

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Long-term exposure to ambient air pollution and the hospital admission burden in Scotland: A 16-year prospective population cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-084032
Article Type:	Original research
Date Submitted by the Author:	08-Jan-2024
Complete List of Authors:	Abed Al Ahad, Mary; University of St Andrews, School of Geography and Sustainable Development Demšar, Urška; University of St Andrews, School of Geography and Sustainable Development Sullivan, Frank; University of St Andrews, School of Medicine Kulu , Hill; University of St Andrews, Geography and Sustainable Development
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, MENTAL HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

2		
3	1	Title: Long-term exposure to ambient air pollution and the hospital admission burden in
4 5	2	Scotland: A 16-year prospective population cohort study
5 6		
7	3	
8	4	
9 10	4	
11	5	Mary Abed Al Ahad, PhD ¹ ; Urška Demšar, PhD ¹ ; Frank Sullivan, FRSE, FRCP, FRCGP ² ;
12	6	Hill Kulu, PhD ¹
13	-	
14 15	7	
16	8	¹ School of Geography and Sustainable Development, University of St Andrews, Scotland,
17	9	United Kingdom.
18 19		
20	10	² School of Medicine, University of St Andrews, Scotland, United Kingdom.
21	11	
22		
23 24	12	
25	13	
26		
27 28	14	
29	15	Correspondence should be addressed to
30	16	Mary Abed Al Ahad
31 32	17	School of Geography and Sustainable Development,
33	18	University of St Andrews,
34	19	Scotland, United Kingdom
35	20	Email: maaa1@st-andrews.ac.uk
36 37	20	Email: <u>maartast andrews.ac.uk</u>
38	21	
39	22	
40 41	23	
42	25	
43	24	
44 45	25	
45	25	
47	26	
48 40	27	
49 50	27	
51	28	
52	20	
53 54	29	
55	30	
56		
57 58	31	
59	32	
60		1

- Acknowledgements: The help provided by staff of the Longitudinal Studies Centre Scotland (LSCS) for the Scottish Longitudinal Study (SLS) data is acknowledged. The LSCS is supported by the ESRC/JISC, the Scottish Funding Council, the Chief Scientist's Office and the Scottish Government. The authors alone are responsible for the interpretation of the data. Census output is Crown copyright and is reproduced with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
- The help provided by the Electronic Data Research and Innovation Service (eDRIS) in obtaining approvals for the Public Benefit and Privacy Panel for Health and Social Care (HSC-PBPP) application and in the Public Health Scotland data provision and linkages is also acknowledged.
- Ethical considerations: This paper is part of a PhD project that was granted ethical approval on the 14th of May 2020 by the School of Geography and Sustainable Development Ethics Committee, acting on behalf of the University Teaching and Research Ethics Committee (UTREC) at the University of St Andrews. Access to the SLS data was approved by the SLS manager following a detailed application and access to the linked data from Public Health Scotland via the Electronic Data Research and Innovation Service (eDRIS) was approved following a detailed Public Benefit and Privacy Panel for Health and Social Care (HSC-PBPP) application. The SLS team have already obtained all the needed consent and approvals for the data processing and analysis. Based on the SLS data policy and the sensitivity of the used data, all data cleaning, management, and analysis was performed in the safe settings of the SLS in Ladywell House in Edinburgh to ensure individuals' confidentiality and safe and secure data storage and access.
- Conflict of Interest: The authors declare that they have no conflict of interest.
- Funding: This study is funded by the St Leonard's interdisciplinary PhD scholarship, School of Geography and Sustainable Development, and School of Medicine, University of St Andrews, Scotland, UK. The funding body has no role in the study design, data analysis and data interpretation. Everything presented in this article is conducted by the authors.
- Transparency declaration: The corresponding author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.
- Data availability statement: Data underlying this study is confidential and is not publicly available due to ethical and legal restrictions. We are using the "Scottish Longitudinal Study" dataset which contains linked census, vital events, and education data for a five per cent sample of the population of Scotland. These data are protected by a copyright license and only available for licensed researchers in the UK following a detailed application and security checks. Researchers must also pass a Safe Researcher Training which equip them with the needed knowledge and information to analyse data in safe settings. Further information on how to access the SLS data are available on the following web page: https://sls.lscs.ac.uk/

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

Author contribution statement: Mary Abed Al Ahad: Conceptualization, Investigation,
 Methodology, Data curation, Formal Analysis, Writing-Original Draft, Writing-Review and
 Editing, Visualization, Project administration. Hill Kulu, Urška Demšar and Frank Sullivan:
 Conceptualization, Funding acquisition, Supervision, Writing-Review and Editing.

for oper texter only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Long-term exposure to ambient air pollution and the hospital admission burden inScotland: A 16-year prospective population cohort study

104 Abstract

Objectives: Air pollution is considered a major threat for global health and is associated with various health outcomes. Previous research on the long-term exposure to ambient air pollution and health has been mostly focused on mortality and is characterised with heterogeneities in the size of effect estimates between studies and a little consideration for pollutants like SO₂ and mental/behavioural or infectious diseases outcomes. In this study, we investigate the association between long-term exposure to ambient air pollution and all-cause and cause-specific hospital admissions.

Design: This is a prospective cohort study.

Setting: Individual-level data from the "*Scottish Longitudinal Study (SLS)*" are linked to yearly
concentrations of four pollutants (NO₂, SO₂, PM10, PM2.5) at 1 Km² spatial resolution using
the individual's residential postcode for each year between 2002 and 2017.

Participants: The study includes 202,237 adult individuals aged 17 and older.

117 Outcome measures: The associations between air pollution and all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions are examined using multilevel mixed-effects negative binomial regression.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Results: Higher exposure to NO₂, PM10, and PM2.5 is associated with higher incidence of all-cause, cardiovascular, respiratory, and infectious hospital admissions. The incidence rate for respiratory hospital admissions increased by 4.2% (95%CI=2.1%-6.3%) and 1.2% (95%CI=0.8%-1.7%) per 1 µg/m³ increase in PM2.5 and NO₂ pollutants, respectively. SO₂ was mainly associated with respiratory hospital admissions (IRR=1.016; 95%CI=1.004-1.027) and NO₂ was related to higher incidence of mental/behavioural disorders hospital admissions (IRR=1.021; 95%CI=1.011-1.031). Average cumulative exposure to air pollution showed stronger positive associations with higher rates of hospital admissions.

Conclusion: This study supports an association between long-term (16-years) exposure to ambient air pollution and increased all-cause and cause-specific hospital admissions for both physical and mental/behavioural illnesses. The results suggest that interventions on air pollution through stricter environmental regulations could help ease the hospital-care burden in Scotland in the long-term.

 Keywords: Air pollution, hospital admissions, long-term, cardio-respiratory, mental disorders,
Scottish Longitudinal Study.

 137 Strengths and limitations of this study 138 • This study utilises 16 years (2002-2017) of administrative prospective cohort individual-level data from Scotland and links it to high-resolution 1 km² air pollution data at the residential postcode to investigate the association between long-term 141 exposure to air pollution and all cause and cause specific hospital admissions focusing 	l
 a 138 b 11115 study utilises 16 years (2002-2017) of administrative prospective conort individual-level data from Scotland and links it to high-resolution 1 km² air pollution data at the residential postcode to investigate the association between long-term 	l
7139individual-level data from Scotland and links it to high-resolution 1 km² air pollution8140data at the residential postcode to investigate the association between long-term	
8 140 data at the residential postcode to investigate the association between long-term	
141 0 0 0 0 0 0 0 0 0 0	
$10 \\ 11 \\ 142 $ on admissions related to physical illness such as cardiovascular, respiratory, and	
12 143 infectious diseases as well as on mental and behavioural disorders.	
¹³ 144 • This study attempted to develop previous research by contributing to the existing	÷
 15 145 evidence on air pollution and health through the examination of multiple air pollutants 16 146 (i.e., NO₂, SO₂, PM10, and PM2.5) in relation to multiple hospital admission outcomes 	
17 147 over prolonged period of time.	
19 148 • The limitations of this study included following individuals for 16 years starting the	
 20 149 year of 2002; thus, bias may result from earlier life-time exposures to air pollution. 21 150 The assessment of air pollution exposure was done at the place of residence. 	
22 The assessment of an ponution exposure was done at the place of residence.	
 but also at the workplace, during daily outdoor activities, and through commuting patterns. 	
 ²⁶ 154 We could not account for some important lifestyle covariates (e.g., smoking, alcohol 	
27	
20	
29 156 administrative data. 30 31 157 32 33 158 34 35 159 36 37 160	
31 157	
32	
33 158 34	
35 159	
36	
37 160	
38 39 161	
40	
41 162	
42 43 163	
44	
45 104	
46 47 165	
48	
49 166	
50	
51 167 52	
52 53 168	
54	
55 169	
56 57 170	
58	
59 171	
60 5	

1. Introduction

Air pollution is considered by the World Health Organisation as one of the largest environmental health risks in the 21st century ¹. Air pollution results in poor health and in increased hospital admissions, mortality, and doctor visits, mostly for cardiovascular, respiratory, and cancer diseases ²⁻⁸. For example, in Italy, long-term exposure to NO₂ (nitrogen dioxide) and PM2.5 (particulate-matter diameter $\leq 2.5 \mu m$) was associated with increased hospital admissions for circulatory diseases, myocardial infarction, lung cancer, kidney cancer, and lower-respiratory tract infections ⁹. Results from the "Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE)" project have shown elevated asthma, chronic obstructive pulmonary disease (COPD), and stroke incidence with higher long-term exposure to NO₂ PM2.5, and black carbon pollutants ¹⁰⁻¹², and elevated lung cancer incidence with higher exposure to PM2.5¹³. Similarly, the Danish "Health Effects of Air Pollution Components, Noise and Socioeconomic Status (HERMES)" project found an association between long-term exposure to PM2.5 and higher risks of stroke and myocardial infarction ¹⁴⁻¹⁶, and between NO₂ pollutant and higher diabetes risk¹⁷. A similar story was also shown with short-term exposures to PM10 (particulate-matter diameter $\leq 10 \,\mu$ m) and PM2.5 pollutants and increased respiratory hospital admissions in Poland ¹⁸.

Although the association between long-term exposure to air pollution and health is well-documented, most research is focused on mortality outcomes ^{4 7 19-32}. This is because of the ease of access to mortality databases, the less strict ethical considerations, and the straightforward analysis of mortality that occurs only once in the individual's life ².

Studies that investigate the association between long-term air pollution and health outcomes other than mortality often estimate a combined risk of mortality with the other health indicators such as hospital admissions or doctoral prescriptions and focus only on analysing the first hospital admission ¹² ¹⁴ ¹⁶. Besides, variations in the magnitude of effect estimates among studies have been identified in numerous systematic literature reviews and meta-analyses 2 33-³⁶. These discrepancies may be attributed to differences in the assessment of air pollution exposure, such as residential versus combined residential and workplace assessments, high versus low spatial resolution, or baseline versus annual assessments. Other contributing factors include variations in exposure levels, outcome measurements, study locations, population characteristics (e.g., age, sex, socioeconomic status), and study methodologies ^{35 36}. The differences in estimates also underscore the necessity for further research to obtain more conclusive evidence regarding the association between air pollution and health.

Additionally, over the past decade, the majority of literature has concentrated on investigating the health implications of NO₂, PM10, and PM2.5 exposure, with limited attention given to other pollutants like sulphur dioxide $(SO_2)^{2} 2^{3} 3^{5}$. This lack of emphasis on SO₂ may be attributed to a substantial decrease in its emissions, driven by the diminished use of coal in the energy sector and the desulfurization efforts in cars and power plants in developed nations ³⁷. Consequently, SO₂ has become a lower priority compared to other pollutants. Nonetheless, investigating the link between prolonged exposure to SO₂ and health outcomes, such as hospital

 $\begin{array}{ccc} 3 \\ 4 \\ 5 \end{array} & \begin{array}{c} 212 \\ 213 \end{array} & \begin{array}{c} admissions, remains crucial as even at reduced levels, SO_2 can still pose harm to human health \\ 3^7. \end{array}$

Finally, despite the literature availability on air pollution in relation to cardiovascular and respiratory diseases ²³, other health complications such as mental/behavioural disorders have not been thoroughly studied ^{38 39}. A recent study has also found an association between short-term exposure to PM2.5 and hospital admissions for rarely studied infectious diseases such as sepsis, kidney failure, urinary tract and skin infections ⁴⁰. This suggests the need for more studies that investigate the association between air pollution and less studied health outcomes such as infectious diseases and mental/behavioural disorders.

- Taken collectively, this study examines the association between long-term exposure to air pollution and all-cause and cause-specific hospital admissions. We distinguish between hospital admissions related to cardiovascular, respiratory, infectious, mental/behavioural disorders, and other illnesses. In examining these associations, we will be relying on administrative longitudinal individual-level data from a large Scottish cohort that will be linked to yearly 1 km² air pollution data using the individuals' residential postcodes for each year between 2002 and 2017. Our study attempts to develop previous research by contributing to the existing evidence on air pollution and health through the examination of multiple air pollutants (i.e., NO₂, SO₂, PM10, and PM2.5) in relation to multiple hospital admission outcomes over time.
 - 2. Methods

2.1. Design, sample, and structure

Variables

2.2.1. Hospital admissions

We used individual-level longitudinal prospective-cohort data from the Scottish Longitudinal Study (SLS). This is a representative dataset on 5% of the Scottish population which includes information from three linked censuses (1991, 2001, 2011) on individuals' socio-demographics, vital events records on marriages, births, and mortality (up to 2013), and migration and residential histories at the postcode level ⁷. To supplement SLS mortality data after 2013 through 2017, data on the individuals' year and month of death were obtained from Public Health Scotland (PHS) via Electronic Data Research and Innovation Service (eDRIS)⁷.

For this study, we followed 202,237 individuals aged 17⁺ with a total of 2,810,414 person-years between 2002 and 2017. Initially, information was sought for all identified individuals in the SLS aged 16 and above during the 2001 census (totalling 205,732 individuals). However, 36 individuals were excluded due to the absence of gender data, and 1,127 individuals (constituting 0.55%) were excluded due to missing postcode history. We also dropped 2001 observations (n=204,569) due to missing data on deaths that occurred prior to the census date (April 2001), which made 2001 death rate incomparable to the death rates at later years ⁷. The SLS cohort structure and the possibilities of entering and exiting the study between 2002 and 2017 are illustrated in a Lexis-diagram (Figure 1).

56 249

58 250 59 251

Page 9 of 51

BMJ Open

The month, year, and main underlying cause of hospital admissions were obtained from PHS and linked to SLS data by eDRIS using the individual's unique identification number. We then calculated the yearly count of all-cause and cause-specific hospital admissions for each SLS individual. Individuals who did not go to the hospital in a certain year were given a count of zero. The International Statistical Classification of Diseases, 10th Revision (ICD-10) codes of the main underlying cause of hospital admission were used to determine the cause-specific outcomes (Supplementary material Table 1) as follows: cardiovascular (I00-I99), respiratory (J00-J99), infectious (A00-B99), and mental/behavioural disorders (F00-F99).

2.2.2. Air pollution

Annual air pollution data encompassing all sources, including road traffic and industrial/combustion processes for NO₂, SO₂, PM10, and PM2.5, was acquired from the "Department for Environment Food and Rural Affairs (DEFRA)" ⁴¹. These data consist of raster representations indicating the average annual concentrations of pollutants measured in $\mu g/m^3$. Air dispersion models were utilized to estimate these concentrations at a spatial resolution of 1 Km² on the UK National Grid ⁴¹. These data were in turn linked to postcodes in Scotland obtained from the National Records of Scotland that fell within the 1 Km² raster cells for each year between 2002 and 2017. Figure 2 describes the concentrations of NO_2 , SO_2 , PM10, and PM2.5 pollutants in 2017 across the residential postcodes in Scotland. In a second step, we linked the data file of matched annual air pollution concentrations with postcodes with the data file of SLS residential postcode histories. Where individuals changed residential postcodes during a certain year, the postcode with the lengthiest monthly duration within that year was the one used 7 .

2.2.3. Study covariates

The association between air pollution and hospital admissions is influenced by several factors: (1) socioeconomic (e.g. age, gender, income, education, occupation, ethnicity, country of birth, economic activity)^{2 8 42}; (2) individual-lifestyle (e.g. pre-existing diseases, smoking, alcohol consumption, exercise, obesity) ^{8 43}; (3) contextual (e.g. neighbourhood, deprivation, rural-urban classifications) ^{43 44}; and (4) environmental (e.g. season, temperature, humidity, rainfall, wind) 45 .

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Accordingly, the following individual-level baseline socioeconomic covariates collected at the 2001 and 2011 censuses were included in our study: age, squared age (age²; to account for possible non-linear age effects), gender, ethnicity, country of birth, marital status, education, and occupation (Supplementary material Table 2). We additionally included a yearly-varying place of residence variable that classifies the individuals' residential postcodes into six rural-urban categories, based on the data-zone where the postcode is located. Calendar year dummies were also included for each year between 2002 and 2017 to control for the time trend.

55 288 **2.3. Analysis**

All-cause and cause-specific hospital admission counts, socioeconomic and place of residence
 covariates were described using frequencies, percentages, means, and variances. The mean and

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

correlation between the four pollutants were also calculated. Given the high correlations between NO₂, PM10, and PM2.5 (Pearson's coefficient ≥ 0.7), the association of the four pollutants with all-cause and cause-specific hospital admissions was assessed in separate models. SO_2 showed weak correlations (Pearson's coefficient <0.5) with the other pollutants, which enabled us to assess in a sensitivity analysis the association between NO₂, PM10, and PM2.5 and hospital admissions in two-pollutant models adjusting for SO₂.

We used multilevel mixed-effects negative binomial regression with a random intercept for individuals to study the association between air pollution and all-cause and cause-specific (cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes) hospital admissions. The negative binomial model was used because around 85% of annual individual observations did not include an admission into a hospital (a skewed distribution with a high number of zeros). Therefore, the variance of the count of hospital admissions is greater than the mean (Table 1), and the overdispersion parameter (α) for all hospital admission outcomes is greater than zero (Supplementary material Tables 4-9). This makes the negative binomial regression that can account for overdispersion in hospital admission counts more appropriate than Poisson regression ⁴⁶. In a sensitivity analysis, we treated the hospital admission outcomes as binary variables (0=Not admitted to hospital; 1=Admitted to hospital) and used multilevel mixed-effects logistic regression for analysis.

Three stepwise models were developed: Model 1 included the air pollution independent variable and controlled for age, age², gender and calendar year dummies; Model 2 controlled additionally for ethnicity, country of birth, marital status, education, and occupation; and Model 3 included the place of residence covariate.

The association of all-cause and cause-specific hospital admissions with the socioeconomic and place of residence covariates is shown in Supplementary material Tables 4-15. Results of the multilevel negative binomial regression are presented as incidence rate ratios (IRRs) with 95% confidence intervals (CIs) per 1 µg/m³ increase in pollutants and visualised in coefficient plots. Statistical significance is at a p-value of less than 0.05. Statistical analysis was conducted in STATA₁₆. Coefficient plots using ggplot package were performed in R Studio. Spatial pre-processing was conducted in ArcGIS-Pro software.

2.3.1. Additional analysis

To assess the impact of cumulative air pollution (CAP) exposure from year to year and across the different places of residence between 2002 and 2017, we repeated models 1 to 3 replacing the yearly air pollution variable with average CAP exposure. Following the methods of Bentayeb et al. (2015) 47, the CAP variable was calculated as the average of cumulative yearly exposure before censoring or death. Thus, for every individual, we computed the mean pollutant concentration from the baseline year (2002) to each year of follow-up (e.g., exposure in 2004 was calculated as the average of annual concentrations from 2002 to 2004; in 2005, from 2002 to 2005, etc).

2.4. **Ethics**

On May 14th, 2020, ethical clearance was obtained from the Ethics Committee of the University of St Andrews. Approval for accessing SLS data was granted by the SLS board, and access to linked data from PHS was authorized through the application to the Public Benefit and Privacy Panel for Health and Social Care (HSC-PBPP). Consent was not deemed necessary for this study as it relied on secondary data analysis. The tasks of data cleaning, management, and analysis were conducted within the secure settings of the SLS. Final outputs were cleared following a thorough screening protocol. Information classified as potentially disclosive such as full dates of birth, death and hospital admissions were not given for analysis. Instead, the researcher had access to the month and year of those events.

- 3. Results

3.1.

Hospital admissions description

Around 15% of person-years involved an admission into a hospital. The mean of all-cause hospital admissions was 0.3 (variance=1.6) with 8.6% of yearly individual observations including one hospital admission, 2.9% including two admissions, and 3.5% including 3 or more admissions. The mean of cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admission count was 0.04 (variance=0.14), 0.03 (variance=0.1), 0.005 (variance=0.01), 0.003 (variance=0.01), and 0.26 (variance=1.18), respectively (Table 1).

Study covariates description 3.2.

Most individuals were females (53%), belonged to white ethnicity (~95%), were born in Scotland (~87%), were married (~55%), had a post-school/university education (24% in 2002-2010; 34% in 2011-2017), worked in white collar high skilled (27% in 2002-2010; 33% in 2011-2017) or white collar low skilled (25% in 2002-2010; 29% in 2011-2017) jobs, and lived in large urban (35%) areas (Table 2).

3.3. Air pollution description

Fluctuations in air pollutant levels were observed across the years 2002 to 2017, with higher concentrations recorded in the initial three years (2002-2004) compared to subsequent years (Supplementary material Figure 1). Over the period from 2002 to 2017, the mean concentrations of NO₂, SO₂, PM10, and PM2.5 pollutants were 11.9 (SD=6.4), 1.9 (SD=1.5), 11.3 (SD=2.1), and 7.2 (SD=1.6) µg/m³, respectively (Supplementary material Table 3).

Significant correlations (Pearson's coefficient ≥ 0.7) were observed among NO₂, PM10, and PM2.5, potentially attributed to the atmospheric chemical reactions involving these pollutants (Supplementary material Table 3).

3.4. The association of air pollution with hospital admissions

Results revealed higher incidence of all-cause hospital admissions per 1 μ g/m³ increase in NO₂ (Model 2: IRR=1.005, 95%CI=1.004-1.006) and PM2.5 (Model 2: IRR=1.005, 95%CI=1.000-1.010) pollutants (Figure 3). Higher incidence rate ratios for cardiovascular (except for model 3), respiratory, and infectious hospital admissions were also shown with increasing

concentrations of NO₂, PM10 (except for model 3) and PM2.5 pollutants. After adjusting for socioeconomic variables and place of residence (model 3), the incidence rate for respiratory hospital admissions increased by 4.2% (95%CI=2.1%-6.3%) and 1.2% (95%CI=0.8%-1.7%) per 1 μ g/m³ increase in PM2.5 and NO₂, respectively. Higher exposure to SO₂ was associated with higher rates of respiratory hospital admissions only in models 1 and 2. Hospital admissions for mental/behavioural disorders were associated with higher exposure to NO₂ (IRR=1.021; 95%CI=1.011-1.031). Contrary to our expectations, higher exposure to SO₂ was associated with lower incidence rates for all-cause, mental/behavioural disorders, and other-causes hospital admissions in models 2 and 3 (Figure 3).

In a sensitivity analysis considering hospital admissions as binary (yes/no) outcomes, we observed similar results whereby a higher exposure to NO₂, PM10, and PM2.5 pollutants was associated with higher odds of cardiovascular, respiratory, and infectious hospital admissions. An exception was the absence of an association between NO₂ and PM2.5 pollutants and all-cause hospital admission treated as a binary (yes/no) outcome (Supplementary material Figure 4). Similar results were observed in two-pollutant models, which include SO₂ and one of the other three pollutants in the same model (Supplementary material Figures 2 and 5).

3.4.1. Average CAP results

Stronger positive associations were noticed in the analysis of average CAP effect on hospital admissions compared to the analysis of yearly air pollution effects. Higher average CAP concentrations for NO₂, PM10, and PM2.5 pollutants were associated with higher incidence rate ratios for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions. Cumulative exposure to SO₂ was associated with higher rates of respiratory hospital admissions in all three models. The incidence rate for respiratory hospital admissions increased by 12.6% (95%CI=9.9%-15.5%), 6.8% (95%CI=5.1%-8.5%), 2.8% (95%CI=1.1%-4.6%), and 2.1% (95%CI=1.7%-2.6%) per 1 μ g/m³ increase in average cumulative exposure to PM2.5, PM10, SO₂ and NO₂ pollutants, respectively. Higher cumulative exposure to SO₂ is not associated anymore with a lower incidence of mental/behavioural disorders hospital admissions (Supplementary material Figure 3). Similar results were noted when hospital admissions were treated as binary (yes/no) outcomes (Supplementary material Figure 6). This shows that long-term average cumulative exposure to air pollution has a greater effect on both physical and mental health outcomes, resulting in higher rates of hospital admissions.

4. Discussion

This study used a large and representative census-based individual-level cohort data linked to 1 km² resolution air pollution at the postcode level between 2002 and 2017. Analysis supported an association between long-term exposure to NO₂, SO₂, PM10 and PM2.5 pollutants and higher rates of all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions. The direction of these positive associations is concordant with previous studies investigating the long-term effects of different air pollutants on all-cause

- 407 ^{8 48 49}, cardiovascular ^{9 12 16 48}, respiratory ^{9-11 49}, and mental/behavioural disorders ⁵⁰ hospital
 408 admissions.
 409 Given the differences in population size, study location, air pollution exposure assessment and
- level, outcomes measurement, and methodology, we cannot compare directly the magnitude of our estimates to the estimates from other studies. Rather, we can conclude that our findings are in line with what previous literature has suggested with some noted heterogenieties. Some of these heterogenities might be due to residual confounding from unobserved factors. For example, our models adjusted only for socio-demographic and economic factors of individuals (e.g., age, squared age, gender, education, marital status, ethnicity, country of birth, and occupation), as well as for the time trend (i.e., year dummies) and place of residence (i.e., rural-urban area classifications). However, lifestyle covariates at the individual level, such as smoking, exercise, alcohol consumption, or body mass index, which could influence the relationship between air pollution and hospital admissions, were not considered due to their unavailability in the SLS register-based data. Accounting for these lifestyle covariates could result in a slight adjustment of association estimates, typically within the range of a 1-2%increase or decrease, depending on the specific outcome, as indicated by other studies 462551-⁵³. Similarly, our models did not incorporate environmental factors at the place of residence, such as noise pollution or the absence of green spaces. However, the impact on association magnitudes is anticipated to be minimal, with estimates showing a marginal attenuation of 0-3% increase or decrease, as documented in previous studies ^{17 53 54}. The adjustment of our models for the individual-level socioeconomic and rural-urban covariates might also absorb some of the residual confounding due to the interconnections between the individuals' socioeconomic circumstances, their lifestyle, and their surrounding environment.
- As for the positive association between long-term exposure to NO₂ PM10, and PM2.5 and infectious hospital admissions, the literature on this outcome is scarce. Yet, one study examining the association between short-term exposure to PM2.5 air pollution and hospital admissions for infectious diseases such as sepsis, urinary tract and skin infections corroborate our findings ⁴⁰.
- Our study showed that yearly exposures to different air pollutants can be associated with different hospital admission outcomes. For example, NO₂ was associated with all hospital admission outcomes, SO₂ was related to respiratory hospital admissions, while PM10 and PM2.5 were associated with respiratory and infectious hospital admissions. This could be related to the mechnisims of action of specific pollutants in producing toxic effects. Gaseous pollutants (e.g., NO₂ and SO₂) are irritants of the respiratory system that can penetrate deep in the lungs inducing respiratory irritation, mucus production, coughing, wheezing, bronchoconstriction, airways inflammation, bronchospasm and pulmonary-edema ^{2 55 56}. Long-term exposure to NO₂ is also related to the weakening of the immune system and to cardiovscular problems such as ventricle hypertrophy 55. Additionally, NO₂ exposure can trigger neuronal injury and neurological disorders through the formation of Reactive Oxygen Species (ROS) and free radicals ^{57 58}.
- ⁵⁶ 447 Despite the harmful effect of gaseous air pollutants (e.g., NO₂ and SO₂) on health, particulate⁵⁷ 448 matter especially particles with smaller diameters (e.g. PM2.5) have the greatest effect as
 ⁶⁰ 42

450 deeply into the respiratory system through air breathing reaching alveoli and blood stream.

451 This will initiate the oxidative stress mechanism and the production of ROS affecting various
452 systems in the human body including the respiratory, cardiovascular, immune, and neural
7 453 systems ^{2 55 56}.

We also observed elevated estimates for average cumulative compared to yearly air pollution exposures in relation to hospital admissions, particularly in relation to mental and behavioural disorders admissions. Whilst yearly exposure to SO₂ showed an unexpected negative association with mental/behavioural disorders hospital admissions, average cumulative exposure to SO₂ did not show this association. Higher exposure to cumulative PM10 and PM2.5 pollutants was also associated with a higher incidence of mental/behavioural disorders hospital admissions, while this association was not observed for yearly PM10 and PM2.5 exposures. This shows that the average accumulation of air pollution exposures across time and through different places of residence has a greater effect on health, especially for mental and behavioural complications that take time to show-up.

- Finally, adjusting our analysis for the place of residence (model 3), reduced the magnitude of associations between hospital admission outcomes and all the four pollutants. This suggests that the place of residence (urban versus rural) plays a crucial role in the intensity and duration of exposure to ambient air pollution and its associated illness. For example, air pollution emission sources are more abundant in urban areas and factors that can absorb the air pollution emissions (e.g., green spaces) are less available. Confirming to this, Figure 2 shows higher concentrations of traffic-related (i.e., NO_2) and industrial (i.e., SO_2) air pollution in the urban Central Belt of Scotland and in large cities. Figure 2 also shows high concentrations of PM10 and PM2.5 in major cities and along the east coast because particulate-matter pollution originates from both traffic and industrial sources and can travel for long distances based on the wind direction and other metereological and topological factors ⁵⁹⁻⁶¹.
- Despite the strengths of this study, it has some limitations. First, individuals were followed for 16 years (2002-2017); thus, bias may result from previous life-time exposures to air pollution at different residences. As shown in our analysis, average CAP exposure across the 16 years of study period had a greater effect on hospital admission rates compared to yearly exposures, particularly for mental/behavioural disorders.
- Second, the individuals' exposure to ambient air pollution was assessed at a yearly rather than monthly or daily basis which did not allow for seasonal variations, and the residential postcode was used as a proxy for the individual's exposure to air pollution. This does not necessarily equate to the true personal exposure, which can happen indoors, at the workplace, during daily outdoor activities, and through commuting patterns. Yet, the emergence of real-time GPS data would create an opportunity for future research to analyse real-time exposure to ambient air pollution by knowing the real-time location of individuals.
- Finally, we could not account for some important lifestyle covariates (e.g., smoking or exercise) as discussed previously due to the unavailability of this information in the SLS census-based data. However, using administrative data has its advantages including high quality large representative data, less selection bias, and the provision of continuous longitudinal information on residential postcode histories, emigrations and immigrations, and mortality and births vital events. Knowing the exact postcode histories of individuals between

496

1 2 3

4

5

6 7

8 9

10

11

12 13

14

15

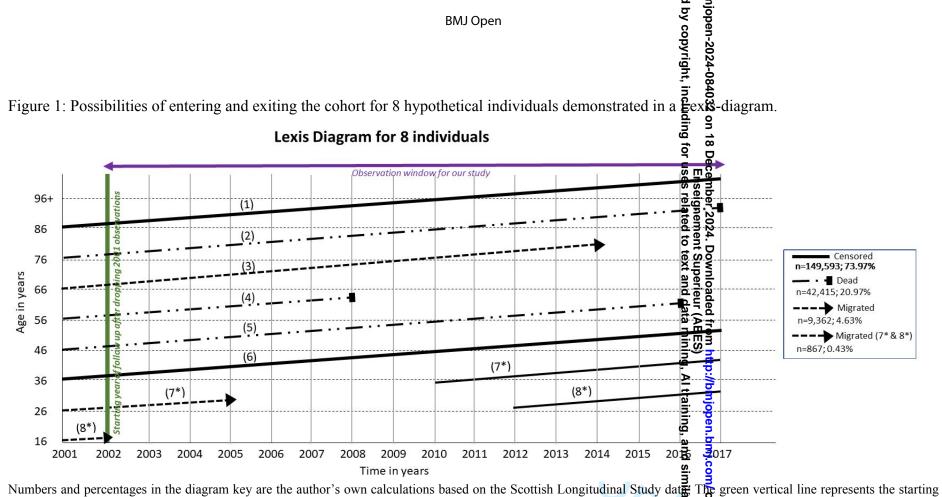
16

493 2002 and 2017 as provided in the SLS census-based data was also essential to obtain accurate
494 assessments of individual's residential air pollution exposure.

5. Conclusion

497 This study supported an association between long-term exposure to air pollution and all-cause 498 and cause-specific hospital admissions. Air pollution was associated with higher rates of 499 hospital admissions for both physical (e.g., respiratory, cardiovascular, and infectious) and 500 mental/behavioural diseases. Policies and interventions on air pollution through stricter 501 environmental regulations, long-term planning, and the shifting toward renewable energy could 502 eventually help ease the hospital-care burden in Scotland in the long-term.

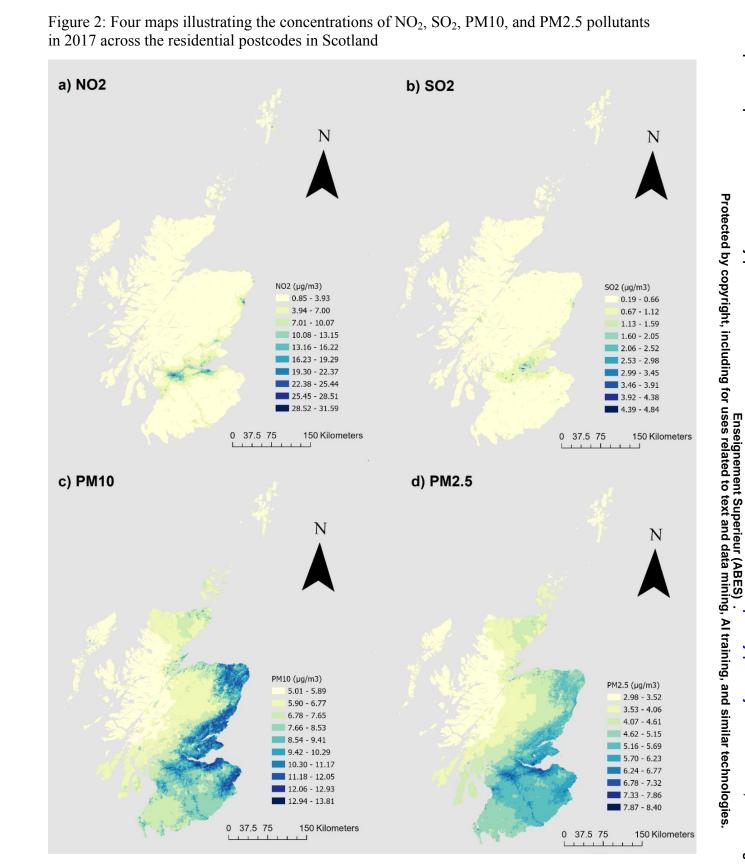
10	302	eventually help case the hospital-care burden in Sebiland in the long-term.
17		
18	503	
19		
20		
20	F04	
21	504	
22		
23		
24	505	
27		
25		
26		
27	506	
28		
29		
30	507	
21		
31		
32	F.0.0	
33	508	
34		
35		
36	509	
20		
37		
38	F10	
39	510	
40		
41		
42	511	
42		
43		
44	F13	
45	512	
46		
47		
48	513	
40		
49		
50	514	
51	514	
52		
53		
54	515	
54		
55		
56	516	
57	210	
58		
59		
60		
00		14


2		
3	517	References
4		
5		
6 7	518	1. Campbell-Lendrum D, Prüss-Ustün A. Climate change, air pollution and noncommunicable
8	519	diseases. Bull World Health Organ 2019;97(2):160-61. doi: 10.2471/BLT.18.224295
9	520	[published Online First: 2018/12/19]
10	521	2. Abed Al Ahad M, Sullivan F, Demšar U, et al. The effect of air-pollution and weather exposure on
11	522	mortality and hospital admission and implications for further research: A systematic scoping
12	523	review. <i>PLoS One</i> 2020;15(10):e0241415. doi: 10.1371/journal.pone.0241415
13	524	3. Dominski FH, Lorenzetti Branco JH, Buonanno G, et al. Effects of air pollution on health: A
14	525	mapping review of systematic reviews and meta-analyses. Environmental Research
15	526	2021;201:111487. doi: https://doi.org/10.1016/j.envres.2021.111487
16	527	4. Fischer PH, Marra M, Ameling CB, et al. Air Pollution and Mortality in Seven Million Adults: The
17	528	Dutch Environmental Longitudinal Study (DUELS). Environmental Health Perspectives
18	529	2015;123(7):697-704. doi: 10.1289/ehp.1408254
19	530	5. Abed Al Ahad M, Demšar U, Sullivan F, et al. Does Long-Term Air Pollution Exposure Affect Self-
20	531	Reported Health and Limiting Long Term Illness Disproportionately for Ethnic Minorities in
21 22	532	the UK? A Census-Based Individual Level Analysis. Applied Spatial Analysis and Policy 2022
22	533	doi: 10.1007/s12061-022-09471-1
24	534	6. Abed Al Ahad M, Demšar U, Sullivan F, et al. The spatial–temporal effect of air pollution on
25	535	
26		individuals' reported health and its variation by ethnic groups in the United Kingdom: a
27	536	multilevel longitudinal analysis. BMC Public Health 2023;23(1):897. doi: 10.1186/s12889-
28	537	023-15853-y
29	538	7. Abed Al Ahad M, Demšar U, Sullivan F, et al. Long-term exposure to air pollution and mortality in
30	539	Scotland: A register-based individual-level longitudinal study. Environmental Research
31	540	2023;238:117223. doi: <u>https://doi.org/10.1016/j.envres.2023.117223</u>
32	541	8. Abed Al Ahad M. The association of long-term exposure to outdoor air pollution with all-cause GP
33	542	visits and hospital admissions by ethnicity and country of birth in the United Kingdom. <i>PLOS</i>
34 25	543	ONE 2023;18(10):e0275414. doi: 10.1371/journal.pone.0275414
35 36	544	9. Gandini M, Scarinzi C, Bande S, et al. Long term effect of air pollution on incident hospital
37	545	admissions: Results from the Italian Longitudinal Study within LIFE MED HISS project.
38	546	Environment International 2018;121:1087-97. doi:
39	547	https://doi.org/10.1016/j.envint.2018.10.020
40	548	10. Shuo L, Jeanette Therming J, Petter L, et al. Long-term exposure to low-level air pollution and
41	549	incidence of asthma: the ELAPSE project. European Respiratory Journal 2020:2003099. doi:
42	550	10.1183/13993003.030992020
43	551	11. Liu S, Jørgensen JT, Ljungman P, et al. Long-term exposure to low-level air pollution and
44	552	incidence of chronic obstructive pulmonary disease: The ELAPSE project. Environment
45	553	International 2021;146:106267. doi: https://doi.org/10.1016/j.envint.2020.106267
46	554	12. Wolf K, Hoffmann B, Andersen ZJ, et al. Long-term exposure to low-level ambient air pollution
47	555	and incidence of stroke and coronary heart disease: a pooled analysis of six European
48	556	cohorts within the ELAPSE project. <i>The Lancet Planetary Health</i> 2021;5(9):e620-e32. doi:
49 50	557	https://doi.org/10.1016/S2542-5196(21)00195-9
51	558	13. Hvidtfeldt UA, Severi G, Andersen ZJ, et al. Long-term low-level ambient air pollution exposure
52	559	and risk of lung cancer – A pooled analysis of 7 European cohorts. <i>Environment International</i>
53	560	2021;146:106249. doi: <u>https://doi.org/10.1016/j.envint.2020.106249</u>
54	560 561	
55		14. Poulsen AH, Sørensen M, Hvidtfeldt UA, et al. Concomitant exposure to air pollution, green
56	562	space, and noise and risk of stroke: a cohort study from Denmark. <i>The Lancet Regional</i>
57	563	Health – Europe 2023;31 doi: 10.1016/j.lanepe.2023.100655
58	564	15. Poulsen AH, Sørensen M, Hvidtfeldt UA, et al. Air pollution and myocardial infarction; effect
59	565	modification by sociodemographic and environmental factors. A cohort study from
60		15

Denmark. Environmental Research 2023;229:115905. doi:

ic Air Pollution Including Ultrafine Cohort Study from Denmark. pi: 10.1289/EHP10556 Id traffic noise and lack of ospective study covering i:	-
on hospital admissions with a ysis. <i>Environmental Science and</i> 's11356-019-04781-3 Il exposure to PM2.5, PM10, black <i>Environment International</i> <u>18.12.010</u> sposure to Air Pollution and orts. <i>Epidemiology</i> 2014;25(3):368-	Enseignement Superieur (ABEt Protected by copyright, including for uses related to text and data mir
evels of air pollution and mortality dy. <i>Environment International</i> 20.105983 en fine particulate matter and ment Cohort. <i>Environmental</i> <u>envres.2017.08.037</u> Particulate Air Pollution in a	Enseig including for uses rel
<i>I Health Perspectives</i> haccidental and Cardiovascular ntrations of Fine Particulate	nement Super ated to text an
nental Health Perspectives 3, and NO2 Exposures and the Canadian Census Health and spectives 2015;123(11):1180-86.	201
rm exposure to air pollution and <i>inicalMedicine</i> 2020;28 doi:	Al training, ar
diovascular mortality with over orts. <i>Environment International</i> <u>6.12.004</u> term and long-term air pollution tland. <i>Environ Health Perspect</i> I Online First: 20120606] to fine particle elemental opean administrative cohorts <i>int</i> 2022;809:152205. doi:) . ing, Al training, and similar technologies.
llution and mortality in a t International 2021;154:106570.	

2		
3	617	31. Stafoggia M, Oftedal B, Chen J, et al. Long-term exposure to low ambient air pollution
4 5	618	concentrations and mortality among 28 million people: results from seven large European
5 6	619	cohorts within the ELAPSE project. <i>The Lancet Planetary Health</i> 2022;6(1):e9-e18. doi:
7	620	https://doi.org/10.1016/S2542-5196(21)00277-1
8	621	32. Strak M, Weinmayr G, Rodopoulou S, et al. Long term exposure to low level air pollution and
9	622	mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ
10	623	2021;374:n1904. doi: 10.1136/bmj.n1904
11	624	33. Hoek G, Krishnan RM, Beelen R, et al. Long-term air pollution exposure and cardio- respiratory
12	625	mortality: a review. <i>Environmental Health</i> 2013;12(1):43. doi: 10.1186/1476-069X-12-43
13	626	34. Pope CA, Coleman N, Pond ZA, et al. Fine particulate air pollution and human mortality: 25+
14 15	627	years of cohort studies. Environmental Research 2020;183:108924. doi:
16	628	https://doi.org/10.1016/j.envres.2019.108924
17	629	35. Vodonos A, Awad YA, Schwartz J. The concentration-response between long-term PM2.5
18	630	exposure and mortality; A meta-regression approach. Environmental Research
19	631	2018;166:677-89. doi: <u>https://doi.org/10.1016/j.envres.2018.06.021</u>
20	632	36. Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A
21	633	systematic review and meta-analysis. Environment International 2020;143:105974. doi:
22	634	https://doi.org/10.1016/j.envint.2020.105974
23 24	635	37. O'Brien E, Masselot P, Sera F, et al. Short-Term Association between Sulfur Dioxide and
24 25	636	Mortality: A Multicountry Analysis in 399 Cities. Environmental Health Perspectives
26	637	2023;131(3):037002. doi: 10.1289/EHP11112
27	638	38. Abed Al Ahad M, Demšar U, Sullivan F, et al. Air pollution and individuals' mental well-being in
28	639	the adult population in United Kingdom: A spatial-temporal longitudinal study and the
29	640	moderating effect of ethnicity. PLoS One 2022;17(3):e0264394. doi:
30	641	10.1371/journal.pone.0264394
31	642	39. Bakolis I, Hammoud R, Stewart R, et al. Mental health consequences of urban air pollution:
32 33	643	prospective population-based longitudinal survey. Social Psychiatry and Psychiatric
33 34	644	<i>Epidemiology</i> 2020 doi: 10.1007/s00127-020-01966-x
35	645	40. Wei Y, Wang Y, Di Q, et al. Short term exposure to fine particulate matter and hospital admission
36	646	risks and costs in the Medicare population: time stratified, case crossover study. BMJ
37	647	2019;367:l6258. doi: 10.1136/bmj.l6258
38	648	41. Department-for-Environment-Food-and-Rural-Affairs. Modelled background pollution data,
39	649	2020.
40	650	42. Carugno M, Consonni D, Randi G, et al. Air pollution exposure, cause-specific deaths and
41 42	651	hospitalizations in a highly polluted Italian region. <i>Environmental Research</i> 2016;147:415-24.
42 43	652	doi: 10.1016/j.envres.2016.03.003
44	653	43. Oudin A, Strömberg U, Jakobsson K, et al. Estimation of Short-Term Effects of Air Pollution on
45	654	Stroke Hospital Admissions in Southern Sweden. <i>Neuroepidemiology</i> 2010;34(3):131-42. doi:
46	655	10.1159/000274807
47	656	44. Tonne C, Halonen JI, Beevers SD, et al. Long-term traffic air and noise pollution in relation to
48	657	mortality and hospital readmission among myocardial infarction survivors. Int J Hyg Environ
49 50	658	Health 2016;219(1):72-8. doi: 10.1016/j.ijheh.2015.09.003 [published Online First:
50 51	659	2015/10/12]
52	660	45. Stafoggia M, Zauli-Sajani S, Pey J, et al. Desert Dust Outbreaks in Southern Europe: Contribution
53	661	to Daily PM10 Concentrations and Short-Term Associations with Mortality and Hospital
54	662	Admissions. Environmental Health Perspectives 2016;124(4):413-19. doi:
55	663	10.1289/ehp.1409164
56	664	46. Payne EH, Gebregziabher M, Hardin JW, et al. An empirical approach to determine a threshold
57	665	for assessing overdispersion in Poisson and negative binomial models for count data.
58 50	666	Commun Stat Simul Comput 2018;47(6):1722-38. doi: 10.1080/03610918.2017.1323223
59 60	667	[published Online First: 2018/12/18]
00		17

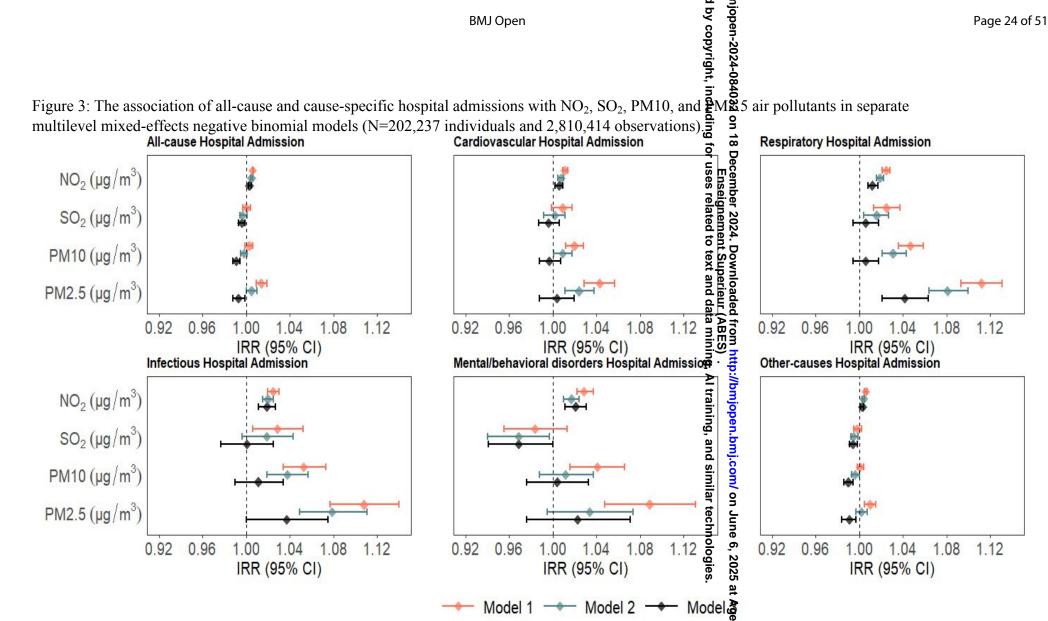

1		
2 3		
4	668	47. Bentayeb M, Wagner V, Stempfelet M, et al. Association between long-term exposure to air
5	669	pollution and mortality in France: A 25-year follow-up study. <i>Environment International</i>
6	670	2015;85:5-14. doi: <u>https://doi.org/10.1016/j.envint.2015.08.006</u>
7	671	48. Yazdi MD, Wang Y, Di Q, et al. Long-Term Association of Air Pollution and Hospital Admissions
8	672	Among Medicare Participants Using a Doubly Robust Additive Model. <i>Circulation</i>
9	673	2021;143(16):1584-96. doi: doi:10.1161/CIRCULATIONAHA.120.050252
10	674	49. Danesh Yazdi M, Wang Y, Di Q, et al. Long-term exposure to PM2.5 and ozone and hospital
11 12	675	admissions of Medicare participants in the Southeast USA. Environment International
13	676	2019;130:104879. doi: <u>https://doi.org/10.1016/j.envint.2019.05.073</u>
14	677	50. Newbury JB, Stewart R, Fisher HL, et al. Association between air pollution exposure and mental
15	678	health service use among individuals with first presentations of psychotic and mood
16	679	disorders: retrospective cohort study. <i>Br J Psychiatry</i> 2021;219(6):678-85. doi:
17	680	10.1192/bjp.2021.119
18	681	51. Carey IM, Atkinson RW, Kent AJ, et al. Mortality Associations with Long-Term Exposure to
19 20	682	Outdoor Air Pollution in a National English Cohort. American Journal of Respiratory and
20	683	<i>Critical Care Medicine</i> 2013;187(11):1226-33. doi: 10.1164/rccm.201210-17580C
21 22	684	52. Chen H, Goldberg MS, Burnett RT, et al. Long-Term Exposure to Traffic-Related Air Pollution and
23	685	Cardiovascular Mortality. <i>Epidemiology</i> 2013;24(1):35-43.
24	686	53. Nieuwenhuijsen MJ, Gascon M, Martinez D, et al. Air Pollution, Noise, Blue Space, and Green
25	687	Space and Premature Mortality in Barcelona: A Mega Cohort. Int J Environ Res Public Health
26	688	2018;15(11) doi: 10.3390/ijerph15112405
27	689	54. Yuchi W, Sbihi H, Davies H, et al. Road proximity, air pollution, noise, green space and neurologic
28	690	disease incidence: a population-based cohort study. <i>Environmental Health</i> 2020;19(1):8. doi:
29	691	10.1186/s12940-020-0565-4
30 31	692	55. Manisalidis I, Stavropoulou E, Stavropoulos A, et al. Environmental and Health Impacts of Air
32	693	Pollution: A Review. Front Public Health 2020;8:14-14. doi: 10.3389/fpubh.2020.00014
33	694	56. Costa S, Ferreira J, Silveira C, et al. Integrating Health on Air Quality Assessment—Review Report
34	695	on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. Journal of
35	696	Toxicology and Environmental Health, Part B 2014;17(6):307-40. doi:
36	697	10.1080/10937404.2014.946164
37	698	57. Yan W, Ji X, Shi J, et al. Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat
38	699	brain. Environ Res 2015;138:416-24. doi: 10.1016/j.envres.2015.02.022 [published Online
39 40	700	First: 2015/03/21]
40 41	701	58. Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and
42	702	Alzheimer's disease - Evidence from epidemiological and animal studies. <i>Biomed J</i>
43	703	2018;41(3):141-62. doi: 10.1016/j.bj.2018.06.001 [published Online First: 2018/07/17]
44	704	59. Jyethi DS. Air Quality: Global and Regional Emissions of Particulate Matter, SOx, and NOx. In:
45	705	Kulshrestha U, Saxena P, eds. Plant Responses to Air Pollution. Singapore: Springer
46	706	Singapore 2016:5-19.
47	707	60. Wood M, Wood C, Styring P, et al. Perceptions of accountability and trust in the regulatory
48 40	708	governance of wood burning stove sustainability: Survey evidence from the post-Brexit UK.
49 50	709	Energy Policy 2023;177:113549. doi: https://doi.org/10.1016/j.enpol.2023.113549
51	710	61. Malek E, Davis T, Martin RS, et al. Meteorological and environmental aspects of one of the worst
52	711	national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA.
53	712	Atmospheric Research 2006;79(2):108-22. doi:
54	713	https://doi.org/10.1016/j.atmosres.2005.05.003
55	714	
56		
57	715	
58 59		
60		10
		18

 Page 20 of 51

year of follow-up (2002) after dropping the 2001 observations; Individuals can either be followed-up until the last year of observation which is 2017 where they are censored (e.g., individuals 1 and 6), or can die (e.g., individuals 2, 4, and 5), or can migrate without returning to Scotland during the observation period 2002-2017 (e.g., individual 3), or can migrate and then return to Scotland and thus to our study within the follow-up period (e.g., individuals 7 and 8). In this zonext, individual 7 is being followed between 2002 and 2005 and then between 2010 and 2017, inclusive. The years spent by individual 7 outside Scotland (2006-2009) due to migration are dropped from the analysis. A similar situation is experienced by individual 8 who was present in 2002 and then was followed from 2012 to 2017 with years Spent broad (2003-2011) due to migration being removed from the analysis. This lexis diagram further reveals that individuals can enter and exit the cohort based on four scenarios. First, individuals can be followed for the whole study period (2002-2017) and then either be censored, migrate, or die in 2017. Second, individuals can exit the cohort before 2017 due to death at any year during the follow-up period (2002-2017). Third, individuals can exit the cohort due to migration out of Scotland, without returning during the follow-up time (2002-2017). Fourth, individuals can exit the cohort due to out migration, but then they re-enter the cohort in later years due to returning to Scotland within the follow-up time (2002-2017). If individuals migrate out of Scotland and then return in the same year, this short-term migration is disregarded because the individual stayed in Scotland for some months of the full calendar year. If an individual comes back to Scotland from a previous year migration and then migrates out again within the ame year, the individuals' observation for that year is kept because some months out of the full calendar year have been spent in Scotland. ographique

de

The map was constructed by the authors in ArcGIS Pro software using air pollution shapefiles for the year of 2017 downloaded from the DEFRA online data repository ⁴¹ and postcode boundaries shapefiles obtained from the National Records of Scotland. Both DEFRA and National Records of Scotland shapefiles are governed under the Open Government Licence v.3.0.


Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

	Frequency	%	Mean	Variance
All-cause hospital admission	- •		0.33	1.64
0	2388584	85		
1	241717	8.6		
2	80813	2.9		
3+	99300	3.5		
Cardiovascular hospital admission			0.04	0.14
0	2753992	98		
1	29432	1.1		
2	13091	0.5		
3+	13899	0.5		
Respiratory hospital admission			0.03	0.10
0	2773192	98.7		
1	19685	0.7		
2	9538	0.3		
3+	7999	0.3		
Infectious hospital admission 🚫			0.005	0.01
0	2802217	99.7		
1	5174	0.2		
2	1937	0.1		
3+	1086	0.04		
Mental/behavioural disorders			0.003	0.01
hospital admission				
0	2804737	99.8		
1	3521	0.1		
2	1263	0.04		
3+	893	0.03		
Other-causes hospital admission			0.26	1.18
0	2448665	87.1		
1	225980	8.0		
2	66976	2.4		
3+	68793	2.5		

Data source: Author's own calculations based on the Scottish Longitudinal Study data.

		Census-fixed	socioeconomic individu	· · · · · · · · · · · · · · · · · · ·	=202,23
		2002-2010		2011-2017	
		Frequency	%	Frequency	%
Gender	Male	94859	46.9	80282	46.9
	Female	107314	53.1	90753	53.1
Ethnicity	White	192485	95.2	163571	95.6
	Not-white	9688	4.8	7464	4.4
Ethnicity-3	White	192485	95.2	163571	95.6
categories	Pakistani/Bangladeshi/Indian	1525	0.8	1323	0.8
	Other ethnicities	8163	4.0	6141	3.6
Country of	Born in Scotland	173229	85.7	149018	87.1
birth	Born in rest of UK	19649	9.7	15340	9.0
	Not born in UK	9295	4.6	6677	3.9
Marital	Married	104386	51.6	93867	54.9
Status	Single never married	58396	28.9	38979	22.8
	Divorced/separated/widowed	38481	19.0	37770	22.1
	No response	910	0.5	419	0.2
Education	No educational qualification	60311	29.8	53223	31.1
	Intermediate school	44854	22.2	36561	21.4
	High school 🧹	27844	13.8	20343	11.9
	Post-school/university	48251	23.9	58781	34.4
	Still a student	688	0.3	53	0.0
	No response/not recoded	20225	10.0	2074	1.2
Occupation	White collar high skilled	54299	26.9	55595	32.5
	White collar low skilled	50325	24.9	49202	28.8
	Blue collar high skilled	20530	10.2	20500	12.0
	Blue collar low skilled	46718	23.1	38173	22.3
	Not applicable:	25535	12.6	5793	3.4
	students/never worked				
	No response	4766	2.4	1772	1.0
Total		202173	100	171035	100
		Yearly	varying covaria		414
Age		Mean=52.53	observati SD=17.57	onsj	
nge		Frequency	%		
Place of	Large Urban areas	977697	34.8		
residence	Other urban areas	815048	29.0		
	Accessible small towns	207083	29.0 7.4		
	Remote small towns	67776	2.4		
	Accessible Rural areas	528929	18.8		
Data source: Au	Remote rural areas thor's own calculations based on th	213881 e Scottish Longiti	7.6 udinal Study data		

Table 2: Description of socioeconomic study covariates

Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at IRR=1 as a cut of for statistically insignificant results; Model 1 is adjusted for age, age², gender and calendar year dummies; Model 2= Model 1 + ethnicity + country of birth + marital status + education + occupation; Model 3= Model 2 + place of residence. iographique

de

Supplemental Material

Contents

ICD-10 codes for classification of the main cause of hospital admissions	2
Socioeconomic and contextual covariates description	3
Description of air pollution	4
The association between air pollution and hospital admissions in two-pollutant mode	els6
The association between cumulative air pollution (CAP) exposure and hospital admis	ssions7
The association between hospital admissions and the socioeconomic and contextual c	ovariates8
The association between air pollution and hospital admissions binary (yes/no) outcom	ne17
The association between air pollution and hospital admissions binary (yes/no) outcom pollutant models	
The association between cumulative air pollution (CAP) exposure and hospital admis binary (yes/no) outcome	
The association between hospital admissions binary (yes/no) outcome and the socioec and contextual covariates	

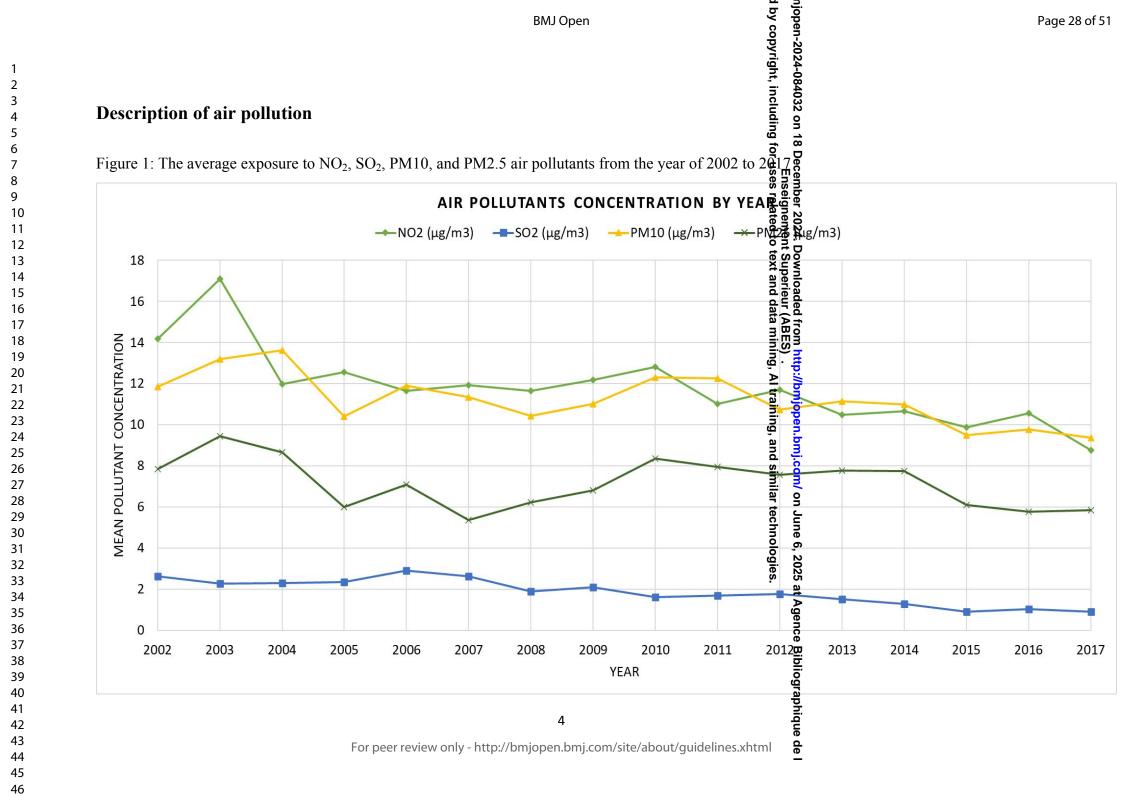
ICD-10 codes for classification of the main cause of hospital admissions

Table 1: Classification of the cause-specific hospital admission outcomes based on the ICD-10 codes of the main underlying cause of hospital admission

Cause-specific hospital admission outcomes	ICD-10 codes of the main underlying cause o hospital admission
Cardiovascular	100-199
Respiratory	J00-J99
Infectious	A00-B99
Mental and behavioural disorders including dementia, mental retardation, schizophrenia, schizotypal, delusional disorders, mood disorders, neurotic, stress-related and somatoform disorders, and mental and behavioural disorders due to psychoactive substance use and alcohol	F00-F99
Other causes hospital admission	All other causes of hospital admission excluding cardiovascular, respiratory, infectious, and mental/behavioural disorders causes
CD-10 codes are accessed from the WHO. (2016). Intend Related Health Problems 10th Revision. <u>https://icc</u>	

Socioeconomic and contextual covariates description

Table 2: Description of the socioeconomic and contextual covariates included in the study

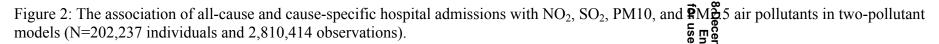

Covariates	Description
Age	Age was calculated using the individuals' month and year of birth as per the below equation. For example, if an individual is born in June (month=06) 1982, he/she will be given the age of 19.5 at the beginning of the year 2002 and will age by one year with each additional year of follow-up.
	$Age_i = Year_{2002-2017} - (M \ birth_i \times (1 \div 12) + Y \ birth_i)$
	Where Age_i is the individual's age; $Year_{2002-2017}$ is the year of follow-up ranging between 2002 and 2017; <i>M birth_i</i> is the month of birth for individual is and <i>V birth</i> is the year of birth for individual is
A 2	i; and Y birth _i is the year of birth for individual i.
Age ²	We also considered the possible non-linear effect of individuals' age and introduced a square term of age as an additional covariate following the approach of other researchers (Liu et al., 2021; Pereira Gray et al., 2017).
Gender	1=male; 2=female
Ethnicity	1=White; 2=Not-white
Country of birth	1=born in Scotland; 2=born in rest of UK; 3=born outside UK
Marital status	1=married; 2=single never married; 3=divorced/separated/widowed; 4=No response
Education	1=No educational qualification; 0=Intermediate school [reference category]; 2=High school qualification; 3=Post-school/university; 4=Still a student; 5=Not recoded/No response
Occupation	1=White collar high skilled: Managers, professionals, Associate professionals; 2=White collar low skilled: Administrative, service, care and shop sales; 3=Blue collar high skilled: Skilled trades occupations; 4=Blue collar low skilled: Process, Plant, Machine operatives and elementary occupations; 5=Not applicable: students/never worked; 6=No response
Place of residence	1=Large Urban areas: Settlements of 125,000 people and over; 2=other urban areas: Settlements of 10,000 to 124,999 people; 3=Accessible small towns: Settlements of 3,000 to 9,999 people, and within 30 minute drive time of a Settlement of 10,000 or more; 4=Remote small towns: Settlements of 3,000 to 9,999 people, and within 30 minutes to a Settlement of 10,000 or more; 5=Accessible Rural areas: Areas with a population of less than 3,000 people, and within 30 minute drive time of a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more (Scottish-Government, 2021).

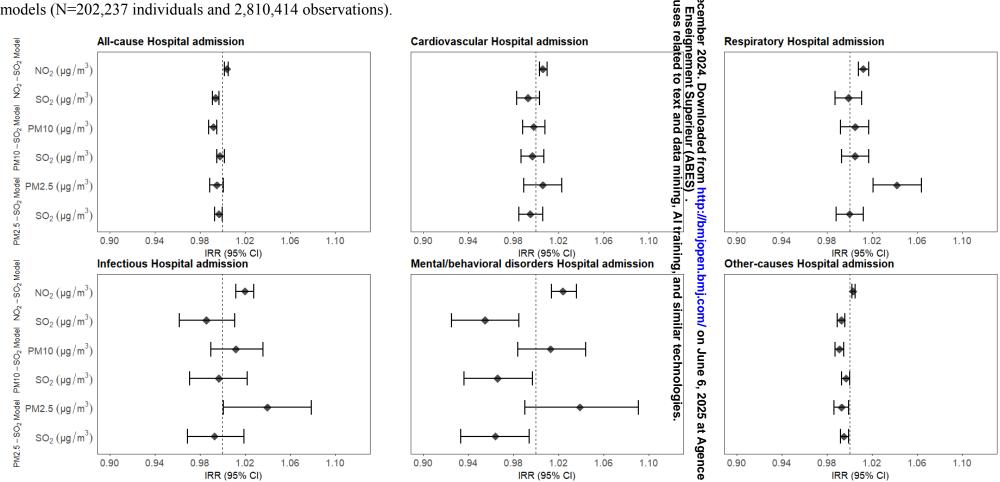
Citations:

Liu, Y., Zhu, K., Li, R.-L., Song, Y., & Zhang, Z.-J. (2021). Air Pollution Impairs Subjective Happiness by Damaging Their Health. *International journal of environmental research and public health*, 18(19), 10319. <u>https://doi.org/10.3390/ijerph181910319</u>

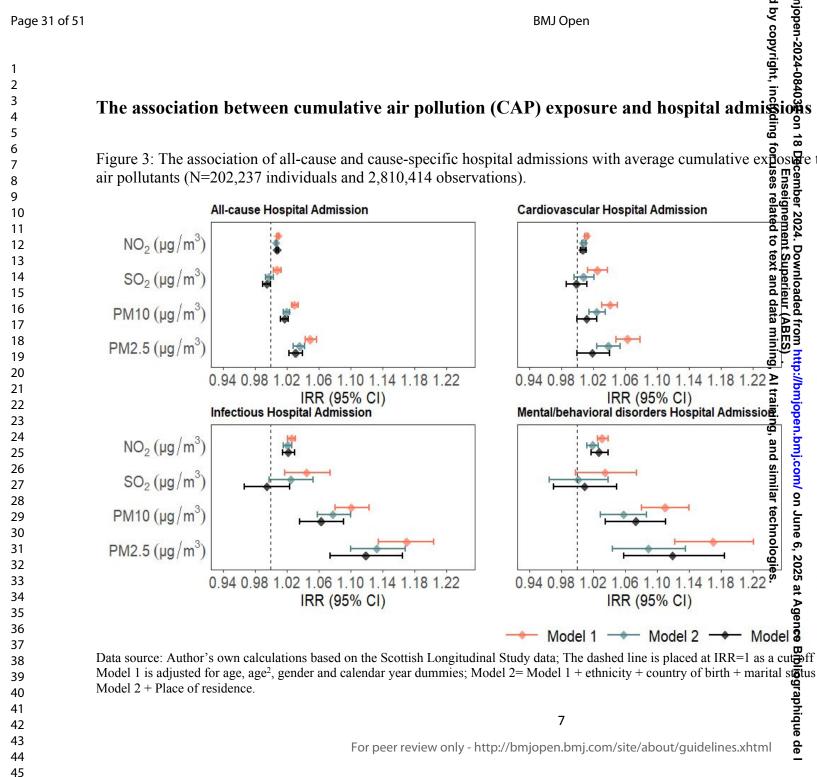
Pereira Gray, D., Henley, W., Chenore, T., Sidaway-Lee, K., & Evans, P. (2017). What is the relationship between age and deprivation in influencing emergency hospital admissions? A model using data from a defined, comprehensive, all-age cohort in East Devon, UK. *BMJ Open*, 7(2), e014045. https://doi.org/10.1136/bmjopen-2016-014045

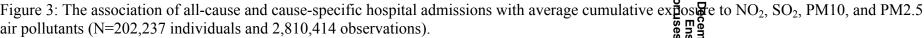
Scottish-Government. (2021). Urban Rural Classification (6-Fold) <u>https://statistics.gov.scot/data/urban-rural-classification</u>

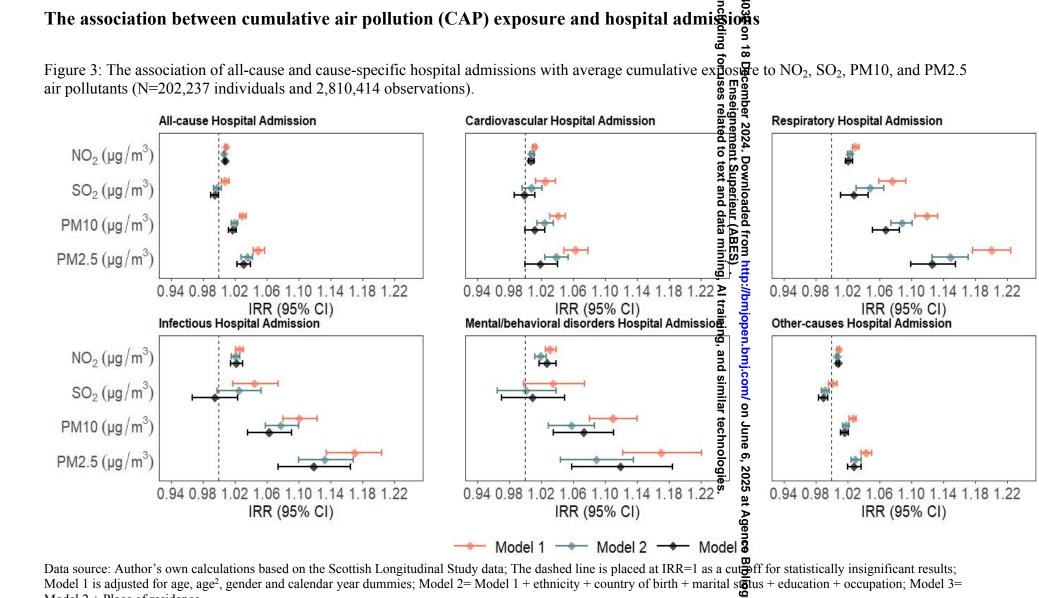



Table 3: Descripti	on of air pollution.		BMJ Open	njopen-2024-084032 on 18 Decembe Enseig d by copyright, including for uss PM2.55 re
	_	<u> </u>) $\mathbf{DM10}(u = (u = 3)$	for us mec.
Mean	<u>NO₂ (μg/m³)</u> 11.9	$\frac{\text{SO}_2(\mu\text{g/m}^3)}{1.9}$) PM10 (μg/m ³) 11.3	
Standard deviation		1.5	2.1	7.2 related 1.6 tedated
Median	11.2	1.6	11.2	
Interquartile Range		1.3	2.8	
		relation matrix of air	1	
$NO_2(\mu g/m^3)$	$NO_2(\mu g/m^3)$ 1.0	$SO_2(\mu g/m^3)$ H	PM10 (µg/m ³) PM2.5	$(\mu g/m^2)$ at $\hat{A} = \hat{A}$
$SO_2(\mu g/m^3)$	0.3	1.0		mir
$PM10 (\mu g/m^3)$	0.5		.0	۱ htt ۱ing
PM2.5 ($\mu g/m^3$)	0.7			ι, ρ: <u>//</u>
			dy data.	7.1 0 bwmloaded 2.3 tf Superieur 1 Superieur 2.3 tf Superieur (μg/m³) 4ta mining, and similar technologies. (μg/m³) 4training, and similar technologies.

njopen-2024-084032 o


de


BMJ Open The association between air pollution and hospital admissions in two-pollutant mode



Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at IR R=1 as a cut-off for statistically insignificant results; The two-pollutant models which include SO₂ + one of the other three pollutants are adjusted for a^{2}_{2} , a^{2}_{2} , dummies, ethnicity, country of birth, marital status, education, occupation, and place of residence. aphique

7

aphique

de

The association between hospital admissions and the socioeconomic and contextual covariates

Table 4: The association of all-cause hospital admissions with the socioeconomic and contextual covariates

Covariates	IRR	Lower 95% CI	Upper 95% CI	P-value
Age	0.970	0.968	0.972	0.000
Åge2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.996	0.981	1.010	0.571
Year dummies: 2002				
2003	0.981	0.961	1.000	0.053
2004	0.998	0.978	1.018	0.812
2005	1.017	0.997	1.038	0.096
2006	1.040	1.020	1.061	0.000
2007	1.088	1.066	1.110	0.000
2008	1.129	1.106	1.152	0.000
2009	1.156	1.132	1.179	0.000
2010	1.160	1.137	1.184	0.000
2011	1.173	1.150	1.198	0.000
2012	1.214	1.189	1.239	0.000
2013	1.246	1.221	1.272	0.000
2014	1.274	1.247	1.301	0.000
2015	1.318	1.291	1.346	0.000
2016	1.346	1.318	1.375	0.000
2017	1.345	1.317	1.374	0.000
Ethnicity: White				
Not-White	1.047	1.011	1.084	0.011
Country of birth: Born in Scotland				
Born in rest of UK	0.865	0.845	0.886	0.000
Born outside UK	0.805	0.775	0.836	0.000
Marital Status: Married				
Single never married	0.970	0.953	0.988	0.001
Divorced/separated/widowed	1.127	1.110	1.143	0.000
No response	1.204	1.078	1.344	0.001
Education: Intermediate school				
qualification		4.422		
No qualification	1.157	1.138	1.176	0.000
High school qualification	0.877	0.860	0.894	0.000
Post-school/university qualification	0.845	0.830	0.860	0.000
Still a student	0.641	0.551	0.745	0.000
No response	0.845	0.814	0.877	0.000

Occupation: White collar high skilled				
White collar low skilled	1.069	1.052	1.087	0.000
Blue collar high skilled	1.117	1.093	1.141	0.000
Blue collar low skilled	1.178	1.157	1.199	0.000
NA: students/never worked	1.157	1.121	1.194	0.000
No response	2.699	2.566	2.840	0.000
Place of residence: Large Urban areas				
Other urban areas	0.973	0.959	0.987	0.000
Accessible small towns	0.932	0.911	0.952	0.000
Remote small towns	0.963	0.931	0.997	0.034
Accessible Rural areas	0.903	0.889	0.918	0.000
Remote rural areas	0.966	0.944	0.989	0.004
Overdispersion parameter (α)	2.49	2.48	2.51	

Table 5: The association of cardiovascular hospital admissions with the socioeconomic and contextual covariates

	UDD	Lower 95%	Upper 95%	
Covariates	IRR	CI	CI	P-value
Age	1.083	1.076	1.090	0.000
Age2	1.000	1.000	1.000	0.949
Gender: Male				
Female	0.560	0.541	0.579	0.000
Year dummies: 2002				
2003	0.943	0.887	1.002	0.059
2004	0.925	0.869	0.984	0.013
2005	0.901	0.847	0.959	0.001
2006	0.852	0.800	0.907	0.000
2007	0.858	0.806	0.914	0.000
2008	0.872	0.818	0.928	0.000
2009	0.902	0.847	0.960	0.001
2010	0.883	0.829	0.941	0.000
2011	0.885	0.830	0.943	0.000
2012	0.884	0.829	0.943	0.000
2013	0.885	0.829	0.943	0.000
2014	0.895	0.839	0.955	0.001
2015	0.874	0.820	0.933	0.000
2016	0.849	0.796	0.907	0.000
2017	0.833	0.779	0.890	0.000
Ethnicity: White				
Not-White	1.100	1.016	1.191	0.019
Country of birth: Born in Scotland				
Born in rest of UK	0.906	0.858	0.957	0.000
Born outside UK	0.844	0.773	0.921	0.000
Marital Status: Married				

Covercuspersion parameter (u) Cable 6: The association of respiratory hospita	4.	I		
Overuispersion parameter (u)		12.33	15.05	
- WARAINARNIAN NOROMATAR (A)	14.17			
Remote rural areas Overdispersion parameter (α)	12.79	12.55	13.03	0.000
	0.884	0.848	0.922	0.000
Accessible Rural areas	0.917	0.848	0.922	0.000
Remote small towns	0.917	0.838	1.003	0.058
Accessible small towns	0.939	0.887	0.993	0.029
Other urban areas	0.973	0.938	1.009	0.145
Place of residence: Large Urban areas				
No response	3.059	2.733	3.424	0.000
NA: students/never worked	1.177	1.079	1.283	0.000
Blue collar low skilled	1.217	1.162	1.275	0.000
Blue collar high skilled	1.143	1.082	1.206	0.000
White collar low skilled	1.050	1.004	1.099	0.035
Occupation: White collar high skilled				
No response	0.982	0.892	1.081	0.713
Still a student	0.716	0.373	1.373	0.314
Post-school/university qualification	0.787	0.749	0.827	0.000
High school qualification	0.870	0.822	0.921	0.000
No qualification	1.227	1.176	1.280	0.000
Education: Intermediate school qualification				
No response	1.026	0.803	1.310	0.840
	1.192	1.151	1.235	0.000
Divorced/separated/widowed			1 0 0 7	

		Lower 95%	Upper 95%	
Covariates	IRR	CI	CÎ	P-value
Age	0.898	0.891	0.904	0.000
Age2	1.001	1.001	1.002	0.000
Gender: Male				
Female	0.786	0.751	0.822	0.000
Year dummies: 2002				
2003	1.056	0.976	1.142	0.174
2004	1.091	1.008	1.181	0.031
2005	1.180	1.091	1.277	0.000
2006	1.255	1.160	1.357	0.000
2007	1.410	1.305	1.524	0.000
2008	1.582	1.464	1.709	0.000
2009	1.519	1.404	1.642	0.000
2010	1.541	1.425	1.667	0.000
2011	1.736	1.604	1.879	0.000
2012	1.867	1.725	2.020	0.000
2013	2.045	1.890	2.212	0.000

	1
6	
	⊢
6	
G	
ospital	
spital	
ospital	
ospital	
spital	
ospital	
ospital	
spital	
ospital	

2014	2.129	1.967	2.304	0.000
2015	2.592	2.397	2.802	0.000
2016	2.849	2.635	3.081	0.000
2017	3.223	2.981	3.484	0.000
Ethnicity: White				
Not-White	1.112	1.004	1.232	0.043
Country of birth: Born in Scotland				
Born in rest of UK	0.748	0.692	0.809	0.000
Born outside UK	0.752	0.668	0.845	0.000
Marital Status: Married				
Single never married	1.043	0.980	1.110	0.185
Divorced/separated/widowed	1.353	1.293	1.416	0.000
No response	1.235	0.921	1.655	0.158
Education: Intermediate school qualification				
No qualification	1.416	1.341	1.496	0.000
High school qualification	0.815	0.758	0.877	0.000
Post-school/university qualification	0.693	0.650	0.740	0.000
Still a student	0.559	0.316	0.989	0.046
No response	0.766	0.685	0.856	0.000
Occupation: White collar high skilled				
White collar low skilled	1.132	1.066	1.202	0.000
Blue collar high skilled	1.317	1.224	1.416	0.000
Blue collar low skilled	1.552	1.460	1.651	0.000
NA: students/never worked	1.789	1.622	1.974	0.000
No response	8.220	7.187	9.402	0.000
Place of residence: Large Urban areas				
Other urban areas	0.922	0.881	0.966	0.001
Accessible small towns	0.833	0.774	0.895	0.000
Remote small towns	0.854	0.763	0.956	0.006
Accessible Rural areas	0.760	0.720	0.802	0.000
Remote rural areas	0.714	0.661	0.771	0.000
Overdispersion parameter (α)	7.07	6.89	7.26	

Table 7: The association of infectious hospital admissions with the socioeconomic and contextual covariates

Covariates	IRR	Lower 95% CI	Upper 95% CI	P-value
Age	0.938	0.926	0.949	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.057	0.987	1.132	0.111
Year dummies: 2002				
2003	0.871	0.723	1.049	0.145

2004	0.993	0.827	1.192	0.937
2005	1.115	0.931	1.335	0.236
2006	1.262	1.057	1.507	0.010
2007	1.342	1.125	1.601	0.001
2008	1.185	0.990	1.419	0.065
2009	1.384	1.159	1.653	0.000
2010	1.504	1.261	1.794	0.000
2011	1.543	1.291	1.844	0.000
2012	1.849	1.552	2.202	0.000
2013	2.996	2.535	3.541	0.000
2014	3.848	3.267	4.533	0.000
2015	4.033	3.424	4.749	0.000
2016	4.315	3.664	5.082	0.000
2017	4.862	4.131	5.724	0.000
Ethnicity: White				
Not-White	1.212	1.044	1.408	0.012
Country of birth: Born in Scotland				
Born in rest of UK	0.896	0.799	1.004	0.059
Born outside UK	1.121	0.951	1.322	0.174
Marital Status: Married				
Single never married	1.169	1.064	1.284	0.001
Divorced/separated/widowed	1.228	1.139	1.325	0.000
No response	1.206	0.750	1.939	0.439
Education: Intermediate school	4.			
qualification	1.050	1.1.50	1.007	
No qualification	1.268	1.158	1.387	0.000
High school qualification	0.844	0.751	0.950	0.005
Post-school/university qualification	0.826	0.746	0.915	0.000
Still a student	0.184	0.050	0.679	0.011
No response	0.876	0.721	1.065	0.184
Occupation: White collar high skilled				
White collar low skilled	1.144	1.040	1.259	0.006
Blue collar high skilled	1.239	1.099	1.397	0.000
Blue collar low skilled	1.313	1.187	1.453	0.000
NA: students/never worked	1.579	1.339	1.861	0.000
No response	3.122	2.468	3.950	0.000
Place of residence: Large Urban areas				
Other urban areas	0.995	0.923	1.071	0.885
Accessible small towns	0.861	0.763	0.973	0.016
Remote small towns	0.770	0.632	0.937	0.009
Accessible Rural areas	0.808	0.738	0.884	0.000
Remote rural areas	0.729	0.642	0.828	0.000
Overdispersion parameter (α)	40.81	37.36	44.58	1

Covariates	IRR	Lower 95% CI	Upper 95% CI	P-valu
Age	0.939	0.925	0.954	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.578	0.524	0.638	0.000
Year dummies: 2002				
2003	0.994	0.819	1.207	0.954
2004	0.921	0.756	1.121	0.410
2005	0.941	0.771	1.147	0.545
2006	0.990	0.813	1.206	0.923
2007	1.072	0.881	1.305	0.485
2008	1.045	0.858	1.274	0.662
2009	1.149	0.944	1.399	0.166
2010	1.269	1.043	1.545	0.017
2011	1.387	1.137	1.692	0.001
2012	1.538	1.263	1.873	0.000
2013	1.655	1.360	2.014	0.000
2014	1.799	1.479	2.188	0.000
2015	1.904	1.567	2.314	0.000
2016	2.456	2.028	2.974	0.000
2017	2.763	2.284	3.343	0.000
Ethnicity: White				
Not-White	1.218	0.985	1.507	0.068
Country of birth: Born in Scotland	4			
Born in rest of UK	0.740	0.623	0.880	0.001
Born outside UK	0.619	0.476	0.806	0.000
Marital Status: Married				
Single never married	2.723	2.382	3.113	0.000
Divorced/separated/widowed	2.676	2.410	2.972	0.000
No response	3.874	2.211	6.788	0.000
Education: Intermediate school qualification				
No qualification	1.412	1.241	1.607	0.000
High school qualification	0.958	0.810	1.134	0.620
Post-school/university qualification	0.758	0.650	0.884	0.000
Still a student	0.313	0.069	1.423	0.133
No response	0.875	0.684	1.119	0.288
Occupation: White collar high skilled				
White collar low skilled	1.341	1.161	1.548	0.000
Blue collar high skilled	1.563	1.320	1.851	0.000
Blue collar low skilled	1.723	1.488	1.994	0.000

Protected by copyright, including

Enseignement Superieur (ABES) . for uses related to text and data mining, AI training, and similar technologies.

Table 8: The association of mental/behavioural disorders hospital admissions with the socioeconomic and contextual covariates

NA: students/never worked	2.676	2.152	3.326	0.000
No response	7.897	5.914	10.545	0.000
Place of residence: Large Urban areas				
Other urban areas	0.862	0.777	0.956	0.005
Accessible small towns	0.743	0.625	0.882	0.001
Remote small towns	1.233	0.975	1.558	0.080
Accessible Rural areas	0.672	0.592	0.762	0.000
Remote rural areas	1.081	0.920	1.271	0.345
Overdispersion parameter (α)	13.25	12.30	14.26	

Overdispersion parameter (α)	13.25	12.30	14.26	
Table 9: The association of other-causes hos	pital admission	s with the socio	economic and	
ontextual covariates	1			
Covariates	IRR	Lower 95% CI	Upper 95% CI	P-value
Age	0.978	0.976	0.980	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.078	1.062	1.094	0.000
Year dummies: 2002				
2003	0.976	0.956	0.997	0.027
2004	0.995	0.974	1.016	0.632
2005	1.017	0.995	1.039	0.123
2006	1.046	1.024	1.068	0.000
2007	1.092	1.068	1.115	0.000
2008	1.135	1.111	1.160	0.000
2009	1.164	1.139	1.189	0.000
2010	1.166	1.141	1.191	0.000
2011	1.174	1.148	1.200	0.000
2012	1.215	1.188	1.242	0.000
2013	1.237	1.210	1.265	0.000
2014	1.258	1.231	1.287	0.000
2015	1.289	1.261	1.318	0.000
2016	1.300	1.271	1.330	0.000
2017	1.278	1.249	1.308	0.000
Ethnicity: White				
Not-White	1.039	1.002	1.077	0.040
Country of birth: Born in Scotland				
Born in rest of UK	0.876	0.854	0.897	0.000
Born outside UK	0.815	0.784	0.847	0.000
Marital Status: Married				
Single never married	0.971	0.953	0.990	0.003
Divorced/separated/widowed	1.109	1.092	1.126	0.000
No response	1.234	1.100	1.384	0.000

Education: Intermediate school				
qualification				
No qualification	1.139	1.119	1.158	0.000
High school qualification	0.877	0.859	0.895	0.000
Post-school/university qualification	0.857	0.841	0.873	0.000
Still a student	0.661	0.565	0.773	0.000
No response	0.848	0.815	0.882	0.000
Occupation: White collar high skilled				
White collar low skilled	1.067	1.049	1.085	0.000
Blue collar high skilled	1.103	1.078	1.128	0.000
Blue collar low skilled	1.156	1.135	1.178	0.000
NA: students/never worked	1.152	1.114	1.191	0.000
No response	2.343	2.222	2.471	0.000
Place of residence: Large Urban areas				
Other urban areas	0.971	0.957	0.986	0.000
Accessible small towns	0.931	0.910	0.952	0.000
Remote small towns	0.980	0.946	1.016	0.283
Accessible Rural areas	0.906	0.891	0.921	0.000
Remote rural areas	0.982	0.958	1.005	0.130
Overdispersion parameter (α)	2.57	2.55	2.59	

Supplementary Tables 4 to 9 describe the association of all-cause and cause-specific hospital admissions with the socioeconomic and contextual covariates. The calculated IRRs and 95%CIs are the author's own calculations based on the Scottish Longitudinal Study (SLS) data (*Scottish Longitudinal Study*, Accessed 08 November 2021).

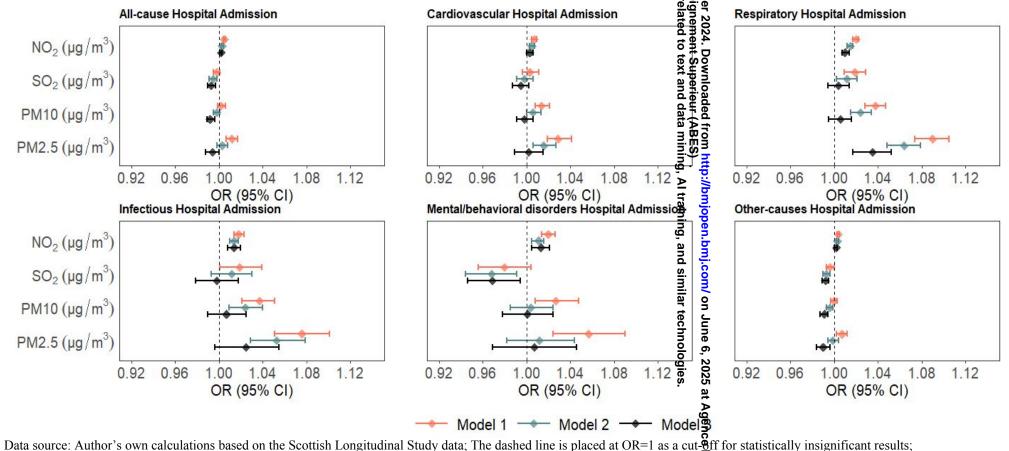
Lower incidence rate ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions among females (except for all-cause, infectious and other-causes hospital admissions), people born in rest of UK or outside UK compared to Scottish-born, single never married compared to married (except for infectious and mental hospital admissions), people who have high school or post-school/university education compared to people who have intermediate school education, and people who live in towns or rural areas compared to those living in large urban areas.

In contrast, higher incidence rate ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions among not-

white compared to white ethnicity, divorced/separated/widowed compared to married, people with no educational qualification compared to people with intermediate school education, and people who work in white collar low skilled, blue collar high skilled, and blue collar low skilled jobs compared to people working in white collar high skilled jobs.

Citation:

Scottish Longitudinal Study. (Accessed 08 November 2021). https://sls.lscs.ac.uk/



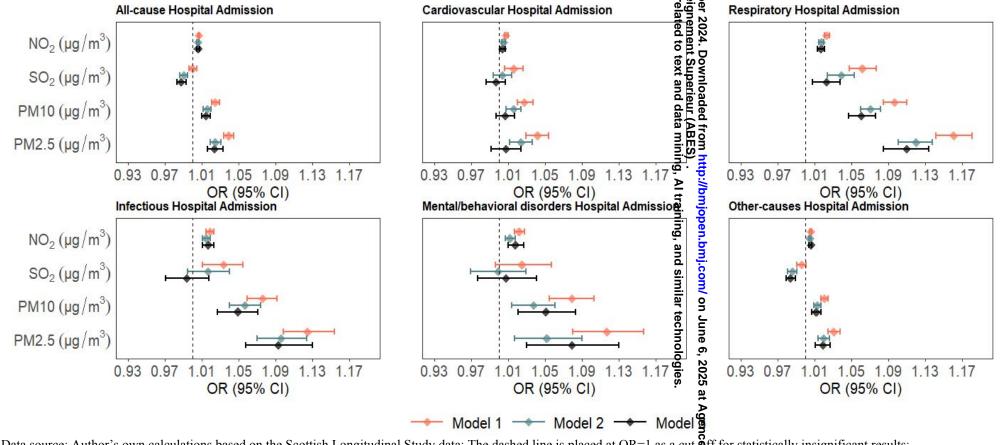
 njopen-2024-084032 on 18

de

BMJ Open The association between air pollution and hospital admissions binary (yes/no) outcome

Figure 4: The association of all-cause and cause-specific hospital admissions binary (yes/no) outcome with NO2, SO2, PM10, and PM2.5 air pollutants in separate multilevel mixed-effects logistic models (N=202,237 individuals and 2,810,414 ob & variable variable).

Model 1 is adjusted for age, age², gender and calendar year dummies; Model 2= Model 1 + ethnicity + country of birth + marital status + education + occupation; Model 3= Model 2 + Place of residence. graphique


Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at OR=1 as a cut-Aff for statistically insignificant results; The two-pollutant models which include SO₂ + one of the other three pollutants are adjusted for age, age2, gender, calendar year d \mathbf{B} mmies, ethnicity, country of birth, marital status, education, occupation, and Place of residence. ographique

de

Page 43 of 51

BMJ Open The association between cumulative air pollution (CAP) exposure and hospital admissions binary (yes/no) outcome

Figure 6: The association of all-cause and cause-specific hospital admissions binary (yes/no) outcome with a gerage CAP exposure to NO₂, SO₂, PM10, and PM2.5 air pollutants in separate multilevel mixed-effects logistic models (N=202,237 individ

Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at OR=1 as a cut off for statistically insignificant results; Model 1 is adjusted for age, age², gender and calendar year dummies; Model 2= Model 1 + ethnicity + country of birth + marital stars + education + occupation; Model 3= Model 2 + Place of residence. ographique

de

The association between hospital admissions binary (yes/no) outcome and the socioeconomic and contextual covariates

Table 10: The association of all-cause hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
Age	0.970	0.968	0.972	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.033	1.019	1.047	0.000
Year dummies: 2002				
2003	0.991	0.971	1.011	0.360
2004	1.009	0.989	1.030	0.389
2005	1.031	1.010	1.052	0.003
2006	1.052	1.031	1.074	0.000
2007	1.079	1.057	1.101	0.000
2008	1.124	1.101	1.147	0.000
2009	1.148	1.125	1.172	0.000
2010	1.132	1.109	1.156	0.000
2011	1.154	1.129	1.178	0.000
2012	1.185	1.160	1.210	0.000
2013	1.168	1.143	1.193	0.000
2014	1.180	1.155	1.206	0.000
2015	1.197	1.171	1.223	0.000
2016	1.162	1.136	1.187	0.000
2017	1.124	1.099	1.149	0.000
Ethnicity: White				
Not-White	1.043	1.009	1.079	0.014
Country of birth: Born in Scotland				
Born in rest of UK	0.878	0.858	0.898	0.000
Born outside UK	0.824	0.795	0.854	0.000
Marital Status: Married				
Single never married	0.948	0.931	0.965	0.000
Divorced/separated/widowed	1.123	1.107	1.139	0.000
No response	1.207	1.085	1.343	0.001
Education: Intermediate school qualification				
No qualification	1.158	1.139	1.177	0.000
High school qualification	0.873	0.856	0.890	0.000
Post-school/university qualification	0.854	0.839	0.869	0.000
Still a student	0.641	0.553	0.744	0.000

No response	0.924	0.891	0.959	0.000
Occupation: White collar high skilled				
White collar low skilled	1.072	1.055	1.090	0.000
Blue collar high skilled	1.119	1.096	1.143	0.000
Blue collar low skilled	1.174	1.153	1.195	0.000
NA: students/never worked	1.182	1.146	1.220	0.000
No response	2.362	2.247	2.482	0.000
Place of residence: Large Urban areas				
Other urban areas	0.982	0.968	0.996	0.010
Accessible small towns	0.941	0.921	0.962	0.000
Remote small towns	1.015	0.981	1.050	0.401
Accessible Rural areas	0.907	0.893	0.921	0.000
Remote rural areas	0.989	0.966	1.011	0.318

Table 11: The association of cardiovascular hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

Compristor	OR	Lower 95%	Upper 95%	Devalue
Covariates	-	CI	CI	P-value
Age	1.070	1.064	1.075	0.000
Age2	1.000	1.000	1.000	0.196
Gender: Male				
Female	0.641	0.624	0.659	0.000
Year dummies: 2002	6.			
2003	0.970	0.925	1.017	0.205
2004	0.961	0.917	1.008	0.105
2005	0.948	0.904	0.995	0.029
2006	0.914	0.871	0.959	0.000
2007	0.906	0.863	0.951	0.000
2008	0.904	0.861	0.949	0.000
2009	0.912	0.868	0.957	0.000
2010	0.908	0.864	0.954	0.000
2011	0.895	0.851	0.942	0.000
2012	0.894	0.850	0.941	0.000
2013	0.862	0.819	0.907	0.000
2014	0.871	0.827	0.917	0.000
2015	0.844	0.802	0.889	0.000
2016	0.792	0.752	0.835	0.000
2017	0.754	0.715	0.795	0.000
Ethnicity: White				
Not-White	1.081	1.014	1.153	0.017
Country of birth: Born in Scotland				1
Born in rest of UK	0.930	0.890	0.973	0.002
Born outside UK	0.865	0.805	0.929	0.000

Single never married	0.935	0.898	0.974	0.001
Divorced/separated/widowed	1.146	1.114	1.179	0.000
No response	1.052	0.870	1.272	0.599
Education: Intermediate school qualification				
No qualification	1.159	1.120	1.201	0.000
High school qualification	0.879	0.837	0.922	0.000
Post-school/university qualification	0.828	0.794	0.863	0.000
Still a student	0.784	0.437	1.408	0.416
No response	1.019	0.944	1.100	0.628
Occupation: White collar high skilled				
White collar low skilled	1.041	1.002	1.081	0.038
Blue collar high skilled	1.104	1.056	1.155	0.000
Blue collar low skilled	1.164	1.120	1.209	0.000
NA: students/never worked 📈	1.124	1.048	1.206	0.001
No response	2.499	2.291	2.725	0.000
Place of residence: Large Urban areas				
Other urban areas	0.986	0.957	1.015	0.340
Accessible small towns	0.967	0.924	1.013	0.159
Remote small towns	0.946	0.879	1.017	0.130
Accessible Rural areas	0.906	0.876	0.937	0.000
Remote rural areas	0.931	0.888	0.975	0.002

Table 12: The association of respiratory hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

		Lower 95%	Upper 95%	
Covariates	OR	CI	CÎ	P-value
Age	0.915	0.910	0.921	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.815	0.784	0.847	0.000
Year dummies: 2002				
2003	1.089	1.018	1.165	0.013
2004	1.132	1.058	1.212	0.000
2005	1.228	1.147	1.313	0.000
2006	1.297	1.212	1.388	0.000
2007	1.430	1.337	1.529	0.000
2008	1.589	1.486	1.699	0.000
2009	1.546	1.445	1.654	0.000
2010	1.537	1.435	1.646	0.000
2011	1.696	1.583	1.817	0.000
2012	1.754	1.637	1.880	0.000

2013	1.862	1.738	1.995	0.000
2014	1.858	1.733	1.992	0.000
2015	2.165	2.021	2.318	0.000
2016	2.271	2.120	2.432	0.000
2017	2.487	2.323	2.663	0.000
Ethnicity: White				
Not-White	1.093	1.002	1.191	0.045
Country of birth: Born in Scotland				
Born in rest of UK	0.783	0.733	0.837	0.000
Born outside UK	0.797	0.721	0.880	0.000
Marital Status: Married				
Single never married	1.025	0.972	1.082	0.362
Divorced/separated/widowed	1.290	1.241	1.342	0.000
No response	1.181	0.923	1.511	0.187
Education: Intermediate school qualification				
No qualification	1.357	1.293	1.423	0.000
High school qualification	0.840	0.788	0.895	0.000
Post-school/university qualification	0.728	0.687	0.770	0.000
Still a student	0.610	0.373	0.998	0.049
No response	0.864	0.786	0.950	0.003
Occupation: White collar high skilled				
White collar low skilled	1.106	1.050	1.166	0.000
Blue collar high skilled	1.280	1.202	1.363	0.000
Blue collar low skilled	1.462	1.386	1.542	0.000
NA: students/never worked	1.613	1.482	1.756	0.000
No response	5.980	5.340	6.696	0.000
Place of residence: Large Urban areas				
Other urban areas	0.956	0.919	0.995	0.027
Accessible small towns	0.867	0.814	0.923	0.000
Remote small towns	0.899	0.816	0.990	0.030
Accessible Rural areas	0.802	0.765	0.841	0.000
Remote rural areas	0.781	0.731	0.835	0.000

Table 13: The association of infectious hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

		Lower 95%	Upper 95%	
Covariates	OR	CI	CI	P-value
Age	0.959	0.950	0.968	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.056	0.998	1.117	0.057
Year dummies: 2002				

2003	0.877	0.750	1.025	0.100
2004	0.975	0.837	1.136	0.743
2005	1.101	0.949	1.278	0.205
2006	1.254	1.084	1.450	0.002
2007	1.266	1.094	1.465	0.002
2008	1.175	1.012	1.364	0.035
2009	1.315	1.136	1.523	0.000
2010	1.378	1.191	1.595	0.000
2011	1.416	1.222	1.642	0.000
2012	1.663	1.441	1.921	0.000
2013	2.372	2.071	2.718	0.000
2014	2.939	2.575	3.354	0.000
2015	3.023	2.649	3.450	0.000
2016	3.086	2.703	3.523	0.000
2017	3.402	2.983	3.880	0.000
Ethnicity: White				
Not-White	1.162	1.031	1.310	0.014
Country of birth: Born in Scotland				
Born in rest of UK	0.901	0.819	0.990	0.030
Born outside UK	1.079	0.944	1.234	0.264
Marital Status: Married				
Single never married	1.134	1.049	1.226	0.002
Divorced/separated/widowed	1.177	1.108	1.251	0.000
No response	1.184	0.815	1.720	0.375
Education: Intermediate school				
qualification				
No qualification	1.206	1.120	1.298	0.000
High school qualification	0.851	0.771	0.941	0.002
Post-school/university qualification	0.852	0.783	0.928	0.000
Still a student	0.258	0.081	0.825	0.022
No response	0.952	0.816	1.111	0.532
Occupation: White collar high skilled				
White collar low skilled	1.119	1.034	1.211	0.005
Blue collar high skilled	1.183	1.072	1.306	0.001
Blue collar low skilled	1.243	1.144	1.351	0.000
NA: students/never worked	1.500	1.314	1.713	0.000
No response	2.440	2.025	2.941	0.000
Place of residence: Large Urban areas				
Other urban areas	1.008	0.949	1.070	0.803
Accessible small towns	0.916	0.830	1.010	0.079
Remote small towns	0.869	0.744	1.016	0.078
Accessible Rural areas	0.855	0.794	0.920	0.000
Remote rural areas	0.800	0.721	0.888	0.000

1	
2	
3	
4	
5 6	
7	
8	
9	
10	
11	
12	
13 14	
11 12 13 14 15 16 17	
16	
17	
18	
19 20	
20	
21	
21 22 23	
24	
24 25	
26	
27 28	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48 49	
49 50	
50	
52	
53	
54	
55	
56 57	
57 58	
50 59	

Tał	ble 14: The association of mental/behavioural disorders hospital admissions binary
(ye	s/no) outcome with the socioeconomic and contextual covariates

Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
Age	0.956	0.944	0.968	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.641	0.591	0.696	0.000
Year dummies: 2002				
2003	1.011	0.864	1.182	0.894
2004	0.979	0.835	1.147	0.791
2005	0.964	0.821	1.132	0.656
2006	1.030	0.878	1.209	0.718
2007	1.086	0.926	1.274	0.313
2008	1.085	0.923	1.275	0.322
2009	1.171	0.997	1.376	0.054
2010	1.195	1.017	1.405	0.030
2011	1.297	1.101	1.526	0.002
2012	1.370	1.164	1.612	0.000
2013	1.467	1.248	1.725	0.000
2014	1.592	1.357	1.869	0.000
2015	1.593	1.355	1.871	0.000
2016	1.815	1.548	2.127	0.000
2017	1.983	1.694	2.321	0.000
Ethnicity: White				
Not-White	1.152	0.967	1.372	0.113
Country of birth: Born in Scotland	9			
Born in rest of UK	0.786	0.682	0.907	0.001
Born outside UK	0.685	0.551	0.851	0.001
Marital Status: Married		5		
Single never married	2.285	2.048	2.548	0.000
Divorced/separated/widowed	2.214	2.033	2.410	0.000
No response	2.944	1.871	4.633	0.000
Education: Intermediate school qualification				
No qualification	1.312	1.180	1.458	0.000
High school qualification	0.972	0.846	1.117	0.689
Post-school/university qualification	0.809	0.712	0.919	0.001
Still a student	0.299	0.068	1.319	0.111
No response	0.952	0.780	1.162	0.627
Occupation: White collar high skilled				
White collar low skilled	1.303	1.155	1.470	0.000
Blue collar high skilled	1.475	1.283	1.696	0.000
Blue collar low skilled	1.612	1.428	1.819	0.000

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

NA: students/never worked	2.295	1.923	2.738	0.000
No response	5.425	4.291	6.859	0.000
Place of residence: Large Urban areas				
Other urban areas	0.895	0.822	0.975	0.011
Accessible small towns	0.812	0.705	0.936	0.004
Remote small towns	1.255	1.041	1.514	0.017
Accessible Rural areas	0.721	0.649	0.800	0.000
Remote rural areas	1.122	0.984	1.279	0.087

Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
Age	0.981	0.979	0.983	0.000
Age2	1.000	1.000	1.000	0.000
Gender: Male				
Female	1.094	1.079	1.110	0.000
Year dummies: 2002				
2003	0.988	0.967	1.009	0.262
2004	1.006	0.985	1.028	0.561
2005	1.027	1.005	1.049	0.016
2006	1.052	1.030	1.075	0.000
2007	1.076	1.054	1.100	0.000
2008	1.127	1.103	1.151	0.000
2009	1.159	1.135	1.185	0.000
2010	1.138	1.113	1.163	0.000
2011	1.157	1.132	1.183	0.000
2012	1.186	1.160	1.212	0.000
2013	1.170	1.145	1.197	0.000
2014	1.179	1.153	1.206	0.000
2015	1.185	1.158	1.212	0.000
2016	1.145	1.119	1.172	0.000
2017	1.091	1.066	1.116	0.000
Ethnicity: White				
Not-White	1.036	1.001	1.072	0.043
Country of birth: Born in Scotland				
Born in rest of UK	0.888	0.868	0.909	0.000
Born outside UK	0.832	0.802	0.862	0.000
Marital Status: Married				
Single never married	0.953	0.936	0.970	0.000
Divorced/separated/widowed	1.105	1.089	1.122	0.000
No response	1.238	1.111	1.379	0.000

Education: Intermediate school				
qualification				
No qualification	1.140	1.121	1.159	0.000
High school qualification	0.873	0.856	0.891	0.000
Post-school/university qualification	0.863	0.847	0.879	0.000
Still a student	0.663	0.569	0.772	0.000
No response	0.917	0.883	0.953	0.000
Occupation: White collar high skilled				
White collar low skilled	1.071	1.053	1.089	0.000
Blue collar high skilled	1.104	1.080	1.128	0.000
Blue collar low skilled	1.157	1.136	1.178	0.000
NA: students/never worked	1.177	1.140	1.215	0.000
No response	2.029	1.929	2.134	0.000
Place of residence: Large Urban areas				
Other urban areas	0.981	0.967	0.995	0.010
Accessible small towns	0.942	0.921	0.964	0.000
Remote small towns	1.029	0.994	1.066	0.104
Accessible Rural areas	0.913	0.898	0.928	0.000
Remote rural areas	1.002	0.979	1.025	0.873

Supplementary Tables 10 to 15 describe the association of all-cause and cause-specific hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates. The calculated ORs and 95%CIs are the author's own calculations based on the Scottish Longitudinal Study (SLS) data (*Scottish Longitudinal Study*, Accessed 08 November 2021).

Similar to the results with the hospital admission treated as a count outcome, lower odd ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions binary (yes/no) outcome among females (except for all-cause, infectious and other-causes hospital admissions), people born in rest of UK or outside UK compared to Scottish-born, single never married compared to married (except for infectious and mental hospital admissions), people who have high school or post-school/university education compared to people who have intermediate school education, and people who live in towns or rural areas compared to those living in large urban areas.

BMJ Open

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

In contrast, higher odd ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions binary (yes/no) outcome among not-white compared to white ethnicity, divorced/separated/widowed compared to married, people with no educational qualification compared to people with intermediate school education, and people who work in white collar low skilled, blue collar high skilled, and blue collar low skilled jobs compared to people working in white collar high skilled jobs.

Citation:

Scottish Longitudinal Study. (Accessed 08 November 2021). https://sls.lscs.ac.uk/

BMJ Open

BMJ Open

Long-term exposure to ambient air pollution and the hospital admission burden in Scotland: A 16-year prospective population cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-084032.R1
Article Type:	Original research
Date Submitted by the Author:	16-Sep-2024
Complete List of Authors:	Abed Al Ahad, Mary; University of St Andrews, School of Geography and Sustainable Development Demšar, Urška; University of St Andrews, School of Geography and Sustainable Development Sullivan, Frank; University of St Andrews, School of Medicine Kulu , Hill; University of St Andrews, Geography and Sustainable Development
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Sociology
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, MENTAL HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

2		
3	1	Title: Long-term exposure to ambient air pollution and the hospital admission burden in
4	2	Scotland: A 16-year prospective population cohort study
5	2	Scotland. A 10-year prospective population conort study
6 7	3	
8		
9	4	
10		
11	5	Mary Abed Al Ahad, PhD ¹ ; Urška Demšar, PhD ¹ ; Frank Sullivan, FRSE, FRCP, FRCGP ² ;
12	6	Hill Kulu, PhD ¹
13		
14	7	
15	0	School of Coography and Systeinable Development University of St Andrews Sectiond
16 17	8	¹ School of Geography and Sustainable Development, University of St Andrews, Scotland,
17 18	9	United Kingdom.
19	10	2 School of Medicine University of St Andrews Sectional United Kingdom
20	10	² School of Medicine, University of St Andrews, Scotland, United Kingdom.
21	11	
22	11	
23	12	
24		
25	13	
26 27		
28	14	
29	15	Correspondence should be addressed to
30		
31	16	Mary Abed Al Ahad
32	17	School of Geography and Sustainable Development,
33	18	University of St Andrews,
34 35	19	Scotland, United Kingdom
36	20	Email: maaa1@st-andrews.ac.uk
37	21	
38		
39	22	
40		
41	23	
42	24	
43 44	24	
45	25	
46	20	
47	26	
48		
49	27	
50	20	
51 52	28	
52	29	
54	25	
55	30	
56		
57	31	
58		
59 60	32	
00		1

Acknowledgements: The help provided by staff of the Longitudinal Studies Centre – Scotland
(LSCS) for the Scottish Longitudinal Study (SLS) data is acknowledged. The LSCS is
supported by the ESRC/JISC, the Scottish Funding Council, the Chief Scientist's Office and
the Scottish Government. The authors alone are responsible for the interpretation of the data.
Census output is Crown copyright and is reproduced with the permission of the Controller of
HMSO and the Queen's Printer for Scotland.

The help provided by the Electronic Data Research and Innovation Service (eDRIS) in obtaining approvals for the Public Benefit and Privacy Panel for Health and Social Care (HSC-PBPP) application and in the Public Health Scotland data provision and linkages is also acknowledged.

Ethical considerations: This paper is part of a PhD project (ID=2019006) that was granted ethical approval on the 14th of May 2020 by the School of Geography and Sustainable Development Ethics Committee, acting on behalf of the University Teaching and Research Ethics Committee (UTREC) at the University of St Andrews. Access to the SLS data was approved by the SLS manager following a detailed application and access to the linked data from Public Health Scotland via the Electronic Data Research and Innovation Service (eDRIS) was approved following a detailed Public Benefit and Privacy Panel for Health and Social Care (HSC-PBPP) application. The SLS team have already obtained all the needed consent and approvals for the data processing and analysis. Based on the SLS data policy and the sensitivity of the used data, all data cleaning, management, and analysis was performed in the safe settings of the SLS in Ladywell House in Edinburgh to ensure individuals' confidentiality and safe and secure data storage and access.

³⁴ 55 **Conflict of Interest:** The authors declare that they have no conflict of interest.

Funding: This study is funded by the St Leonard's interdisciplinary PhD scholarship, School
 of Geography and Sustainable Development, and School of Medicine, University of St
 Andrews, Scotland, UK. The funding body has no role in the study design, data analysis and
 data interpretation. Everything presented in this article is conducted by the authors.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

42
43
44
45
45
46
46
47
40
41
42
43
44
44
45
46
47
46
47
47
46
47
47
48
49
49
49
49
49
40
40
41
42
44
45
46
47
47
48
49
49
49
40
41
42
44
45
46
47
46
47
47
48
49
49
49
40
40
41
42
44
45
46
47
47
48
49
49
49
40
41
41
42
43
44
44
45
46
47
47
48
49
49
49
40
41
41
42
43
44
44
44
45
46
47
47
48
49
49
49
49
49
49
49
49
49
49
49
49
40
41
41
42
43
44
44
45
46
47
47
48
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
40
41
41
42
43
44
44
44
45
46
47
48
49
49
49
49
49
49
49
49
49
49
49
49
49
40
41
41
42
44
44
44
44
45
<

Data availability statement: Data underlying this study is confidential and is not publicly available due to ethical and legal restrictions. We are using the "Scottish Longitudinal Study" dataset which contains linked census, vital events, and education data for a five per cent sample of the population of Scotland. These data are protected by a copyright license and only available for licensed researchers in the UK following a detailed application and security checks. Researchers must also pass a Safe Researcher Training which equip them with the needed knowledge and information to analyse data in safe settings. Further information on how to access the SLS data are available on the following web page: https://sls.lscs.ac.uk/

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

Author contribution statement: Mary Abed Al Ahad: Conceptualization, Investigation,
 Methodology, Data curation, Formal Analysis, Writing-Original Draft, Writing-Review and
 Editing, Visualization, Project administration. Hill Kulu, Urška Demšar and Frank Sullivan:
 Conceptualization, Funding acquisition, Supervision, Writing-Review and Editing.

, s Abed .act of the s The guarantor of the study is Mary Abed Al Ahad and she accepts full responsibility for the finished work and/or the conduct of the study, had access to the data, and controlled the decision to publish.

Title: Long-term exposure to ambient air pollution and the hospital admission burden in Scotland: A 16-year prospective population cohort study

Abstract

Objectives: Air pollution is considered a major threat for global health and is associated with various health outcomes. Previous research on long-term exposure to ambient air pollution and health places more emphasis on mortality rather than hospital admission outcomes and is characterised with heterogeneities in the size of effect estimates between studies and less focus on mental/behavioural or infectious diseases outcomes. In this study, we investigate the association between long-term exposure to ambient air pollution and all-cause and cause-specific hospital admissions.

- **Design:** This is a prospective cohort study.
- Setting: Individual-level data from the "Scottish Longitudinal Study (SLS)" are linked to yearly concentrations of four pollutants (NO₂, SO₂, PM₁₀, PM₂₅) at 1 Km² spatial resolution using the individual's residential postcode for each year between 2002 and 2017.
- **Participants:** The study includes 202,237 adult individuals aged 17 and older.

Outcome measures: The associations between air pollution and all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions are examined using multilevel mixed-effects negative binomial regression.

Results: Higher exposure to NO_2 , PM_{10} , and PM_{25} is associated with higher incidence of all-cause, cardiovascular, respiratory, and infectious hospital admissions before adjusting for the area of residence and in fully adjusted models when considering cumulative exposure across time. In fully adjusted models, the incidence rate for respiratory hospital admissions increased by 4.2% (95%CI=2.1%-6.3%) and 1.2% (95%CI=0.8%-1.7%) per 1 µg/m³ increase in PM_{2.5} and NO₂ pollutants, respectively. SO₂ was mainly associated with respiratory hospital admissions (IRR=1.016; 95%CI=1.004-1.027) and NO₂ was related to higher incidence of mental/behavioural disorders hospital admissions (IRR=1.021; 95%CI=1.011-1.031). Average cumulative exposure to air pollution showed stronger positive associations with higher rates of hospital admissions.

Conclusion: This study supports an association between long-term (16-years) exposure to ambient air pollution and increased all-cause and cause-specific hospital admissions for both physical and mental/behavioural illnesses. The results suggest that interventions on air pollution through stricter environmental regulations could help ease the hospital-care burden in Scotland in the long-term.

Keywords: Air pollution, hospital admissions, long-term, cardio-respiratory, mental disorders, Scottish Longitudinal Study.

1 ว		
2 3 4	139	Strengths and limitations of this study
5	140	• This study utilises 16 years (2002-2017) of administrative prospective cohort
6 7	141	individual-level data from Scotland and links it to high-resolution 1 km ² air pollution
8	142	data at the residential postcode to investigate the association between long-term
9	143	exposure to air pollution and all-cause and cause-specific hospital admissions, focusing
10 11	144	on admissions related to physical illness such as cardiovascular, respiratory, and
12	145	infectious diseases as well as on mental and behavioural disorders.
13	146	• This study attempted to develop previous research by contributing to the existing
14	147	evidence on air pollution and health through the examination of multiple air pollutants
15 16	147	(i.e., NO ₂ , SO ₂ , PM ₁₀ , and PM _{2.5}) in relation to multiple hospital admission outcomes
17		
18	149	over prolonged period of time.
19	150	• The limitations of this study included following individuals for 16 years starting the
20 21	151	year of 2002; thus, bias may result from earlier life-time exposures to air pollution.
22	152	• The assessment of air pollution exposure was done at the place of residence.
23	153	However, individuals are exposed to air pollution not only at the place of residence,
24 25	154 155	but also at the workplace, during daily outdoor activities, and through commuting patterns.
25 26		1
27	156	• We could not account for some important lifestyle covariates (e.g., smoking, alcohol
28	157	consumption, and exercise) due to the unavailability of this information in
29 30	158	administrative data.
30 31	159	
32		
33	160	
34 35	161	
36	101	
37	162	
38	163	
39 40	105	
41	164	
42	105	
43 44	165	
44 45	166	
46	467	
47	167	
48 49	168	
50		
51	169	
52 53	170	
55 54	170	
55	171	
56	172	
57 58	1/2	
58 59	173	
60		5
		-

1. Introduction

Air pollution is considered by the World Health Organisation as one of the largest environmental health risks in the 21st century ¹. Air pollution results in poor health and in increased hospital admissions, mortality, and doctor visits, mostly for cardiovascular, respiratory, and cancer diseases ²⁻⁸. For example, in Italy, long-term exposure to NO₂ (nitrogen dioxide) and PM_{2.5} (particulate-matter diameter $\leq 2.5 \mu m$) was associated with increased hospital admissions for circulatory diseases, myocardial infarction, lung cancer, kidney cancer, and lower-respiratory tract infections ⁹. Results from the "Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE)" project have shown elevated asthma, chronic obstructive pulmonary disease (COPD), and stroke incidence with higher long-term exposure to NO₂ PM_{2.5}, and black carbon pollutants ¹⁰⁻¹², and elevated lung cancer incidence with higher exposure to PM_{2.5}¹³. Similarly, the Danish "Health Effects of Air Pollution Components, Noise and Socioeconomic Status (HERMES)" project found an association between long-term exposure to PM_{2.5} and higher risks of stroke and myocardial infarction ¹⁴⁻¹⁶, and between NO₂ pollutant and higher diabetes risk ¹⁷. A similar association was also shown with short-term exposures to PM_{10} (particulate-matter diameter $\leq 10 \mu m$) and $PM_{2.5}$ pollutants and increased respiratory hospital admissions in Poland ¹⁸.

- Although the association between long-term exposure to air pollution and health is well-documented, most research is focused on mortality outcomes ^{4 7 19-32}. This is because of the ease of access to mortality databases, the less strict ethical considerations, and the straightforward analysis of mortality that occurs only once in the individual's life ².
- Studies that investigate the association between long-term air pollution and health outcomes other than mortality often estimate a combined risk of mortality with the other health indicators such as hospital admissions or doctoral prescriptions and focus only on analysing the first hospital admission ¹² ¹⁴ ¹⁶. Besides, variations in the magnitude of effect estimates among studies have been identified in numerous systematic literature reviews and meta-analyses 2 33-³⁶. These discrepancies may be attributed to differences in the assessment of air pollution exposure, such as residential versus combined residential and workplace assessments, high versus low spatial resolution, baseline versus annual assessments, or temporal resolution including hourly, daily, weekly, monthly, or yearly measurements. Other contributing factors include variations in exposure levels, outcome measurements, study locations, population characteristics (e.g., age, sex, socioeconomic status), and study designs (e.g., cohort, cross-sectional, case-crossover, case-control, and ecological) and methodologies (e.g., survival analysis, multilevel mixed effects modelling, structural equation modelling, and difference in differences approach) ^{35 36}. The differences in estimates also underscore the necessity for further research to obtain more conclusive evidence regarding the association between air pollution and health.

55211Additionally, over the past decade, the majority of literature has concentrated on investigating56212the health implications of NO2, PM_{10} , and $PM_{2.5}$ exposure, while other pollutants such as57213sulphur dioxide (SO2) were less studied $^{2}2^{3}3^{5}$. This lack of emphasis on SO2 may be attributed59214to a substantial decrease in its emissions, driven by the diminished use of coal in the energy

sector and the desulfurization efforts in cars and power plants in developed nations ³⁷. Consequently, SO₂ has become a lower priority compared to other pollutants. Nonetheless, investigating the link between prolonged exposure to SO₂ and health outcomes, such as hospital admissions, remains crucial as even at reduced levels, SO₂ can still pose harm to human health 37.

Finally, despite the literature availability on air pollution in relation to cardiovascular and respiratory diseases ²³, other health complications such as mental/behavioural disorders have not been thoroughly studied ^{38 39}. A recent study has also found an association between short-term exposure to PM_{2.5} and hospital admissions for rarely studied infectious diseases such as sepsis, kidney failure, urinary tract and skin infections ⁴⁰. This suggests the need for more studies that investigate the association between air pollution and less studied health outcomes such as infectious diseases and mental/behavioural disorders.

Taken collectively, this study examines the association between long-term exposure to air pollution and all-cause and cause-specific hospital admissions. We distinguish between hospital admissions related to cardiovascular, respiratory, infectious, mental/behavioural disorders, and other illnesses. In examining these associations, we will be relying on administrative longitudinal individual-level data from a large Scottish cohort that will be linked to yearly 1 km² air pollution data using the individuals' residential postcodes for each year between 2002 and 2017. Our study attempts to develop previous research by contributing to the existing evidence on air pollution and health through the examination of multiple air pollutants (i.e., NO₂, SO₂, PM₁₀, and PM_{2.5}) in relation to multiple hospital admission outcomes over time.

2. Methods

2. Withous 2.1. Design, sample, and structure

We used individual-level longitudinal prospective-cohort data from the Scottish Longitudinal Study (SLS). This is a representative dataset on 5% of the Scottish population which includes information from linked censuses (2001 and 2011 in the case of our study) on individuals' socio-demographics, vital events records on marriages, births, and mortality (up to 2013), and migration and residential histories at the postcode level ⁷. To supplement SLS mortality data after 2013 through 2017, data on the individuals' year and month of death were obtained from Public Health Scotland (PHS) via Electronic Data Research and Innovation Service (eDRIS)⁷.

For this study, we followed 202,237 individuals aged 17⁺ with a total of 2,810,414 person-years between 2002 and 2017. Basic demographic information regarding gender, ethnicity, country of birth, marital status, education, and occupation were based on the 2001 and 2011 censuses. The usage of information from two censuses was essential as some of the demographic characteristics (e.g., marital status, education and occupation) can change over time. Additionally, we only considered individuals aged 17 and over because the mechanisms by which air pollution impacts health may differ between adults and children. Future research would benefit from assessing the impacts of air pollution on health among children.

Initially, information was sought for all identified individuals in the SLS aged 16 and above during the 2001 census (totalling 205,732 individuals). However, 36 individuals were excluded due to the absence of gender data, and 1,127 individuals (constituting 0.55%) were excluded due to missing postcode history. We also dropped 2001 observations (n=204,569) due to missing data on deaths that occurred prior to the census date (April 2001), which made 2001 death rate incomparable to the death rates at later years ⁷. The SLS cohort structure and the possibilities of entering and exiting the study between 2002 and 2017 are illustrated in a Lexis-diagram (Figure 1).

- 2.2. Variables

2.2.1. Hospital admissions

The month, year, and main underlying cause of hospital admissions were obtained from PHS and linked to SLS data by eDRIS using the individual's unique identification number. We then calculated the yearly count of all-cause and cause-specific hospital admissions for each SLS individual. Individuals who did not go to the hospital in a certain year were given a count of zero. The International Statistical Classification of Diseases, 10th Revision (ICD-10) codes of the main underlying cause of hospital admission were used to determine the cause-specific outcomes (Supplementary material Table 1) as follows: cardiovascular (I00-I99), respiratory (J00-J99), infectious (A00-B99), and mental/behavioural disorders (F00-F99). It should be noted that the infectious categorisation does not include respiratory viral infections covered within the respiratory categorisation of J00-J99.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2.2.2. Air pollution

Annual air pollution data encompassing all sources, including road traffic and industrial/combustion processes for NO₂, SO₂, PM₁₀, and PM₂₅, was acquired from the "Department for Environment Food and Rural Affairs (DEFRA)" ⁴¹. These data consist of raster representations indicating the average annual concentrations of pollutants measured in $\mu g/m^3$. Air dispersion models were utilized to estimate these concentrations at a spatial resolution of 1 Km² on the UK National Grid ⁴¹. These data were in turn linked to postcodes in Scotland obtained from the National Records of Scotland that fell within the 1 Km² raster cells for each year between 2002 and 2017. Figure 2 describes the concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} pollutants in 2017 across the residential postcodes in Scotland. In a second step, we linked the data file of matched annual air pollution concentrations with postcodes with the data file of SLS residential postcode histories. Where individuals changed residential postcodes during a certain year, the postcode with the lengthiest monthly duration within that year was the one used 7 .

2.2.3. Study covariates

The association between air pollution and hospital admissions is influenced by several factors: (1) socioeconomic (e.g. age, gender, income, education, occupation, ethnicity, country of birth, economic activity) ^{2 8 42}; (2) individual-lifestyle (e.g. pre-existing diseases, smoking, alcohol consumption, exercise, obesity)^{8 43}; (3) contextual (e.g. neighbourhood, deprivation, rural-

urban classifications) ^{43 44}; and (4) environmental (e.g. season, temperature, humidity, rainfall, wind) 45.

Accordingly, the following individual-level baseline socioeconomic covariates collected at the 2001 and 2011 censuses were included in our study: age, squared age (age²; to account for possible non-linear age effects), gender, ethnicity, country of birth, marital status, education, and occupation (Supplementary material Table 2). We additionally included a yearly-varying place of residence variable that classifies the individuals' residential postcodes into six rural-urban categories, based on the data-zone where the postcode is located. Calendar year dummies were also included for each year between 2002 and 2017 to control for the time trend.

2.3.Analysis

All-cause and cause-specific hospital admission counts, socioeconomic and place of residence covariates were described using frequencies, percentages, means, variances and standard deviations (SD). The mean and correlation between the four pollutants were also calculated. Given the high correlations between NO₂, PM₁₀, and PM_{2.5} (Pearson's coefficient ≥ 0.7), the association of the four pollutants with all-cause and cause-specific hospital admissions was assessed in separate models. SO_2 showed weak correlations (Pearson's coefficient <0.5) with the other pollutants, which enabled us to assess in a sensitivity analysis the association between NO₂, PM₁₀, and PM_{2.5} and hospital admissions in two-pollutant models adjusting for SO₂.

We used multilevel mixed-effects negative binomial regression with a random intercept for individuals to study the association between air pollution and all-cause and cause-specific (cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes) hospital admissions. The negative binomial model was used because around 85% of annual individual observations did not include an admission into a hospital (a skewed distribution with a high number of zeros). Therefore, the variance of the count of hospital admissions is greater than the mean (Table 1), and the overdispersion parameter (α) for all hospital admission outcomes is greater than zero (Supplementary material Tables 4-9). This makes the negative binomial regression that can account for overdispersion in hospital admission counts more appropriate than Poisson regression ⁴⁶. In a sensitivity analysis, we treated the hospital admission outcomes as binary variables (0=Not admitted to hospital; 1=Admitted to hospital) and used multilevel mixed-effects logistic regression for analysis.

Three stepwise models were developed: Model 1 included the air pollution independent variable and controlled for age, age², gender and calendar year dummies; Model 2 controlled additionally for ethnicity, country of birth, marital status, education, and occupation; and Model 3 included the place of residence covariate.

The association of all-cause and cause-specific hospital admissions with the socioeconomic and place of residence covariates is shown in Supplementary material Tables 4-15. Results of the multilevel negative binomial regression are presented as incidence rate ratios (IRRs) with 95% confidence intervals (CIs) per 1 μ g/m³ increase in pollutants and visualised in coefficient plots. Statistical significance is at a p-value of less than 0.05. Statistical analysis was conducted

in STATA₁₆. Coefficient plots using ggplot package were performed in R Studio. Spatial pre processing was conducted in ArcGIS-Pro software.

- 335 The equation for the calculation of the IRRs is as follows:
- $IRR_{ti} = e^{\beta_0 + U_{0i} + \beta_1 \text{overall pollutant concentration}_{ti} + \beta_n \text{Covariates}_{ti} + \varepsilon_{ti}$

Where *IRRti* is the incident rate ratio for the hospital admission outcome for individuals *i* at year *t*; βI is the air pollution coefficient, βn represents coefficients of the other study covariates and $\beta 0$ is the fixed intercept; U_{0i} is level 2 random intercept of individuals; ε_{ti} are the model residuals.

- , 341
- 3 342
- 2.3.1. Additional analysis

To assess the impact of cumulative air pollution (CAP) exposure from year to year and across the different places of residence between 2002 and 2017, we repeated models 1 to 3 replacing the yearly air pollution variable with average CAP exposure. Following the methods of Bentayeb et al. (2015)⁴⁷, the CAP variable was calculated as the average of cumulative yearly exposure before censoring or death. Thus, for every individual, we computed the mean pollutant concentration from the baseline year (2002) to each year of follow-up (e.g., exposure in 2004 was calculated as the average of annual concentrations from 2002 to 2004; in 2005, from 2002 to 2005, etc).

2 351 **2.4.Ethics**

On May 14th, 2020, ethical clearance was obtained from the Ethics Committee of the University of St Andrews. Approval for accessing SLS data was granted by the SLS board, and access to linked data from PHS was authorized through the application to the Public Benefit and Privacy Panel for Health and Social Care (HSC-PBPP). Consent was not deemed necessary for this study as it relied on secondary data analysis. The tasks of data cleaning, management, and analysis were conducted within the secure settings of the SLS. Final outputs were cleared following a thorough screening protocol. Information classified as potentially disclosive such as full dates of birth, death and hospital admissions were not given for analysis. Instead, the researcher had access to the month and year of those events.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2.5.Patient and public involvement

3.1.Hospital admissions description

The research conducted was carried out on the SLS quantitative data. A summary of the main findings of this study was shared with the SLS team and published on their website. Individuals in the SLS dataset are anonymised, and therefore it is impossible to share the data directly with each individual participant. Patients were not involved within the direct creation or carrying out of the research study. Instead, we had access to the month and year of mortality and hospital admissions records of each anonymised individual within the SLS dataset.

3. Results

BMJ Open

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Around 15% of person-years involved an admission into a hospital. The mean of all-cause hospital admissions was 0.3 (variance=1.6; SD=1.3) with 8.6% of yearly individual observations including one hospital admission, 2.9% including two admissions, and 3.5%

observations including one hospital admission, 2.9% including two admissions, and 3.5%
including 3 or more admissions. The mean of cardiovascular, respiratory, infectious,
mental/behavioural disorders, and other-causes hospital admission count was 0.04
(variance=0.14; SD=0.37), 0.03 (variance=0.1; SD=0.32), 0.005 (variance=0.01; SD=0.1),
0.003 (variance=0.01; SD=0.1), and 0.26 (variance=1.18; SD=1.1), respectively (Table 1).

3.2. Study covariates description

Most individuals were females (53% versus 47% for males), belonged to white ethnicity (~95%), were born in Scotland (~87%), were married (~55%), had a post-school/university education (24% in 2002-2010; 34% in 2011-2017), worked in white collar high skilled (27% in 2002-2010; 33% in 2011-2017) or white collar low skilled (25% in 2002-2010; 29% in 2011-2017) jobs, and lived in large urban (35%) areas (Table 2).

3.3. Air pollution description

Fluctuations in air pollutant levels were observed across the years 2002 to 2017, with higher concentrations recorded in the initial three years (2002-2004) compared to subsequent years (Supplementary material Figure 1). Over the period from 2002 to 2017, the mean concentrations \pm SD of NO₂, SO₂, PM₁₀, and PM_{2.5} pollutants were 11.9 \pm 6.4, 1.9 \pm 1.5, 11.3 ± 2.1 , and $7.2 \pm 1.6 \,\mu$ g/m³, respectively (Supplementary material Table 3). The average annual mean concentrations for NO₂, PM₁₀, and PM_{2.5} pollutants are lower than the 2005 WHO guidelines of 40 μ g/m³ for NO₂ 20 μ g/m³ for PM₁₀ and 10 μ g/m³ for PM_{2.5}, however, the concentrations of NO₂ and PM_{2.5} are higher than the most recent 2021 WHO guidelines of 10 μ g/m³ for NO₂, and 5 μ g/m³ for PM_{2.5} ⁴⁸.

37 393 Significant correlations (Pearson's coefficient ≥ 0.7) were observed among NO₂, PM₁₀, and 38 394 PM_{2.5} (Supplementary material Table 3), potentially attributed to the atmospheric chemical 395 reactions involving these pollutants ¹⁹.

42 396

3.4. The association of air pollution with hospital admissions

Results revealed higher incidence rate ratios for cardiovascular (except for model 3), respiratory, and infectious hospital admissions with increasing concentrations of NO₂, PM₁₀ (except for model 3) and PM_{2.5} pollutants. After adjusting for socioeconomic variables and place of residence (model 3), the incidence rate for respiratory hospital admissions increased by 4.2% (95%CI=2.1%-6.3%) and 1.2% (95%CI=0.8%-1.7%) per 1 µg/m³ increase in PM_{2.5} and NO₂, respectively. Higher exposure to SO₂ was associated with higher rates of respiratory hospital admissions only in models 1 and 2. Hospital admissions for mental/behavioural disorders were associated with higher exposure to NO₂ (IRR=1.021; 95%CI=1.011-1.031). Contrary to our expectations, higher exposure to SO₂ was associated with lower incidence rates for all-cause, mental/behavioural disorders, and other-causes hospital admissions in models 2 and 3 (Figure 3).

Page 13 of 56

BMJ Open

In a sensitivity analysis considering hospital admissions as binary (yes/no) outcomes, we
observed similar results whereby a higher exposure to NO₂, PM₁₀, and PM_{2.5} pollutants was
associated with higher odds of cardiovascular, respiratory, and infectious hospital admissions.
An exception was the absence of an association between NO₂ and PM_{2.5} pollutants and allcause hospital admission treated as a binary (yes/no) outcome (Supplementary material Figure
Similar results were observed in two-pollutant models, which include SO₂ and one of the
other three pollutants in the same model (Supplementary material Figures 2 and 4).

3.4.1. Average CAP results

Stronger positive associations were noticed in the analysis of average CAP effect on hospital admissions compared to the analysis of yearly air pollution effects. Higher average CAP concentrations for NO₂, PM₁₀, and PM_{2.5} pollutants were associated with higher incidence rate ratios for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions. Cumulative exposure to SO₂ was associated with higher rates of respiratory hospital admissions in all three models. The incidence rate for respiratory hospital admissions increased by 12.6% (95%CI=9.9%-15.5%), 6.8% (95%CI=5.1%-8.5%), 2.8% (95%CI=1.1%-4.6%), and 2.1% (95%CI=1.7%-2.6%) per 1 μ g/m³ increase in average cumulative exposure to PM_{2.5}, PM₁₀, SO₂ and NO₂ pollutants, respectively. Higher cumulative exposure to SO₂ is not associated anymore with a lower incidence of mental/behavioural disorders hospital admissions (Figure 4). Similar results were noted when hospital admissions were treated as binary (yes/no) outcomes (Supplementary material Figure 5). This shows that long-term average cumulative exposure to air pollution has a greater effect on both physical and mental health outcomes, resulting in higher rates of hospital admissions.

4. Discussion

This study used a large and representative census-based individual-level cohort data linked to 1 km² resolution air pollution at the postcode level between 2002 and 2017. Analysis supported an association between long-term exposure to NO2, SO2, PM10 and PM2.5 pollutants and higher rates of all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions. The direction of these positive associations is concordant with previous studies investigating the long-term effects of different air pollutants on all-cause ^{8 49 50}, cardiovascular ^{9 12 16 49}, respiratory ^{9-11 50}, and mental/behavioural disorders ⁵¹ hospital admissions.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Given the differences in population size, study location, air pollution exposure assessment and level, outcomes measurement, and methodology, we cannot compare directly the magnitude of our estimates to the estimates from other studies. Rather, we can conclude that our findings are in line with what previous literature has suggested with some noted heterogenieties. For example, Yazdi et al. (2021) found that with every 1 μ g/m³ increase in PM_{2.5} and NO₂ pollutants, the risk of stroke hospital admission increases by 0.0091% and 0.00059%, respectively ⁴⁹. Gandini et al. (2018) found higher hazard ratios of 1.05/1.05, 1.03/1.02, 1.15/1.14, 1.18/1.20, 1.24/1.20, 1.06/1.06, and 1.10/1.05 for circulatory system diseases, respiratory system diseases, stroke, lung cancer, kidney cancer, all cancers excluding lung cancer, and Lower Respiratory Tract Infections (LRTI) first-ever hospital admissions with

449 every 10 μg/m³ higher exposure to PM_{2.5}/NO₂ pollutants ⁹. Similarly, Liu et al. (2021) found
450 1.17 and 1.11 higher hazard ratios of COPD first-ever hospital admission with every 5 μg/m³
451 and 10 μg/m³ higher exposure to PM_{2.5} and NO₂ pollutants, respectively ¹¹.

Some of these heterogenities might be due to residual confounding from unobserved factors. For example, our models adjusted only for socio-demographic and economic factors of individuals (e.g., age, squared age, gender, education, marital status, ethnicity, country of birth, and occupation), as well as for the time trend (i.e., year dummies) and place of residence (i.e., rural-urban area classifications). However, lifestyle covariates at the individual level, such as smoking, exercise, alcohol consumption, or body mass index, which could influence the relationship between air pollution and hospital admissions, were not considered due to their unavailability in the SLS register-based data. Accounting for these lifestyle covariates could result in a slight adjustment of association estimates, typically within the range of a 1-2%increase or decrease, depending on the specific outcome, as indicated by other studies 4625 52-⁵⁴. Similarly, our models did not incorporate environmental factors at the place of residence, such as noise pollution or the absence of green spaces. However, the impact on association magnitudes is anticipated to be minimal, with estimates showing an attenuation of 0-3% increase or decrease, as documented in previous studies ^{17 54 55}. The adjustment of our models for the individual-level socioeconomic and rural-urban covariates might also absorb some of the residual confounding due to the interconnections between the individuals' socioeconomic circumstances, their lifestyle, and their surrounding environment. Additionally, our models were not adjusted for weather factors such as temperature, humidity, rainfall, or wind, which might impact the association between air pollution and hospital admissions. Nevertheless, the air pollution data used in this study are modelled yearly data using air dispersion models and meteorological factors such as temperature and wind are accounted for within the modelling framework⁴¹.

As for the positive association between long-term exposure to NO₂ PM₁₀, and PM_{2.5} and infectious hospital admissions, the literature on this outcome is scarce. Yet, one study examining the association between short-term exposure to PM2.5 air pollution and hospital admissions for infectious diseases such as sepsis, urinary tract and skin infections corroborate our findings ⁴⁰.

Our study showed that yearly exposures to different air pollutants can be associated with different hospital admission outcomes. For example, NO₂ was associated with all hospital admission outcomes, SO₂ was related to respiratory hospital admissions, while PM₁₀ and PM_{2.5} were associated with respiratory and infectious hospital admissions. This could be related to the mechnisims of action of specific pollutants in producing toxic effects. Gaseous pollutants (e.g., NO₂ and SO₂) are irritants of the respiratory system that can penetrate deep in the lungs inducing respiratory irritation, mucus production, coughing, wheezing, bronchoconstriction, airways inflammation, bronchospasm and pulmonary-edema²⁵⁶⁵⁷. Long-term exposure to NO₂ is also related to the weakening of the immune system and to cardiovscular problems such as ventricle hypertrophy 56. Additionally, NO₂ exposure can trigger neuronal injury and neurological disorders through the formation of Reactive Oxygen Species (ROS) and free radicals 58 59.

BMJ Open

491 Despite the harmful effect of gaseous air pollutants (e.g., NO_2 and SO_2) on health, particulate-492 matter especially particles with smaller diameters (e.g. $PM_{2.5}$) have the greatest effect as shown 493 in our study and particularly on respiratory health. Particulate matter can penetrate deeply into 494 the respiratory system through air breathing reaching alveoli and blood stream. This will 495 initiate the oxidative stress mechanism and the production of ROS affecting various systems in 496 the human body including the respiratory, cardiovascular, immune, and neural systems $^{2.56.57}$.

We also observed elevated estimates for average cumulative compared to yearly air pollution exposures in relation to hospital admissions, particularly in relation to mental and behavioural disorders admissions. Whilst yearly exposure to SO₂ showed an unexpected negative association with mental/behavioural disorders hospital admissions, which could be attributed to the small variation in the yearly concentrations of SO₂ across time (Supplementary material Figure 1) or to the residual confounding from unobserved factors, average cumulative exposure to SO₂ did not show this association. Higher exposure to cumulative PM₁₀ and PM_{2.5} pollutants was also associated with a higher incidence of mental/behavioural disorders hospital admissions, while this association was not observed for yearly PM₁₀ and PM_{2.5} exposures. This shows that the average accumulation of air pollution exposures across time and through different places of residence has a greater effect on health, especially for mental and behavioural complications that take time to show-up.

- Finally, adjusting our analysis for the place of residence (model 3), reduced the magnitude of associations between hospital admission outcomes and all the four pollutants. This suggests that the place of residence (urban versus rural) plays a crucial role in the intensity and duration of exposure to ambient air pollution and its associated illness. For example, air pollution emission sources are more abundant in urban areas and factors that can absorb the air pollution emissions (e.g., green spaces) are less available. Confirming to this, Figure 2 shows higher concentrations of traffic-related (i.e., NO₂) and industrial (i.e., SO₂) air pollution in the urban Central Belt of Scotland and in large cities. Figure 2 also shows high concentrations of PM₁₀ and PM_{2.5} in major cities and along the east coast because particulate-matter pollution originates from both traffic and industrial sources and can travel for long distances based on the wind direction and other metereological and topological factors ⁶⁰⁻⁶².
- Despite the strengths of this study, it has some limitations. First, individuals were followed for 16 years (2002-2017); thus, bias may result from previous life-time exposures to air pollution at different residences. As shown in our analysis, average CAP exposure across the 16 years of study period had a greater effect on hospital admission rates compared to yearly exposures, particularly for mental/behavioural disorders.
- Second, the individuals' exposure to ambient air pollution was assessed at a yearly rather than monthly or daily basis which did not allow for seasonal variations, and the residential postcode was used as a proxy for the individual's exposure to air pollution. This does not necessarily equate to the true personal exposure, which can happen indoors, at the workplace, during daily outdoor activities, and through commuting patterns. Yet, the emergence of real-time GPS data would create an opportunity for future research to analyse real-time exposure to ambient air pollution by knowing the real-time location of individuals.
- 57
 532 Finally, we could not account for some important lifestyle covariates (e.g., smoking or
 533 exercise) as discussed previously due to the unavailability of this information in the SLS
 60

census-based data. However, using administrative data has its advantages including high quality large representative data, less selection bias, and the provision of continuous longitudinal information on residential postcode histories, emigrations and immigrations, and mortality and births vital events. Knowing the exact postcode histories of individuals between 2002 and 2017 as provided in the SLS census-based data was also essential to obtain accurate assessments of individual's residential air pollution exposure.

5. Conclusion

This study supported an association between long-term exposure to air pollution and all-cause and cause-specific hospital admissions. Air pollution was associated with higher rates of hospital admissions for both physical (e.g., respiratory, cardiovascular, and infectious) and mental/behavioural diseases. Policies and interventions on air pollution through stricter environmental regulations, long-term planning, and the shifting toward renewable energy could eventually help ease the hospital-care burden in Scotland in the long-term. Specifically, policies aiming at making the zero-emission zones - small areas where only zero-emission vehicles, pedestrians, and bikes are permitted – more abundant in Scotland, especially in the central belt of Scotland where busy and more polluted cities such as Glasgow and Edinburgh are located, would improve the air quality and in turn lower the hospital-care burden in those cities. For future research, it is also recommended to study the impact of air pollution on health viron. outcomes synergically alongside other environmental issues such as weather fluctuations and climate change.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

FCF	Defenences
565	References
566	1. Campbell-Lendrum D, Prüss-Ustün A. Climate change, air pollution and noncommunicable
567	diseases. Bull World Health Organ 2019;97(2):160-61. doi: 10.2471/BLT.18.224295
568	[published Online First: 2018/12/19]
	2. Abed Al Ahad M, Sullivan F, Demšar U, et al. The effect of air-pollution and weather exposure on
	mortality and hospital admission and implications for further research: A systematic scoping
	review. <i>PLoS One</i> 2020;15(10):e0241415. doi: 10.1371/journal.pone.0241415
	3. Dominski FH, Lorenzetti Branco JH, Buonanno G, et al. Effects of air pollution on health: A
	mapping review of systematic reviews and meta-analyses. Environmental Research
	2021;201:111487. doi: https://doi.org/10.1016/j.envres.2021.111487
	4. Fischer PH, Marra M, Ameling CB, et al. Air Pollution and Mortality in Seven Million Adults: The
	Dutch Environmental Longitudinal Study (DUELS). Environmental Health Perspectives
	2015;123(7):697-704. doi: 10.1289/ehp.1408254
	5. Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. Does Long-Term Air Pollution Exposure Affect Self-
	Reported Health and Limiting Long Term Illness Disproportionately for Ethnic Minorities in
	the UK? A Census-Based Individual Level Analysis. Applied Spatial Analysis and Policy 2022
581	doi: 10.1007/s12061-022-09471-1
582	6. Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. The spatial–temporal effect of air pollution on
583	individuals' reported health and its variation by ethnic groups in the United Kingdom: a
584	multilevel longitudinal analysis. BMC Public Health 2023;23(1):897. doi: 10.1186/s12889-
585	023-15853-y
586	7. Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. Long-term exposure to air pollution and mortality
587	in Scotland: A register-based individual-level longitudinal study. Environmental Research
588	2023;238:117223. doi: https://doi.org/10.1016/j.envres.2023.117223
589	8. Abed Al Ahad M. The association of long-term exposure to outdoor air pollution with all-cause GP
590	visits and hospital admissions by ethnicity and country of birth in the United Kingdom. PLoS
591	One 2023;18(10):e0275414. doi: 10.1371/journal.pone.0275414
592	9. Gandini M, Scarinzi C, Bande S, et al. Long term effect of air pollution on incident hospital
593	admissions: Results from the Italian Longitudinal Study within LIFE MED HISS project.
594	Environment International 2018;121:1087-97. doi: 🖊 🖊
595	https://doi.org/10.1016/j.envint.2018.10.020
596	10. Shuo L, Jeanette Therming J, Petter L, et al. Long-term exposure to low-level air pollution and
597	incidence of asthma: the ELAPSE project. European Respiratory Journal 2020:2003099. doi:
598	10.1183/13993003.030992020
	11. Liu S, Jørgensen JT, Ljungman P, et al. Long-term exposure to low-level air pollution and
	incidence of chronic obstructive pulmonary disease: The ELAPSE project. Environment
601	International 2021;146:106267. doi: <u>https://doi.org/10.1016/j.envint.2020.106267</u>
602	12. Wolf K, Hoffmann B, Andersen ZJ, et al. Long-term exposure to low-level ambient air pollution
603	and incidence of stroke and coronary heart disease: a pooled analysis of six European
	cohorts within the ELAPSE project. <i>The Lancet Planetary Health</i> 2021;5(9):e620-e32. doi:
	https://doi.org/10.1016/S2542-5196(21)00195-9
	13. Hvidtfeldt UA, Severi G, Andersen ZJ, et al. Long-term low-level ambient air pollution exposure
	and risk of lung cancer – A pooled analysis of 7 European cohorts. <i>Environment International</i>
	2021;146:106249. doi: https://doi.org/10.1016/j.envint.2020.106249
	14. Poulsen AH, Sørensen M, Hvidtfeldt UA, et al. Concomitant exposure to air pollution, green
	space, and noise and risk of stroke: a cohort study from Denmark. The Lancet Regional
	<i>Health – Europe</i> 2023;31 doi: 10.1016/j.lanepe.2023.100655
	15. Poulsen AH, Sørensen M, Hvidtfeldt UA, et al. Air pollution and myocardial infarction; effect
613	modification by sociodemographic and environmental factors. A cohort study from
	16
	567 568 569 570 571 572 573 574 575 576 577 578 577 580 581 582 583 584 583 584 585 586 587 588 589 591 592 593 594 595 596 597 598 599 600 601 602

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1		
2		
3	614	Denmark. Environmental Research 2023;229:115905. doi:
4	615	https://doi.org/10.1016/j.envres.2023.115905
5 6	616	16. Poulsen AH, Sørensen M, Hvidtfeldt Ulla A, et al. Source-Specific Air Pollution Including Ultrafine
0 7	617	Particles and Risk of Myocardial Infarction: A Nationwide Cohort Study from Denmark.
8	618	Environmental Health Perspectives 2023;131(5):057010. doi: 10.1289/EHP10556
9	619	17. Sørensen M, Poulsen AH, Hvidtfeldt UA, et al. Air pollution, road traffic noise and lack of
10	620	greenness and risk of type 2 diabetes: A multi-exposure prospective study covering
11	621	Denmark. Environment International 2022;170:107570. doi:
12	622	https://doi.org/10.1016/j.envint.2022.107570
13	623	18. Slama A, Śliwczyński A, Woźnica J, et al. Impact of air pollution on hospital admissions with a
14	624	focus on respiratory diseases: a time-series multi-city analysis. <i>Environmental Science and</i>
15	625	Pollution Research 2019;26(17):16998-7009. doi: 10.1007/s11356-019-04781-3
16	626	19. Hvidtfeldt UA, Sørensen M, Geels C, et al. Long-term residential exposure to PM2.5, PM10, black
17		
18	627	carbon, NO2, and ozone and mortality in a Danish cohort. <i>Environment International</i>
19 20	628	2019;123:265-72. doi: <u>https://doi.org/10.1016/j.envint.2018.12.010</u>
20 21	629	20. Beelen R, Stafoggia M, Raaschou-Nielsen O, et al. Long-term Exposure to Air Pollution and
21	630	Cardiovascular Mortality: An Analysis of 22 European Cohorts. <i>Epidemiology</i> 2014;25(3):368-
23	631	78. doi: 10.1097/ede.000000000000076
24	632	21. So R, Jørgensen JT, Lim Y-H, et al. Long-term exposure to low levels of air pollution and mortality
25	633	adjusting for road traffic noise: A Danish Nurse Cohort study. Environment International
26	634	2020;143:105983. doi: <u>https://doi.org/10.1016/j.envint.2020.105983</u>
27	635	22. Pinault LL, Weichenthal S, Crouse DL, et al. Associations between fine particulate matter and
28	636	mortality in the 2001 Canadian Census Health and Environment Cohort. Environmental
29	637	Research 2017;159:406-15. doi: <u>https://doi.org/10.1016/j.envres.2017.08.037</u>
30	638	23. Pope CA, Lefler Jacob S, Ezzati M, et al. Mortality Risk and Fine Particulate Air Pollution in a
31	639	Large, Representative Cohort of U.S. Adults. Environmental Health Perspectives
32	640	2019;127(7):077007. doi: 10.1289/EHP4438
33 34	641	24. Crouse Dan L, Peters Paul A, van Donkelaar A, et al. Risk of Nonaccidental and Cardiovascular
35	642	Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate
36	643	Matter: A Canadian National-Level Cohort Study. Environmental Health Perspectives
37	644	2012;120(5):708-14. doi: 10.1289/ehp.1104049
38	645	25. Crouse Dan L, Peters Paul A, Hystad P, et al. Ambient PM2.5, O3, and NO2 Exposures and
39	646	Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and
40	647	Environment Cohort (CanCHEC). Environmental Health Perspectives 2015;123(11):1180-86.
41	648	doi: 10.1289/ehp.1409276
42	649	26. Raaschou-Nielsen O, Thorsteinson E, Antonsen S, et al. Long-term exposure to air pollution and
43	650	mortality in the Danish population a nationwide study. <i>eClinicalMedicine</i> 2020;28 doi:
44 45	651	10.1016/j.eclinm.2020.100605
45 46	652	27. Dehbi H-M, Blangiardo M, Gulliver J, et al. Air pollution and cardiovascular mortality with over
40 47	653	25years follow-up: A combined analysis of two British cohorts. <i>Environment International</i>
48	654	2017;99:275-81. doi: https://doi.org/10.1016/j.envint.2016.12.004
49	655	28. Beverland IJ, Cohen GR, Heal MR, et al. A comparison of short-term and long-term air pollution
50	656	exposure associations with mortality in two cohorts in Scotland. <i>Environ Health Perspect</i>
51	657	2012;120(9):1280-5. doi: 10.1289/ehp.1104509 [published Online First: 20120606]
52	658	29. Rodopoulou S, Stafoggia M, Chen J, et al. Long-term exposure to fine particle elemental
53		
54	659 660	components and mortality in Europe: Results from six European administrative cohorts
55	660	within the ELAPSE project. <i>Science of The Total Environment</i> 2022;809:152205. doi:
56	661	https://doi.org/10.1016/j.scitotenv.2021.152205
57 59	662	30. Zhang Z, Wang J, Kwong JC, et al. Long-term exposure to air pollution and mortality in a
58 59	663	prospective cohort: The Ontario Health Study. <i>Environment International</i> 2021;154:106570.
59 60	664	doi: <u>https://doi.org/10.1016/j.envint.2021.106570</u>
00		17

665	31. Stafoggia M, Oftedal B, Chen J, et al. Long-term exposure to low ambient air pollution	
666	concentrations and mortality among 28 million people: results from seven large European	
667 668	cohorts within the ELAPSE project. <i>The Lancet Planetary Health</i> 2022;6(1):e9-e18. doi:	
668 660	https://doi.org/10.1016/S2542-5196(21)00277-1	
669	32. Strak M, Weinmayr G, Rodopoulou S, et al. Long term exposure to low level air pollution and	
670	mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ	
671	2021;374:n1904. doi: 10.1136/bmj.n1904	
672	33. Hoek G, Krishnan RM, Beelen R, et al. Long-term air pollution exposure and cardio- respiratory	
673	mortality: a review. <i>Environmental Health</i> 2013;12(1):43. doi: 10.1186/1476-069X-12-43	
674	34. Pope CA, Coleman N, Pond ZA, Burnett RT. Fine particulate air pollution and human mortality:	Π
675	25+ years of cohort studies. <i>Environmental Research</i> 2020;183:108924. doi:	rot
676	https://doi.org/10.1016/j.envres.2019.108924	ect
677	35. Vodonos A, Awad YA, Schwartz J. The concentration-response between long-term PM2.5	ed
678	exposure and mortality; A meta-regression approach. <i>Environmental Research</i>	by
679	2018;166:677-89. doi: <u>https://doi.org/10.1016/j.envres.2018.06.021</u>	co I
680	36. Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A	oyri
681	systematic review and meta-analysis. <i>Environment International</i> 2020;143:105974. doi:	ight
682	https://doi.org/10.1016/j.envint.2020.105974	ŗ
683	37. O'Brien E, Masselot P, Sera F, et al. Short-Term Association between Sulfur Dioxide and	ICL
684	Mortality: A Multicountry Analysis in 399 Cities. Environmental Health Perspectives	Idin
685	2023;131(3):037002. doi: 10.1289/EHP11112	ng f
686	38. Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. Air pollution and individuals' mental well-being in	or
687	the adult population in United Kingdom: A spatial-temporal longitudinal study and the	JSe
688	moderating effect of ethnicity. <i>PLoS One</i> 2022;17(3):e0264394. doi:	s re
689	10.1371/journal.pone.0264394	ylat
690	39. Bakolis I, Hammoud R, Stewart R, et al. Mental health consequences of urban air pollution:	ed
691	prospective population-based longitudinal survey. Social Psychiatry and Psychiatric	t t
692	Epidemiology 2020 doi: 10.1007/s00127-020-01966-x	ext
693	40. Wei Y, Wang Y, Di Q, et al. Short term exposure to fine particulate matter and hospital admission	an
694	risks and costs in the Medicare population: time stratified, case crossover study. BMJ	d d d
695	2019;367:l6258. doi: 10.1136/bmj.l6258	ata
696	41. Department-for-Environment-Food-and-Rural-Affairs. Modelled background pollution data,	Enseignement Superieur (ABES Protected by copyright, including for uses related to text and data mini
697		
698	42. Carugno M, Consonni D, Randi G, et al. Air pollution exposure, cause-specific deaths and	, Α
699	hospitalizations in a highly polluted Italian region. <i>Environmental Research</i> 2016;147:415-24.	ltra
700	doi: 10.1016/j.envres.2016.03.003	aini
701	43. Oudin A, Strömberg U, Jakobsson K, et al. Estimation of Short-Term Effects of Air Pollution on	ng,
702	Stroke Hospital Admissions in Southern Sweden. <i>Neuroepidemiology</i> 2010;34(3):131-42. doi:	an
703	10.1159/000274807	d s
704	44. Tonne C, Halonen JI, Beevers SD, et al. Long-term traffic air and noise pollution in relation to	mi
705	mortality and hospital readmission among myocardial infarction survivors. Int J Hyg Environ	lar
706	Health 2016;219(1):72-8. doi: 10.1016/j.ijheh.2015.09.003 [published Online First:	tec
707	2015/10/12]	hno
708	45. Stafoggia M, Zauli-Sajani S, Pey J, et al. Desert Dust Outbreaks in Southern Europe: Contribution	
709	to Daily PM10 Concentrations and Short-Term Associations with Mortality and Hospital	/ . Ing, Al training, and similar technologies
710	Admissions. Environmental Health Perspectives 2016;124(4):413-19. doi:	, S
711	10.1289/ehp.1409164	
712	46. Payne EH, Gebregziabher M, Hardin JW, et al. An empirical approach to determine a threshold	
713	for assessing overdispersion in Poisson and negative binomial models for count data.	
714	Commun Stat Simul Comput 2018;47(6):1722-38. doi: 10.1080/03610918.2017.1323223	
715	[published Online First: 2018/12/18]	
	18	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

60		19
59 60	765	
58	765	
57	764	https://doi.org/10.1016/j.atmosres.2005.05.003
56	763	Atmospheric Research 2006;79(2):108-22. doi:
55	762	worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA.
54	761	62. Malek E, Davis T, Martin RS, Silva PJ. Meteorological and environmental aspects of one of the
52 53	760	Energy Policy 2023;177:113549. doi: <u>https://doi.org/10.1016/j.enpol.2023.113549</u>
51 52	759	governance of wood burning stove sustainability: Survey evidence from the post-Brexit UK.
50	758	61. Wood M, Wood C, Styring P, et al. Perceptions of accountability and trust in the regulatory
49 50	757	Singapore 2016:5-19.
48	756	Kulshrestha U, Saxena P, eds. Plant Responses to Air Pollution. Singapore: Springer
47	755	60. Jyethi DS. Air Quality: Global and Regional Emissions of Particulate Matter, SOx, and NOx. In:
46	754	2018;41(3):141-62. doi: 10.1016/j.bj.2018.06.001 [published Online First: 2018/07/17]
45	753	Alzheimer's disease - Evidence from epidemiological and animal studies. <i>Biomed J</i>
44	752	59. Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and
43	751	First: 2015/03/21]
42	750	brain. Environ Res 2015;138:416-24. doi: 10.1016/j.envres.2015.02.022 [published Online
40 41	749	58. Yan W, Ji X, Shi J, et al. Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat
39 40	748	10.1080/10937404.2014.946164
38	747	Toxicology and Environmental Health, Part B 2014;17(6):307-40. doi:
37	746	on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. Journal of
36	745	57. Costa S, Ferreira J, Silveira C, et al. Integrating Health on Air Quality Assessment—Review Report
35	744	of Air Pollution: A Review. <i>Front Public Health</i> 2020;8:14-14. doi: 10.3389/fpubh.2020.00014
34	743	56. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts
33		
32	741 742	10.1186/s12940-020-0565-4
31	740 741	disease incidence: a population-based cohort study. <i>Environmental Health</i> 2020;19(1):8. doi:
30	740	55. Yuchi W, Sbihi H, Davies H, et al. Road proximity, air pollution, noise, green space and neurologic
28 29	739	2018;15(11) doi: 10.3390/ijerph15112405
27 28	738	Space and Premature Mortality in Barcelona: A Mega Cohort. Int J Environ Res Public Health
26 27	737	54. Nieuwenhuijsen MJ, Gascon M, Martinez D, et al. Air Pollution, Noise, Blue Space, and Green
25	736	Cardiovascular Mortality. <i>Epidemiology</i> 2013;24(1):35-43.
24	735	53. Chen H, Goldberg MS, Burnett RT, et al. Long-Term Exposure to Traffic-Related Air Pollution and
23	734	Critical Care Medicine 2013;187(11):1226-33. doi: 10.1164/rccm.201210-17580C
22	733	Outdoor Air Pollution in a National English Cohort. American Journal of Respiratory and
21	732	52. Carey IM, Atkinson RW, Kent AJ, et al. Mortality Associations with Long-Term Exposure to
20	731	10.1192/bjp.2021.119
19	730	disorders: retrospective cohort study. <i>Br J Psychiatry</i> 2021;219(6):678-85. doi:
17	729	health service use among individuals with first presentations of psychotic and mood
16 17	728	51. Newbury JB, Stewart R, Fisher HL, et al. Association between air pollution exposure and mental
15	727	2019;130:104879. doi: https://doi.org/10.1016/j.envint.2019.05.073
14	726	admissions of Medicare participants in the Southeast USA. Environment International
13	725	50. Danesh Yazdi M, Wang Y, Di Q, et al. Long-term exposure to PM2.5 and ozone and hospital
12	724	2021;143(16):1584-96. doi: doi:10.1161/CIRCULATIONAHA.120.050252
11	723	Among Medicare Participants Using a Doubly Robust Additive Model. <i>Circulation</i>
9 10	722	49. Yazdi MD, Wang Y, Di Q, et al. Long-Term Association of Air Pollution and Hospital Admissions
8 9	720	5196(21)00287-4
7 8	720	pollution levels. The Lancet Planetary Health 2021;5(11):e760-e61. doi: 10.1016/S2542-
6	719	48. Carvalho H. New WHO global air quality guidelines: more pressure on nations to reduce air
5	718	2015;85:5-14. doi: <u>https://doi.org/10.1016/j.envint.2015.08.006</u>
4	717	pollution and mortality in France: A 25-year follow-up study. <i>Environment International</i>
3	716	47. Bentayeb M, Wagner V, Stempfelet M, et al. Association between long-term exposure to air
2		

BMJ Open Figure 1: Possibilities of entering and exiting the cohort for 8 hypothetical individuals demonstrated in a boot of the second second

ding Numbers and percentages in the diagram key are the author's own calculations based on the Scottish Longitudinal Study date Tree green vertical line represents the starting year of follow-up (2002) after dropping the 2001 observations; Individuals can either be followed-up until the last year of observation which is 2017 where they are censored (e.g., individuals 1 and 6), or can die (e.g., individuals 2, 4, and 5), or can migrate without returning to Scotland during the observation period 2002-2017 (e.g., individual 3), or can migrate and then return to Scotland and thus to our study within the follow-up period (e.g., individuals 7 and 8). In this set at the individual 7 is being followed between 2002 and 2005 and then between 2010 and 2017, inclusive. The years spent by individual 7 outside Scotland (2006-2009) due to the individual 7 is being followed between the analysis. A similar situation is experienced by individual 8 who was present in 2002 and then was followed from 2012 to 2017 with years set boroad (2003-2011) due to migration being removed from the analysis. This lexis diagram further reveals that individuals can enter and exit the cohort based on four sce a be followed for the whole study period (2002-2017) and then either be censored, migrate, or die in 2017. Second, individuals can exit the cohort and the cohort at any vear during the follow-up period (2002-2017). Third, individuals can exit the cohort due to migration out of Scotland, without returning the follow-up time (2002-2017). Fourth, individuals can exit the cohort due to out migration, but then they re-enter the cohort in later years due to returning to Scotland within the follow-up time (2002-2017). If follow-up period (2002-2017). Third, individuals can exit the cohort due to migration out of Scotland, without returning the follow-up time (2002-2017). Fourth, individuals migrate out of Scotland and then return in the same year, this short-term migration is disregarded because the individual's migrate out of Scotland and then return in the same year, this short-term migration and then migrates out again within the provide stayed in Scotland from a previous year migration and then migrates out again within the provide stayed in Scotland from some months of the full calendar year. If an individual comes back to Scotland from a previous year migration and then migrates out again within the individuals' observation for that year is kept because some months out of the full calendar year have been spent in Scotland. The migrate out of the full calendar year have been spent in Scotland the year is kept because some months out of the full calendar year have been spent in Scotland the year is kept because some months out of the full calendar year have been spent in Scotland to the year is kept because some months out of the full calendar year have been spent in Scotland to the year is kept because some months out of the full calendar year have been spent in Scotland to the year is kept because some months out of the full calendar year have been spent in Scotland to the year is kept because some months out of the full calendar year have been spent in Scotland to the some provide the year is kept because to the some months of the full calendar year is kept because to the some months of the full calendar year have been spent in Scotland to the some provide the some months of the full calendar year is kept because to the some months of the full calendar year is kept because to the some months of the full calendar year is kept because to the some months of the full calendar year is kept because to the some months of the full calendar year is kept because to the some months of the full calendar year is kept because to the s

Figure 2: Four maps illustrating the concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} pollutants in 2017 across the residential postcodes in Scotland

The map was constructed by the authors in ArcGIS Pro software using air pollution shapefiles for the year of 2017 downloaded from the DEFRA online data repository ⁴¹ and postcode boundaries shapefiles obtained from the National Records of Scotland. Both DEFRA and National Records of Scotland shapefiles are governed under the Open Government Licence v.3.0.

For beer teriew only

Page 23 of 56

Table 1: Description of hospital admissions (N=	=2,810,414 observations; Study period=2002-
2017)	

	Frequency	%	Mean	Variance	SD
All-cause hospital admission			0.33	1.64	1.28
0	2388584	85			
1	241717	8.6			
2	80813	2.9			
3+	99300	3.5			
Cardiovascular hospital admission			0.04	0.14	0.37
0	2753992	98			
1	29432	1.1			
2	13091	0.5			
3+	13899	0.5			
Respiratory hospital admission			0.03	0.10	0.32
0	2773192	98.7			
1	19685	0.7			
2	9538	0.3			
3+	7999	0.3			
Infectious hospital admission			0.005	0.01	0.10
0	2802217	99.7			
1	5174	0.2			
2	1937	0.1			
3+	1086	0.04			
Mental/behavioural disorders			0.003	0.01	0.10
hospital admission					
0	2804737	99.8			
1	3521	0.1			
2	1263	0.04			
3+	893	0.03			
Other-causes hospital admission			0.26	1.18	1.09
0	2448665	87.1			
1	225980	8.0			
2	66976	2.4			
3+	68793	2.5			

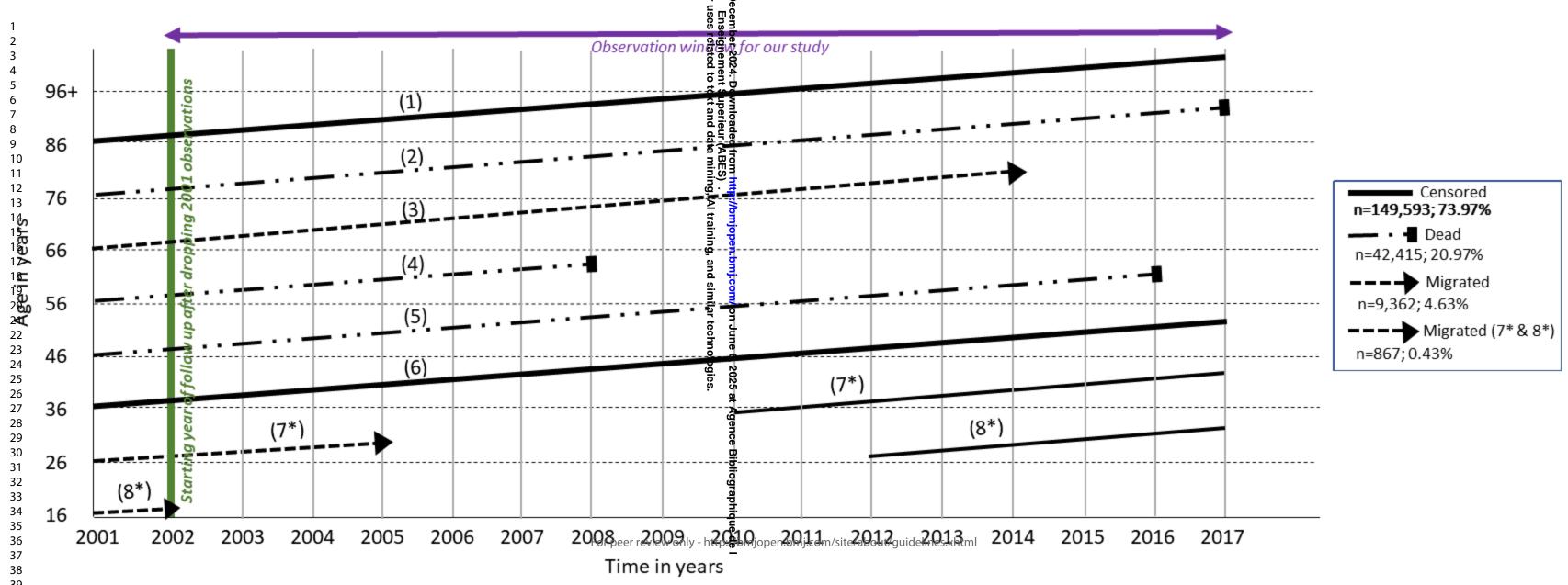
Data source: Author's own calculations based on the Scottish Longitudinal Study data.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

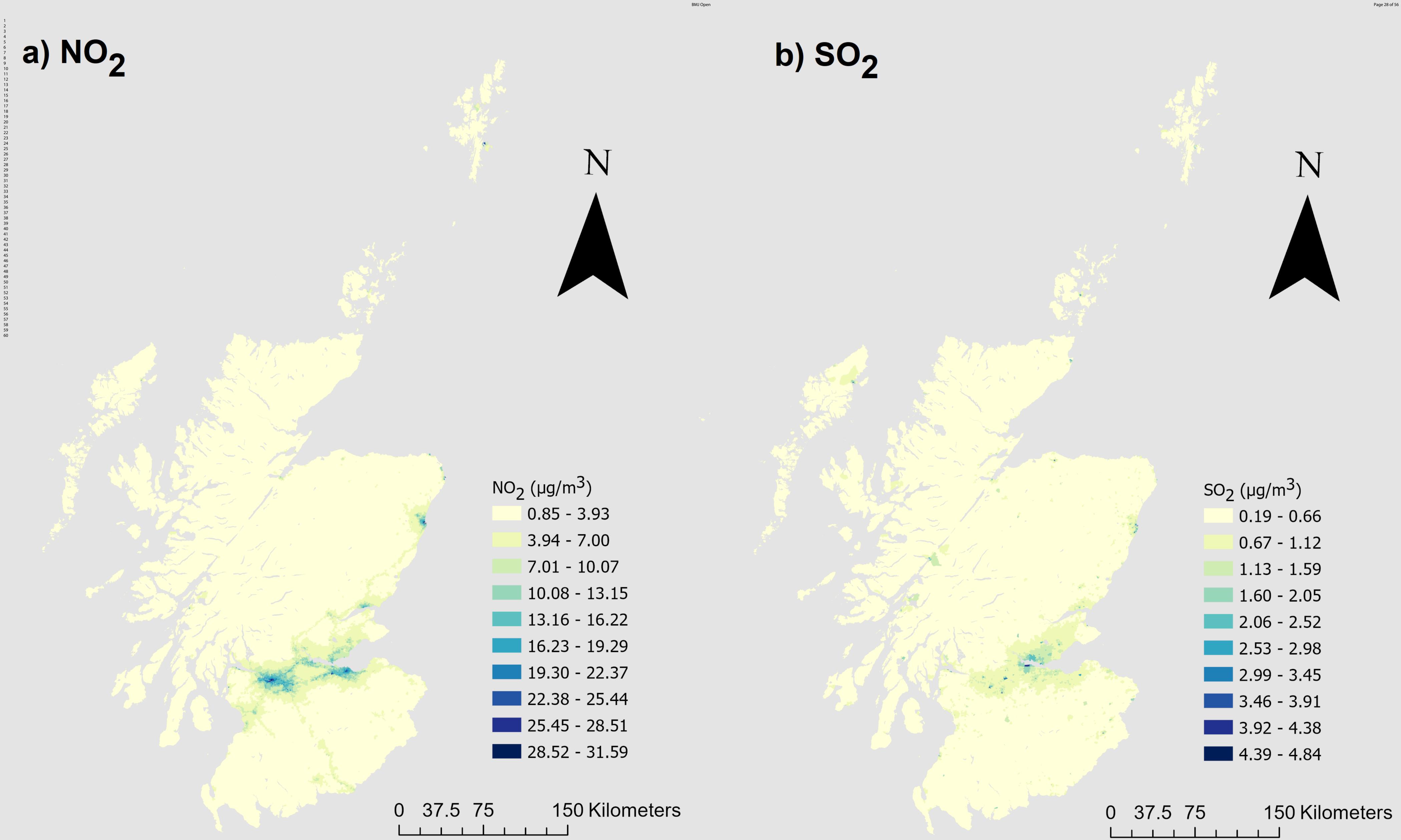
2
3
4
4 5 6 7
6
7 8 9
8
9
10
11
12
13
14 15 16
14
15
10
17
18
19
20
 21
ר ∠ בר
22
 17 18 19 20 21 22 23 24 25 26 27 28 29 30
24
25
26
27
28
20
29
30
31
32
33
34 35
35 36 37
30
37
38
39
40
41
42
44
45
46
47
48
49
50
51
52
53
54
55
56
50
57
50
59
60

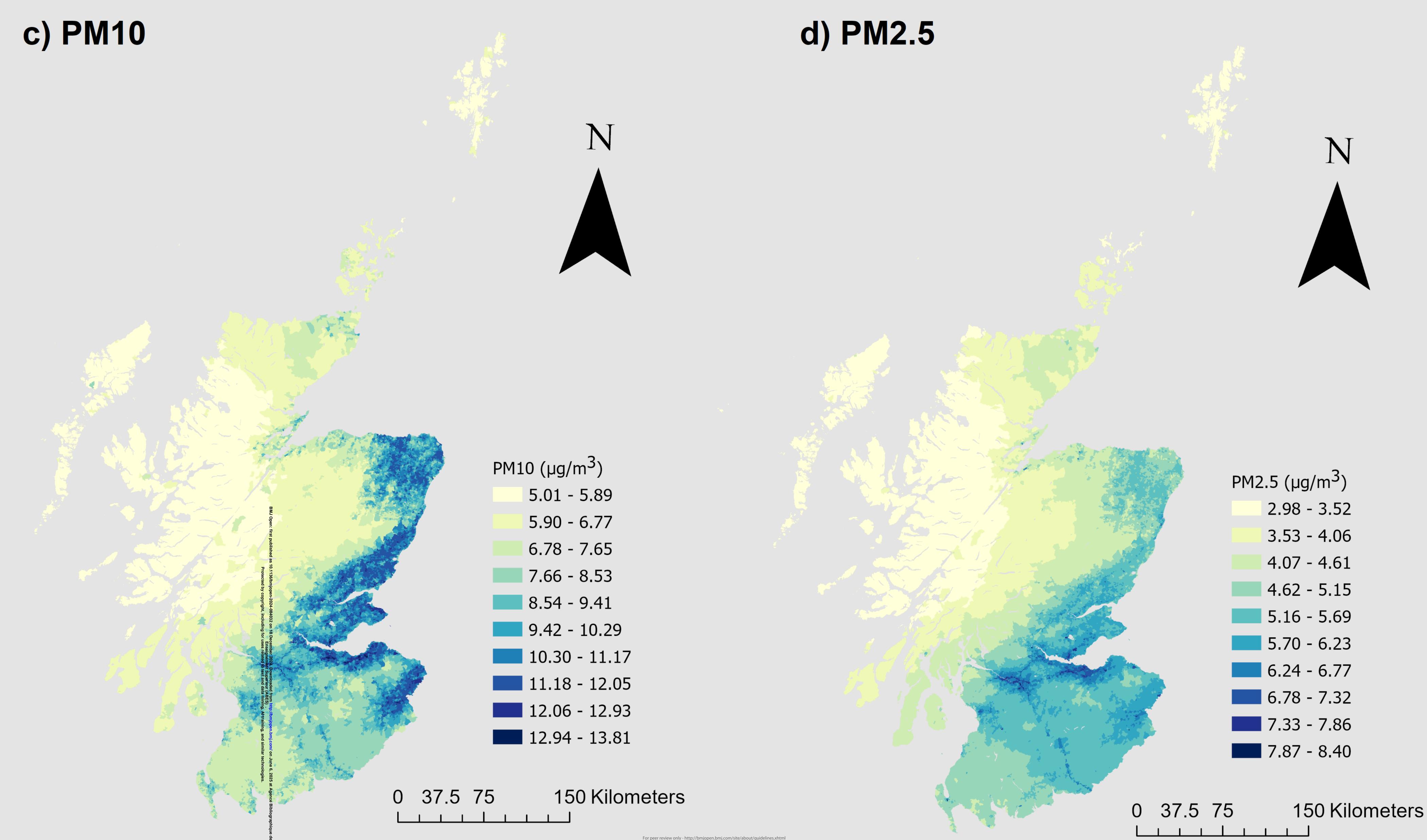
1 2

		2002-2010		2011-2017	
		Frequency	%	Frequency	%
Gender	Male	94859	46.9	80282	46.9
	Female	107314	53.1	90753	53.1
Ethnicity	White	192485	95.2	163571	95.6
	Not-white	9688	4.8	7464	4.4
Ethnicity-3	White	192485	95.2	163571	95.6
categories	Pakistani/Bangladeshi/Indian	1525	0.8	1323	0.8
	Other ethnicities	8163	4.0	6141	3.6
Country of	Born in Scotland	173229	85.7	149018	87.1
birth	Born in rest of UK	19649	9.7	15340	9.0
	Not born in UK	9295	4.6	6677	3.9
Marital	Married	104386	51.6	93867	54.9
Status	Single never married	58396	28.9	38979	22.8
	Divorced/separated/widowed	38481	19.0	37770	22.1
	No response	910	0.5	419	0.2
Education	No educational qualification	60311	29.8	53223	31.1
	Intermediate school	44854	22.2	36561	21.4
	High school	27844	13.8	20343	11.9
	Post-school/university	48251	23.9	58781	34.4
	Still a student	688	0.3	53	0.0
	No response/not recoded	20225	10.0	2074	1.2
Occupation	White collar high skilled	54299	26.9	55595	32.5
•	White collar low skilled	50325	24.9	49202	28.8
	Blue collar high skilled	20530	10.2	20500	12.0
	Blue collar low skilled	46718	23.1	38173	22.3
	Not applicable:	25535	12.6	5793	3.4
	students/never worked				
	No response	4766	2.4	1772	1.0
Total		202173	100	171035	100
	Yearly varying	g covariates (N=	=2,810,414 obs	ervations)	
Age		Mean=52.53	SD=17.57		
		Frequency	%		
Place of	Large Urban areas	977697	34.8		
residence	Other urban areas	815048	29.0		
	Accessible small towns	207083	7.4		
	Remote small towns	67776	2.4		
	Accessible Rural areas	528929	18.8		
	Remote rural areas	213881	7.6		

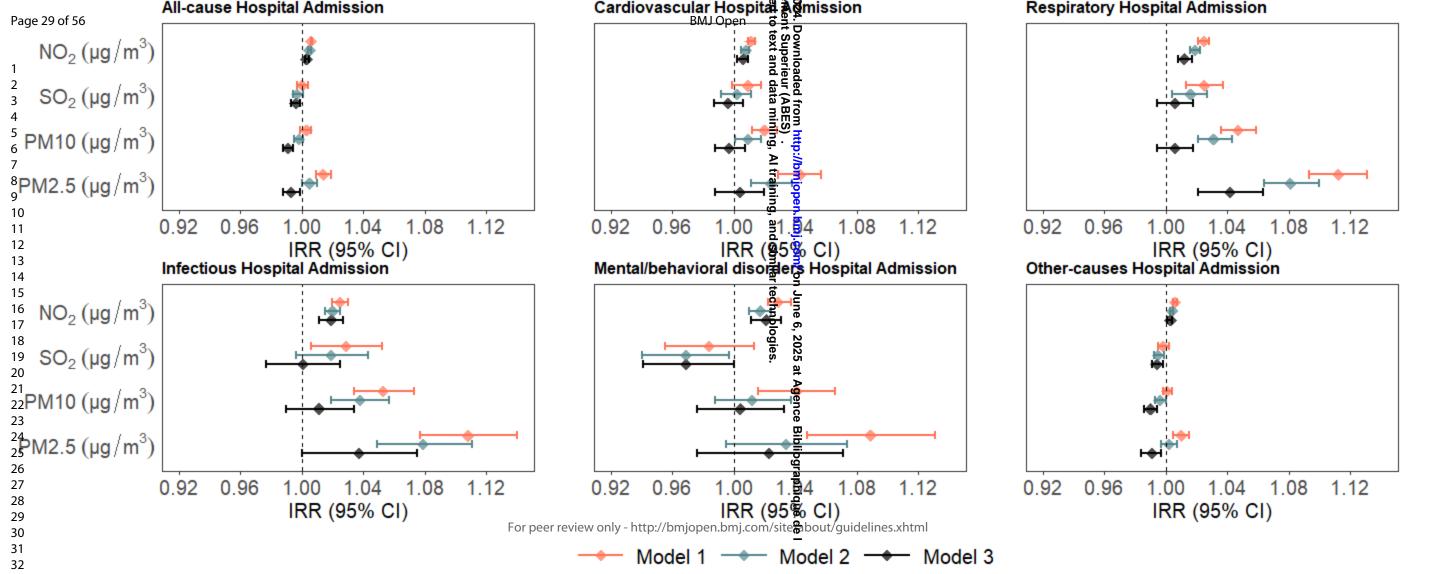

Table 2: Description of socioeconomic study covariates (N=2,810,414 observations; Study period=2002-2017)

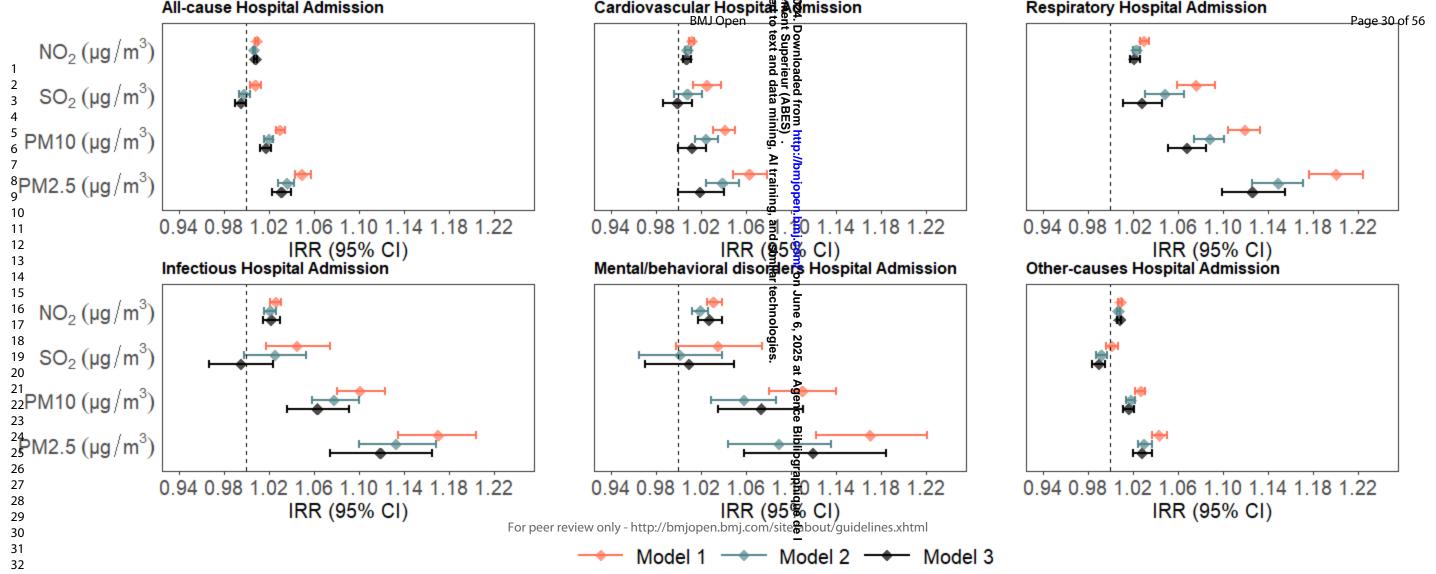
Data source: Author's own calculations based on the Scottish Longitudinal Study data.


Z test to compare the percentages between 2002-2010 and 2011-2017 is equal to 0.0046 with a P-value of 0.996 indicating that there is no significant difference in the percentages between the two study periods.


La proprior Figure 3: The association of all-cause and cause-specific hospital admissions with NO₂, SO₂, PM₁₆, and PM₁₆ show Take 1990 (1990) (199

Lexis Diagram for 8 individuals


Page 27 of 56



PM10 (µg/m ³)
5.01 - 5.89
5.90 - 6.77
6.78 - 7.65
7.66 - 8.53
8.54 - 9.41
9.42 - 10.29
10.30 - 11.17
11.18 - 12.05
12.06 - 12.93
12.94 - 13.81

PM2.5 (µg/m ³)
2.98 - 3.52
3.53 - 4.06
4.07 - 4.61
4.62 - 5.15
5.16 - 5.69
5.70 - 6.23
6.24 - 6.77
6.78 - 7.32
7.33 - 7.86
7.87 - 8.40

Supplemental Material

Contents

ICD-10 codes for classification of the main cause of hospital admissions	2
Socioeconomic and contextual covariates description	3
Description of air pollution	4
The association between air pollution and hospital admissions in two-pollutant models	6
The association between hospital admissions and the socioeconomic and contextual covariates	s7
The association between air pollution and hospital admissions binary (yes/no) outcome	.16
The association between air pollution and hospital admissions binary (yes/no) outcome in two pollutant models	
The association between cumulative air pollution (CAP) exposure and hospital admissions binary (yes/no) outcome	. 18
The association between hospital admissions binary (yes/no) outcome and the socioeconomic	
and contextual covariates	.19

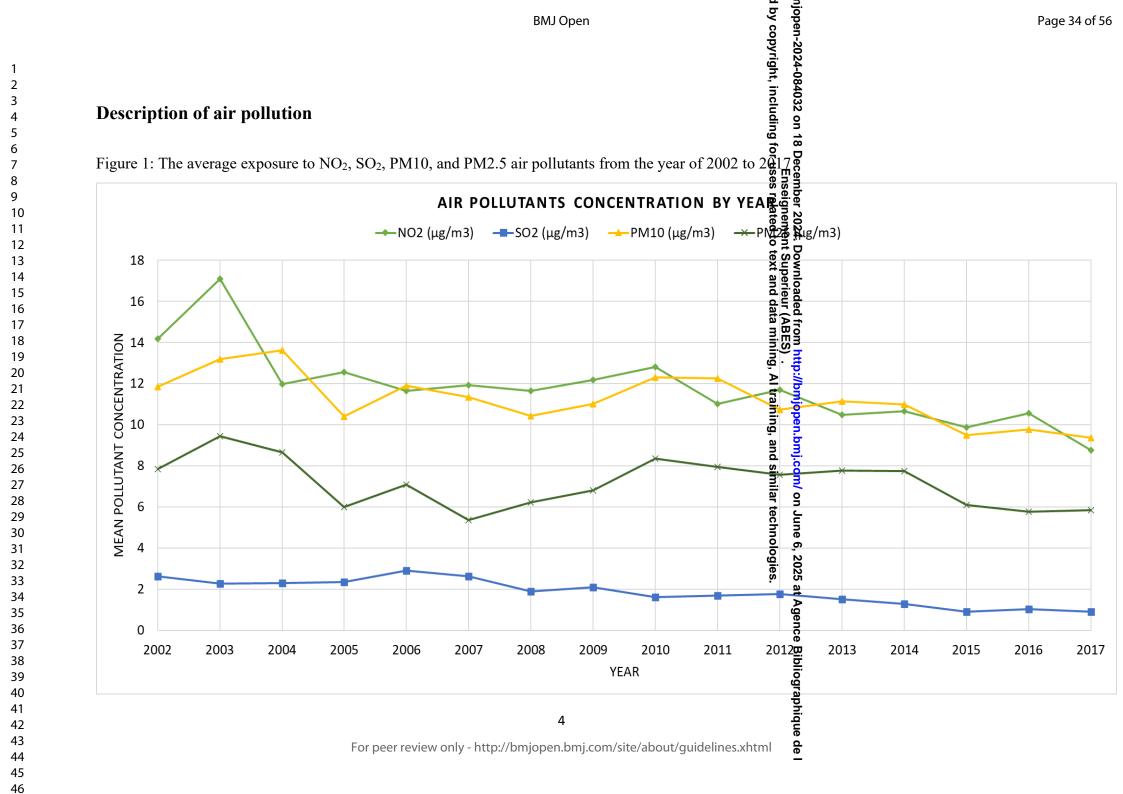
ICD-10 codes for classification of the main cause of hospital admissions

Table 1: Classification of the cause-specific hospital admission outcomes based on the ICD-10 codes of the main underlying cause of hospital admission

Cause-specific hospital admission outcomes	ICD-10 codes of the main underlying cause o hospital admission
Cardiovascular	I00-199
Respiratory	J00-J99
Infectious	A00-B99
Mental and behavioural disorders including dementia, mental retardation, schizophrenia, schizotypal, delusional disorders, mood disorders, neurotic, stress-related and somatoform disorders, and mental and behavioural disorders due to psychoactive substance use and alcohol	F00-F99
Other causes hospital admission	All other causes of hospital admission excluding cardiovascular, respiratory, infectious, and
CD-10 codes are accessed from the WHO. (2016). Intr nd Related Health Problems 10th Revision. <u>https://icd</u>	mental/behavioural disorders causes
	mental/behavioural disorders causes

Socioeconomic and contextual covariates description

Table 2: Description of the socioeconomic and contextual covariates included in the study

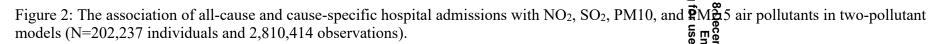

Covariates	Description
Age	Age was calculated using the individuals' month and year of birth as per the below equation. For example, if an individual is born in June (month=06) 1982, he/she will be given the age of 19.5 at the beginning of the year 2002 and will age by one year with each additional year of follow-up.
	$Age_i = Year_{2002-2017} - (M \ birth_i \times (1 \div 12) + Y \ birth_i)$
	Where Age_i is the individual's age; $Year_{2002-2017}$ is the year of follow-up ranging between 2002 and 2017; <i>M birth_i</i> is the month of birth for individual i; and <i>Y birth_i</i> is the year of birth for individual i.
Age ²	We also considered the possible non-linear effect of individuals' age and introduced a square term of age as an additional covariate following the approach of other researchers (Liu et al., 2021; Pereira Gray et al., 2017).
Gender	1=male; 2=female
Ethnicity	1=White; 2=Not-white
Country of birth	1=born in Scotland; 2=born in rest of UK; 3=born outside UK
Marital status	1=married; 2=single never married; 3=divorced/separated/widowed; 4=No response
Education	1=No educational qualification; 0=Intermediate school [reference category]; 2=High school qualification; 3=Post-school/university; 4=Still a student; 5=Not recoded/No response
Occupation	1=White collar high skilled: Managers, professionals, Associate professionals; 2=White collar low skilled: Administrative, service, care and shop sales; 3=Blue collar high skilled: Skilled trades occupations; 4=Blue collar low skilled: Process, Plant, Machine operatives and elementary occupations; 5=Not applicable: students/never worked; 6=No response
Place of residence	1=Large Urban areas: Settlements of 125,000 people and over; 2=other urban areas: Settlements of 10,000 to 124,999 people; 3=Accessible small towns: Settlements of 3,000 to 9,999 people, and within 30 minute drive time of a Settlement of 10,000 or more; 4=Remote small towns: Settlements of 3,000 to 9,999 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; 5=Accessible Rural areas: Areas with a population of less than 3,000 people, and within 30 minute drive time of a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more; and 6=Remote rural areas: Areas with a population of less than 3,000 people, and with drive time of over 30 minutes to a Settlement of 10,000 or more (Scottish-Government, 2021).

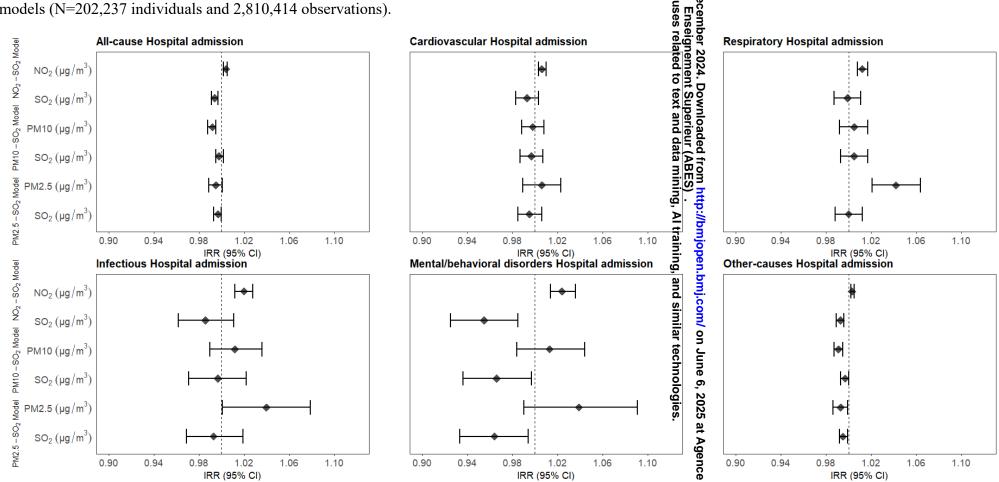
Citations:

Liu, Y., Zhu, K., Li, R.-L., Song, Y., & Zhang, Z.-J. (2021). Air Pollution Impairs Subjective Happiness by Damaging Their Health. *International journal of environmental research and public health*, 18(19), 10319. <u>https://doi.org/10.3390/ijerph181910319</u>

Pereira Gray, D., Henley, W., Chenore, T., Sidaway-Lee, K., & Evans, P. (2017). What is the relationship between age and deprivation in influencing emergency hospital admissions? A model using data from a defined, comprehensive, all-age cohort in East Devon, UK. *BMJ Open*, 7(2), e014045. <u>https://doi.org/10.1136/bmjopen-2016-014045</u>

Scottish-Government. (2021). Urban Rural Classification (6-Fold) <u>https://statistics.gov.scot/data/urban-rural-classification</u>




			BMJ Open		njopen-2024-084032 on 18 Dec E J by copyright, including for us
Table 3: Description o	f air pollution. NO ₂ (μ g/m ³)	SO ₂ (μg/1	m^3) PM10	(µg/m ³)	ding for user PM2.5% PM2.5%
Mean	11.9	1.9	11.3	(µg/III)	
Standard deviation	6.4	1.5	2.1		1.6 dimension
Median	11.2	1.6	11.2		7.1 to nt D
Interquartile Range	9.4	1.3	2.8		
		lation matrix of a			perie and
	1.0 0.3 0.7		PM10 (μg/m ³) 1.0 0.9 Study data.	PM2.5 (μg/m	ded from http://bmjopen.bmj.com/ on June 6, 2025 at Agence Bibliographique de ur (ABES) . data mining, AI training, and similar technologies. data mining, AI training, and similar technologies.

njopen-2024-084032 o

de

BMJ Open The association between air pollution and hospital admissions in two-pollutant mode

Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at IR R=1 as a cut-off for statistically insignificant results; The two-pollutant models which include SO_2 + one of the other three pollutants are adjusted for a $\frac{1}{2}$, age², gender, calendar year dummies, ethnicity, country of birth, marital status, education, occupation, and place of residence. aphique

The association between hospital admissions and the socioeconomic and contextual covariates

Table 4: The association of all-cause hospital admissions with the socioeconomic and contextual covariates

Covariates	IRR	Lower 95% CI	Upper 95% CI	P-value
Age	0.970	0.968	0.972	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.996	0.981	1.010	0.571
Year dummies: 2002				
2003	0.981	0.961	1.000	0.053
2004	0.998	0.978	1.018	0.812
2005	1.017	0.997	1.038	0.096
2006	1.040	1.020	1.061	0.000
2007	1.088	1.066	1.110	0.000
2008	1.129	1.106	1.152	0.000
2009	1.156	1.132	1.179	0.000
2010	1.160	1.137	1.184	0.000
2011	1.173	1.150	1.198	0.000
2012	1.214	1.189	1.239	0.000
2013	1.246	1.221	1.272	0.000
2014	1.274	1.247	1.301	0.000
2015	1.318	1.291	1.346	0.000
2016	1.346	1.318	1.375	0.000
2017	1.345	1.317	1.374	0.000
Ethnicity: White				
Not-White	1.047	1.011	1.084	0.011
Country of birth: Born in Scotland				
Born in rest of UK	0.865	0.845	0.886	0.000
Born outside UK	0.805	0.775	0.836	0.000
Marital Status: Married				
Single never married	0.970	0.953	0.988	0.001
Divorced/separated/widowed	1.127	1.110	1.143	0.000
No response	1.204	1.078	1.344	0.001
Education: Intermediate school				
qualification				
No qualification	1.157	1.138	1.176	0.000
High school qualification	0.877	0.860	0.894	0.000
Post-school/university qualification	0.845	0.830	0.860	0.000
Still a student	0.641	0.551	0.745	0.000
No response	0.845	0.814	0.877	0.000

Occupation: White collar high skilled				
White collar low skilled	1.069	1.052	1.087	0.000
Blue collar high skilled	1.117	1.093	1.141	0.000
Blue collar low skilled	1.178	1.157	1.199	0.000
NA: students/never worked	1.157	1.121	1.194	0.000
No response	2.699	2.566	2.840	0.000
Place of residence: Large Urban areas				
Other urban areas	0.973	0.959	0.987	0.000
Accessible small towns	0.932	0.911	0.952	0.000
Remote small towns	0.963	0.931	0.997	0.034
Accessible Rural areas	0.903	0.889	0.918	0.000
Remote rural areas	0.966	0.944	0.989	0.004
Overdispersion parameter (α)	2.49	2.48	2.51	

Table 5: The association of cardiovascular hospital admissions with the socioeconomic and contextual covariates

Converientes	IDD	Lower 95%	Upper 95%	D l
Covariates	IRR	CI	CI	P-value
Age	1.083	1.076	1.090	0.000
Age2	1.000	1.000	1.000	0.949
Gender: Male				
Female	0.560	0.541	0.579	0.000
Year dummies: 2002				
2003	0.943	0.887	1.002	0.059
2004	0.925	0.869	0.984	0.013
2005	0.901	0.847	0.959	0.001
2006	0.852	0.800	0.907	0.000
2007	0.858	0.806	0.914	0.000
2008	0.872	0.818	0.928	0.000
2009	0.902	0.847	0.960	0.001
2010	0.883	0.829	0.941	0.000
2011	0.885	0.830	0.943	0.000
2012	0.884	0.829	0.943	0.000
2013	0.885	0.829	0.943	0.000
2014	0.895	0.839	0.955	0.001
2015	0.874	0.820	0.933	0.000
2016	0.849	0.796	0.907	0.000
2017	0.833	0.779	0.890	0.000
Ethnicity: White				
Not-White	1.100	1.016	1.191	0.019
Country of birth: Born in Scotland				
Born in rest of UK	0.906	0.858	0.957	0.000
Born outside UK	0.844	0.773	0.921	0.000
Marital Status: Married				

Single never married	0.938	0.893	0.984	0.009
Divorced/separated/widowed	1.192	1.151	1.235	0.000
No response	1.026	0.803	1.310	0.840
Education: Intermediate school qualification				
No qualification	1.227	1.176	1.280	0.000
High school qualification	0.870	0.822	0.921	0.000
Post-school/university qualification	0.787	0.749	0.827	0.000
Still a student	0.716	0.373	1.373	0.314
No response	0.982	0.892	1.081	0.713
Occupation: White collar high skilled				
White collar low skilled	1.050	1.004	1.099	0.035
Blue collar high skilled	1.143	1.082	1.206	0.000
Blue collar low skilled	1.217	1.162	1.275	0.000
NA: students/never worked	1.177	1.079	1.283	0.000
No response	3.059	2.733	3.424	0.000
Place of residence: Large Urban areas				
Other urban areas	0.973	0.938	1.009	0.145
Accessible small towns	0.939	0.887	0.993	0.029
Remote small towns	0.917	0.838	1.003	0.058
Accessible Rural areas	0.884	0.848	0.922	0.000
Remote rural areas	0.894	0.844	0.947	0.000
	12.79	12.55	13.03	

Table 6: The association of respiratory hospital admissions with the socioeconomic and contextual covariates

Covariates	IRR	Lower 95% CI	Upper 95% CI	P-value
Age	0.898	0.891	0.904	0.000
Age2	1.001	1.001	1.002	0.000
Gender: Male				
Female	0.786	0.751	0.822	0.000
Year dummies: 2002				
2003	1.056	0.976	1.142	0.174
2004	1.091	1.008	1.181	0.031
2005	1.180	1.091	1.277	0.000
2006	1.255	1.160	1.357	0.000
2007	1.410	1.305	1.524	0.000
2008	1.582	1.464	1.709	0.000
2009	1.519	1.404	1.642	0.000
2010	1.541	1.425	1.667	0.000
2011	1.736	1.604	1.879	0.000
2012	1.867	1.725	2.020	0.000
2013	2.045	1.890	2.212	0.000

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2014	2.129	1.967	2.304	0.000
2015	2.592	2.397	2.802	0.000
2016	2.849	2.635	3.081	0.000
2017	3.223	2.981	3.484	0.000
Ethnicity: White				
Not-White	1.112	1.004	1.232	0.043
Country of birth: Born in Scotland				
Born in rest of UK	0.748	0.692	0.809	0.000
Born outside UK	0.752	0.668	0.845	0.000
Marital Status: Married				
Single never married	1.043	0.980	1.110	0.185
Divorced/separated/widowed	1.353	1.293	1.416	0.000
No response	1.235	0.921	1.655	0.158
Education: Intermediate school qualification				
No qualification	1.416	1.341	1.496	0.000
High school qualification	0.815	0.758	0.877	0.000
Post-school/university qualification	0.693	0.650	0.740	0.000
Still a student	0.559	0.316	0.989	0.046
No response	0.766	0.685	0.856	0.000
Occupation: White collar high skilled				
White collar low skilled	1.132	1.066	1.202	0.000
Blue collar high skilled	1.317	1.224	1.416	0.000
Blue collar low skilled	1.552	1.460	1.651	0.000
NA: students/never worked	1.789	1.622	1.974	0.000
No response	8.220	7.187	9.402	0.000
Place of residence: Large Urban areas				
Other urban areas	0.922	0.881	0.966	0.001
Accessible small towns	0.833	0.774	0.895	0.000
Remote small towns	0.854	0.763	0.956	0.006
Accessible Rural areas	0.760	0.720	0.802	0.000
Remote rural areas	0.714	0.661	0.771	0.000
Overdispersion parameter (a)	7.07	6.89	7.26	

Table 7: The association of infectious hospital admissions with the socioeconomic and contextual covariates

		Lower 95%	Upper 95%	
Covariates	IRR	CI	CI	P-value
Age	0.938	0.926	0.949	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.057	0.987	1.132	0.111
Year dummies: 2002				
2003	0.871	0.723	1.049	0.145

2004	0.993	0.827	1.192	0.937
2005	1.115	0.931	1.335	0.236
2006	1.262	1.057	1.507	0.010
2007	1.342	1.125	1.601	0.001
2008	1.185	0.990	1.419	0.065
2009	1.384	1.159	1.653	0.000
2010	1.504	1.261	1.794	0.000
2011	1.543	1.291	1.844	0.000
2012	1.849	1.552	2.202	0.000
2013	2.996	2.535	3.541	0.000
2014	3.848	3.267	4.533	0.000
2015	4.033	3.424	4.749	0.000
2016	4.315	3.664	5.082	0.000
2017	4.862	4.131	5.724	0.000
Ethnicity: White				
Not-White	1.212	1.044	1.408	0.012
Country of birth: Born in Scotland				
Born in rest of UK	0.896	0.799	1.004	0.059
Born outside UK	1.121	0.951	1.322	0.174
Marital Status: Married				
Single never married	1.169	1.064	1.284	0.001
Divorced/separated/widowed	1.228	1.139	1.325	0.000
No response	1.206	0.750	1.939	0.439
Education: Intermediate school	6.			
qualification				
No qualification	1.268	1.158	1.387	0.000
High school qualification	0.844	0.751	0.950	0.005
Post-school/university qualification	0.826	0.746	0.915	0.000
Still a student	0.184	0.050	0.679	0.011
No response	0.876	0.721	1.065	0.184
Occupation: White collar high skilled				
White collar low skilled	1.144	1.040	1.259	0.006
Blue collar high skilled	1.239	1.099	1.397	0.000
Blue collar low skilled	1.313	1.187	1.453	0.000
NA: students/never worked	1.579	1.339	1.861	0.000
No response	3.122	2.468	3.950	0.000
Place of residence: Large Urban areas				
Other urban areas	0.995	0.923	1.071	0.885
Accessible small towns	0.861	0.763	0.973	0.016
Remote small towns	0.770	0.632	0.937	0.009
Accessible Rural areas	0.808	0.738	0.884	0.000
Remote rural areas	0.729	0.642	0.828	0.000
Overdispersion parameter (a)	40.81	37.36	44.58	

Covariates	IRR	Lower 95% CI	Upper 95% CI	P-value
Age	0.939	0.925	0.954	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.578	0.524	0.638	0.000
Year dummies: 2002				
2003	0.994	0.819	1.207	0.954
2004	0.921	0.756	1.121	0.410
2005	0.941	0.771	1.147	0.545
2006	0.990	0.813	1.206	0.923
2007	1.072	0.881	1.305	0.485
2008	1.045	0.858	1.274	0.662
2009	1.149	0.944	1.399	0.166
2010	1.269	1.043	1.545	0.017
2011	1.387	1.137	1.692	0.001
2012	1.538	1.263	1.873	0.000
2013	1.655	1.360	2.014	0.000
2014	1.799	1.479	2.188	0.000
2015	1.904	1.567	2.314	0.000
2016	2.456	2.028	2.974	0.000
2017	2.763	2.284	3.343	0.000
Ethnicity: White	2			
Not-White	1.218	0.985	1.507	0.068
Country of birth: Born in Scotland	7			
Born in rest of UK	0.740	0.623	0.880	0.001
Born outside UK	0.619	0.476	0.806	0.000
Marital Status: Married		5		
Single never married	2.723	2.382	3.113	0.000
Divorced/separated/widowed	2.676	2.410	2.972	0.000
No response	3.874	2.211	6.788	0.000
Education: Intermediate school qualification				
No qualification	1.412	1.241	1.607	0.000
High school qualification	0.958	0.810	1.134	0.620
Post-school/university qualification	0.758	0.650	0.884	0.000
Still a student	0.313	0.069	1.423	0.133
No response	0.875	0.684	1.119	0.288
Occupation: White collar high skilled				
White collar low skilled	1.341	1.161	1.548	0.000
Blue collar high skilled	1.563	1.320	1.851	0.000
Blue collar low skilled	1.723	1.488	1.994	0.000

Table 8: The association of mental/behavioural disorders hospital admissions with the

NA: students/never worked	2.676	2.152	3.326	0.000
No response	7.897	5.914	10.545	0.000
Place of residence: Large Urban areas				
Other urban areas	0.862	0.777	0.956	0.005
Accessible small towns	0.743	0.625	0.882	0.001
Remote small towns	1.233	0.975	1.558	0.080
Accessible Rural areas	0.672	0.592	0.762	0.000
Remote rural areas	1.081	0.920	1.271	0.345
Overdispersion parameter (a)	13.25	12.30	14.26	

 Table 9: The association of other-causes hospital admissions with the socioeconomic and contextual covariates

	UDD	Lower 95%	Upper 95%	
Covariates	IRR	CI	CI	P-value
Age	0.978	0.976	0.980	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.078	1.062	1.094	0.000
Year dummies: 2002				
2003	0.976	0.956	0.997	0.027
2004	0.995	0.974	1.016	0.632
2005	1.017	0.995	1.039	0.123
2006	1.046	1.024	1.068	0.000
2007	1.092	1.068	1.115	0.000
2008	1.135	1.111	1.160	0.000
2009	1.164	1.139	1.189	0.000
2010	1.166	1.141	1.191	0.000
2011	1.174	1.148	1.200	0.000
2012	1.215	1.188	1.242	0.000
2013	1.237	1.210	1.265	0.000
2014	1.258	1.231	1.287	0.000
2015	1.289	1.261	1.318	0.000
2016	1.300	1.271	1.330	0.000
2017	1.278	1.249	1.308	0.000
Ethnicity: White				
Not-White	1.039	1.002	1.077	0.040
Country of birth: Born in Scotland				
Born in rest of UK	0.876	0.854	0.897	0.000
Born outside UK	0.815	0.784	0.847	0.000
Marital Status: Married				
Single never married	0.971	0.953	0.990	0.003
Divorced/separated/widowed	1.109	1.092	1.126	0.000
No response	1.234	1.100	1.384	0.000

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining. Al training and similar technologies

Education: Intermediate school qualification				
No qualification	1.139	1.119	1.158	0.000
High school qualification	0.877	0.859	0.895	0.000
Post-school/university qualification	0.857	0.841	0.873	0.000
Still a student	0.661	0.565	0.773	0.000
No response	0.848	0.815	0.882	0.000
Occupation: White collar high skilled				
White collar low skilled	1.067	1.049	1.085	0.000
Blue collar high skilled	1.103	1.078	1.128	0.000
Blue collar low skilled	1.156	1.135	1.178	0.000
NA: students/never worked	1.152	1.114	1.191	0.000
No response	2.343	2.222	2.471	0.000
Place of residence: Large Urban areas				
Other urban areas	0.971	0.957	0.986	0.000
Accessible small towns	0.931	0.910	0.952	0.000
Remote small towns	0.980	0.946	1.016	0.283
Accessible Rural areas	0.906	0.891	0.921	0.000
	0.000	0.050	1.005	0.130
Remote rural areas	0.982	0.958	1.005	0.150
Overdispersion parameter (α) upplementary Tables 4 to 9 describe the ass	2.57	2.55	2.59	
Overdispersion parameter (α)	2.57 sociation of a ontextual co sed on the Sco ovember 202	2.55 all-cause and ca variates. The ottish Longitud 1).	2.59 ause-specific ho calculated IRRs inal Study (SLS)	spital s and) data
Overdispersion parameter (α) upplementary Tables 4 to 9 describe the ass dmissions with the socioeconomic and co 5%CIs are the author's own calculations bas <i>Scottish Longitudinal Study</i> , Accessed 08 No	2.57 sociation of a ontextual co sed on the Sco ovember 202 call-cause, ca	2.55 all-cause and ca variates. The ottish Longitud 1). urdiovascular, re	2.59 ause-specific ho calculated IRRs inal Study (SLS)	spital s and) data tious,
Overdispersion parameter (α) upplementary Tables 4 to 9 describe the ass dmissions with the socioeconomic and co 5%CIs are the author's own calculations bas <i>Scottish Longitudinal Study</i> , Accessed 08 No ower incidence rate ratios were observed for	2.57 sociation of a ontextual co sed on the Sco ovember 202 call-cause, ca es hospital ac	2.55 all-cause and car variates. The ottish Longitud 1). urdiovascular, re lmissions amor	2.59 ause-specific ho calculated IRRs inal Study (SLS) espiratory, infect ng females (exce	spital s and) data tious, pt for
Overdispersion parameter (α) upplementary Tables 4 to 9 describe the as dmissions with the socioeconomic and co 5%CIs are the author's own calculations bas <i>Scottish Longitudinal Study</i> , Accessed 08 No ower incidence rate ratios were observed for nental/behavioural disorders, and other-cause	2.57 sociation of a ontextual co sed on the Sco ovember 202 call-cause, ca es hospital ac l admissions)	2.55 all-cause and ca variates. The ottish Longitud 1). urdiovascular, re lmissions amor , people born in	2.59 ause-specific ho calculated IRRs inal Study (SLS) espiratory, infect og females (exce rest of UK or ou	spital s and) data tious, pt for itside
Overdispersion parameter (α) upplementary Tables 4 to 9 describe the as dmissions with the socioeconomic and co 5%CIs are the author's own calculations bas <i>Scottish Longitudinal Study</i> , Accessed 08 No ower incidence rate ratios were observed for nental/behavioural disorders, and other-cause Il-cause, infectious and other-causes hospital	2.57 sociation of a ontextual co sed on the Sco ovember 202 call-cause, ca es hospital ac l admissions) ver married	2.55 all-cause and ca variates. The ottish Longitud 1). ardiovascular, re dmissions amor , people born in compared to	2.59 ause-specific ho calculated IRRs inal Study (SLS) espiratory, infect ag females (exce rest of UK or ou married (excep	spital s and) data tious, pt for utside ot for
Overdispersion parameter (α) upplementary Tables 4 to 9 describe the ass dmissions with the socioeconomic and co 5%CIs are the author's own calculations bas <i>Scottish Longitudinal Study</i> , Accessed 08 No ower incidence rate ratios were observed for nental/behavioural disorders, and other-cause Il-cause, infectious and other-causes hospital JK compared to Scottish-born, single ne	2.57 sociation of a ontextual co sed on the Sco ovember 202 call-cause, ca es hospital ac l admissions) ver married ns), people	2.55 all-cause and ca variates. The ottish Longitud 1). ardiovascular, re dmissions amor , people born in compared to who have hi	2.59 ause-specific ho calculated IRRs inal Study (SLS) espiratory, infect of females (except rest of UK or out married (except gh school or	spital s and) data tious, pt for utside of for post-

Lower incidence rate ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions among females (except for all-cause, infectious and other-causes hospital admissions), people born in rest of UK or outside UK compared to Scottish-born, single never married compared to married (except for infectious and mental hospital admissions), people who have high school or postschool/university education compared to people who have intermediate school education, and people who live in towns or rural areas compared to those living in large urban areas.

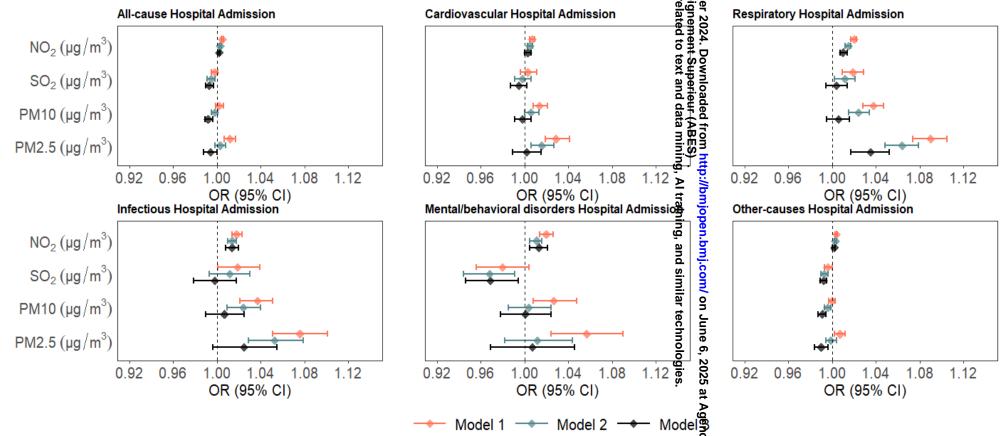
In contrast, higher incidence rate ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions among not-

BMJ Open

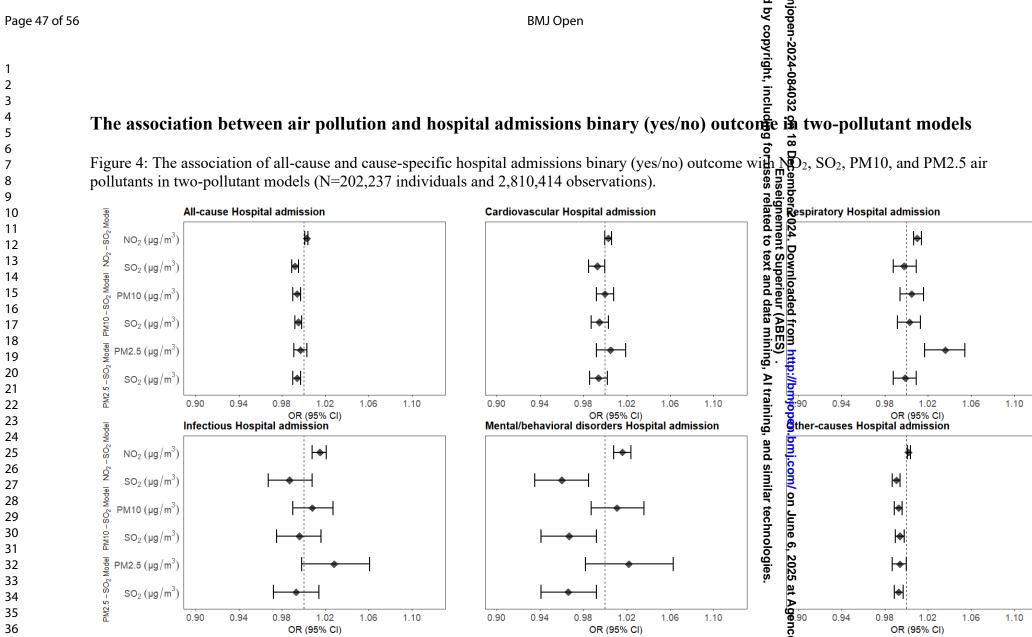
 white compared to white ethnicity, divorced/separated/widowed compared to married, people with no educational qualification compared to people with intermediate school education, and people who work in white collar low skilled, blue collar high skilled, and blue collar low skilled jobs compared to people working in white collar high skilled jobs.

Citation:

Scottish Longitudinal Study. (Accessed 08 November 2021). https://sls.lscs.ac.uk/

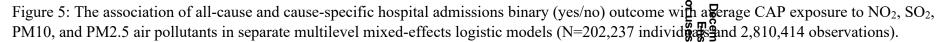

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

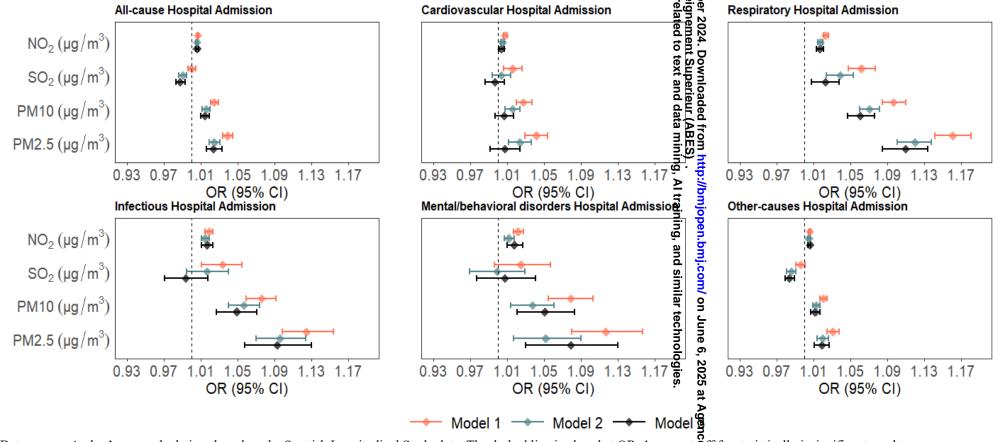
njopen-2024-084032 on


de

BMJ Open The association between air pollution and hospital admissions binary (yes/no) outcoming

 Figure 3: The association of all-cause and cause-specific hospital admissions binary (yes/no) outcome with NO2, SO2, PM10, and PM2.5 air pollutants in separate multilevel mixed-effects logistic models (N=202,237 individuals and 2,810,414 ob # # ions).


Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at OR=1 as a cut $\underline{\mathfrak{B}}$ ff for statistically insignificant results; Model 1 is adjusted for age, age², gender and calendar year dummies; Model 2= Model 1 + ethnicity + country of birth + marital status + education + occupation; Model 3= Model 2 + Place of residence. graphique



Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at OR=1 as a cut-Aff for statistically insignificant results; The two-pollutant models which include SO₂ + one of the other three pollutants are adjusted for age, age2, gender, calendar year dennies, ethnicity, country of birth, marital status, education, occupation, and Place of residence. ographique

de

BMJ Open BMJ Open The association between cumulative air pollution (CAP) exposure and hospital admissions binary (yes/no) outcome

Data source: Author's own calculations based on the Scottish Longitudinal Study data; The dashed line is placed at OR=1 as a cut off for statistically insignificant results; Model 1 is adjusted for age, age², gender and calendar year dummies; Model 2= Model 1 + ethnicity + country of birth + marital stars + education + occupation; Model 3= Model 2 + Place of residence. ographique

de

The association between hospital admissions binary (yes/no) outcome and the socioeconomic and contextual covariates

Table 10: The association of all-cause hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
Age	0.970	0.968	0.972	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.033	1.019	1.047	0.000
Year dummies: 2002				
2003	0.991	0.971	1.011	0.360
2004	1.009	0.989	1.030	0.389
2005	1.031	1.010	1.052	0.003
2006	1.052	1.031	1.074	0.000
2007	1.079	1.057	1.101	0.000
2008	1.124	1.101	1.147	0.000
2009	1.148	1.125	1.172	0.000
2010	1.132	1.109	1.156	0.000
2011	1.154	1.129	1.178	0.000
2012	1.185	1.160	1.210	0.000
2013	1.168	1.143	1.193	0.000
2014	1.180	1.155	1.206	0.000
2015	1.197	1.171	1.223	0.000
2016	1.162	1.136	1.187	0.000
2017	1.124	1.099	1.149	0.000
Ethnicity: White				
Not-White	1.043	1.009	1.079	0.014
Country of birth: Born in Scotland				
Born in rest of UK	0.878	0.858	0.898	0.000
Born outside UK	0.824	0.795	0.854	0.000
Marital Status: Married				
Single never married	0.948	0.931	0.965	0.000
Divorced/separated/widowed	1.123	1.107	1.139	0.000
No response	1.207	1.085	1.343	0.001
Education: Intermediate school qualification				
No qualification	1.158	1.139	1.177	0.000
High school qualification	0.873	0.856	0.890	0.000
Post-school/university qualification	0.854	0.839	0.869	0.000
Still a student	0.641	0.553	0.744	0.000

No response	0.924	0.891	0.959	0.000
Occupation: White collar high skilled				
White collar low skilled	1.072	1.055	1.090	0.000
Blue collar high skilled	1.119	1.096	1.143	0.000
Blue collar low skilled	1.174	1.153	1.195	0.000
NA: students/never worked	1.182	1.146	1.220	0.000
No response	2.362	2.247	2.482	0.000
Place of residence: Large Urban areas				
Other urban areas	0.982	0.968	0.996	0.010
Accessible small towns	0.941	0.921	0.962	0.000
Remote small towns	1.015	0.981	1.050	0.401
Accessible Rural areas	0.907	0.893	0.921	0.000
Remote rural areas	0.989	0.966	1.011	0.318
Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
\sim		Lower 95%	Upper 95%	
	OR 1.070			
Age		1.064	1.075	0.000
Age2	1.000	1.004	1.000	0.000
Age2 Gender: Male	1.000	1.000	1.000	0.196
Age2 Gender: Male Female				
Age2 Gender: Male Female Year dummies: 2002	1.000 0.641	0.624	1.000 0.659	0.196
Age2 Gender: Male Female Year dummies: 2002 2003	1.000 0.641 0.970	1.000 0.624 0.925	1.000 0.659 1.017	0.196 0.000 0.205
Age2 Gender: Male Female Year dummies: 2002 2003 2004	1.000 0.641 0.970 0.961	1.000 0.624 0.925 0.917	1.000 0.659 1.017 1.008	0.196 0.000 0.205 0.105
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005	1.000 0.641 0.970 0.961 0.948	1.000 0.624 0.925 0.917 0.904	1.000 0.659 1.017 1.008 0.995	0.196 0.000 0.205 0.105 0.029
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006	1.000 0.641 0.970 0.961 0.948 0.914	1.000 0.624 0.925 0.917 0.904 0.871	1.000 0.659 1.017 1.008 0.995 0.959	0.196 0.000 0.205 0.105 0.029 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007	1.000 0.641 0.970 0.961 0.948 0.914 0.906	1.000 0.624 0.925 0.917 0.904 0.871 0.863	1.000 0.659 1.017 1.008 0.995 0.959 0.951	0.196 0.000 0.205 0.105 0.029 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904	1.000 0.624 0.925 0.917 0.904 0.871 0.863 0.861	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912	1.000 0.624 0.925 0.917 0.904 0.871 0.863 0.861 0.868	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949 0.957	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908	1.000 0.624 0.925 0.917 0.904 0.871 0.863 0.861 0.868 0.864	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949 0.957 0.954	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908 0.895	1.000 0.624 0.925 0.917 0.904 0.863 0.863 0.864 0.851	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949 0.957 0.954 0.942	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908 0.895 0.894	1.000 0.624 0.925 0.917 0.904 0.871 0.863 0.861 0.868 0.864 0.851 0.850	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949 0.957 0.954 0.941	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908 0.895 0.894 0.894	1.000 0.624 0.925 0.917 0.904 0.863 0.863 0.864 0.851 0.850 0.819	1.000 0.659 1.017 1.008 0.995 0.951 0.949 0.957 0.954 0.941 0.907	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908 0.895 0.894 0.894 0.871	1.000 0.624 0.925 0.917 0.904 0.871 0.863 0.864 0.851 0.850 0.819 0.827	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949 0.957 0.954 0.941 0.907 0.917	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908 0.895 0.894 0.871 0.844	1.000 0.624 0.925 0.917 0.904 0.863 0.863 0.864 0.851 0.850 0.819 0.802	1.000 0.659 1.017 1.008 0.995 0.951 0.949 0.957 0.942 0.941 0.907 0.889	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014	1.000 0.641 0.970 0.961 0.948 0.914 0.906 0.904 0.912 0.908 0.895 0.894 0.894 0.871	1.000 0.624 0.925 0.917 0.904 0.871 0.863 0.864 0.851 0.850 0.819 0.827	1.000 0.659 1.017 1.008 0.995 0.959 0.951 0.949 0.957 0.954 0.941 0.907 0.917	0.196 0.000 0.205 0.105 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
	1.070	1.064	1.075	0.000
Age	1.070	1.004	1.000	0.196
Age2	1.000	1.000	1.000	0.190
Gender: Male	0.641	0.624	0.650	0.000
Female	0.641	0.624	0.659	0.000
Year dummies: 2002				
2003	0.970	0.925	1.017	0.205
2004	0.961	0.917	1.008	0.105
2005	0.948	0.904	0.995	0.029
2006	0.914	0.871	0.959	0.000
2007	0.906	0.863	0.951	0.000
2008	0.904	0.861	0.949	0.000
2009	0.912	0.868	0.957	0.000
2010	0.908	0.864	0.954	0.000
2011	0.895	0.851	0.942	0.000
2012	0.894	0.850	0.941	0.000
2013	0.862	0.819	0.907	0.000
2014	0.871	0.827	0.917	0.000
2015	0.844	0.802	0.889	0.000
2016	0.792	0.752	0.835	0.000
2017	0.754	0.715	0.795	0.000
Ethnicity: White				
Not-White	1.081	1.014	1.153	0.017
Country of birth: Born in Scotland				
Born in rest of UK	0.930	0.890	0.973	0.002
Born outside UK	0.865	0.805	0.929	0.000

Single never married	0.935	0.898	0.974	0.001
Divorced/separated/widowed				
No response Education: Intermediate school	1.052	0.870	1.272	0.599
qualification				
No qualification	1.159	1.120	1.201	0.000
High school qualification	0.879	0.837	0.922	0.000
Post-school/university qualification	0.828	0.794	0.863	0.000
Still a student	0.784	0.437	1.408	0.416
No response	1.019	0.944	1.100	0.628
Occupation: White collar high skilled	11015			0.020
White collar low skilled	1.041	1.002	1.081	0.038
Blue collar high skilled	1.104	1.056	1.155	0.000
Blue collar low skilled	1.164	1.120	1.209	0.000
NA: students/never worked	1.124	1.048	1.206	0.001
No response	2.499	2.291	2.725	0.000
Place of residence: Large Urban areas				
Other urban areas	0.986	0.957	1.015	0.340
Accessible small towns	0.967	0.924	1.013	0.159
	0.946	0.879	1.017	0.130
Kemote small towns	0.940	0.077	1.01/	0.150
Remote small towns Accessible Rural areas	0.940	0.875	0.937	0.000
	0.906 0.931	0.876 0.888 ns binary (yes/no)	0.937 0.975) outcome with t	0.000 0.002
Accessible Rural areas Remote rural areas Fable 12: The association of respiratory hosp ocioeconomic and contextual covariates	0.906 0.931	0.876 0.888	0.937 0.975	0.000 0.002
Accessible Rural areas Remote rural areas Cable 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates	0.906 0.931 ital admissio	0.876 0.888 ns binary (yes/no) Lower 95%	0.937 0.975 outcome with t Upper 95%	0.000 0.002 he
Accessible Rural areas Remote rural areas Fable 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age	0.906 0.931 ital admissio	0.876 0.888 ns binary (yes/no) Lower 95% CI	0.937 0.975) outcome with t Upper 95% CI	0.000 0.002 he P-value
Accessible Rural areas Remote rural areas Cable 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age	0.906 0.931 ital admissio OR 0.915	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910	0.937 0.975 outcome with t Upper 95% CI 0.921	0.000 0.002 he P-value 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male	0.906 0.931 ital admissio OR 0.915	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910	0.937 0.975 outcome with t Upper 95% CI 0.921	0.000 0.002 he P-value 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male	0.906 0.931 ital admissio OR 0.915 1.001 0.815	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001	0.000 0.002 he <u>P-value</u> 0.000 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male Female Year dummies: 2002	0.906 0.931 ital admissio OR 0.915 1.001 0.815 1.089	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001 0.847 1.165	0.000 0.002 he <u>P-value</u> 0.000 0.000
Accessible Rural areas Remote rural areas Cable 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male Female Year dummies: 2002 2003	0.906 0.931 ital admissio OR 0.915 1.001 0.815	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001 0.784	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001 0.847	0.000 0.002 he 0.000 0.000 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male Female Year dummies: 2002 2003 2004	0.906 0.931 ital admissio OR 0.915 1.001 0.815 1.089 1.132 1.228	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001 0.784 1.018 1.058 1.147	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001 0.847 1.165 1.212 1.313	0.000 0.002 he 0.000 0.000 0.000 0.000 0.013 0.000 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp cocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male Female	0.906 0.931 ital admissio OR 0.915 1.001 0.815 1.089 1.132 1.228 1.297	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001 0.784 0.784 1.018 1.058 1.147 1.212	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001 0.847 1.165 1.212 1.313 1.388	0.000 0.002 he 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp cocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006 2007	0.906 0.931 ital admissio OR 0.915 1.001 0.815 1.089 1.132 1.228 1.297 1.430	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001 0.784 1.018 1.058 1.147 1.212 1.337	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001 0.847 1.165 1.212 1.313 1.388 1.529	0.000 0.002 he 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accessible Rural areas Remote rural areas Table 12: The association of respiratory hosp ocioeconomic and contextual covariates Covariates Age Age Age2 Gender: Male Female Year dummies: 2002 2003 2004 2005 2006	0.906 0.931 ital admissio OR 0.915 1.001 0.815 1.089 1.132 1.228 1.297	0.876 0.888 ns binary (yes/no) Lower 95% CI 0.910 1.001 0.784 0.784 1.018 1.058 1.147 1.212	0.937 0.975 0 outcome with t Upper 95% CI 0.921 1.001 0.847 1.165 1.212 1.313 1.388	0.000 0.002 he 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

		Lower 95%	Upper 95%	
Covariates	OR	CI	CI	P-value
Age	0.915	0.910	0.921	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.815	0.784	0.847	0.000
Year dummies: 2002				
2003	1.089	1.018	1.165	0.013
2004	1.132	1.058	1.212	0.000
2005	1.228	1.147	1.313	0.000
2006	1.297	1.212	1.388	0.000
2007	1.430	1.337	1.529	0.000
2008	1.589	1.486	1.699	0.000
2009	1.546	1.445	1.654	0.000
2010	1.537	1.435	1.646	0.000
2011	1.696	1.583	1.817	0.000
2012	1.754	1.637	1.880	0.000

2013	1.862	1.738	1.995	0.000
2014	1.858	1.733	1.992	0.000
2015	2.165	2.021	2.318	0.000
2016	2.271	2.120	2.432	0.000
2017	2.487	2.323	2.663	0.000
Ethnicity: White				
Not-White	1.093	1.002	1.191	0.045
Country of birth: Born in Scotland				
Born in rest of UK	0.783	0.733	0.837	0.000
Born outside UK	0.797	0.721	0.880	0.000
Marital Status: Married				
Single never married	1.025	0.972	1.082	0.362
Divorced/separated/widowed	1.290	1.241	1.342	0.000
No response	1.181	0.923	1.511	0.187
Education: Intermediate school				
qualification				
No qualification	1.357	1.293	1.423	0.000
High school qualification	0.840	0.788	0.895	0.000
Post-school/university qualification	0.728	0.687	0.770	0.000
Still a student	0.610	0.373	0.998	0.049
No response	0.864	0.786	0.950	0.003
Occupation: White collar high skilled				
White collar low skilled	1.106	1.050	1.166	0.000
Blue collar high skilled	1.280	1.202	1.363	0.000
Blue collar low skilled	1.462	1.386	1.542	0.000
NA: students/never worked	1.613	1.482	1.756	0.000
No response	5.980	5.340	6.696	0.000
Place of residence: Large Urban areas				
Other urban areas	0.956	0.919	0.995	0.027
Accessible small towns	0.867	0.814	0.923	0.000
Remote small towns	0.899	0.816	0.990	0.030
Accessible Rural areas	0.802	0.765	0.841	0.000
Remote rural areas	0.781	0.731	0.835	0.000

Table 13: The association of infectious hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

		Lower 95%	Upper 95%	
Covariates	OR	CI	CI	P-value
Age	0.959	0.950	0.968	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	1.056	0.998	1.117	0.057
Year dummies: 2002				

2003	0.877	0.750	1.025	0.100
2004	0.975	0.837	1.136	0.743
2005	1.101	0.949	1.278	0.205
2006	1.254	1.084	1.450	0.002
2007	1.266	1.094	1.465	0.002
2008	1.175	1.012	1.364	0.035
2009	1.315	1.136	1.523	0.000
2010	1.378	1.191	1.595	0.000
2011	1.416	1.222	1.642	0.000
2012	1.663	1.441	1.921	0.000
2013	2.372	2.071	2.718	0.000
2014	2.939	2.575	3.354	0.000
2015	3.023	2.649	3.450	0.000
2016	3.086	2.703	3.523	0.000
2017	3.402	2.983	3.880	0.000
Ethnicity: White				
Not-White	1.162	1.031	1.310	0.014
Country of birth: Born in Scotland				
Born in rest of UK	0.901	0.819	0.990	0.030
Born outside UK	1.079	0.944	1.234	0.264
Marital Status: Married				
Single never married	1.134	1.049	1.226	0.002
Divorced/separated/widowed	1.177	1.108	1.251	0.000
No response	1.184	0.815	1.720	0.375
Education: Intermediate school				
qualification				
No qualification	1.206	1.120	1.298	0.000
High school qualification	0.851	0.771	0.941	0.002
Post-school/university qualification	0.852	0.783	0.928	0.000
Still a student	0.258	0.081	0.825	0.022
No response	0.952	0.816	1.111	0.532
Occupation: White collar high skilled				
White collar low skilled	1.119	1.034	1.211	0.005
Blue collar high skilled	1.183	1.072	1.306	0.001
Blue collar low skilled	1.243	1.144	1.351	0.000
NA: students/never worked	1.500	1.314	1.713	0.000
No response	2.440	2.025	2.941	0.000
Place of residence: Large Urban areas				
Other urban areas	1.008	0.949	1.070	0.803
Accessible small towns	0.916	0.830	1.010	0.079
Remote small towns	0.869	0.744	1.016	0.078
Accessible Rural areas	0.855	0.794	0.920	0.000
Remote rural areas	0.800	0.721	0.888	0.000

Covariates	OR	Lower 95% CI	Upper 95% CI	P-value
Age	0.956	0.944	0.968	0.000
Age2	1.001	1.001	1.001	0.000
Gender: Male				
Female	0.641	0.591	0.696	0.000
Year dummies: 2002				
2003	1.011	0.864	1.182	0.894
2004	0.979	0.835	1.147	0.791
2005	0.964	0.821	1.132	0.656
2006	1.030	0.878	1.209	0.718
2007	1.086	0.926	1.274	0.313
2008	1.085	0.923	1.275	0.322
2009	1.171	0.997	1.376	0.054
2010	1.195	1.017	1.405	0.030
2011	1.297	1.101	1.526	0.002
2012	1.370	1.164	1.612	0.000
2013	1.467	1.248	1.725	0.000
2014	1.592	1.357	1.869	0.000
2015	1.593	1.355	1.871	0.000
2016	1.815	1.548	2.127	0.000
2017	1.983	1.694	2.321	0.000
Ethnicity: White				
Not-White	1.152	0.967	1.372	0.113
Country of birth: Born in Scotland	7			
Born in rest of UK	0.786	0.682	0.907	0.001
Born outside UK	0.685	0.551	0.851	0.001
Marital Status: Married				
Single never married	2.285	2.048	2.548	0.000
Divorced/separated/widowed	2.214	2.033	2.410	0.000
No response	2.944	1.871	4.633	0.000
Education: Intermediate school qualification				
No qualification	1.312	1.180	1.458	0.000
High school qualification	0.972	0.846	1.117	0.689
Post-school/university qualification	0.809	0.712	0.919	0.001
Still a student	0.299	0.068	1.319	0.111
No response	0.952	0.780	1.162	0.627
Occupation: White collar high skilled				
White collar low skilled	1.303	1.155	1.470	0.000
Blue collar high skilled	1.475	1.283	1.696	0.000
Blue collar low skilled	1.612	1.428	1.819	0.000

Table 14: The association of mental/behavioural disorders hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

NA: students/never worked	2.295	1.923	2.738	0.000
No response	5.425	4.291	6.859	0.000
Place of residence: Large Urban areas				
Other urban areas	0.895	0.822	0.975	0.011
Accessible small towns	0.812	0.705	0.936	0.004
Remote small towns	1.255	1.041	1.514	0.017
Accessible Rural areas	0.721	0.649	0.800	0.000
Remote rural areas	1.122	0.984	1.279	0.087

Table 15: The association of other-causes hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates

		Lower 95%	Upper 95%	_
Covariates	OR	CI	CI	P-value
Age	0.981	0.979	0.983	0.000
Age2	1.000	1.000	1.000	0.000
Gender: Male				
Female	1.094	1.079	1.110	0.000
Year dummies: 2002				
2003	0.988	0.967	1.009	0.262
2004	1.006	0.985	1.028	0.561
2005	1.027	1.005	1.049	0.016
2006	1.052	1.030	1.075	0.000
2007	1.076	1.054	1.100	0.000
2008	1.127	1.103	1.151	0.000
2009	1.159	1.135	1.185	0.000
2010	1.138	1.113	1.163	0.000
2011	1.157	1.132	1.183	0.000
2012	1.186	1.160	1.212	0.000
2013	1.170	1.145	1.197	0.000
2014	1.179	1.153	1.206	0.000
2015	1.185	1.158	1.212	0.000
2016	1.145	1.119	1.172	0.000
2017	1.091	1.066	1.116	0.000
Ethnicity: White				
Not-White	1.036	1.001	1.072	0.043
Country of birth: Born in Scotland				
Born in rest of UK	0.888	0.868	0.909	0.000
Born outside UK	0.832	0.802	0.862	0.000
Marital Status: Married				
Single never married	0.953	0.936	0.970	0.000
Divorced/separated/widowed	1.105	1.089	1.122	0.000
No response	1.238	1.111	1.379	0.000

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Education: Intermediate school qualification				
No qualification	1.140	1.121	1.159	(
High school qualification	0.873	0.856	0.891	(
Post-school/university qualification	0.863	0.847	0.879	(
Still a student	0.663	0.569	0.772	(
No response	0.917	0.883	0.953	(
Occupation: White collar high skilled				
White collar low skilled	1.071	1.053	1.089	(
Blue collar high skilled	1.104	1.080	1.128	(
Blue collar low skilled	1.157	1.136	1.178	(
NA: students/never worked	1.177	1.140	1.215	(
No response	2.029	1.929	2.134	(
Place of residence: Large Urban areas				
Other urban areas	0.981	0.967	0.995	(
Accessible small towns	0.942	0.921	0.964	(
Remote small towns	1.029	0.994	1.066	(
Accessible Rural areas	0.913	0.898	0.928	(
Remote rural areas	1.002	0.979	1.025	(

Supplementary Tables 10 to 15 describe the association of all-cause and cause-specific hospital admissions binary (yes/no) outcome with the socioeconomic and contextual covariates. The calculated ORs and 95%CIs are the author's own calculations based on the Scottish Longitudinal Study (SLS) data (*Scottish Longitudinal Study*, Accessed 08 November 2021).

Similar to the results with the hospital admission treated as a count outcome, lower odd ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions binary (yes/no) outcome among females (except for all-cause, infectious and other-causes hospital admissions), people born in rest of UK or outside UK compared to Scottish-born, single never married compared to married (except for infectious and mental hospital admissions), people who have high school or post-school/university education compared to people who have intermediate school education, and people who live in towns or rural areas compared to those living in large urban areas.

In contrast, higher odd ratios were observed for all-cause, cardiovascular, respiratory, infectious, mental/behavioural disorders, and other-causes hospital admissions binary (yes/no) outcome among not-white compared to white ethnicity, divorced/separated/widowed compared to married, people with no educational qualification compared to people with intermediate school education, and people who work in white collar low skilled, blue collar high skilled, and blue collar low skilled jobs compared to people working in white collar high skilled jobs.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Citation:

Scottish Longitudinal Study. (Accessed 08 November 2021). https://sls.lscs.ac.uk/