

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prenatal exposure to antibiotics and the risk of orofacial clefts: a protocol for a systematic review and meta-analysis of observational studies

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-092019
Article Type:	Protocol
Date Submitted by the Author:	05-Aug-2024
Complete List of Authors:	Nagata, Abir; Graduate School of Medicine, Osaka University Rahman, Md. Shafiur ; Hamamatsu University School of Medicine, Research Centre for Child Mental Development; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Japan Rahman, Mahfuzur; Graduate School of Public Health, St. Luke's International University Nakagawa, Takatoshi; Graduate School of Medicine, Osaka University Sharmin, Salma; University Dental College and Hospital, Dhaka, Bangladesh, Department of Dental Public health Ohnishi, Kazunari ; Graduate School of Public Health, St. Luke's International University Rahman, Mahbubur; Graduate School of Public Health, St. Luke's International University Rahman, Mahbubur; Graduate School of Public Health, St. Luke's International University
Keywords:	Anti-Bacterial Agents, Fetal medicine < OBSTETRICS, EPIDEMIOLOGY, Child

SCHOLARONE[™] Manuscripts

60

BMJ Open

2 3 4	1	TITLE
5 6 7	2	Prenatal exposure to antibiotics and the risk of orofacial clefts: a protocol for a systematic review
8 9 10	3	and meta-analysis of observational studies
11 12 12	4	Abir Nagata ¹ , MD; Shafiur Rahman ^{2,3} , MD; Mahfuzur Rahman ⁴ ; Takatoshi Nakagawa ¹ ; Salma
14 15	5	Sharmin ⁵ ; Kazunari Onishi ⁴ ; and Mahbubur Rahman ⁴
16 17 18	6	¹ Graduate School of Medicine, Osaka University, Osaka, Japan
19 20	7	² Research Centre for Child Mental Development, Hamamatsu University School of Medicine,
21 22	8	Hamamatsu, Japan
23 24 25	9	³ United Graduate School of Child Development, Osaka University, Kanazawa University,
25 26 27	10	Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita,
28 29	11	Japan
30 31 32	12	⁴ Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
32 33 34	13	⁵ Department of Dental Public Health, University Dental College and Hospital, Dhaka,
35 36	14	Bangladesh
37 38 39 40	15	E-Mails:
41 42	16	Abir Nagata: abir.med@osaka-u.ac.jp; MD Shafiur Rahman: srahman@hama-med.ac.jp;
43 44	17	MD Mahfuzur Rahman: <u>mdmahfuzur08@gmail.com</u> ; Takatoshi Nakagawa: <u>tnakagawa@r-</u>
45 46 47	18	derma.med.osaka-u.ac.jp; Salma Sharmin: <u>sharminbd_0027@yahoo.com</u> ; Kazunari Onishi:
48 49	19	kaznaly@slcn.ac.jp; Mahbubur Rahman: rahman@slcn.ac.jp
50 51 52	20	CORRESPONDENCE
53 54	21	Abir Nagata, MPH, PhD
55 56 57	22	Graduate School of Medicine, Osaka University, Osaka, Japan
58 59		1

ABSTRACT

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Introduction: Orofacial clefts (OFCs), including cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (CLP), are among the most common craniofacial malformations in newborns, and present significant healthcare challenges. Emerging evidence has raised concerns regarding the potential impact of prenatal exposure to antibiotics on foetal development. Antibiotics prescribed during pregnancy—particularly to those that cross the placental barrier—may pose teratogenic risks. Previous studies investigating the association between prenatal antibiotic exposure and the risk of OFCs have yielded inconsistent results. However, no studies have yet attempted to summarise this evidence, highlighting the need for a comprehensive evaluation. This report describes a systematic review and meta-analysis protocol to retrospectively analyse the relationship between prenatal antibiotic exposure and the risk of developing OFCs, focusing on the role of antibiotic type and timing of exposure. The results of such a review will hopefully provide a comprehensive synthesis of the available evidence, helping to inform clinical practice and guide patient counselling regarding the use of antibiotics during pregnancy. Methods and analysis: The planned systematic review and meta-analysis will adhere to the PRISMA-P guidelines, to ensure a comprehensive and systematic approach to summarising the available evidence on the topic. It will include observational studies (cohort, case-control, and cross-sectional) that investigate the association between prenatal antibiotic exposure and OFCs. The search strategy will cover major databases, including CINAHL, Cochrane Library, EMBASE, PubMed, Scopus, and Web of Science, using tailored search terms. A team of independent assessors will screen article titles, abstracts, and full texts. Any discrepancies will be resolved through discussions. Quality assessment will utilise the Newcastle-Ottawa Scale and GRADE criteria. Data extraction will focus on the study characteristics, participant details,

exposure specifics, and outcome measures. A random-effects meta-analysis will aggregate summary effect sizes, and heterogeneity will be assessed using I^2 and Q statistics. Ethics and dissemination: Ethical approval is not required for this systematic review, as it relies on already published data. The findings will be disseminated through peer-reviewed journals and conference presentations, providing critical insights into clinical practice and public health policies regarding antibiotic use during pregnancy. **PROSPERO registration number:** CRD42024565064 Key words: antibiotics; orofacial clefts; cleft lip; cleft palate

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

62 STRENGTHS AND LIMITATIONS OF THE STUDY

• This study will use a detailed search strategy across multiple databases (CINAHL,

Cochrane Library, EMBASE, PubMed, Scopus, and Web of Science), as well as gray
literature sources, while adhering to the PRISMA-P guidelines. The use of established
quality assessment tools (the Newcastle-Ottawa Scale and GRADE criteria) will enhance
its reliability and validity.

- Including only observational studies (cohort, case-control, and cross-sectional) provide
 real-world data regarding the association between prenatal antibiotic exposure and the
 presence of orofacial clefts (OFCs) in infants.
 - Variability in the designs, populations, antibiotic types used, and timings of the included studies may lead to heterogeneity, complicating synthesis of the results. Unpublished or negative findings may be under-represented, potentially introducing publication bias.
 - Limiting the search to English publications only may exclude relevant data, thereby affecting the comprehensiveness of the review. The review's conclusions will depend on
- the methodological quality and reporting standards of the included studies, which may
 - vary.

78 INTRODUCTION

Orofacial clefts (OFCs) are among the most common craniofacial malformations in newborns and present significant healthcare challenges because of their complex aetiology and multifaceted impact on health [1–3]. They affect an estimated 4.6 million individuals globally, resulting in a burden of ~529,758.92 disability-adjusted life years (DALYs) [4]. OFCs—which include cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (CLP)—result from disruptions in the normal development of the orofacial region during embryogenesis [2], and are specifically influenced by a combination of genetic, environmental, and maternal lifestyle factors [2,3,5]. Environmental influences such as maternal smoking, alcohol consumption, nutritional deficiencies, and medication use during pregnancy, have also been implicated in the pathogenesis of OFCs [5–7]

Recent research has raised concerns regarding the potential impact of prenatal exposure to antibiotics on foetal development [8–10]. Antibiotics are commonly prescribed during pregnancy to manage infections that, if left untreated, can pose significant risks to both the mother and the developing foetus [11–13]. However, the teratogenic potential of antibiotics, particularly those that cross the placental barrier, remains a topic of considerable debate and investigation [14]. Potential mechanisms through which antibiotics may contribute to the development of OFCs include the disruption of normal cellular processes, interference with folate metabolism, and induction of oxidative stress in the developing embryo [15].

97 Several studies have suggested an association between prenatal antibiotic exposure and an
98 increased risk of OFCs [16–19], although current evidence on the matter is inconsistent overall
99 [20–23], varying significantly across different antibiotic classes, dosages, and timings of
100 exposure. The current body of literature on this topic is characterised by heterogeneity in terms

60

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2		
2 3 4	101	of study designs and populations, which may be due to differences in study populations,
5 6	102	classifications of antibiotic exposure, and control of confounding variables. Therefore, a
/ 8 9	103	systematic approach to synthesising this evidence is essential for drawing robust and
10 11	104	generalisable conclusions. Understanding the potential teratogenic effects of antibiotics is crucial
12 13	105	for clinical practice and public health. Therefore, the following proposed study is not only
14 15 16	106	important for informing clinical practice and guiding patient counselling, but also pivotal for
17 18	107	shaping public health policies and future research trajectories in prenatal care and teratology.
19 20 21	108	OBJECTIVES
22 23 24	109	1. To systematically review observational studies investigating the relationship between
25 26	110	prenatal antibiotic exposure and the risk of developing OFCs, with a particular focus on
27 28 20	111	elucidating the role of antibiotic type, dosage, and timing of exposure.
30 31	112	2. To conduct a meta-analysis that quantitatively synthesises data from individual studies,
32 33	113	providing a robust estimate of the association between prenatal antibiotic exposure and
34 35 36	114	the risk of OFCs, while accounting for potential moderating factors.
37 38 39	115	METHODS
40 41 42	116	Protocol development
43 44	117	The protocol for this study aligns with the guidelines established by the Preferred Reporting
45 46 47	118	Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) [24,25] detailed in the
48 49	119	PRISMA-P checklist (Supplement). The registration code for this review protocol
50 51	120	(CRD42024565064) will be accessible on the PROSPERO International Prospective Register of
52 53 54	121	Systematic Reviews. Any updates to the protocol and review process will be promptly reflected
55 56	122	in the PROSPERO registration.
57 58		7

124 Inclusion and exclusion criteria

Participants

The participants in this study will be mother-child pairs. We will include all pregnant individuals regardless of age, ethnicity, or health status. We will include studies with explicit documentation of antibiotic exposure during pregnancy-including prescription records, patient self-reports, and medical notes confirming antibiotic use. The exclusion criteria include: studies lacking specific information regarding the pregnancy status of the participants, or those with ambiguous details regarding the timing and confirmation of pregnancy. We will also exclude studies in which antibiotic exposure is not explicitly linked to the pregnancy period, or where such exposure is inferred but not documented.

134 Exposure

Exposure to any class of antibiotics during pregnancy—including (but not limited to) penicillins, cephalosporins, macrolides, tetracyclines, fluoroquinolones, and sulfonamides-will be noted. We will include studies that provide details regarding the type of antibiotic (specific name or class), frequency of intake and trimester during which the exposure occurred. This detailed information is crucial for understanding the potential dose-response relationships and most critical periods of foetal development. However, studies with grouped antibiotic exposures that do not distinguish between different antibiotics or classes will be excluded. Reports with unclear or inconsistent information regarding the frequency, dosage, or timing of antibiotic exposure during pregnancy will also be excluded.

144 Comparator/Control

Page 9 of 23

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

and data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

Groups of pregnant individuals who did not receive any antibiotics during pregnancy will serve as a baseline control group for comparisons. We will exclude studies that lack a well-defined control or comparison group, as well as those where the control group includes individuals with antibiotic exposures that are similar to those of the treatment groups (thus failing to provide a clear contrast for the analysis).

Outcomes

The primary focus of this study will be on OFCs, including both syndromic and non-syndromic
CL, CP, and combined CLP. All OFC diagnoses should be based on clinical examinations,
medical records, or standardised screening protocols—either prenatally, at birth, or within a
defined postnatal period (up to one year). Studies that focused on outcomes unrelated to OFCs,
or speculative studies, will be excluded.

Types of studies

Observational studies (cohort, case-control, and cross-sectional) that quantitatively assessed the relationship between prenatal antibiotic exposure and OFCs will be included. All included studies must have a sound methodological design, including well-defined populations, clear exposure and outcome measures, and appropriate statistical analyses. We will exclude case reports and case series, as they often lack generalisability, as well as reviews, editorials, commentaries, and animal studies because they typically do not provide original empirical data. Studies with methodological flaws such as inadequate sample sizes or lack of statistical rigor will also be excluded.

165 Search strategy and study selection

Our search methodology has been meticulously designed to identify both published and unpublished studies. This comprehensive approach covers electronic repositories, conference records, virtual platforms, scholarly dissertations, and (if necessary) direct correspondences with primary authors. The search will be limited to articles published in English. We will search databases including CINAHL, Cochrane Library, EMBASE, PubMed, Scopus, and Web of Science. Index terms and keywords will be carefully tailored to the unique characteristics of each database. Google Scholar will also be searched for gray literature and ongoing studies. The following search terms will be combined and adapted as needed to meet the database specifications: ("antibiotics" OR "antimicrobial agents" OR "anti-infective agents" OR "antibacterial drugs" OR "broad spectrum antibiotics" AND "prenatal exposure delayed effects" OR "maternal exposure" OR "intrauterine exposure" OR "gestational drug exposure") AND ("orofacial clefts" OR "cleft lip" OR "cleft palate" OR "congenital defects" OR "birth defects" OR "congenital anomalies" AND ("observational study" OR "longitudinal study" OR "retrospective study" OR "prospective study" OR "epidemiological research". Both MeSH terms and other appropriate subject headings will be used in the database search. The search strategy for the databases is illustrated in Table 1. A team of three independent assessors will conduct the search. The retrieved studies will be imported into Rayyan (https://rayyan.ai/), a systematic review software platform [26]. Initially, two independent assessors will assess the suitability of the titles and abstracts of all screened

publications, followed by full-text examinations in accordance with our inclusion criteria. Two assessors will concurrently evaluate the abstracts and full-text materials, and any discrepancies

will be resolved through comprehensive discussions. Figure 1 illustrates the screening process.

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

In cases where significant disparities persist, the ultimate resolution will be entrusted to the other assessors. **Quality assessment** Two assessors will independently evaluate the methodological rigor of the included studies using the Newcastle-Ottawa Scale (NOS) to assess the quality of the non-randomised studies included in the meta-analyses. Additionally, two assessors will independently apply the GRADE assessment to categorise the quality and strength of evidence in each publication as high, moderate, low, or very low, in terms of its primary outcomes. Any discrepancies between assessments will be resolved through constructive discussions. The assessment of methodological quality will be integrated into the discussion of the respective study findings. **Data extraction** Two assessors will independently review the included studies and extract relevant information using a pre-designed form. Discrepancies will be discussed until agreements are reached. The collected information will include details, such as author names, publication year, study location, study type (cross-sectional, case-control, or cohort), participant details (sample size, sampling methods, sex, and age), questionnaire type, and statistical outcomes (including effect measures, confidence intervals, and p-values). The two reviewers will use the STROBE checklist for observational studies to assess the quality of each study [27]. Data analysis and synthesis The findings will be comprehensively presented using tables and figures. The effect size (ES) of interest will be relative risk (RR). In cases where the ES is not present, an unadjusted RR will be

estimated from contingency tables. Odds ratios (ORs) will be converted to RRs using appropriate

formulae. Both fixed-effect and random-effects meta-analyses will be used to estimate the pooled ESs along with their associated 95% confidence intervals. Significance levels will be documented. Inter-study variability, measured using the Cochrane O or I^2 statistics will be explored, as well as potential impacts from smaller studies. I^2 values of 25%, 50%, and 75% will be assumed to represent low, moderate, and high heterogeneity, respectively. The significance of heterogeneity will be determined via γ^2 values for Q statistics, with p<0.05. If the level of between-study heterogeneity is higher ($I^2 > 75\%$), a random-effects meta-regression will be performed to identify the potential moderators. A leave-one-sample-out validation will be used to explore the influences of each included study on the pooled ES. Funnel plots will be used to detect potential publication bias and small-study effects. p < 0.05 will be considered indicative of statistically significant publication bias. For outcomes with more than 10 individual studies, we will use Egger's regression test to assess asymmetry. The combined effect size will be visually represented using a forest plot. If the number of studies included is insufficient (<3), a narrative review of the study findings will be presented instead of a meta-analysis. Sensitivity analyses on primary outcomes will be conducted, and will involve excluding studies with a high risk of bias or incomplete data. Efforts will be made to contact researchers or study sponsors to obtain any missing information. If this is not possible, established methods for estimating missing data using multiple imputation will be applied. The validity of imputed data will be assessed through a sensitivity analysis. Subgroup analyses will explore the effects of timing of exposures, types and dosages of medication, and socio-economic status. Furthermore, we will define groups based on exposure to different classes of antibiotics and the timing of antibiotic administration during pregnancy, and conduct a comparative analysis across various exposure scenarios. All statistical analyses will be conducted in Stata version 18 (StataCorp).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

DISCUSSION
This systematic review and meta-analysis protocol represents the first comprehensive effort to
investigate the association between prenatal antibiotic exposure and the risk of OFCs. Its
findings are expected to provide critical insights into medication safety during pregnancy and its
potential teratogenic effects on foetal development, particularly regarding the occurrence of
OFCs. Our conclusions will be based on the combined results of the included studies, presented
through quantitative analysis or narrative synthesis.

Understanding the relationship between prenatal antibiotic exposure and OFCs is crucial for clinical decision-making and patient counselling. If a significant association is found, it will highlight the need for careful consideration of antibiotic prescriptions during pregnancy. This could lead to the development of guidelines and protocols aimed at minimising unnecessary antibiotic use and selecting safer alternatives when treatment is necessary. The results will also hopefully ensure that healthcare providers are better equipped to inform expectant mothers about the potential risks and benefits of antibiotic use during pregnancy, thereby facilitating more informed choices.

The major strengths of this planned systematic review lie in its rigorous methodological approach, adherence to the PRISMA-P guidelines, and use established quality assessment tools such as the Newcastle-Ottawa Scale and GRADE criteria. However, several methodological challenges must also be addressed. First, the included studies are likely to vary in their designs, populations, antibiotic types, dosages, and timing of exposure, which may introduce significant heterogeneity. This variability can complicate the synthesis of the results and limit the generalisability of our findings. Subgroup and sensitivity analyses will be crucial to addressing these issues. Second, the exclusion of non-English publications and the potential under-

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

representation of unpublished or negative findings may also introduce publication bias. Funnel plots and Egger's tests will be used to assess and mitigate this bias; however, its presence cannot be entirely ruled out. Third, the conclusions drawn from this review will depend on the methodological quality and reporting standards of the included studies. Variations regarding how antibiotic exposure and OFCs are defined and measured may impact the robustness of the findings. The use of the GRADE criteria will help evaluate the strength and quality of the evidence, providing a clearer understanding of the confidence that can be placed in the results. Nevertheless, this review is expected to identify gaps in the current literature and suggest areas for future research.

ETHICS AND DISSEMINATION

Obtaining ethical approval was not deemed necessary for this study, as it pertains to a protocol for a systematic review that relies on published and therefore publically available data. The findings of this study will be communicated through peer-reviewed articles and presentations at conferences.

ADDITIONAL INFORMATION

Author contributions: AN, MSF, and MMR conceived of the study's concept and drafted the initial version. TK, SS, KO, and MR provided guidance to the research teams. All of the authors participated in drafting and revising the manuscript, formulating the review questions, and designing the study. The final version of this manuscript has been read and approved by all of the authors.

Conflict of Interest Disclosures: The authors declare no competing interests.

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1							
2 3 4	277	Funding/Support: This research did not receive any specific funding from public, comment					
5 6 7	profit organisations.						
8 9	279	Patier	nt and public involvement: Patients and/or the public did not participate in the design,				
10 11 12	280	condu	ct, reporting, or dissemination plans for this study.				
13 14 15	281	REFE	CRENCES				
16 17 18	282	1	Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: understanding genetic and				
19 20	283		environmental influences. Nat Rev Genet 2011;12:167-78.				
21 22	284	2	Babai A, Irving M. Orofacial clefts: genetics of cleft lip and palate. Genes (Basel)				
23 24	285		2023;14. doi: 10.3390/genes14081603 [Published online first: 2023/08/26]				
25 26 27	286	3	Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate. Am J Med Genet C Semin				
27 28 29	287		Med Genet 2013;163C:246–58. doi: 10.1002/ajmg.c.31381.				
30 31	288	4	Kantar RS, Hamdan US, Muller JN, et al. Global prevalence and burden of orofacial				
32 33	289		clefts: A systematic analysis for the global burden of disease Study 2019. J Craniofac				
34 35 36	290		Surg 2023;34:2012–15. doi: 10.1097/SCS.000000000009591 [Published online first:				
37 38	291		2023/08/15]				
39 40	292	5	Zaaba MIS, Mokhtar KI, Rajion ZA. Revisiting genetics of cleft lip with or without cleft				
41 42	293		palate and cleft palate only: A narrative review. Arch Orofac Sci 2023;18:73-88. doi:				
43 44 45	294		10.21315/aos2023.1802.RV01.				
46 47	295	6	Mossey PA, Little J, Munger RG, et al. Cleft lip and palate. Lancet 2009;374:1773-85.				
48 49	296		doi: 10.1016/S0140-6736(09)60695-4 [Published online first: 2009/09/15]				
50 51 52	297	7	Kawalec A, Nelke K, Pawlas K, et al. Risk factors involved in orofacial cleft				
53 54	298		predisposition - review. Open Med (Wars) 2015;10:163-75. doi: 10.1515/med-2015-				
55 56	299		0027.				
57 58			15				
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

2 3	300	8	Huang H. Jiang I. Wang X. et al. Exposure to prescribed medication in early life and
4 5	500	0	
6 7	301		impacts on gut microbiota and disease development. <i>EClinicalmedicine</i> 2024;68:102428.
8 9	302		doi: 10.1016/j.eclinm.2024.102428 [Published online first: 2024/02/05]
10 11	303	9	Lin JM, Ding J, Di XM, et al. Association between prenatal antibiotics exposure and
12 13	304		measures of fetal growth: A repeated-measure study. Ecotoxicol Environ Saf
14 15 16	305		2022;244:114041. 10.1016/j.ecoenv.2022.114041.
17 18 10	306	10	Choi A, Lee H, Jeong HE et al. Association between exposure to antibiotics during
20 21	307		pregnancy or early infancy and risk of autism spectrum disorder, intellectual disorder,
22 23	308		language disorder, and epilepsy in children: population based cohort study. Br Med J
24 25 26	309		2024;385:e076885. 10.1136/bmj-2023-076885.
27 28	310	11	Orwa SA, Gudnadottir U, Boven A, et al. Global prevalence of antibiotic consumption
29 30 31 32 33	311		during pregnancy: A systematic review and meta-analysis. J Infect 2024;89:106189. doi:
	312		10.1016/j.jinf.2024.106189 [Published online first: 2024/06/07]
34 35	313	12	Bookstaver PB, Bland CM, Griffin B, et al. A review of antibiotic use in pregnancy.
36 37 38	314		Pharmacotherapy 2015;35:1052-62. doi: 10.1002/phar.1649 [Published online first:
39 40	315		2015/11/26]
41 42	316	13	Martinez de Tejada B. Antibiotic use and misuse during pregnancy and delivery: benefits
43 44	317		and risks. Int J Environ Res Public Health 2014;11:7993-8009. doi:
45 46 47	318		10.3390/ijerph110807993 [Published online first: 2014/08/12]
48 49	319	14	Tsamantioti ES, Hashmi MF. Teratogenic medications. StatPearls. In: StatPearls.
50 51 52 53 54	320		Treasure Island (FL): StatPearls Publishing; January 10, 2024.
55 56			
57 58			16
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2			1,
3 4	321	15	Stokes JM, Lopatkin AJ, Lobritz MA, et al. Bacterial metabolism and antibiotic efficacy.
5 6	322		Cell Metab 2019;30:251-59. doi: 10.1016/j.cmet.2019.06.009 [Published online first:
7 8 9	323		2019/07/08]
10 11	324	16	Ailes EC, Gilboa SM, Gill SK, et al. Association between antibiotic use among pregnant
12 13	325		women with urinary tract infections in the first trimester and birth defects, national birth
14 15	326		defects prevention study 1997 to 2011. Birth Defects Res A Clin Mol Teratol
16 17 19	327		2016;106:940-49. doi: 10.1002/bdra.23570.
19 20	328	17	Crider KS, Cleves MA, Reefhuis J, et al. Antibacterial medication use during pregnancy
21 22	329		and risk of birth defects: national Birth Defects Prevention Study. Arch Pediatr Adolesc
23 24 25	330		Med 2009;163:978-85. doi: 10.1001/archpediatrics.2009.188 [Published online first:
26 27	331		2009/11/04]
28 29	332	18	Lin KJ, Mitchell AA, Yau WP, et al. Maternal exposure to amoxicillin and the risk of
30 31 22	333		oral clefts. <i>Epidemiology</i> 2012;23:699–705. doi: 10.1097/EDE.0b013e318258cb05
32 33 34	334		[Published online first: 2012/07/07]
35 36	335	19	Puhó EH, Szunyogh M, Métneki J, et al. Drug treatment during pregnancy and isolated
37 38	336		orofacial clefts in hungary. Cleft Palate Craniofac J 2007;44:194-202. doi: 10.1597/05-
39 40 41	337		208.1 [Published online first: 2007/03/03]
42 43	338	20	Daniel S, Doron M, Fishman B, et al. The safety of amoxicillin and clavulanic acid use
44 45	339		during the first trimester of pregnancy. Br J Clin Pharmacol 2019;85:2856-63. doi:
46 47 48	340		10.1111/bcp.14118 [Published online first: 2019/09/06]
49 50	341	21	Damkier P, Brønniche LMS, Korch-Frandsen JFB, et al. In utero exposure to antibiotics
51 52	342		and risk of congenital malformations: a population-based study. Am J Obstet Gynecol
53 54			
55 56 57			
58 50			17
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	343		2019;221:648.e1-648.e15. doi: 10.1016/j.ajog.2019.06.050 [Published online first:
5 6	344		2019/07/02]
7 8 9	345	22	Mølgaard-Nielsen D, Hviid A. Maternal use of antibiotics and the risk of orofacial clefts:
9 10 11	346		a nationwide cohort study. Pharmacoepidemiol Drug Saf 2012;21:246-53. doi:
12 13	347		10.1002/pds.2179 [Published online first: 2011/11/30]
14 15	348	23	Leke AZ, Dolk H, Loane M, et al. Macrolide and lincosamide antibiotic exposure in the
16 17 18	349		first trimester of pregnancy and risk of congenital anomaly: A European case-control
19 20	350		study. Reprod Toxicol 2021;100:101-08. doi: 10.1016/j.reprotox.2021.01.006 [Published
21 22	351		online first: 2021/01/18]
23 24 25	352	24	Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review
25 26 27	353		and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1. doi:
28 29	354		10.1186/2046-4053-4-1 [Published online first: 2015/01/03]
30 31	355	25	Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review
32 33 34	356		and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ
35 36	357		2015;350:g7647. doi: 10.1136/bmj.g7647 [Published online first: 2015/01/04]
37 38	358	26	Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for
39 40 41	359		systematic reviews. Syst Rev 2016;5:210.
42 43	360	27	Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of
44 45	361		observational studies in epidemiology using Mendelian randomisation (STROBE-MR):
46 47 48	362		explanation and elaboration. Br Med J 2021;375:n2233. 10.1136/bmj.n2233.
49 50	363		
51 52			
53 54	364		
55 56			
57 58			18
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1: Search strategy of databases

No	Database	Search strategy
1	PubMed	(("antibiotics" [MeSH Terms] OR "antimicrobial agents" [MeSH Terms]
		OR "anti-infective agents" [MeSH Terms] OR "antibacterial drugs" [All
		Fields] OR "broad spectrum antibiotics" [All Fields]) AND ("prenatal
		exposure delayed effects" [MeSH Terms] OR "maternal exposure" [All
		Fields] OR "intrauterine exposure" [All Fields] OR "gestational drug
		exposure" [All Fields]) AND ("orofacial clefts" [MeSH Terms] OR "cleft
		lip" [MeSH Terms] OR "cleft palate" [MeSH Terms] OR "congenital
		defects" [MeSH Terms] OR "birth defects" [All Fields] OR "congenital
		anomalies" [All Fields]) AND ("observational study" [MeSH Terms] OR
		"longitudinal study" [MeSH Terms] OR "retrospective study" [MeSH
		Terms] OR "prospective study" [MeSH Terms] OR "epidemiological
		research" [All Fields]))
2	Web of	TS=("antibiotics" OR "antimicrobial agents" OR "anti-infective agents"
	Science	OR "antibacterial drugs" OR "broad spectrum antibiotics") AND
		TS=("prenatal exposure delayed effects" OR "maternal exposure" OR
		"intrauterine exposure" OR "gestational drug exposure") AND
		TS=("orofacial clefts" OR "cleft lip" OR "cleft palate" OR "congenital
		defects" OR "birth defects" OR "congenital anomalies") AND
		TS=("observational study" OR "longitudinal study" OR "retrospective
		study" OR "prospective study" OR "epidemiological research")

3	EMBASE	('antibiotic'/exp OR 'antimicrobial agent'/exp OR 'anti-infective agent'/exp
		OR 'antibacterial drug' OR 'broad spectrum antibiotic') AND ('prenatal
		exposure'/exp OR 'maternal exposure' OR 'intrauterine exposure' OR
		'gestational drug exposure') AND ('orofacial cleft'/exp OR 'cleft lip'/exp
		OR 'cleft palate'/exp OR 'congenital defect'/exp OR 'birth defect' OR
		'congenital anomaly') AND ('observational study'/exp OR 'longitudinal
		study'/exp OR 'retrospective study'/exp OR 'prospective study'/exp OR
		'epidemiological research')
4	Scopus	(TITLE-ABS-KEY(antibiotics) OR TITLE-ABS-KEY(antimicrobial
		agents) OR TITLE-ABS-KEY(anti-infective agents) OR TITLE-ABS-
		KEY(antibacterial drugs) OR TITLE-ABS-KEY(broad spectrum
		antibiotics)) AND (TITLE-ABS-KEY(prenatal exposure delayed effects)
		OR TITLE-ABS-KEY(maternal exposure) OR TITLE-ABS-
		KEY(intrauterine exposure) OR TITLE-ABS-KEY(gestational drug
		exposure)) AND (TITLE-ABS-KEY(orofacial clefts) OR TITLE-ABS-
		KEY(cleft lip) OR TITLE-ABS-KEY(cleft palate) OR TITLE-ABS-
		KEY(congenital defects) OR TITLE-ABS-KEY(birth defects) OR TITLE
		ABS-KEY(congenital anomalies)) AND (TITLE-ABS-KEY(observation
		study) OR TITLE-ABS-KEY(longitudinal study) OR TITLE-ABS-
		KEY(retrospective study) OR TITLE-ABS-KEY(prospective study) OR
		TITLE-ABS-KEY(epidemiological research))

BMJ Open

2				
3 4 7		5	PSycINFO	("antibiotics" OR "antimicrobial agents" OR "anti-infective agents" OR
5 6 7				"antibacterial drugs" OR "broad spectrum antibiotics") AND ("prenatal
, 8 9				exposure delayed effects" OR "maternal exposure" OR "intrauterine
) 10 11				exposure" OR "gestational drug exposure") AND ("orofacial clefts" OR
12 13				"cleft lin" OR "cleft nalate" OR "congenital defects" OR "hirth defects"
14 15				
15 16 17				OR "congenital anomalies") AND ("observational study" OR "longitudinal
17 18 10				study" OR "retrospective study" OR "prospective study" OR
19 20				"epidemiological research")
21 22				
23 24		6	Cochrane	("antibiotics" [MeSH descriptor] OR "antimicrobial agents" OR "anti-
25 26 27			Library	infective agents" OR "antibacterial drugs" OR "broad spectrum
27 28 29				antibiotics") AND ("prenatal exposure delayed effects" [MeSH descriptor]
30 31				OR "maternal exposure" OR "intrauterine exposure" OR "gestational drug
32 33				exposure") AND ("orofacial clefts" [MeSH descriptor] OR "cleft lip" OR
34 35 26				"cleft palate" OR "congenital defects" OR "birth defects" OR "congenital
30 37 38				anomalies") AND ("observational studies" [MeSH descriptor] OR
39 40				"longitudinal studies" OR "retrospective studies" OR "prospective studies"
41 42				OR "epidemiological research")
43 44				
45 46	366			
47 48 40				
49 50	367			
51 52				
53 54				
55 56				
57 58				21
59 60			For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	368	Figure 1: Flowchart illustrating the study process, following the PRISMA-P guidelines.
5 6 7	369	PRISMA-P, Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols.
8 9		
10 11		
12 13		
14		
16		
17		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37		
39 40		
40 41 42		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Prenatal exposure to antibiotics and the risk of orofacial clefts: a protocol for a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-092019.R1
Article Type:	Protocol
Date Submitted by the Author:	09-Oct-2024
Complete List of Authors:	Nagata, Abir; Osaka University Rahman, Md. Shafiur ; School of Health Innovation, Kanagawa University of Human Services; Research Centre for Child Mental Development, Hamamatsu University School of Medicine Rahman, Mahfuzur; Graduate School of Public Health, St. Luke's International University Nakagawa, Takatoshi; Graduate School of Medicine, Osaka University Sharmin, Salma; Department of Dental Public Health, University Dental College and Hospital Ohnishi, Kazunari ; Graduate School of Public Health, St. Luke's International University Rahman, Mahbubur; Graduate School of Public Health, St. Luke's International University
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Anti-Bacterial Agents, Fetal medicine < OBSTETRICS, EPIDEMIOLOGY, Child

SCHOLARONE[™] Manuscripts

BMJ Open

2 3 4	1	TITLE
5 6 7	2	Prenatal exposure to antibiotics and the risk of orofacial clefts: a protocol for a systematic review
8 9 10	3	and meta-analysis
11 12	4	Abir Nagata ¹ , MD; Shafiur Rahman ^{2,3} , MD; Mahfuzur Rahman ⁴ ; Takatoshi Nakagawa ¹ ; Salma
13 14 15	5	Sharmin ⁵ ; Kazunari Onishi ⁴ ; and Mahbubur Rahman ⁴
16 17 18	6	¹ Graduate School of Medicine, Osaka University, Osaka, Japan
19 20	7	² Research Centre for Child Mental Development, Hamamatsu University School of Medicine,
21 22 23	8	Hamamatsu, Japan
24 25	9	³ United Graduate School of Child Development, Osaka University, Kanazawa University,
26 27 28	10	Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita,
28 29 30	11	Japan
31 32	12	⁴ Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
33 34	13	⁵ Department of Dental Public Health, University Dental College and Hospital, Dhaka,
35 36 37	14	Bangladesh
38 39 40	15	E-Mails:
41 42	16	Abir Nagata: abir Nagata: abir.med@osaka-u.ac.jp ; MD Shafiur Rahman: srahman@hama-med.ac.jp ;
43 44 45	17	MD Mahfuzur Rahman: mdmahfuzur08@gmail.com ; Takatoshi Nakagawa: makagawa@r-
45 46 47	18	derma.med.osaka-u.ac.jp; Salma Sharmin: <u>sharminbd_0027@yahoo.com</u> ; Kazunari Onishi:
48 49 50	19	kaznaly@slcn.ac.jp; Mahbubur Rahman: rahman@slcn.ac.jp
50 51 52	20	CORRESPONDENCE
53 54	21	Abir Nagata, MPH, PhD
55 56 57	22	Graduate School of Medicine, Osaka University, Osaka, Japan
58 59		1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

ABSTRACT Introduction: Orofacial clefts (OFCs), including cleft lip, cleft palate, and combined cleft lip and palate, are among the most common craniofacial malformations in newborns and present significant healthcare challenges. Emerging evidence has raised concerns regarding the potential impact of prenatal exposure to antibiotics on foetal development. Antibiotics prescribed during pregnancy—particularly those that cross the placental barrier—may pose teratogenic risks. Previous studies investigating the association between prenatal antibiotic exposure and the risk of OFCs have yielded inconsistent results. However, no studies have yet attempted to summarise this evidence, highlighting the need for a comprehensive evaluation. This report describes a systematic review and meta-analysis protocol to retrospectively analyse the relationship between prenatal antibiotic exposure and the risk of developing OFCs, focusing on the role of antibiotic type and timing of exposure. The results of such a review will hopefully provide a comprehensive synthesis of the available evidence, helping to inform clinical practice and guide patient counselling regarding the use of antibiotics during pregnancy. Methods and analysis: The planned systematic review and meta-analysis will adhere to the PRISMA-P guidelines to ensure a comprehensive and systematic approach to summarising the available evidence on the topic. This study will include longitudinal cohort studies, case-control studies, and interventional trials that investigate the association between prenatal antibiotic exposure and OFCs. The search strategy will cover major databases, including CINAHL, Cochrane Library, ClinicalTrials.gov, EMBASE, PubMed, Scopus, and Web of Science, using tailored search terms. A team of independent assessors will screen article titles, abstracts, and full texts. Any discrepancies will be resolved through discussions. Quality assessment will utilise the Newcastle–Ottawa Scale and GRADE criteria. Data extraction will focus on the study

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

characteristics, participant details, exposure specifics, and outcome measures. A random-effects meta-analysis will aggregate summary effect sizes, and heterogeneity will be assessed using I^2 and Q statistics. Ethics and dissemination: Ethical approval is not required for this systematic review, as it relies on already published data. The findings will be disseminated through peer-reviewed journals and conference presentations, providing critical insights into clinical practice and public health policies regarding antibiotic use during pregnancy. PROSPERO registration number: CRD42024565064 Key words: antibiotics; orofacial clefts; cleft lip; cleft palate For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

bias.

53 STRENGTHS AND LIMITATIONS OF THE STUDY

- A comprehensive search strategy across multiple databases and grey literature sources will be employed while adhering to PRISMA-P guidelines, ensuring thorough identification of relevant studies.
 - Study selection, data extraction, and quality assessments will be performed by two independent reviewers, enhancing accuracy and consistency.
 - The use of established quality assessment tools, including the Newcastle–Ottawa Scale and GRADE criteria, will improve the reliability and validity of the findings.
 - Variability in study designs, populations, antibiotic types, and timings of exposure may
- introduce heterogeneity, complicating the synthesis of results and resulting in publication

74 INTRODUCTION

Orofacial clefts (OFCs) are among the most common craniofacial malformations in newborns and present significant healthcare challenges because of their complex aetiology and multifaceted impact on health.¹⁻³ They affect an estimated 4.6 million individuals globally, resulting in a burden of ~529,758.92 disability-adjusted life years.⁴ OFCs—which include cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (CLP)—result from disruptions in the normal development of the orofacial region during embryogenesis² and are specifically influenced by a combination of genetic, environmental, and maternal lifestyle factors.²³⁵ Environmental influences, including maternal smoking, alcohol consumption, nutritional deficiencies, and medication use during pregnancy, have been implicated in the pathogenesis of OFCs.5-7

Recent research has raised concerns regarding the potential impact of prenatal exposure to antibiotics on foetal development.⁸⁻¹⁰ Antibiotics are commonly prescribed during pregnancy to manage infections that, if left untreated, can pose significant risks to both the mother and the developing foetus.¹¹⁻¹³ However, the teratogenic potential of antibiotics, particularly those that cross the placental barrier, remains a topic of considerable debate and investigation.¹⁴ Potential mechanisms through which antibiotics may contribute to the development of OFCs include the disruption of normal cellular processes, interference with folate metabolism, and induction of oxidative stress in the developing embryo.¹⁵

93 Several studies have suggested an association between prenatal antibiotic exposure and an
94 increased risk of OFCs.¹⁶⁻¹⁹ However, current evidence on the matter is inconsistent overall,²⁰⁻²³
95 varying significantly across different antibiotic classes, dosages, and timings of exposure.

96 Specifically, the current body of literature on this topic is characterized by heterogeneity in study

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2		
2 3 4	97	designs and populations, potentially due to variations in study populations, classifications of
5 6 7 8 9 10 11	98	antibiotic exposure, and the control of confounding variables. Therefore, a systematic approach
	99	to synthesising this evidence is essential for drawing robust and generalisable conclusions.
	100	Understanding the potential teratogenic effects of antibiotics is crucial for clinical practice and
12 13	101	public health. Therefore, the following proposed study is not only important for informing
14 15	102	clinical practice and guiding patient counselling but also pivotal for shaping public health
16 17 18	103	policies and future research trajectories in prenatal care and teratology.
19 20 21	104	OBJECTIVES
22 23 24	105	The objective is to answer the following PICO (Population, Intervention, Comparison, Outcome)
24 25 26 27 28 29 30 31 32 33 34	106	question: what is the association between prenatal antibiotic exposure and the risk of developing
	107	OFCs in children, compared to the risk in children with no antibiotic exposure during
	108	pregnancy?
	109	Specific objectives:
35 36 27	110	1. To systematically review studies investigating the relationship between prenatal
37 38 39 40 41	111	antibiotic exposure and the risk of developing OFCs, with a particular focus on
	112	elucidating the role of antibiotic type, dosage, and timing of exposure.
42 43	113	2. To conduct a meta-analysis that quantitatively synthesises data from individual studies,
44 45 46	114	providing a robust estimate of the association between prenatal antibiotic exposure and
46 47 48 49 50 51	115	the risk of OFCs while accounting for potential moderating factors.
	116	METHODS AND ANALYSIS
52 53 54	117	Protocol development
55 56 57		
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		8
2 3 4	118	The protocol for this study aligns with the guidelines established by the Preferred Reporting
4 5 6	119	Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P). ^{24 25} The PRISMA-
7 8	120	Protocols checklist is provided in online supplemental file 1. The registration code for this
9 10 11	121	review protocol (CRD42024565064) will be accessible on the PROSPERO International
12 13	122	Prospective Register of Systematic Reviews. Any updates to the protocol and review process will
14 15 16	123	be promptly reflected in the PROSPERO registration. The study is scheduled to commence in
16 17 18	124	December 2024 and is expected to be completed by May 2025.
19 20 21	125	ELIGIBILITY
22 23 24	126	PICO Framework
25 26 27	127	Population: pregnant individuals and their children (mother-child pairs).
28 29 30	128	Intervention/Exposure: prenatal exposure to antibiotics.
31 32	129	Comparator: no exposure to antibiotics.
34 35 36	130	Outcome: the occurrence of OFCs, CL, CP, and CLP.
30 37 38	131	Inclusion and exclusion criteria
39 40 41	132	Participants
42 43 44	133	The participants in this study will be mother-child pairs. We will include all pregnant individuals
45 46 47	134	regardless of age, ethnicity, or health status. We will include studies with explicit documentation
48 49	135	of antibiotic exposure during pregnancy-including prescription records, patient self-reports, and
50 51	136	medical notes confirming antibiotic use. The exclusion criteria include studies lacking specific
52 53	137	information regarding the pregnancy status of the participants or those with ambiguous details

55 regarding the timing and confirmation of pregnancy. We will also exclude studies in which 138 56

54

57 58

59

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

antibiotic exposure is not explicitly linked to the pregnancy period or where such exposure isinferred but not documented.

141 Exposure

Exposure to any class of antibiotics during pregnancy—including (but not limited to) penicillins, cephalosporins, macrolides, tetracyclines, fluoroquinolones, and sulfonamides-will be included. We will analyse antibiotic exposure by individual classes to better understand the potential differences in risks associated with each class. Given that certain classes of antibiotics are contraindicated during pregnancy,¹² this approach will allow for a more detailed analysis of class-specific effects. We will include studies that provide details regarding the type of antibiotic (specific name or class), frequency of intake, and trimester during which the exposure occurred. The primary focus will be on exposures occurring during the first trimester, as this is the period when orofacial cleft development occurs.²⁶ This detailed information is crucial for understanding the potential dose-response relationships and most critical periods of foetal development. Studies with grouped antibiotic exposures that do not distinguish between different antibiotics or classes will be excluded. This is due to the fact that different antibiotic classes may have distinct risks and mechanisms of action, and combining them may mask the specific effects associated with each individual class. Reports with unclear or inconsistent information regarding the frequency, dosage, or timing of antibiotic exposure during pregnancy will also be excluded.

Comparator/Control

Groups of pregnant individuals who did not receive any antibiotics during pregnancy will serve
as a baseline control group for comparisons. In addition to the baseline control group, we will
include active comparators, such as pregnant individuals who were prescribed antibiotics known

and

data mining, AI training, and similar technologies

to be safe during pregnancy. This will help account for potential confounding by indication, as some bacterial infections themselves may increase the risk of birth defects.²⁷ Furthermore, we will consider comparator groups based on the timing of antibiotic exposure (e.g., first-trimester exposure vs. second and/or third-trimester exposure). Finally, we will exclude studies that lack a well-defined control or comparison group, thus failing to provide a clear contrast for the analysis.

Outcomes

The primary focus of this study will be on OFCs, including both syndromic and non-syndromic CL, CP, and combined CLP. All OFC diagnoses should be based on clinical examinations, medical records, or standardised screening protocols—either prenatally, at birth, or within a defined postnatal period (up to 1 year). Studies that focused on outcomes unrelated to OFCs or speculative studies, will be excluded.

Types of studies

Longitudinal cohort studies (both prospective and retrospective), case-control studies, and interventional trials that quantitatively assessed the relationship between prenatal antibiotic exposure and OFCs will be included. All included studies must have a sound methodological design, including well-defined populations, clear exposure and outcome measures, and appropriate statistical analyses. Cross-sectional studies will be excluded as they do not establish a temporal relationship between exposure and outcome; therefore, causality cannot be inferred. We will also exclude case reports and case series, as they often lack generalisability, as well as reviews, editorials, commentaries, and animal studies, because they typically do not provide original empirical data. Studies with methodological flaws, such as inadequate sample sizes or lack of statistical rigor, will also be excluded. No restrictions will be applied regarding the

Page 11 of 25

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1		
2		
3 4	183	language of the studies or publication length, and translation will be performed using Google
5 6 7	184	Translate or by individuals capable of providing a translation.
8 9 10	185	Search strategy and study selection
11 12 13	186	Our search methodology has been meticulously designed to identify both published and
14 15	187	unpublished studies. This comprehensive approach covers electronic repositories, conference
16 17	188	records, virtual platforms, scholarly dissertations, and (if necessary) direct correspondences with
18 19	189	primary authors. We will search databases including CINAHL, Cochrane Library,
20 21 22	190	ClinicalTrials.gov, EMBASE, PubMed, Scopus, and Web of Science. Index terms and keywords
22 23 24	191	will be carefully tailored to the unique characteristics of each database. Google Scholar will also
25 26	192	be used to search for gray literature and ongoing studies. The following search terms will be
27 28	193	combined and adapted as needed to meet the database specifications: ("antibiotics" OR
29 30 31	194	"antimicrobial agents" OR "anti-infective agents" OR "antibacterial drugs" OR "broad spectrum
32 33	195	antibiotics" AND "prenatal exposure delayed effects" OR "maternal exposure" OR "intrauterine
34 35	196	exposure" OR "gestational drug exposure") AND ("orofacial clefts" OR "cleft lip" OR "cleft
36 37 38	197	palate" OR "congenital defects" OR "birth defects" OR "congenital anomalies" AND
39 40	198	("observational study" OR "longitudinal study" OR "retrospective study" OR "prospective study"
41 42	199	OR "epidemiological research". Both MeSH terms and other appropriate subject headings will be
43 44 45	200	used in the database search. The search strategy for the databases is illustrated in online
46 47	201	supplemental file 2.
40 49 50	202	A team of three independent assessors will conduct the search. The retrieved studies will be
51 52	203	imported into Rayyan (https://rayyan.ai/), a systematic review software platform ²⁸ Initially, two
53 54 55	204	independent assessors will assess the suitability of the titles and abstracts of all screened
55 56 57	205	publications, followed by full-text examinations in accordance with our inclusion criteria. Two
58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

assessors will concurrently evaluate the abstracts and full-text materials, and any discrepancies will be resolved through comprehensive discussions. **Figure 1** illustrates the screening process. In cases where significant disparities persist, the ultimate resolution will be entrusted to the other

Quality assessment

assessors.

Two assessors will independently evaluate the methodological rigor of the included studies using the Newcastle–Ottawa Scale to assess the quality of the non-randomised studies included in the meta-analyses. If RCTs are included, the Cochrane Risk of Bias (ROB V.2)²⁹ tool will be applied. Additionally, two assessors will independently apply the GRADE assessment to categorise the quality and strength of evidence in each publication as high, moderate, low, or very low in terms of its primary outcomes. Any discrepancies between assessments will be resolved through constructive discussions. The assessment of methodological quality will be integrated into the discussion of the respective study findings.

Data extraction

Two assessors will independently review the included studies and extract relevant information using a pre-designed form. Discrepancies will be resolved through discussion until a consensus is reached. The data extracted from each study will encompass, though not be limited to: (a) study *characteristics*: author names, publication year, citation, study location, study design, study dates, participant selection criteria, statistical analysis methods, funding sources, and conflicts of interest; (b) *participant characteristics*: including the number of mother-child pairs (sample size), sampling methods, sex, age, and any reported sociodemographic data; (c) exposure: type of antibiotic (specific name or class), frequency of use, the trimester during which exposure

BMJ Open

13

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2		
3 4	228	occurred, and the method of data collection; (d) comparator: participants who were not exposed
5 6 7	229	to antibiotics; (e) <i>outcome</i> : type of OFCs, such as CL, CP, or combined CLP, the method of
7 8 9	230	outcome data collection, and covariate adjustment in the analysis; and (f) results: statistical
10 11 12	231	outcomes, including effect measures, confidence intervals, and p-values.
13 14	232	OFC diagnoses must be confirmed through clinical examinations, medical records, or
15 16 17	233	standardised screening protocols, either during the prenatal stage, at birth, or within a specified
17 18 19	234	postnatal period. Secondary outcomes may include variations in the risk of OFCs based on
20 21	235	antibiotic dosage, active comparators, and socio-economic status. We will prioritise studies with
22 23	236	the clearest and most consistent definitions of both exposure and outcomes.
24 25 26 27	237	Data analysis and synthesis
28 29	238	The findings will be reported and presented in accordance with the PRISMA statement. ³⁰
30 31 32	239	Additionally, if only observational studies are included, we will also follow the MOOSE (Meta-
32 33 34	240	Analysis of Observational Studies in Epidemiology) checklist. ³¹ The findings will be
35 36	241	comprehensively presented using tables and figures. The effect size (ES) of interest will be the
37 38	242	relative risk (RR). When effect estimates are provided as crude or adjusted odds ratios (ORs) or
39 40 41	243	RRs, we will prioritise collecting the adjusted estimates and provide a descriptive summary of
42 43	244	the covariates adjusted for each study. In cases where the ES is not present, an unadjusted RR
44 45	245	will be estimated from contingency tables. ORs will be converted to RRs using appropriate
46 47 48	246	formulae. Both fixed-effect and random-effects meta-analyses will be used to estimate the
49 50	247	pooled ESs along with their associated 95% confidence intervals. Significance levels will be
51 52	248	documented. Inter-study variability, measured using the Cochrane Q or I^2 statistics, will be
53 54 55	249	explored, as well as potential impacts from smaller studies. I^2 values of 25%, 50%, and 75%
55 56 57	250	will be assumed to represent low, moderate, and high heterogeneity, respectively. The
58		13
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
11	
15	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
۲0 م	
10	
4ð	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

1

251	significance of heterogeneity will be determined via χ^2 values for Q statistics, with p<0.05. If the
252	level of between-study heterogeneity is higher ($I^2 > 75\%$), a random-effects meta-regression will
253	be performed to identify the potential moderators. A leave-one-sample-out validation will be
254	used to explore the influences of each included study on the pooled ES. Funnel plots will be used
255	to detect potential publication bias and small-study effects. p<0.05 will be considered indicative
256	of statistically significant publication bias. For outcomes with more than 10 individual studies,
257	we will use Egger's regression test to assess asymmetry. The combined effect size will be
258	visually represented using a forest plot. If the number of studies included is insufficient (<3), a
259	narrative review of the study findings will be presented instead of a meta-analysis.
260	Sensitivity analyses on primary outcomes will be conducted and will involve excluding studies
261	with a high risk of bias or incomplete data. Efforts will be made to contact researchers or study
262	sponsors to obtain any missing information. If this is not possible, established methods for
263	estimating missing data using multiple imputations will be applied. The validity of imputed data
264	will be assessed through a sensitivity analysis. Subgroup analyses will explore the effects of
265	medication dosages and active comparators. Furthermore, we will conduct a meta-regression
266	analysis across various subgroups, including, but not limited to, confounding factors (crude or
267	adjusted), socio-economic status, and study design. All statistical analyses will be conducted in
268	Stata version 18 (StataCorp).

269 DISCUSSION

This systematic review and meta-analysis protocol represents the first comprehensive effort to
investigate the association between prenatal antibiotic exposure and the risk of OFCs. Its
findings are expected to provide critical insights into medication safety during pregnancy and its
potential teratogenic effects on foetal development, particularly regarding the occurrence of

Page 15 of 25

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

OFCs. Our conclusions will be based on the combined results of the included studies, presented through quantitative analysis or narrative synthesis. Understanding the relationship between prenatal antibiotic exposure and OFCs is crucial for clinical decision-making and patient counselling. If a significant association is found, it will highlight the need for careful consideration of antibiotic prescriptions during pregnancy. This could lead to the development of guidelines and protocols aimed at minimising unnecessary antibiotic use and selecting safer alternatives when treatment is necessary. The results will also hopefully ensure that healthcare providers are better equipped to inform expectant mothers about the potential risks and benefits of antibiotic use during pregnancy, thereby facilitating more informed choices. The major strengths of this planned, systematic review lie in its rigorous methodological approach, adherence to the PRISMA-P guidelines, and use of established guality assessment tools such as the Newcastle–Ottawa Scale and GRADE criteria. However, several methodological challenges must also be addressed. First, the included studies are likely to vary in their designs, populations, antibiotic types, dosages, and timing of exposure, which may introduce significant heterogeneity. This variability can complicate the synthesis of the results and limit the generalisability of our findings. Subgroup and sensitivity analyses will be crucial to addressing these issues. Second, the potential under-representation of unpublished or negative findings may also introduce publication bias. Funnel plots and Egger's tests will be used to assess and mitigate this bias; however, its presence cannot be entirely ruled out. Third, the conclusions drawn from this review will depend on the methodological quality and reporting standards of the included studies. Variations regarding how antibiotic exposure and OFCs are defined and measured may impact the robustness of the findings. The use of the GRADE criteria

Page 16 of 25

the confidence that can be placed in the results. Nevertheless, this review is expected to identifygaps in the current literature and suggest areas for future research.

300 ETHICS AND DISSEMINATION

301 Obtaining ethical approval was not deemed necessary for this study, as it pertains to a protocol 302 for a systematic review that relies on published, and therefore, publically available data. The 303 findings of this study will be communicated through peer-reviewed articles and presentations at 304 conferences.

305 ADDITIONAL INFORMATION

Author contributions: AN, MSF, and MMR conceived of the study's concept and drafted the
initial version. TK, SS, KO, and MR provided guidance to the research teams. All of the authors
participated in drafting and revising the manuscript, formulating the review questions, and
designing the study. All of the authors have read and approved the final version of this
manuscript. AN serves as the guarantor, accepting full responsibility for the work and/or the
conduct of the study, has access to the data, and controls the decision to publish.

Conflict of Interest Disclosures: The authors declare no competing interests.

Funding/Support: This research did not receive any specific funding from public, commercial,or nonprofit organisations.

Patient and public involvement: Patients and/or the public did not participate in the design,
conduct, reporting, or dissemination plans for this study.

REFERENCES

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1		1
2		
3	318	1. Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: understanding genetic and
4 5		
6	319	environmental influences. Nat Rev Genet 2011;12(3):167-78
7		
8	320	2. Babai A. Irving M. Orofacial clefts: genetics of cleft lip and palate. Genes (Basel) 2023:14(8).
9 10		
11	321	doi: <u>10.3390/genes14081603</u>
12		
13 14	377	3 Leslie FL Marazita ML Genetics of cleft lin and cleft palate Am I Med Genet C Semin Med
14	522	5. Lesne Li, Marazita MI. Geneties of cleft np and cleft parace. All i Mied Genet C Bennin Med
16	323	Genet 2013;163C(4):246-58. doi: 10.1002/ajmg.c.31381
17		
18 10	224	4 Kantar DS, Hamdan HS, Mullar DL at al. Clabel provalence and hurden of profesial elefter A
20	324	4. Kantar KS, Hamdan US, Wuner JN, et al. Globar prevalence and burden of oforacial ciefts. A
21	325	systematic analysis for the global burden of disease Study 2019 J Craniofac Surg
22	020	systemate analysis for the groun of alsouse study 2019. V cramerae surg
23 24	326	2023;34(7):2012-15. doi: <u>10.1097/SCS.000000000009591</u>
25		
26	277	5 Zaaba MIS Mokhtar KI Raijon ZA Revisiting genetics of cleft lin with or without cleft
27	527	5. Zadba Wils, Wokitai Ki, Kajion ZA. Kevisting geneties of eleft np with of without eleft
29	328	palate and cleft palate only: A narrative review. Arch Orofac Sci 2023;18(2):73-88. doi:
30		
31	329	<u>10.21315/aos2023.1802.RV01</u>
32 33		
34	330	6 Mossey PA Little I Munger RG et al Cleft lin and palate Lancet 2009:374(9703):1773-85
35		
36 37	331	doi: <u>10.1016/S0140-6736(09)60695-4</u> [published online first: 2009/09/15]
38		
39	332	7 Kawalec A Nelke K Pawlas K et al Risk factors involved in orofacial cleft predisposition -
40	552	7. Ruwalee 14, 19erke 14, 1 uwas 14, et al. Risk factors involved in oronaeta ciert predisposition
41	333	review. Open Med (Wars) 2015;10(1):163-75. doi: 10.1515/med-2015-0027
43		
44	224	8 Huang H. Jiang I. Wang V. at al. Exposure to prescribed medication in early life and impacts
45 46	554	8. Huang H, shang J, wang A, et al. Exposure to presented incurcation in early file and impacts
47	335	on gut microbiota and disease development. EClinicalmedicine 2024;68:102428. doi:
48		
49 50	336	<u>10.1016/j.eclinm.2024.102428</u>
50		
52		
53		
54 55		
56		
57		
58 50		17
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 _

2 3 4	337	9. Lin JM, Ding J, Di XM, et al. Association between prenatal antibiotics exposure and measures
5 6	338	of fetal growth: A repeated-measure study. Ecotoxicol Environ Saf 2022;244:114041. doi:
7 8 9	339	10.1016/j.ecoenv.2022.114041
10 11 12	340	10. Choi A, Lee H, Jeong HE et al Association between exposure to antibiotics during
12 13 14	341	pregnancy or early infancy and risk of autism spectrum disorder, intellectual disorder, language
15 16	342	disorder, and epilepsy in children: population based cohort study. Br Med J 2024;385:e076885.
17 18 19	343	doi: 10.1136/bmj-2023-076885
20 21	344	11. Orwa SA, Gudnadottir U, Boven A, et al. Global prevalence of antibiotic consumption
22 23 24	345	during pregnancy: A systematic review and meta-analysis. J Infect 2024;89(2):106189. doi:
24 25 26	346	<u>10.1016/j.jinf.2024.106189</u>
27 28 29	347	12. Bookstaver PB, Bland CM, Griffin B, et al. A review of antibiotic use in pregnancy.
30 31 32	348	Pharmacotherapy 2015;35(11):1052-62. doi: 10.1002/phar.1649
33 34	349	13. Martinez de Tejada B. Antibiotic use and misuse during pregnancy and delivery: benefits and
35 36 37	350	risks. Int J Environ Res Public Health 2014;11(8):7993-8009. doi: 10.3390/ijerph110807993
38 39 40	351	14. Tsamantioti ES, Hashmi MF. Teratogenic medications. In: StatPearls. Treasure Island (FL):
40 41 42	352	StatPearls Publishing; 2024.
43 44 45	353	15. Stokes JM, Lopatkin AJ, Lobritz MA, et al Bacterial metabolism and antibiotic efficacy.
46 47	354	Cell Metab 2019;30(2):251-59. doi: <u>10.1016/j.cmet.2019.06.009</u>
48 49 50	355	16. Ailes EC, Gilboa SM, Gill SK, et al. Association between antibiotic use among pregnant
51 52 53	356	women with urinary tract infections in the first trimester and birth defects, national birth defects
54 55		
50 57 58		10
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3	357	prevention study 1997 to 2011 Birth Defects Res A Clin Mol Teratol 2016:106(11):940-49 doi:
4 5	557	prevention study 1757 to 2011. Bitti Dereets Kes A elin wor relator 2010,100(11).940-49. doi.
6 7	358	<u>10.1002/bdra.23570</u>
8 9 10	359	17. Crider KS, Cleves MA, Reefhuis J, et al. Antibacterial medication use during pregnancy and
11 12	360	risk of birth defects: national Birth Defects Prevention Study. Arch Pediatr Adolesc Med
13 14 15	361	2009;163(11):978-85. doi: <u>10.1001/archpediatrics.2009.188</u>
16 17	362	18. Lin KJ, Mitchell AA, Yau WP, et al. Maternal exposure to amoxicillin and the risk of oral
18 19 20	363	clefts. Epidemiology 2012;23(5):699-705. doi: <u>10.1097/EDE.0b013e318258cb05</u>
21 22	364	19. Puhó EH, Szunyogh M, Métneki J, et al. Drug treatment during pregnancy and isolated
23 24 25	365	orofacial clefts in Hungary. Cleft Palate Craniofac J 2007;44(2):194-202. doi: <u>10.1597/05-208.1</u>
20 27 28	366	20. Daniel S, Doron M, Fishman B, et al. The safety of amoxicillin and clavulanic acid use
29 30	367	during the first trimester of pregnancy. Br J Clin Pharmacol 2019;85(12):2856-63. doi:
31 32 33	368	<u>10.1111/bcp.14118</u>
34 35	369	21. Damkier P, Brønniche LMS, Korch-Frandsen JFB, et al. In utero exposure to antibiotics and
36 37 38	370	risk of congenital malformations: a population-based study. Am J Obstet Gynecol
39 40	371	2019;221(6):648.e1-648.e15. doi: <u>10.1016/j.ajog.2019.06.050</u>
41 42 43	372	22. Mølgaard-Nielsen D, Hviid A. Maternal use of antibiotics and the risk of orofacial clefts: a
44 45	373	nationwide cohort study. Pharmacoepidemiol Drug Saf 2012;21(3):246-53. doi:
46 47 48	374	<u>10.1002/pds.2179</u> [published online first: 2011/11/30]
49 50	375	23. Leke AZ, Dolk H, Loane M, et al. Macrolide and lincosamide antibiotic exposure in the first
51 52 53	376	trimester of pregnancy and risk of congenital anomaly: A European case-control study. Reprod
54 55 56	377	Toxicol 2021;100:101-08. doi: <u>10.1016/j.reprotox.2021.01.006</u>
57 58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	378	24. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and
5 6 7	379	meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4(1):1. doi: 10.1186/2046-
7 8 9	380	<u>4053-4-1</u>
10 11 12	381	25. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and
13 14	382	meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015;350:g7647.
15 16 17	383	doi: <u>10.1136/bmj.g7647</u>
18 19	384	26. Kini U. Genetics and orofacial clefts: a clinical perspective. Br Dent J 2023;234(12):947-52.
20 21 22	385	doi: <u>10.1038/s41415-023-5994-3</u>
23 24 25	386	27. Kumar M, Saadaoui M, Al Khodor S. Infections and pregnancy: effects on maternal and
25 26 27	387	child health. Front Cell Infect Microbiol 2022;12:873253. doi: 10.3389/fcimb.2022.873253
28 29 30	388	28. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic
31 32 33	389	reviews. Syst Rev 2016;5(1):210
34 35	390	29. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in
36 37 38	391	randomised trials. Br Med J 2019;366:14898. doi: 10.1136/bmj.14898
39 40	392	30. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated
41 42 43	393	guideline for reporting systematic reviews. Br Med J 2021;134:178-89. doi:
44 45 46	394	10.1016/j.jclinepi.2021.03.001
40 47 48	395	31. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in
49 50	396	epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology
51 52 53	397	(MOOSE) groupAnal Obs Stud Epidemiol (Moose) Group JAMA 2000;283(15):2008-12. doi:
54 55 56	398	<u>10.1001/jama.283.15.2008</u>
57 58 59		20

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1		2
2 3 4	399	Figure 1: Flowchart illustrating the study process, following the PRISMA-P guidelines.
6	400	PRISMA-P, Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols.
/ 8		
9 10		
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		21
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

No.	Database	Search strategy
1	PubMed	(("antibiotics" [MeSH Terms] OR "antimicrobial agents" [MeSH Terms] OR "anti-infective agents" [MeSH Terms] OR "antibacterial drugs" [All Fields] OR "broad spectrum antibiotics" [All Fields])
		AND ("prenatal exposure delayed effects" [MeSH Terms] OR "maternal exposure" [All Fields] OR "intrauterine exposure" [All Fields] OR "gestational drug exposure" [All Fields])
		AND ("orofacial clefts" [MeSH Terms] OR "cleft lip" [MeSH Terms] OR "cleft palate" [MeSH Terms] OR "congenital defects" [MeSH Terms] OR "birth defects" [All Fields] OR "congenital anomalies" [All Fields])
		AND ("observational study" [MeSH Terms] OR "longitudinal study" [MeSH Terms] OR "retrospective study" [MeSH Terms] OR "prospective study" [MeSH Terms] OR "epidemiological research" [All Fields] OR "randomized controlled trial" [MeSH Terms] OR "RCT" [All Fields] OR "clinical trial" [MeSH Terms]))
2	Web of Science	TS=("antibiotics" OR "antimicrobial agents" OR "anti-infective agents" OR "antibacterial drugs" OR "broad spectrum antibiotics")
		AND TS=("prenatal exposure delayed effects" OR "maternal exposure" OR "intrauterine exposure" OR "gestational drug exposure")
		AND TS=("orofacial clefts" OR "cleft lip" OR "cleft palate" OR "congenital defects" OR "birth defects" OR "congenital anomalies")
		AND TS=("observational study" OR "longitudinal study" OR "retrospective study" OR "prospective study" OR "epidemiological research" OR "randomized controlled trial" OR "RCT" OR "clinical trial")
3	EMBASE	('antibiotic'/exp OR 'antimicrobial agent'/exp OR 'anti-infective agent'/exp OR 'antibacterial drug' OR 'broad spectrum antibiotic')
		AND ('prenatal exposure'/exp OR 'maternal exposure' OR 'intrauterine exposure' OR 'gestational drug exposure')
		AND ('orofacial cleft'/exp OR 'cleft lip'/exp OR 'cleft palate'/exp OR 'congenital defect'/exp OR 'birth defect' OR 'congenital anomaly')

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Enseignement Superieur (ABES)	MJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de
--	-------------------------------	--

		AND ('observational study'/exp OR 'longitudinal study'/exp OR 'retrospective study'/exp OR 'prospective study'/exp OR 'randomized controlled trial'/exp OR 'RCT'/exp OR 'clinical trial'/exp)
4	Scopus	(TITLE-ABS-KEY(antibiotics) OR TITLE-ABS- KEY(antimicrobial agents) OR TITLE-ABS-KEY(anti-infective agents) OR TITLE-ABS-KEY(antibacterial drugs) OR TITLE- ABS-KEY(broad spectrum antibiotics))
		AND (TITLE-ABS-KEY(prenatal exposure delayed effects) OR TITLE-ABS-KEY(maternal exposure) OR TITLE-ABS- KEY(intrauterine exposure) OR TITLE-ABS-KEY(gestational drug exposure))
		AND (TITLE-ABS-KEY(orofacial clefts) OR TITLE-ABS- KEY(cleft lip) OR TITLE-ABS-KEY(cleft palate) OR TITLE- ABS-KEY(congenital defects) OR TITLE-ABS-KEY(birth defects OR TITLE-ABS-KEY(congenital anomalies))
		AND (TITLE-ABS-KEY(observational study) OR TITLE-ABS- KEY(longitudinal study) OR TITLE-ABS-KEY(retrospective study) OR TITLE-ABS-KEY(prospective study) OR TITLE-ABS- KEY(randomized controlled trial) OR TITLE-ABS-KEY(RCT) OF TITLE-ABS-KEY(clinical trial))
5	PSycINFO	("antibiotics" OR "antimicrobial agents" OR "anti-infective agents' OR "antibacterial drugs" OR "broad spectrum antibiotics")
		AND ("prenatal exposure delayed effects" OR "maternal exposure' OR "intrauterine exposure" OR "gestational drug exposure")
		AND ("orofacial clefts" OR "cleft lip" OR "cleft palate" OR "congenital defects" OR "birth defects" OR "congenital anomalies"
		AND ("observational study" OR "longitudinal study" OR "retrospective study" OR "prospective study" OR "randomized controlled trial" OR "RCT" OR "clinical trial")
6	Cochrane Library	("antibiotics" [MeSH descriptor] OR "antimicrobial agents" OR "anti-infective agents" OR "antibacterial drugs" OR "broad spectrum antibiotics")

		AND ("prenatal exposure delayed effects" [MeSH descriptor] OR "maternal exposure" OR "intrauterine exposure" OR "gestational drug exposure")
		AND ("orofacial clefts" [MeSH descriptor] OR "cleft lip" OR "cleft palate" OR "congenital defects" OR "birth defects" OR "congenital anomalies")
		AND ("observational studies" [MeSH descriptor] OR "longitudinal studies" OR "retrospective studies" OR "prospective studies" OR "randomized controlled trial" OR "RCT" OR "clinical trial")
7	ClinicalTrials.gov	Condition: "Orofacial clefts" OR "cleft lip" OR "cleft palate" OR "congenital defects"
		infective agents" OR "antibacterial drugs"
		Study Type: Interventional Studies (Clinical Trials)

Study Type.

BMJ Open: first published as 10.1136/bmjopen-2024-092019 on 19 November 2024. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.