 3126^2 a 17.58 19.37 0.092 3126^2 a 17.58 19.37 0.092 3126^2 a 17.58 19.37 0.092				~0.001	
$3ex$ (Female) 165 (55.9) 5 (50) 0.71 $18ecased$ during 211 (71.5) 4 (40) 0.032 $19etart$ Failure admission 83 (28.1) 1 (10) 0.207 $4F$ 108 (36.6) 5 (50) 0.389 $4RF$ 59 (20) 2 (20) 1 $37alignancy$ 69 (23.4) 0 0.082 $4TN$ 216 (73.2) 7 (70) 0.821 $49M$ 94 (31.9) 5 (50) 0.228 $49VA/TIA$ 48 (16.3) 0 0.165 $39HD$ 131 (44.4) 6 (60) 0.33 $32OPD$ 31 (10.5) 0 0.279 $34V EF^a$ 55 (45-60) 60 (45-60) 0.485 $49ardiac$ output (liter/min) 4.77 (4.03- 5.42 0.174 35 5.7) $(4.45-7)$ 0.097 $34V ESd$ (mm) a 31 (26-38(31 (28-37) 0.888 $39ortic valve area (cm2) ^a$ 1.13 (1.08- 1.15 (1.1- 0.775 126 1.2 1.26 1.2 1.26 $46a a ortic gradient17 (13-21)23 (18-28)0.00946mHg)^a48.0 (148-197 (173-0.32742e^a1.5.819.370.3275122923542e^a42e^a17.5819.370.092$			· ·		
$\frac{1}{2}$ ollow-up83 (28.1)1 (10)0.207 $\frac{2}{2}$ F108 (36.6)5 (50)0.389 $\frac{1}{2}$ RF59 (20)2 (20)1 $\frac{1}{2}$ MF59 (20)2 (20)1 $\frac{1}{2}$ MI216 (73.2)7 (70)0.821 $\frac{1}{2}$ M94 (31.9)5 (50)0.228 $\frac{1}{2}$ WA/TIA48 (16.3)00.165 $\frac{3}{2}$ OPD31 (10.5)00.279 $\frac{1}{3}$ VEF a 55 (45-60)60 (45-60)0.485 $\frac{1}{3}$ VEF a 55 (45-60)60 (45-60)0.485 $\frac{3}{4}$ OPD31 (10.5)00.279 $\frac{3}{3}$ VEF a 55 (45-60)60 (45-60)0.485 $\frac{3}{4}$ VESd (mm) a 48 (44-54)51 (49-57)0.097 $\frac{3}{4}$ VESd (mm) a 31 (26-38(31 (28-37))0.888 $\frac{3}{4}$ Ortic valve area (cm2) a 1.13 (1.08-1.15 (1.1-0.775 $\frac{1}{2}$ eak aortic gradient29 (22-38(39 (37-45))0.01 $\frac{4}{3}$ mHg) a 22 (22-38(39 (37-45))0.01 $\frac{4}{3}$ mHg) a 48.4)4948.4) $\frac{3}{9}$ eccleration time (ms) a 180 (148-197 (173-0.327 $\frac{3}{2}$ e' a 17.5819.370.092 $\frac{3}{2}$ e' a 17.5819.370.092 $\frac{3}{2}$ e' a 17.5819.370.092		<u> </u>	· · · · ·	0.71	
Heart Failure admission83 (28.1)1 (10)0.2072SF108 (36.6)5 (50)0.389QRF59 (20)2 (20)1Malignancy69 (23.4)00.082HTN216 (73.2)7 (70)0.821M94 (31.9)5 (50)0.228PVA/TIA48 (16.3)00.165MBD131 (44.4)6 (60)0.33COPD31 (10.5)00.279JV EF a55 (45-60)60 (45-60)0.485Qardiac output (liter/min)4.77 (4.03-5.420.174JVEDd (mm) a48 (44-54)51 (49-57)0.097JVEDd (mm) a31 (26-38(31 (28-37)0.888Portic valve area (cm2) a1.13 (1.08-1.15 (1.1-0.775Mean aortic gradient29 (22-38(39 (37-45)0.01MamHg) a52.1 (44.2-47.50.442MamHg) a480 (148-197 (173-0.327State29)23519.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State17.5819.370.092State1	Beceased during Follow-up	211 (71.5)	4 (40)	0.032	
$23F$ $108 (36.6)$ $5 (50)$ 0.389 $24RF$ $59 (20)$ $2 (20)$ 1 $35alignancy$ $69 (23.4)$ 0 0.082 $31TN$ $216 (73.2)$ $7 (70)$ 0.821 $13M$ $94 (31.9)$ $5 (50)$ 0.228 $3VA/TIA$ $48 (16.3)$ 0 0.165 $34D$ $31 (44.4)$ $6 (60)$ 0.33 $32OPD$ $31 (10.5)$ 0 0.279 $3V EF^a$ $55 (45-60)$ $60 (45-60)$ 0.485 $34ardiac output (liter/min)$ $4.77 (4.03 5.42$ 0.174 35 5.7) $(4.45-7)$ 0.097 $34VESd (mm)^a$ $31 (26-38(31 (28-37)))$ 0.888 $34ortic valve area (cm2)^a$ $1.13 (1.08 1.15 (1.1 0.775$ 126 1.26) 1.2) $1.19 (173-)$ 0.0097 $34Vesta (arctic gradient)$ $29 (22-38(39 (37-45)))$ 0.01 $4mHg)^a$ $31 (28-37)$ 0.842 $46AVI (ml/m2)^a$ $52.1 (44.2 47.5$ 0.442 47 65) $(46.8 49$ 48.4) 48.4 $49eccleration time (ms)^a$ $180 (148 197 (173 0.327$ 51 229 235) 327 $32/e^{1^a}$ 17.58 19.37 0.092 $33/e^{1^a}$ $14.03 (17.92-$		83 (28.1)	1 (10)	0.207	
$\frac{24}{8}$ F59 (20)2 (20)1 $\frac{3}{2}$ lalignancy69 (23.4)00.082 $\frac{3}{4}$ ITN216 (73.2)7 (70)0.821 $\frac{1}{4}$ M94 (31.9)5 (50)0.228 $\frac{3}{2}$ VA/TIA48 (16.3)00.165 $\frac{3}{4}$ ID131 (44.4)6 (60)0.33 $\frac{3}{2}$ OPD31 (10.5)00.279 $\frac{1}{3}$ V EF a 55 (45-60)60 (45-60)0.485 $\frac{4}{3}$ ardiac output (liter/min)4.77 (4.03-5.420.174 $\frac{3}{5}$ VEDd (mm) a 48 (44-54)51 (49-57)0.097 $\frac{3}{4}$ VEDd (mm) a 31 (26-38(31 (28-37)0.888 $\frac{3}{4}$ ortic valve area (cm2) a 1.13 (1.08-1.15 (1.1-0.775 $\frac{1}{40}$ 29 (22-38(39 (37-45)0.01 $\frac{1}{4}$ mHg) a 29 (22-38(39 (37-45)0.01 $\frac{4}{5}$ Avoit gradient17 (13-21)23 (18-28)0.009 $\frac{4}{5}$ Avoit gradient17 (13-21)23 (18-28)0.009 $\frac{4}{5}$ Avoit (ml/m2) a 52.1 (44.2-47.50.442 $\frac{47}{47}$ 65)(46.8-48.4) $\frac{49}{30}$ 229)235)235 $\frac{32}{2}$ (1a 17.5819.370.092 $\frac{52}{42}$ (1a 17.5819.370.092 $\frac{54}{44}$ (14.03-(17.92-		· · · · · · · · · · · · · · · · · · ·			
Malignancy69 (23.4)00.082HTN216 (73.2)7 (70)0.821HTN216 (73.2)7 (70)0.821HTN94 (31.9)5 (50)0.228PVA/TIA48 (16.3)00.165HD131 (44.4)6 (60)0.33CPD31 (10.5)00.279DPD31 (10.5)00.279Hardiac output (liter/min)4.77 (4.03-5.42Source value area (cm2) a5.7)(4.45-7)Have area (cm2) a1.13 (1.08-1.15 (1.1-1.261.201.20Heak aortic gradient29 (22-38(39 (37-45)HamHg) a17 (13-21)23 (18-28)0.009Mean aortic gradient17 (13-21)23 (18-28)0.009HamHg) a180 (148-197 (173-0.327HamHg) a180 (148-197 (173-0.327HamHg) a17.5819.370.092HamHg) a<		· /			
$\frac{1}{29}$ M94 (31.9)5 (50)0.228 $\frac{19}{29}$ VA/TIA48 (16.3)00.165 $\frac{19}{110}$ 131 (44.4)6 (60)0.33 $\frac{13}{2}$ OPD31 (10.5)00.279 $\frac{13}{2}$ VEF °55 (45-60)60 (45-60)0.485 $\frac{13}{20}$ WEDd (mm) °4.77 (4.03-5.420.174 $\frac{36}{20}$ VEDd (mm) °48 (44-54)51 (49-57)0.097 $\frac{36}{3}$ VESd (mm) °31 (26-38(31 (28-37)0.888 $\frac{39}{40}$ rctic valve area (cm2) °1.13 (1.08-1.15 (1.1-0.775 $\frac{40}{42}$ 1.26)1.2)1.261.2) $\frac{19}{4}$ ek aortic gradient29 (22-38(39 (37-45)0.01 $\frac{49}{42}$ 3632.1 (44.2-47.50.442 $\frac{47}{47}$ 65)(46.8-48.4) $\frac{49}{49}$ 180 (148-197 (173-0.327 $\frac{51}{229}$ 235)19.370.092 $\frac{52}{54}$ 17.5819.370.092 $\frac{52}{54}$ 17.5819.370.092 $\frac{53}{54}$ 17.5819.370.092		× /			
$\frac{1}{29}$ M94 (31.9)5 (50)0.228 $\frac{19}{29}$ VA/TIA48 (16.3)00.165 $\frac{19}{110}$ 131 (44.4)6 (60)0.33 $\frac{13}{2}$ OPD31 (10.5)00.279 $\frac{13}{2}$ VEF °55 (45-60)60 (45-60)0.485 $\frac{13}{20}$ WEDd (mm) °4.77 (4.03-5.420.174 $\frac{36}{20}$ VEDd (mm) °48 (44-54)51 (49-57)0.097 $\frac{36}{3}$ VESd (mm) °31 (26-38(31 (28-37)0.888 $\frac{39}{40}$ rctic valve area (cm2) °1.13 (1.08-1.15 (1.1-0.775 $\frac{40}{42}$ 1.26)1.2)1.261.2) $\frac{19}{4}$ ek aortic gradient29 (22-38(39 (37-45)0.01 $\frac{49}{42}$ 3632.1 (44.2-47.50.442 $\frac{47}{47}$ 65)(46.8-48.4) $\frac{49}{49}$ 180 (148-197 (173-0.327 $\frac{51}{229}$ 235)19.370.092 $\frac{52}{54}$ 17.5819.370.092 $\frac{52}{54}$ 17.5819.370.092 $\frac{53}{54}$ 17.5819.370.092	JTN J				
$19VA/TIA$ $48 (16.3)$ 0 0.165 $3PID$ $131 (44.4)$ $6 (60)$ 0.33 $3COPD$ $31 (10.5)$ 0 0.279 $3V EF^a$ $55 (45-60)$ $60 (45-60)$ 0.485 $3Pardiac output (liter/min)$ $4.77 (4.03$ - 5.42 0.174 35 5.7) $(4.45-7)$ $36VEDd (mm)^a$ $48 (44-54)$ $51 (49-57)$ 0.097 $3FVEDd (mm)^a$ $48 (44-54)$ $51 (49-57)$ 0.097 $3FVESd (mm)^a$ $31 (26-38)$ $31 (28-37)$ 0.888 $3Portic valve area (cm2)^a$ $1.13 (1.08 1.15 (1.1 0.775$ 40 1.26) 1.2) 1.26 1.2) $4ean aortic gradient$ $29 (22-38)$ $39 (37-45)$ 0.01 $4pamHg)^a$ 48.4 48.4) 48.4 49 48.4 48.4) 49 48.4 48.4) 49 48.4 $197 (173 0.327$ 51 229 235) 525 $3P/e^{1^a}$ 17.58 19.37 0.092 53 $(14.03 (17.92-)$ $17.92-$	12M	94 (31.9)		0.228	
31 (10.5) (0) (0.279) 33 (10.5) (0) (0.279) 34 (25.60) (25.60) (25.70) (26.77) (27.77) (26.77) (26.77) (27.77) (26.77) (26.77) (27.77) (26.77) (26.77) (27.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77) (26.77)		48 (16.3)			
$\frac{1}{3}$ V EF * $55 (45-60)$ $60 (45-60)$ 0.485 $\frac{4}{9}$ ardiac output (liter/min) $4.77 (4.03-5.42)$ 0.174 $\frac{35}{25}$ 5.7) $(4.45-7)$ $\frac{36}{2}$ VEDd (mm) * $48 (44-54)$ $51 (49-57)$ 0.097 $\frac{36}{2}$ VEDd (mm) * $31 (26-38($ $31 (28-37)$ 0.888 $\frac{39}{2}$ vortic valve area (cm2) * $1.13 (1.08-1.15 (1.1-0.775)$ 0.01 $\frac{1}{2}$ eak aortic gradient $29 (22-38($ $39 (37-45)$ 0.01 $\frac{1}{2}$ mmHg) * $29 (22-38($ $39 (37-45)$ 0.009 $\frac{45}{4}$ VI (ml/m2) * $52.1 (44.2-47.5)$ 0.442 47 48.4) 48.4) 48.4) $\frac{49}{2}$ ecceleration time (ms) * $180 (148-197 (173-0.327))$ 0.327 51 229) 235) 19.37 0.092 $\frac{52}{54}$ 17.58 19.37 0.092 $\frac{52}{54}$ $(14.03-(17.92-))$ $(14.03-(17.92-))$		131 (44.4)	6 (60)	0.33	
$\frac{1}{3}$ V EF a55 (45-60)60 (45-60)0.485 $\frac{4}{3}$ ardiac output (liter/min)4.77 (4.03- 5.7)5.420.174 $\frac{35}{36}$ 5.7)(4.45-7)0.097 $\frac{36}{37}$ VEDd (mm) a31 (26-38(1.26)31 (28-37)0.888 $\frac{39}{40}$ ortic valve area (cm2) a1.13 (1.08- 1.26)1.15 (1.1- 	COPD	31 (10.5)	0	0.279	
$\frac{37}{40} = 10 (110 + 1)^{-1} = 11 (10 + 1)^{-1} $			60 (45-60)	0.485	
$\frac{37}{40} = 10 (110 + 1)^{-1} = 11 (10 + 1)^{-1} $		· · · · ·	· · · /		
$\frac{37}{40} = 10 (110 + 1)^{-1} = 11 (10 + 1)^{-1} $,			
$\frac{1}{3g}$ VESd (mm) a $31 (26-38($ $31 (28-37)$ 0.888 $\frac{39}{40}$ ortic valve area (cm2) a $1.13 (1.08 1.15 (1.1 0.775$ 40 1.26 1.2 1.26 $\frac{1}{2}$ eak aortic gradient $29 (22-38($ $39 (37-45)$ 0.01 $\frac{1}{40}$ mHg) a $29 (22-38($ $39 (37-45)$ 0.01 $\frac{1}{40}$ mHg) a $17 (13-21)$ $23 (18-28)$ 0.009 $\frac{45}{47}$ Mean aortic gradient $17 (13-21)$ $23 (18-28)$ 0.009 $\frac{45}{47}$ Mean aortic gradient $17 (13-21)$ $23 (18-28)$ 0.009 $\frac{45}{47}$ definition (ml/m2) a $52.1 (44.2 47.5$ 0.442 $\frac{49}{49}$ 48.4 48.4 48.4 $\frac{49}{49}$ ecceleration time (ms) a $180 (148 197 (173 0.327$ 51 229 235 17.58 19.37 0.092 53 $(14.03 (17.92 17.92 17.92-$	³⁶ VEDd (mm) ^a	48 (44-54)	1	0.097	
43mm rg) 17 (13-21) 23 (18-28) 0.009 45 mm Hg) ^a 17 (13-21) 23 (18-28) 0.009 45 mm Hg) ^a 52.1 (44.2- 47.5 0.442 47 55.1 (44.2- 47.5 0.442 48 48.4) 48.4) 49.4 49 48.4) 197 (173- 0.327 51 229) 235) 19.37 0.092 52 /e' ^a 17.58 19.37 0.092 53 (14.03- (17.92- 10.092	- 3/	· · · · · · · · · · · · · · · · · · ·	<u>``</u>	0.888	
43mm rg) 17 (13-21) 23 (18-28) 0.009 45 mm Hg) ^a 17 (13-21) 23 (18-28) 0.009 45 mm Hg) ^a 52.1 (44.2- 47.5 0.442 47 55.1 (44.2- 47.5 0.442 48 48.4) 48.4) 49.4 49 48.4) 197 (173- 0.327 51 229) 235) 19.37 0.092 52 /e' ^a 17.58 19.37 0.092 53 (14.03- (17.92- 10.092		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
43 mm rg/17 (13-21)23 (18-28)0.009 45 mm Hg) a17 (13-21)23 (18-28)0.009 45 mm Hg) a52.1 (44.2-47.50.442 47 55.1(46.8- 48 48.4)48.4) 49 48.4)9 49 ecceleration time (ms) a180 (148-197 (173- 51 229)235) 51 17.5819.370.092 53 (14.03-(17.92-	40	,			
$43^{\text{min}(12)}$ 17 (13-21) 23 (18-28) 0.009 45^{mmHg} 17 (13-21) 23 (18-28) 0.009 45^{mmHg} 3 52.1 (44.2- 47.5 0.442 47 55 (46.8- 48.4) 49 49 48.4) 48.4) 9 48.4) 49 229) 235) 0.327 51 229) 235) 0.092 $42/e^{1/a}$ 17.58 19.37 0.092 53 (14.03- (17.92- 0.092	Peak aortic gradient		/	0.01	
Adean aortic gradient $17 (13-21)$ $23 (18-28)$ 0.009 45nmHg) a $17 (13-21)$ $23 (18-28)$ 0.009 46AVI (ml/m2) a $52.1 (44.2-65)$ $47.5 (46.8-48.4)$ 49 48.4 48.4 49 48.4 $197 (173-0.327)$ 51 229 235 51 229 235 $52/\text{e'}$ a 17.58 19.37 0.092 53 $(14.03-(17.92-1))$ $(17.92-1)$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17 (13-21)	23 (18-28)	0.009	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mmHg) ª				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46AVI (ml/m2) ^a	52.1 (44.2-		0.442	
49 48.4) 49 $180 (148 - 197 (173 - 0.327))$ 51 229 235) $42/e'^{a}$ 17.58 19.37 0.092 53 $(14.03 - (17.92 - 10))$		65)	`		
	49		/		
\mathfrak{P}/e' a 17.58 19.37 0.092 53 (14.03- (17.92-	Deceleration time (ms) ^a	`		0.327	
53 (14.03- (17.92-		/	/		
				0.092	
		`			
<u>55</u> (22.64) (23.93)		22.64)	23.93)		

1.2 (0.9-1.2(1-2.9)0.6 1.7)49 (39-59) 0.107 40 (38-50) 115 (39) 3 (30) 0.762 69 (23.4) 2 (20) 81 (27.5) 3 (30) 30 (10.2) 2 (20) 231 (78.3) 10 (100) 0.433 45 (15.3) 0 0 16 (5.4) 3(1) 0 218 (73.9) 10 (100) 0.322 59 (20) 0 13 (4.4) 0 5 (1.7) 0 ^aMedian and interguartile range. All other values represent the number of patients and percentages AF – Atrial fibrillation; CRF – Chronic renal failure; DM – Diabetes mellitus; CVA – Cerebrovascular accident; TIA – transient ischemic attack; IHD – Ischemic heart disease; COPD - Chronic obstructive pulmonary disease; LVEDd - Left ventricle end diastolic diameter; LVESd – Left ventricle end systolic diameter; LAVI – Left atrial volume index; sPAP – Systolic pulmonary artery pressure; MR - Mitral Regurgitation; RV - Rigth Ventricle; AR - Aortic regurgitation; LV EF – Left ventricle ejection fraction

1 2

7

8

9

10

11 12

13 RV

16 17

18

19

21

22

23

24 25 26

27

28

29

30

31

32 33

34

60

E/A ratio ^a

AR

14 1function

20RV size

SPAP (mmHg) a

None

mild

mild to

Normal

Mild

moderate

Moderate

Severe

Normal

Moderate

Severe

Mild

minimal

0.014

0.209

Table 53 Impact of Intervention (Surgical AVR) in patient with MR>mild and AVA<1.35cm ²			
HF hospitalization	HR	95% CI	Р
Univariate	0.21	0.029-1.513	0.121
Adjusted *	0.372	0.048-2.895	0.345

0.286

0.508

0.106-0.774

0.177-1.461

.

* For Age, Left ventricle end diastolic diameter, Aortic valve Peak and mean gradient, Average E/e' ratio
Figure legend:

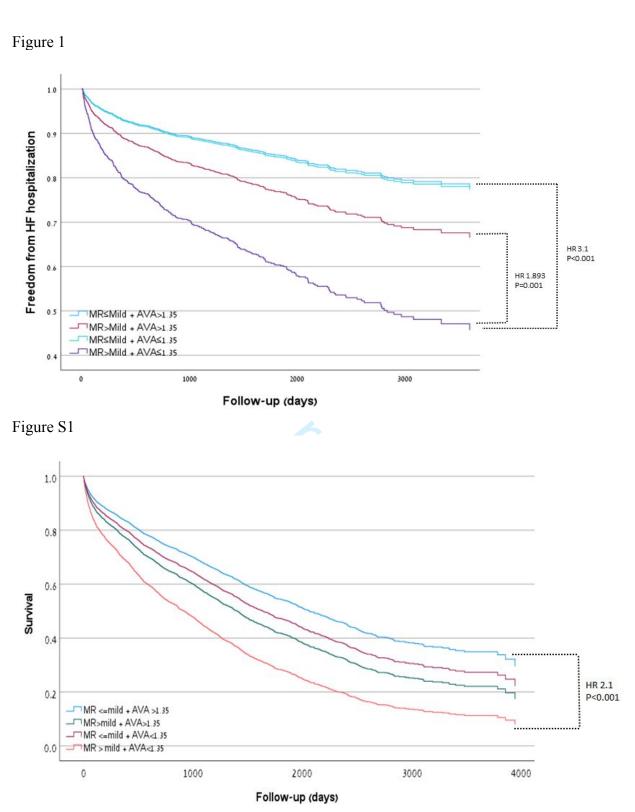
All-Cause Mortality

Univariate

Adjusted *

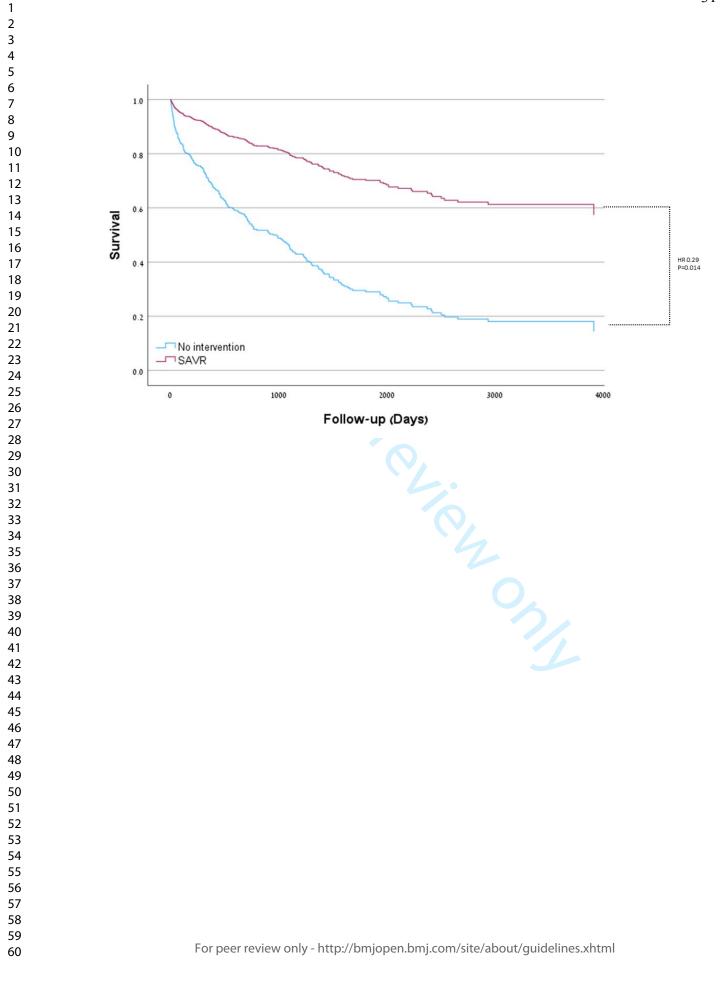
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1 – Univariate Cox regression analysis for HF hospitalization according to severity of MR and AVA


Figure S1 – Univariate Cox regression analysis for mortality according to severity of MR and

AVA

Figure S2 – Univariate Cox regression analysis for the Impact of Intervention (Surgical AVR) in

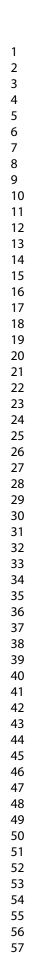

to beet terien only

patient with MR>mild and AVA≤1.35cm²

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

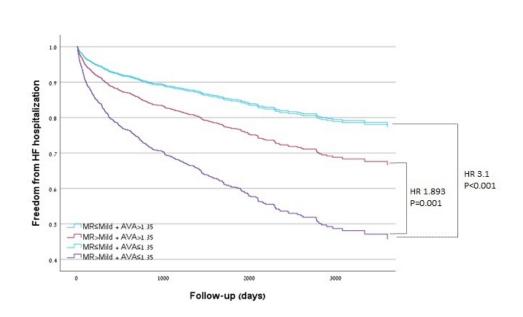
Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

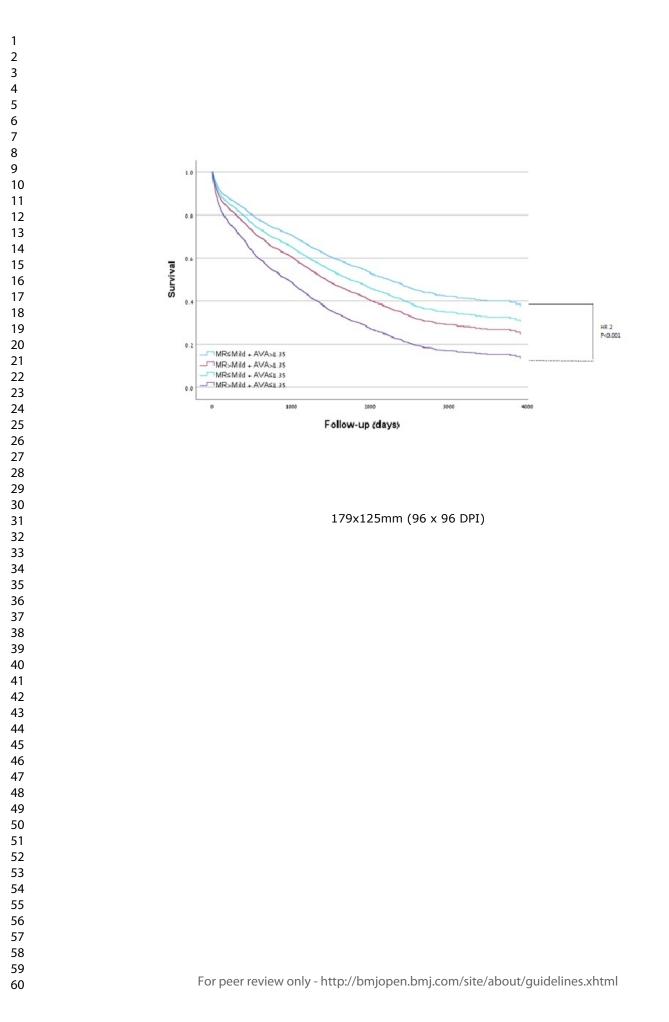

Consent

The study was reviewed and approved by the Institutional Review Board with a waiver of informed consent. Approval number – TLV-0111-18

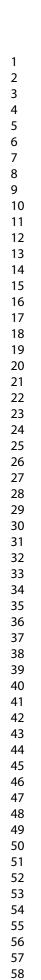
Patient and Public Involvement

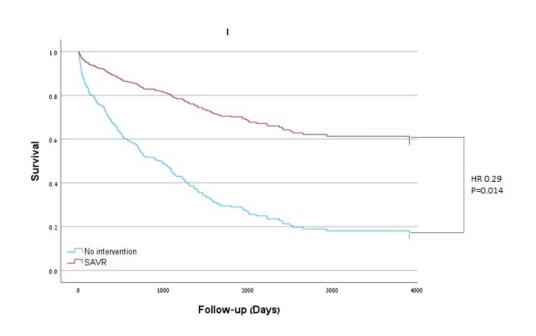

Patients or the public were not involved in the design, or conduct, or reporting, or

dissemination plans of our research



58 59


60


180x106mm (96 x 96 DPI)

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

59

179x125mm (96 x 96 DPI)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
-		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5-6
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8
	10	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	8
2 comparto autu	11	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
		Report numbers of outcome events or summary measures over time	8

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	9-10
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity	9-10
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	12-
		Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	13
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Prognostic Impact of Combined Non-severe Aortic Stenosis and Mitral Regurgitation on Clinical Outcomes: A Single-Center Retrospective Study

Manuscript ID br Article Type: O Date Submitted by the Author: 28 Complete List of Authors: G	BMJ Open omjopen-2023-080914.R1 Original research 28-Feb-2024
Article Type: O Date Submitted by the Author: 28 Complete List of Authors: G	Original research
Date Submitted by the Author: 28 Complete List of Authors: G	
Author: 20 Complete List of Authors: G	28-Feb-2024
Sa Ca La Vi Ba To	Granot, Yoav; affiliated to the Faculty of Medicine, Department of Cardiology; Icahn School of Medicine at Mount Sinai Sapir, Orly Ran; Tel Aviv Sourasky Medical Center, Department of Cardiology; Mayo Clinic, Department of Cardiovascular Medicine Laufer-Perl, Michal; Tel Aviv Sourasky Medical Center Cardiology Division Viskin, Dana; Tel Aviv Sourasky Medical Center, Cardiology Banai, Shmuel; Tel-Aviv Medical Centre, Department of Cardiology Topilsky, Yan; Tel Aviv Sourasky Medical Center
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading: Ca	Cardiovascular medicine
Keywords: Ed	Heart failure < CARDIOLOGY, Adult cardiology < CARDIOLOGY, Echocardiography < CARDIOLOGY, Valvular heart disease < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Prognostic Impact of Combined Non-severe Aortic Stenosis and Mitral Regurgitation on Clinical Outcomes: A Single-Center Retrospective Study

Yoav Granot, MD^{1 2}, Orly Ran Sapir^{1 3}, MD¹, Michal Laufer Perl MD¹, Dana Viskin MD¹,

Shmuel Banai MD¹, Yan Topilsky, MD¹ and Ofer Havakuk MD¹

From ¹ Department of Cardiology, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

² Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai,New York, NY, United States

³ Division of preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest: none declared

Word Count - 2396

Corresponding author: Yoav Granot, MD, Department of Cardiology, Tel Aviv Medical Center, 6 Weizmann Street. Tel Aviv 6423906, Israel. Email: yoavgran@gmail.com

Abstract

Objectives: Though the concomitant occurrence of non-severe aortic stenosis (AS) and mitral regurgitation (MR) is highly prevalent, there are limited data to guide clinical decision-making in this condition. Here, we attempt to determine an aortic valve area (AVA) cut-off value associated with worse clinical outcomes in patients with combined non-severe AS and MR **Methods**: Single center, retrospective analysis of consecutive patients who underwent echocardiography examination between 2010-2021 with evidence of combined non severe AS and MR. We excluded patients with \geq moderate aortic valve regurgitation or mitral stenosis, as well as patients who underwent any aortic or mitral intervention either prior or following our assessment (n=372).

Results: The final cohort consisted of 2933 patients with non-severe AS, 506 of them with >mild MR. Patient with both pathologies had lower cardiac output and worse diastolic function. Patients with an aortic valve area (AVA) \leq 1.35cm² in the presence of >mild MR had the highest rates of HF hospitalizations (HR 3.1, IQR 2.4-4, P < 0.001) or mortality (HR 2, IQR 1.8-2.4, P<0.001), that remained significant after adjusting for clinical and echocardiographic parameters. **Conclusion:** Patients with combined non-severe AS and MR have a higher rate of HF hospitalizations and mortality. An AVA \leq 1.35cm² in the presence of >mild MR is associated with worse clinical outcomes.

Keywords: Aortic stenosis, Mitral regurgitation, Heart failure, Mortality

Strengths and limitations of this study

- Single center retrospective analysis of patients who underwent echocardiography examination between 2010-2021 which demonstrated combined non severe AS and MR
- Patients with other significant left sided valvular abnormalities and those in whom an aortic or mitral valve intervention was done were excluded from the analysis.
- CART modeling was used to identify the optimal aortic valve area (AVA) cutoff value predictive of heart failure hospitalization or all-cause mortality
- Further studies are warranted to validate this cutoff value."

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Introduction

Multiple valvular heart disease (mVHD) is defined as the combination of stenotic or regurgitant lesions occurring in ≥ 2 cardiac valves [1]. The presence of mVHD may significantly affect the evaluation of each valvular lesion severity by affecting left ventricular filling pressures, preload and afterload. Moreover, mVHD was associated with worse outcomes. In the Euro Heart Survey (EHS), mVHD was observed in 20% of the patients with native VHD [2], whereas in a Swedish nationwide study, mVHD was present in 11% of patients, with high prevalence of combined aortic stenosis (AS) and mitral regurgitation (MR) [3]. Notably, definition and specific cutoff values for mVHD currently lack and are based on local practice or registries. As the impact of combined non-severe mVHD has not been appropriately defined or evaluated,

contemporary guideline documents [4-5] focus mainly on mVHD in which at least one of the lesions involved is defined as severe. Therefore, in this study, we chose to evaluate the presence and the impact of non-severe mVHD on patients' outcomes in a large tertiary center and seek an AVA cutoff value associated with worse clinical outcomes.

Material and Methods

We used a retrospective analysis performed in a single university-affiliated large tertiary care hospital. The study was reviewed and approved by the Institutional Review Board with a waiver of informed consent.

Study Population

Adult patients who underwent an echocardiography at our center between January 2010 and March 2021, with evidence of less than severe AS combined with less than severe MR were included in the initial cohort.

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Patients with \geq moderate aortic valve regurgitation (AR) or \geq moderate mitral stenosis (MS) and those in whom an aortic or mitral valve intervention was done (n=372) were excluded from the analysis.

Doppler Echocardiography

To evaluate the presence of mVHD, all patients underwent a comprehensive two-dimensional and Doppler echocardiographic study with multiple windows during the same examination. Echocardiography was performed according to contemporary ESC guideline [6]. All measurements were retrieved from the echocardiography reporting system.

Stroke volume was calculated as the product of left ventricular outflow tract (LVOT) area and the time-velocity integral of the aortic flow velocity. Cardiac output (CO) measured as stroke volume multiplied by heart rate.

Aortic valve area (AVA) was calculated using continuity equation from the flow through the LVOT with respect to the flow through the aortic valve. Multiple windows were used for the highest velocity. Severe AS was defined as a peak velocity >4m/s, mean gradient >40mmHg or estimated AVA<1cm². Both classical low flow-low gradient and paradoxical low-flow low gradient aortic stenosis were not included in the current study.

MR severity was determined by an integrative, semi-quantitative and quantitative approach, including assessment of vena contracta width, valve morphology, chamber size, jet area, jet density and contour, and when available, effective orifice area (ERO) and regurgitant volume. After excluding those defined as severe MR, we grouped those these patients into: MR≤mild and MR>mild.

Measurements of mitral inflow included the peak early filling (E wave) and late diastolic filling (A wave) velocities, the E/A ratio, and deceleration time (DT) of early filling velocity. Early

BMJ Open

diastolic mitral annular velocities (e') was measured from both septal and lateral annulus. Left atrium volume was calculated by tracing the endocardial borders at end-systole in the apical four-and two-chamber views, with LA volume index calculated by adjusting to the patient's body surface index (BSA).

Systolic pulmonary arterial pressure (sPAP) was determined by the maximal tricuspid regurgitant velocity and an estimation of right atrial pressure according to the vena cava width and responsiveness.

LV diameters including left ventricle end systolic and diastolic diameter (LVESd, LVEDd) were measured using lineal 2D echocardiography or M-mode parallel to the mitral valve annulus. Right ventricular (RV) size and function assessment was based on multiple views of the RV. An integrative qualitative grading of RV function was formulated by a specialized imaging cardiologist responsible for the echocardiographic study.

Clinical data and outcome measures

Baseline characteristics including age, sex and major co-morbidities were extracted from the electronic health record (EMR). Hospitalization for heart failure (HF) which occurred at our medical center alone were retrieved from the electronic health record. The date of mortality (if occurred) was automatically updated in the hospital records via the Ministry of Health. All the data obtained in the study were retrieved from the hospital anonymized database that includes all clinical and echocardiographic information.

Statistical Analysis

Categorical variables are reported as numbers and percentages, and continuous variables are reported as means and standard deviations or medians and interquartile ranges (IQRs), as

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

and data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

appropriate. Continuous variables were tested for normal distribution using histograms, Q-Q Plots and normality tests (Kolmogorov-Smirnov and Shapiro-Wilk). Continuous variables were compared between groups using independent Mann-Whitney test, post-hoc Bonferroni correction applied to analyze subgroup comparison. Categorical variables were compared using Chi-square test or Fisher's exact test, post-hoc Bonferroni correction applied to analyze subgroup comparison.

The AVA was divided into categories by means of a classification and regression model (CART) for the prediction of HF hospitalization, with a minimum of 100 cases in parent node and minimum of 50 cases in child node. The analysis selects the best predictor for splitting the data into child nodes. A P value is given for each branch.

Long-term outcome (all-cause mortality or HF hospitalization) assessed using a Cox regression model, also adjusted for clinical and echocardiographic parameters. The following variables were included:

Clinical variables: Age, sex, chronic renal failure (CRF), hypertension, ischemic heart disease (IHD), AF, HF, chronic obstructive pulmonary disease (COPD).

Echocardiographic variables: ejection fraction (EF), LVEDd, LVESd, degree of AR, RV function and RV size. Of note, due to the expected effect of mVHD on LV filling indices and forward flow (stroke volume), as the major hemodynamic consequences leading to HF hospitalization, these parameters we evaluated in the COX regression model separately. All statistical tests were two-sided, and a P-value of < .05 was considered statistically significant. SPSS software was used for all statistical analysis (IBM SPSS statistics, version 25, Armnok, NY, USA, 2017).

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Results

Patient Clinical Characteristics

The study cohort included 2933 patients with non-severe AS. Of whom, 2427 had \leq mild MR and 506 >mild MR. Data regarding the etiology of > MR were available in 59% (299 patients), in whom 22 secondary and 277 with primary MR. Table 1 provides the patients' clinical characteristics.

The median follow-up time of the entire cohort was 1127 days (IQR 392-1999), during which 1572 patients (53.6%) had died and 435 patients (14.8%) had experienced a HF hospitalization. Compared with patients with \leq mild MR, patient with >mild MR were older (80.1 years, IQR 72.4-86.2 vs 83.2 years, IQR 76.3-88.6, P < 0.001), with a predominance female population (45.8% vs 53%, P = 0.03) respectively.

In addition, patients with >mild MR were more likely to have a history of AF (36.8% versus 22.4%, P < 0.001), CRF (21.7% versus 12.9, P < 0.001), hypertension (71.3% versus 62.5%, P < 0.001) and IHD (45.5% versus 37.1%, P < 0.001).

Examining outcomes, patient with >mild MR experienced a higher rate of HF hospitalizations (23.9% versus 12.9%, P < 0.001) and increased all-cause mortality (66.2% versus 53.6%, P < 0.001).

Patient echocardiographic measurements

Patients' echocardiographic measurements in the entire cohort and according to severity of MR are presented in table 2.

Patients with >mild MR had slightly lower cardiac output values (5.03ml/m2, IQR 4.29-6.18 versus 5.64 (IQR 4.78-6.61, P < 0.001) and a greater left ventricle end-systolic (31mm, IQR 26-

38, versus 28, IQR 25-33, P < 0.001) and end-diastolic diameters (49mm, IQR 45-54 versus 47, IQR 43-51, P < 0.001).

Proximal isovelocity hemispheric surface area (PISA) data were available only in a portion of patients with >mild MR. These patients had an ERO area of 0.1 cm^2 (IQR 0.1-0.2, n=184/514) with a regurgitant volume of 26ml (IQR 17-35ml, n=105/330).

As expected, patients with >mild MR had an overall worse diastolic indices with a larger LA volume index, shorter deceleration time, higher E/A ratio and elevated SPAP compared with patient with \leq mild MR. The average e' for the entire cohort was mildly reduced (6, IQR 4.93-7.21), with no difference between MR severity groups.

Higher rates of RV dysfunction and RV dilatation were found in patients with >mild MR (Table 2).

Aortic valve area optimal cutoff value

In patients with >mild MR, a classification tree analysis revealed a cutoff value of 1.35cm² to be predictive for HF hospitalizations. Accordingly, we further divided both MR groups according to the suggested AS cutoff value. Patients' clinical and echocardiographic measurements in these 4 sub-groups are presented in table 3.

Hemodynamic impact of AVA in patient with >mild MR

Among patients with >mild MR, those with AVA \leq 1.35cm² were older compared with patients with AVA>1.35cm² (84.4 years, IQR 77.5-89.2 vs 81.2 years, IQR 73.6-87.3 respectively, P = 0.002). There were no other statistically significant differences in baseline clinical characteristics between these two sub-groups.

BMJ Open

Patient with AVA \leq 1.35 cm² had lower CO compared with patients with an AVA>1.35cm² (4.77 l/min, IQR 4.03-5.7 vs 5.93 l/min, IQR 4.85-6.62 respectively, P < 0.001) and had elevated sPAP values (49mmHg, IQR 39-59 compared with 42mmHg, IQR 34-54 p<0.001), whereas other diastolic or RV function indices did not significantly differ between the two groups (Table 3).

Effect of AVA and MR severity on clinical outcomes

The impact of MR grade and AVA on HF hospitalizations within each subgroup is presented in table 4.

In univariate Cox regression analysis (Figure 1), patients with >mild MR and an AVA \leq 1.35cm² had the highest rate of HF hospitalizations compared with patients \leq mild MR and an AVA>1.35cm² (HR 3.1, IQR 2.4-4, P < 0.001).

AVA had more impact on patients' outcomes, since the presence of significant MR in patients with an AVA>1.35cm² was associated with increased rates of HF hospitalizations in univariate analysis (group 1 versus group 3, HR 1.6, IQR 1.1-2.3, P=0.007), this effect was lost after adjusting for echocardiographic parameters and/or clinical parameters. Furthermore, following adjustment for either clinical comorbidities or echocardiographic parameters only patients with a combination of >mild MR and AVA \leq 1.35cm² had a higher HF hospitalizations rate. Analysis concerning all-cause mortality is available in Table S1 and Figure 1S. Patients with

and AVA>1.35cm², even after adjusting for clinical and/or echocardiographic parameters

>mild MR and AVA \leq 1.35cm² had higher mortality rates compared with patients with \leq mild MR

The effect of diastolic function on outcome is presented in table 4.

The effect of surgical AV replacement in patients with >mild MR and AVA \leq 1.35cm² (n=10, one patient with concomitant mitral valve intervention) on outcomes is presented in tables S2,S3 and figure S2.

Discussion

This study investigated the clinical outcomes of patients with combined non-severe aortic stenosis (AS) and low-grade mitral regurgitation (MR). We found two key findings:

- Patients with combined non-severe AS and low-grade MR had lower cardiac output and impaired diastolic function compared to those without these conditions.
- AVA between 1.0-1.35 cm² in the presence of more than mild MR was associated with worse clinical outcomes, even after accounting for other relevant factors. Conversely, patients with an AVA greater than 1.35 cm² had clinical outcomes comparable to those without AS, regardless of the degree of non-severe MR.

AS and MR are the most prevalent valvular heart diseases in high-income countries [7]. However, unless the patient is planned for an aortic or coronary surgery, current guidelines recommend intervention only when these valvular lesions are severe [4-5] and limited recommendations exist for the management of patients with combined non-severe AS and MR. The hemodynamic effects of AS result from chronic increased afterload that leads to LV hypertrophy, diastolic dysfunction and increased systolic intra-ventricular pressures. MR, on the other hand, reduces afterload, SV and CO, but increases preload. The net effect of both lesions will reduce the net forward flow with augmentation of diastolic pressures [8-9], a finding compatible with our results.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

While previous studies demonstrated increased mortality risk in moderate AS compared to no or mild AS [10-12], the impact of combined non-severe AS and low-grade MR remained less explored. Similar to our finding, smaller studies found predictors of poor outcome in this population, including *including* inderate MR, as well as lower range AVA [13] or stage 2 cardiac structural abnormalities such as either LA enlargement or >mild MR (only 9 patients in total) [14-15]. Notably, Benfari et al. [16] showed that in patients with trans-aortic velocity>2.5m/s and AVA>1cm2, an MR ERO area >0.1cm² was associated with a higher rates of HF hospitalizations or death. Our study adds to this evidence by highlighting the specific association between AVA size and clinical outcomes in the context of non-severe AS and low-grade MR. Our cohort's all-cause mortality rate was higher compared to existing studies on severe [17] or moderate AS [18]. While baseline co-morbidities and the presence of MR in our cohort might contribute to this finding, the most likely explanation is the older age of our study population (80.1 vs. 77.8 years in severe AS and 74 years in moderate AS cohorts). In clinical practice, it is challenging to determine the optimal timing for valvular correction of mVHD. Our data, encompassing almost 3,000 patients with comprehensive echocardiographic

evaluation and valid clinical outcomes, suggest that patients with combined >mild MR and AVA≤1.35cm² have worse clinical outcomes and as such could benefit from close follow-up visits and frequent serial evaluation by a multidisciplinary heart valve team. It remains to be seen, however, whether early interventions could improve the clinical outcome of these patients.

Several important limitations should be addressed. First, this is a single-center retrospective study; thus, prospective data are needed to further establish its findings. Second, due to relatively small number of patient with combined non-severe AS and MR we did not divide our cohort into

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text and

a learning and validation groups, consequently reducing the internal validity of the study. Third, due to the observational nature of the design, we cannot definitively prove a causal relationship between the valvular abnormalities or their individual impact on outcomes. Last, as we excluded patient with other left sided valvular abnormalities, the current finding should not be applied to other mVHD.

Our study suggests that combined non-severe aortic stenosis (AS) and low-grade mitral regurgitation (MR) may be associated with worse clinical outcomes, particularly when the aortic valve area (AVA) falls below 1.35 cm². This finding highlights the need for further investigation into the potential benefits of early intervention for these patients. Future studies could explore whether early intervention strategies, such as valve replacement or repair, can improve patients outcomes in this specific population

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

ta mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

Contributorship statement

YG., YT., OH. contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. MLP. and SB. were involved in planning and supervised the work. YG, ORS and DV were involved in data acquisition and creation of the database. All authors discussed the results and commented on the manuscript.

Competing interests

none declared

Funding

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

Data Sharing Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Consent

The study was reviewed and approved by the Institutional Review Board with a waiver of

informed consent. Approval number – TLV-0111-18

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or

dissemination plans of our research

References

- DOI: 10.1161/CIRCIMAGING.118.007862. Unger P, Pibarot P, Tribouilloy C, Lancellotti P, Maisano F, Iung B, Piérard L; European Society of Cardiology Council on Valvular Heart Disease. Multiple and Mixed Valvular Heart Diseases. Circ Cardiovasc Imaging. 2018 Aug;11(8)
- DOI: 10.1016/s0195-668x(03)00201-x. Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, Ravaud P, Vahanian A. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003 Jul;24(13):1231-43.
- DOI: 10.1136/heartjnl-2016-310894. Andell P, Li X, Martinsson A, Andersson C, Stagmo M, Zöller B, Sundquist K, Smith JG. Epidemiology of valvular heart disease in a Swedish nationwide hospital-based register study.Heart. 2017; 103:1696–1703.
- 4. DOI: 10.1161/CIR.0000000000000932. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C, O'Gara PT, Rigolin VH, Sundt TM 3rd, Thompson A, Toly C. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021 Feb 2;143(5):e35-e71.
- DOI: 10.1093/eurheartj/ehab395. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, Capodanno D, Conradi L, De Bonis M, De Paulis R, Delgado V, Freemantle N, Gilard M, Haugaa KH, Jeppsson A, Jüni P, Pierard L, Prendergast BD, Sádaba JR, Tribouilloy C, Wojakowski W; ESC/EACTS Scientific Document Group.

BMJ Open

2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022 Feb 12;43(7):561-632.

- 6. DOI: 10.1016/j.echo.2005.10.005. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63.
- DOI: 10.3390/medsci10020032. Aluru JS, Barsouk A, Saginala K, Rawla P, Barsouk A. Valvular Heart Disease Epidemiology. Med Sci (Basel). 2022 Jun 15;10(2):32.
- DOI: 10.1016/j.ccl.2019.09.002. Unger P, Tribouilloy C. Aortic Stenosis with Other Concomitant Valvular Disease: Aortic Regurgitation, Mitral Regurgitation, Mitral Stenosis, or Tricuspid Regurgitation. Cardiol Clin. 2020 Feb;38(1):33-46.
- DOI: 10.3389/fcvm.2021.744497. Mantovani F, Fanti D, Tafciu E, Fezzi S, Setti M, Rossi A, Ribichini F, Benfari G. When Aortic Stenosis Is Not Alone: Epidemiology, Pathophysiology, Diagnosis and Management in Mixed and Combined Valvular Disease. Front Cardiovasc Med. 2021 Oct 15;8:744497.
- DOI: 10.1016/j.echo.2021.02.014. Mann TD, Loewenstein I, Ben Assa E, Topilsky Y. Natural History of Moderate Aortic Stenosis with Preserved and Low Ejection Fraction. J Am Soc Echocardiogr. 2021 Jul;34(7):735-743. Epub 2021 Feb 27. PMID: 33652083.

- DOI: 10.1136/openhrt-2021-001743. Pankayatselvan V, Raber I, Playford D, Stewart S, Strange G, Strom JB. Moderate aortic stenosis: culprit or bystander? Open Heart. 2022 Jan;9(1):e001743.
- 12. DOI: 10.1016/j.jcin.2022.06.022. Coisne A, Scotti A, Latib A, Montaigne D, Ho EC, Ludwig S, Modine T, Généreux P, Bax JJ, Leon MB, Bauters C, Granada JF. Impact of Moderate Aortic Stenosis on Long-Term Clinical Outcomes: A Systematic Review and Meta-Analysis. JACC Cardiovasc Interv. 2022 Aug 22;15(16):1664-1674.
- DOI: 10.1532/hsf.2971. Bae HJ, Hwang J, Han S, Hur SH, Chung JW, Kim H. Long Term Clinical Outcomes in Patients with Moderate Aortic Stenosis. Heart Surg Forum. 2020 May 28;23(3):E358-E365.
- 14. DOI: 10.1016/j.jacc.2019.04.065. Tastet L, Tribouilloy C, Maréchaux S, Vollema EM, Delgado V, Salaun E, Shen M, Capoulade R, Clavel MA, Arsenault M, Bédard É, Bernier M, Beaudoin J, Narula J, Lancellotti P, Bax JJ, Généreux P, Pibarot P. Staging Cardiac Damage in Patients With Asymptomatic Aortic Valve Stenosis. J Am Coll Cardiol. 2019 Jul 30;74(4):550-563.
- 15. DOI: 10.1016/j.jcmg.2021.04.009. Amanullah MR, Pio SM, Ng ACT, Sin KYK, Marsan NA, Ding ZP, Leon MB, Généreux P, Delgado V, Ewe SH, Bax JJ. Prognostic Implications of Associated Cardiac Abnormalities Detected on Echocardiography in Patients With Moderate Aortic Stenosis. JACC Cardiovasc Imaging. 2021 Sep;14(9):1724-1737.
- 16. DOI: 10.1016/j.amjcard.2020.09.016 yBenfari G, Setti M, Nistri S, Fanti D, Maffeis C, Tafciu E, Pighi M, Cicoira M, Ribichini FL, Rossi A. Relevance of Functional Mitral Regurgitation in Aortic Valve Stenosis. Am J Cardiol. 2020 Dec 1;136:115-121.

1	
2 3 4 5 6 7 8 9	
3	
4	
5	
6	
7	
8	
9	
10	
11 12	
12	
14	
12 13 14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
19 20 21 22 23 24 25 26 27 28 29 30 31 32	
28	
29	
31	
32	
33 34	
34	
35 36 37	
36	
38	
39	
40	
41	
42 43	
45 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 59	
59 60	
00	

 doi: 10.1038/s41598-017-15316-6. Minamino-Muta E, Kato T, Morimoto T, Taniguchi T, Shiomi H, Nakatsuma K, Shirai S, Ando K, Kanamori N, Murata K, Kitai T, Kawase Y, Miyake M, Izumi C, Mitsuoka H, Kato M, Hirano Y, Matsuda S, Nagao K, Inada T, Murakami T, Takeuchi Y, Yamane K, Toyofuku M, Ishii M, Inoko M, Ikeda T, Komasa A, Tada E, Ishii K, Hotta K, Higashitani N, Jinnai T, Kato Y, Inuzuka Y, Maeda C, Morikami Y, Saito N, Sakata R, Minatoya K, Kimura T. Causes of Death in Patients with Severe Aortic Stenosis: An Observational study. Sci Rep. 2017 Nov 7;7(1):14723.
 doi: 10.1016/j.jacc.2019.08.004. Strange G, Stewart S, Celermajer D, Prior D, Scalia GM, Marwick T, Ilton M, Joseph M, Codde J, Playford D; National Echocardiography Database of Australia contributing sites. Poor Long-Term Survival in Patients With Moderate Aortic Stenosis. J Am Coll Cardiol. 2019 Oct 15;74(15):1851-1863. Epub 2019

Sep 3.

ardı.

Table 1 Patien	ts' clinical Characterist	ics in the entire cohort and a		9 al
regurgitation	All patients	Patients with up to mild	Patient with greater than	P value
	(n=2933)	MR (n=2427)	mild MR (n=506)	
Age (years) ^a	80.64 (73.16-86.7)	80.11 (72.42-86.24)	83.15 (76.3-88.57)	< 0.001
Follow-up (days) ^a	1127.54 (392.45- 1998.65)	1227.27 (488.60-2100.26)	721.52 (150.39-1471.61)	<0.001
Sex (Female)	1379 (47)	1111 (45.8)	268 (53)	
Deceased during Follow-up	1571 (53.6)	1236 (50.9)	335 (66.2)	<0.001 <0.001 0.03 <0.001 0.03 <0.001 0.702 0.702 0.702 0.796
Heart Failure admission	435 (14.8)	314 (12.9)	121 (23.9)	< 0.001
AF	657 (22.4)	471 (19.4)	186 (36.8)	< 0.001
CRF	423 (14.4)	313 (12.9)	110 (21.7)	< 0.001
Malignancy	642 (21.9)	528 (21.8)	114 (22.5)	0.702
Hypertension	1877 (64)	1516 (62.5)	361 (71.3)	<0.001
DM	965 (32.9)	801 (33)	164 (32.4)	
CVA/TIA	379 (12.9)	305 (12.6)	74 (14.6)	0.209 <0.001 0.945
IHD	1131 (38.6)	901 (37.1)	230 (45.5)	< 0.001
COPD	269 (9.2)	223 (9.2)	46 (9.1)	0.945
percentages AF – Atrial fibri Cerebrovascular	illation; CRF – Chronic	her values represent the nur c renal failure; DM – Diabete ent ischemic attack; IHD – Is se	s mellitus; CVA –	
				iai le
				ĥoio
				les.

Table 2 | Patients' echocardiographic measurements in the entire cohort and according to severity of mitral regurgitation

		All patients (n=2933)	Patients with up to mild MR	Patient with greater than mild MR	P value
			(n=2427)	(n=506)	
Ejection Fraction a	1	60 (55-60)	60 (55-60)	55 (45-60)	<0.001
Cardiac output (liter/min) a		5.56 (4.67-6.53)	5.64 (4.78-6.61)	5.03 (4.29-6.18)	<0.001
LVEDd (mm) a		47 (43-51)	47 (43-51)	49 (45-54)	<0.001
LVESd (mm) a		29 (25-34)	28 (25-33)	31 (26-38)	<0.001
Aortic valve area (cm2) a		1.4 (1.2-1.6)	1.4 (1.2-1.7)	1.3 (1.1-1.5)	<0.001
Peak aortic gradient (mmHg	;) a	26 (21-34)	27 (22-35)	26 (21-33)	0.045
Mean aortic gradient (mmH	lg) a	15 (12-20)	15 (12-20)	15 (11-19)	0.018
LAVI (ml/m2) a	\mathbf{O}	42.7 (33.5-53.5)	40.3 (32.2-50.8)	53.1 (44-65.7)	<0.001
Deceleration time (ms) a		219 (174-274)	225 (180-275)	187 (153-241)	<0.001
E/e' a		14.02 (10.97-18.34)	13.62 (10.54-17.7)	17.05 (13.18-22.39)	<0.001
Average e' a		6 (4.93-7.21)	6 (4.96-7.2)	6 (4.73-7.35)	0.452
E/A ratio a		0.8 (0.7-1.1)	0.8 (0.6-1.1)	1.1 (0.9-1.6)	<0.001
sPAP (mmHg) a		36 (30-47)	34 (29-44)	46 (37-58)	<0.001
Aortic valve regurgitation	None	1485 (50.6)	1288 (53.1)	197 (38.9)	<0.001
	minimal	577 (19.7)	478 (19.7)	99 (19.6)	1
	mild	685 (23.4)	532 (21.9)	153 (30.2)	1
	mild to moderate	186 (6.3)	129 (5.3)	57 (11.3)	1
Right Ventricle function	Normal	2668 (91)	2264 (93.3)	404 (79.8)	< 0.001
	Mild dysfunction	207 (7.1)	131 (5.4)	76 (15)	1
	Moderate dysfunction	51 (1.7)	29 (1.2)	22 (4.3)	1
	Severe dysfunction	7 (0.2)	3 (0.1)	4 (0.8)	1
Right Ventricle size	Normal	2593 (88.4)	2208 (91)	385 (76.1)	<0.001
	Mild dilatation	257 (8.8)	165 (6.8)	92 (18.2)	1
	Moderate dilatation	63 (2.1)	41 (1.7)	22 (4.3)	1
	Severe dilatation	20 (0.7)	13 (0.5)	7 (1.4)	1

^aMedian and interquartile range. All other values represent the number of patients and percentages

LVEDd – Left ventricle end diastolic diameter; LVESd – Left ventricle end systolic diameter; LAVI – Left atrial volume index; sPAP – Systolic pulmonary artery pressure;

Table 3 | Patients' clinical and echocardiographic measurements according to MR severity and Aortic valve area of 1.35cm²

5 Aortic v	alve area of 1.35c							
7	M	R <= mild		1	MR > Mild			
8 9	AVA > 1.35	AVA ≤1.35		AVA > 1.35	AVA ≤1.35			
10 11 12 13	Group 1 N=1333	Group 2 N=1094	Р	Group 3 N=211	Group 4 N=295	Р	P Group 2-4	P Group 1-3 0.027 <0.001 NS 0.035 NS 0.035 NS NS NS NS NS NS NS NS NS NS 0.001 0.001 0.001 <0.001 0.725
14 Age (years) ^a	79.3 (70.7-85.6)	81.46 (74.5- 86.7)	< 0.001	81.2 (73.6- 87.4)	84.4 (77.5- 89.2)	0.002	< 0.001	0.027
Follow-up (days) ^a	1393 (541-2178)	1107 (432- 1955)	0.002	1006 (242- 1751)	574 (112- 1249)	0.003	< 0.001	< 0.001
Spex (Female) 20	527 (39.5)	584 (53.4)	< 0.001	103 (48.8)	165 (55.9)	NS	NS	NS
Deceased during Follow-up	647 (48.4)	589 (53.8)	< 0.001	124 (58.8)	211 (71.5)	0.017	< 0.001	0.035
23 eart Failure 24 Imission	176 (13.2)	138 (12.6)	NS	38 (18)	83 (28.1)	0.024	< 0.001	NS
2 \$F	257 (19.3)	214 (19.6)	NS	78 (37)	108 (36.6)	NS	0.012	< 0.001
26 CRF	172 (12.9)	141 (12.9)	NS	51 (24.2)	59 (20)	NS	0.012	< 0.001
Malignancy	295 (22.1)	233 (21.3)	NS	45 (21.3)	69 (23.4)	NS	NS	NS
19 TN	853 (64)	663 (60.6)	NS	145 (68.7)	216 (73.2)	NS	< 0.001	NS
30 M	439 (32.9)	362 (33.1)	NS	70 (33.2)	94 (31.9)	NS	NS	NS
U VA/TIA	167 (12.5)	138 (12.6)	NS	26 (12.3)	48 (16.3)	NS	NS	NS
1HD	512 (38.4)	389 (35.6)	NS	99 (46.9)	131 (44.4)	NS	0.032	NS
-33 GOPD	139 (10.4)	84 (7.7)	NS	15 (7.1)	31 (10.5)	NS	NS	NS
35 V EF ^a	60 (55-60)	60 (55-60)	1	60 (45-60)	55 (45-60)	0.514	< 0.001	0.001
Cardiac output (Titer/min) ^a	6.05 (5.1-7)	5.01 (4.3-5.9)	< 0.001	5.9 (4.9-6.6)	4.8 (4.0-5.7)	< 0.001	0.058	0.001
³⁸ VEDd (mm) ^a	47 (43-51)	46 (42-51)	0.019	50 (46-55)	48 (44-54)	0.18	< 0.001	< 0.001
40VESd (mm) ^a	29 (25-33)	28 (25-33)	0.334	31 (27-39)	31 (26-38)	1	< 0.001	< 0.001
44 ortic valve area 42 m ²) ^a	1.6 (1.5-1.9)	1.2 (1.1-1.3)	< 0.001	1.6 (1.4-1.8)	1.13 (1.08- 1.26)	< 0.001	1	0.725
Peak aortic gradient (mmHg) ^a 45	24 (20-30)	31 (24-40)	< 0.001	23 (19-29)	29 (22-38)	< 0.001	0.001	0.491 0.294 <0.001
W ean aortic gradient (7mmHg) ^a	14 (11-17)	18 (14-24)	< 0.001	13 (11-16)	17 (13-21)	< 0.001	< 0.001	0.294
⁴⁸ AVI (ml/m ²) ^a	40 (32.1-50.6)	40.8 (32.4-51)	1	54.1 (44.66.2)	52.1 (44.2- 65)	1	< 0.001	
Deceleration time (ms) ^a B/e' ^a	225 (182-275)	224 (180-277)	1	208 (162- 254)	180 (148- 229)	0.056	< 0.001	0.001
54	13.2 (10.2-17.1)	14 (11-18.2)	0.001	16.3 (12.6- 22)	17.6 (14- 22.6)	0.425	< 0.001	< 0.001
5 5verage e' ^a	6.2 (5.1-7.4)	5.8 (4.7-7)	< 0.001	6 (4.7-7.5)	6 (4.7-7.2)	1	1	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Т
_
2

2									
E/A ratio	а	0.8 (0.7-1.1)	0.8 (0.6-1.1)	1	1.1 (0.8-1.5)	1.2 (0.9-1.7)	0.451	< 0.001	< 0.001
sPAP (mr	nHg) ª	34 (28-43)	35 (29-45)	0.089	42 (34-54)	49 (39-59)	< 0.001	< 0.001	< 0.001
6∕MR ERO	(cm ²) ^a	NA	NA		0.1 (0.1-0.2)	0.1 (0.1-0.2)	0.148		
MR Rvol	(ml) ^a	NA	NA		25 (17-35)	26 (17-34)	0.893		
8 9 AR	None	739 (55.4)	549 (50.2)	NS	82 (38.9)	115 (39)	NS	0.005	<0.001
10	minimal	253 (19)	225 (20.6)		30 (14.2)	69 (23.4)			
11	mild	266 (20)	266 (24.3)		72 (34.1)	81 (27.5)			
12 13 14	mild to moderate	75 (5.6)	54 (4.9)		27 (12.8)	30 (10.2)			<0.001 <0.001 <0.001
15 RV 15 RV 1⊌nction	Normal	1245 (93.4)	1019 (93.1)	NS	173 (82)	231 (78.3)	NS	<0.001	<0.001
17	Mild	72 (5.4)	59 (5.4)		31 (14.7)	45 (15.3)			
18	Moderate	15 (1.1)	14 (1.3)		6 (2.8)	16 (5.4)			
- 19 20	Severe	1 (0.1)	2 (0.2)		1 (0.5)	3 (1)			
2RV size	Normal	1221 (91.6)	987 (90.2)	NS	167 (79.1)	218 (73.9)	NS	<0.001	<0.001
22	Mild	83 (6.2)	82 (7.5)		33 (15.6)	59 (20)			
23	Moderate	24 (1.8)	17 (1.6)		9 (4.3)	13 (4.4)			
24 25	Severe	5 (0.4)	8 (0.7)		2 (0.9)	5 (1.7)			
26	1	1		6	1	1	1	1	

^aMedian and interquartile range. All other values represent the number of patients and percentages

AF – Atrial fibrillation; CRF – Chronic renal failure; DM – Diabetes mellitus; CVA –

Cerebrovascular accident; TIA – transient ischemic attack; IHD – Ischemic heart disease; COPD

Chronic obstructive pulmonary disease; LVEDd – Left ventricle end diastolic diameter;
 LVESd – Left ventricle end systolic diameter; LAVI – Left atrial volume index; sPAP – Systolic pulmonary artery pressure; MR - Mitral Regurgitation; RV – Rigth Ventricle; AR – Aortic

regurgitation; LV EF – Left ventricle ejection fraction

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

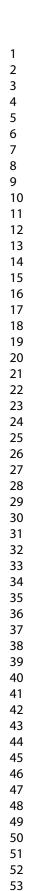
	HR	95% CI	Р
Up to mild MR +			
$AVA \le 1.35$ cm ² versus $AVA > 1.35$ cm ²			
Univariate analysis	1.036	0.829-1.295	0.754
Greater than mild MR + AVA ≤ 1.35 cm ² versus AVA > 1.35 cm ²			
Univariate	1.893	1.288-2.781	0.001
Adjusted for all clinical*	1.941	1.309-2.880	< 0.001
Adjusted for all echocardiographic ⁺	1.672	1.097-2.548	0.017
Adjusted for both *†	1.774	1.157-2.72	0.009
Adjusted for Diastolic parameter # + Cardiac	1.555	0.833-2.904	0.166
output			
AVA > 1.35cm ² +			
MR up to mild versus greater than mild Univariate analysis	1.624	1.143-2.308	0.007
Adjusted for all clinical*	1.624	0.873-1.788	0.007
Adjusted for all echocardiographic [†]	0.992	0.652-1.508	0.969
Adjusted for both *†	0.881	0.572-1.358	0.567
Adjusted for Diastolic parameter # + Cardiac	0.645	0.356-1.168	0.148
output			
AVA ≤ 1.35cm ² +			
MR greater than mild versus up to mild			
Univariate analysis	3.056	2.324-4.018	< 0.001
Adjusted for all clinical*	2.241	1.689-2.973	<0.001
Adjusted for all echocardiographic [†]	2.241	1.545-3.025	< 0.001
Adjusted for both *†	1.625	1.163-2.271	0.004
-	1.816	1.135-2.271	0.004
Adjusted for Diastolic parameter # + Cardiac output	1.010	1.133-2.900	0.013
Greater than mild MR + AVA \leq 1.35cm ² versus Up to mild MR + AVA > 1.35cm ²			
Univariate analysis	3.089	2.374-4.019	< 0.001
Adjusted for all clinical*	2.164	1.641-2.852	< 0.001
Adjusted for all echocardiographic ⁺	1.67	1.205-2.314	0.002
Adjusted for both *†	1.296	0.941-1.784	0.112
Adjusted for Diastolic parameter # + Cardiac output	1.175	0.708-1.948	0.533

1 2	27
3 4 5 6 7 8	 * For clinical variables – Age, Sex, Atrial fibrillation, chronic renal failure Hypertension, Ischemic heart disease, COPD † For Echocardiographic variables – Ejection fraction, Left ventricle end diastolic diameter, Left ventricle end systolic diameter, Aortic valve regurgitation grade, right ventricle size, right
9 10	ventricle function
11 12	# For Diastolic parameter – LAVI, DT, Average E/e', E/A ratio, sPAP
13	
14 15	
16 17	
18	
19 20	
21 22	
23	
24 25	
26 27	
28 29	
30	
31 32	
33 34	
35	
36 37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

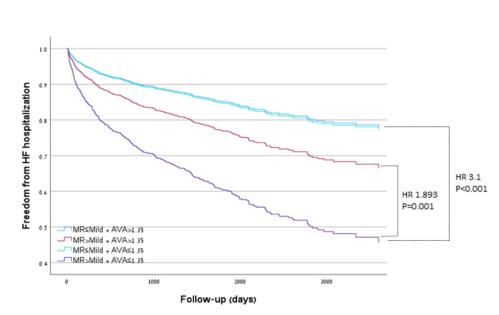
Figure legend:

Figure 1 - Univariate Cox regression analysis for HF hospitalization according to severity of MR

and AVA


Figure S1 – Univariate Cox regression analysis for mortality according to severity of MR and

AVA


Figure S2 – Univariate Cox regression analysis for the Impact of Intervention (Surgical AVR) in patient with MR>mild and AVA≤1.35cm²

1	
1 2 3 4 5 6 7 8 9 10	
4	
5	
8 7	
8	
9	
11	
12	
13 14	
15	
16	
17 18	
19	
20 21	
22	
23	
24 25	
26	
27 28	
29	
30	
31 32	
33	
34 35	
36	
37	
38 39	
40	
41 42	
43	
44 45 46	
46	
47 48	
49	
50	
51 52	
53	
54 55	
56	
F7	

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

60

455x314mm (38 x 38 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	HR	95% CI	Р
Up to mild MR +			
$AVA \le 1.35 cm^2$ versus $AVA > 1.35 cm^2$			
Univariate	1.223	1.094-1.368	< 0.001
Adjusted for all clinical*	1.15	1.027-1.288	0.015
Adjusted for all echocardiographic ⁺	1.168	1.032-1.321	0.014
Adjusted for both *†	1.116	0.984-1.266	0.087
Adjusted for Diastolic parameter # + Cardiac output	0.985	0.815-1.191	0.878
Greater than mild MR + AVA ≤ 1.35 cm ² versus AVA > 1.35 cm ²			
Univariate	1.426	1.142-1.78	0.002
Adjusted for all clinical*	1.324	1.053-1.664	0.016
Adjusted for all echocardiographic ⁺	1.242	0.969	1.592
Adjusted for both *†	1.23	0.954-1.586	0.11
Adjusted for Diastolic parameter # + Cardiac output	1.176	0.818-1.689	0.382
AVA > 1.35cm ² +			
MR up to mild versus greater than mild			
Univariate analysis	1.431	1.181-1735	< 0.001
Adjusted for all clinical*	1.22	1.003-1.484	0.046
Adjusted for all echocardiographic†	1.317	1.057-1.639	0.014
Adjusted for both *†	1.191	0.95-1.493	0.129
Adjusted for Diastolic parameter # + Cardiac	1	0.74-1.353	0.998
output			
$AVA \leq 1.35 \text{cm}^2 +$			
MR up to mild versus greater than mild			
Univariate analysis	1.684	1.438-1.972	< 0.001
Adjusted for all clinical*	1.388	1.18-1.632	< 0.001
Adjusted for all echocardiographic ⁺	1.409	1.167-1.701	< 0.001
Adjusted for both *†	1.196	0.99-1.444	0.064
Adjusted for Diastolic parameter # + Cardiac output	1.055	0.798-1.395	0.706
Greater than mild MR + AVA ≤ 1.35cm ² versus			
Up to mild MR + AVA > 1.35cm ²			
Univariate analysis	2.049	1.753-2.396	< 0.001

Adjusted for all clinical*	1.543	1.312-1.815	< 0.001
Adjusted for all echocardiographic ⁺	1.737	1.446-2.086	< 0.001
Adjusted for both *†	1.377	1.144-1.657	< 0.001
Adjusted for Diastolic parameter # + Cardiac	1.127	0.84-1.513	0.425
output			

* For clinical variables – Age, Sex, Atrial fibrillation, chronic renal failure Hypertension, Ischemic heart disease, COPD

† For Echocardiographic variables – Ejection fraction, Left ventricle end diastolic diameter, Left ventricle end systolic diameter, Aortic valve regurgitation grade, right ventricle size, right ventricle function

For Diastolic parameter – LAVI, DT, Average E/e', E/A ratio, sPAP

Page 31 of 35

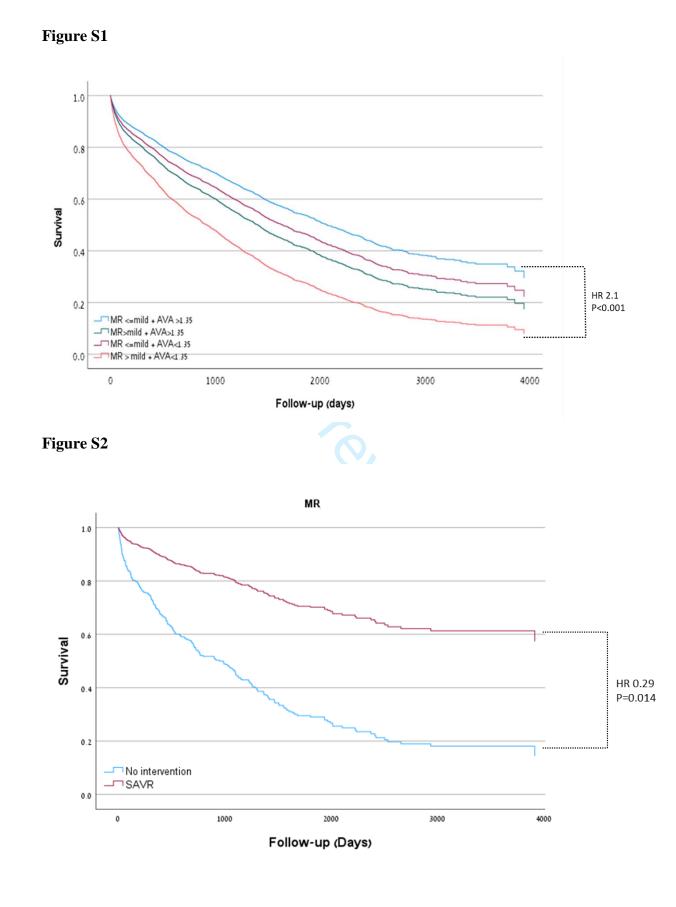
BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.
Enseignement Superieur (ABES) .
BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I

Table S2 | Patients' clinical and echocardiographic measurements according to Intervention(Surgical AVR) in patient with MR>mild and AVA≤1.35cm²

7				
8	MR > mile	$d + AVA \le 1.3$	35cm ²	
9 10	No	SAVR	P	
11	intervention	(n=10)		
12	(n=295)	× ,		
13 A co (voors) d	<u> </u>	65 77	< 0.001	
Age (years) ^a	84.42 (77.51-	65.77 (63.3-	<0.001	
16	(77.51- 89.21)	(03.3- 68.93)		
Vex (Female)	165 (55.9)	5 (50)	0.71	
Beceased during	211 (71.5)	4 (40)	0.032	
Follow-up				
Heart Failure admission	83 (28.1)	1 (10)	0.207	
23 F	108 (36.6)	5 (50)	0.389	
Æ RF	59 (20)	2 (20)	1	
Malignancy	69 (23.4)	0	0.082	
HTN	216 (73.2)	7 (70)	0.821	
12/ 12/M	94 (31.9)	5 (50)	0.228	
19VA/TIA	48 (16.3)	0	0.165	
₹ ₩D	131 (44.4)	6 (60)	0.33	
COPD	31 (10.5)	0	0.279	
<u>32</u> <u></u> 37 EF ª	55 (45-60)	60 (45-60)	0.485	
Cardiac output (liter/min)	4.77 (4.03-	5.42	0.174	
35	5.7)	(4.45-7)		
J-VEDd (mm) ^a	48 (44-54)	51 (49-57)	0.097	
JgVESd (mm) ^a	31 (26-38(31 (28-37)	0.888	
R ortic valve area (cm2) ^a	1.13 (1.08-	1.15 (1.1-	0.775	
40	1.26)	1.2)	0.170	
Peak aortic gradient	29 (22-38(39 (37-45)	0.01	
42 ∫mmHg) ª	, ,	, ,		
Afean aortic gradient	17 (13-21)	23 (18-28)	0.009	
4(fmmHg) a				
⁴⁶ AVI (ml/m2) ^a	52.1 (44.2-	47.5	0.442	
47 48	65)	(46.8-		
48 _49		48.4)		
Deceleration time (ms) ^a	180 (148-	197 (173-	0.327	
51	229)	235)		
₽ 2 /e' ^a	17.58	19.37	0.092	
53	(14.03-	(17.92-		
54 55	22.64)	23.93)		

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.


1				
2	2	1.0 (0.0	10(100)	0.6
$\frac{1}{4}$ E/A ratio	a	1.2 (0.9- 1.7)	1.2 (1-2.9)	0.6
5 €PAP (mn	nHg) a	49 (39-59)	40 (38-50)	0.107
7 AR	None	115 (39)	3 (30)	0.762
8	minimal	69 (23.4)	2 (20)	0.702
9	mild	81 (27.5)	3 (30)	
10 11	mild to	30 (10.2)	2 (20)	
12	moderate	50 (10.2)	2 (20)	
¹³ RV	Normal	231 (78.3)	10 (100)	0.433
14 1function		231 (70.5)	10 (100)	0.455
16	Mild	45 (15.3)	0	
17	Moderate	16 (5.4)	0	
18	Severe	3 (1)	0	
19 20RV size	Normal	218 (73.9)	10 (100)	0.322
21	Mild	59 (20)	0	0.522
22	Moderate	13 (4.4)	0	
23	Severe	5 (1.7)	0	
24 25	Severe	5 (1.7)		
25	^a Median an	d interquartile r	ange. All othe	er values
27	percentage			
28	· •	fibrillation; CR	F – Chronic r	enal failı
29 30		cular accident; 7		
31		bstructive pulm		
32	LVESd – L	eft ventricle end	systolic dian	neter; LA
33	pulmonary	artery pressure;	MR - Mitral I	Regurgita
34 35	regurgitatio	n; LV EF – Left	ventricle eje	ction frac
35 36				
37				
38				
39				
40 41				
42				
43				
44				
45 46				
40 47				
48				
49				
50				
51 52				
53				
54				
55				
55 56				
55 56 57				
55 56			w only - http://l	

HF hospitalization	HR	95% CI	Р	
Univariate	0.21	0.029-1.513	0.121	
Adjusted *	0.372	0.048-2.895	0.345	
All-Cause Mortality				
Univariate	0.286	0.106-0.774	0.014	
Adjusted *	0.508	0.177-1.461	0.209	

 Table S3 | Impact of Intervention (Surgical AVR) in patient with MR>mild and AVA

* For Age, Left ventricle end diastolic diameter, Aortic valve Peak and mean gradient, Average E/e' ratio

BMJ Open: first published as 10.1136/bmjopen-2023-080914 on 29 March 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			1
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5-6
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	9-
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12 13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	13
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.