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ABSTRACT
Objective  Despite extensive exploration of potential 
biomarkers of cardiovascular diseases (CVDs) derived 
from retinal images, it remains unclear how retinal 
images contribute to CVD risk profiling and how the 
results can inform lifestyle modifications. Therefore, we 
aimed to determine the performance of cardiovascular 
risk prediction model from retinal images via explicitly 
estimating 10 traditional CVD risk factors and compared 
with the model based on actual risk measurements.
Design  A prospective cohort study design.
Setting  The UK Biobank (UKBB), a prospective cohort 
study, following the health conditions including CVD 
outcomes of adults recruited between 2006 and 2010.
Participants  A subset of data from the UKBB which 
contains 52 297 entries with retinal images and 5-year 
cumulative incidence of major adverse cardiovascular 
events (MACE) was used. Our dataset is split into 3:1:1 
as training set (n=31 403), validation set (n=10 420) and 
testing set (n=10 474). We developed a deep learning (DL) 
model to predict 5-year MACE using a two-stage DL neural 
network.
Primary and secondary outcome measures  We 
computed accuracy, area under the receiver operating 
characteristic curve (AUC) and compared variations in the 
risk prediction models combining CVD risk factors and 
retinal images.
Results  The first-stage DL model demonstrated that 
the 10 CVD risk factors can be estimated from a given 
retinal image with an accuracy ranging between 65.2% 
and 89.8% (overall AUC of 0.738 with 95% CI: 0.710 to 
0.766). In MACE prediction, our model outperformed the 
traditional score-based models, with 8.2% higher AUC than 
Systematic COronary Risk Evaluation (SCORE), 3.5% for 
SCORE 2 and 7.1% for the Framingham Risk Score (with p 
value<0.05 for all three comparisons).
Conclusions  Our algorithm estimates the 5-year risk of 
MACE based on retinal images, while explicitly presenting 
which risk factors should be checked and intervened. 
This two-stage approach provides human interpretable 
information between stages, which helps clinicians gain 

insights into the screening process copiloting with the DL 
model.

INTRODUCTION
Cardiovascular disease (CVD) is the 
leading cause of death, and it alone caused 
17.9 million deaths in 2019 representing 
32% of global mortalities.1 Traditionally, 
risk assessment for CVD disease has been 
performed based on multiple factors, namely, 
older age, male gender, hypertension, dyslip-
idaemia, diabetes, obesity and smoking habit. 
This strategy developed clinical CVD risk 
assessment algorithms, such as Systematic 
COronary Risk Evaluation (SCORE),2 Fram-
ingham Risk Score,3 WHO guidelines4 or 
Pooled Cohort Equations (PEC),5 to provide 
a quantitative risk measure. To use such tools 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ Retinal images have been used to predict cardio-
vascular disease (CVD) outcomes; we explored their 
use as estimators of 10 traditional CVD risk factors 
to enhance model explainability in predicting major 
adverse cardiovascular events within 5 years.

	⇒ The training process is interpretable by explicitly 
estimating 10 CVD risk factors, achieving high pre-
diction accuracy.

	⇒ The two-stage network setup provides clinicians 
with deeper insights, allowing for the identification 
of potential algorithmic abnormalities.

	⇒ Estimating the 10 individual traditional CVD risk 
factors enables personalised CVD risk profiles and 
corresponding intervention to reduce CVD risk.

	⇒ The main limitation is that deep learning methods 
require high image quality to achieve high model 
accuracy.
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essentially requires blood samples for glucose, cholesterol 
and triglycerides levels.

Novel biomarkers of CVD have been sought exten-
sively to improve the assessment to explain what has been 
known as the residual risk. One of the unique candidates 
of CVD risk biomarkers is the retinal image assessment. 
The retina has been recognised as a window to the body, 
especially for its uniqueness to visualise vascular struc-
tures in vivo. It thus has been recognised as a non-invasive 
screening modality to evaluate organ damage due to 
hypertension and other cardiovascular (CVD) risks. It has 
been demonstrated that qualitative assessment of retinal 
signs can provide CVD risk assessment,5 then quantita-
tive retinal vessel morphological changes,6–8 and more 
recently, a deep learning (DL) model using retinal images 
as a sole input to estimate CVD risk.9–11

However, it is still not clear how the retinal image reflects 
CVD risk factors, and how the assessment results based 
on the retinal image may be used or interpreted for life-
style modification to realise a clinically useful screening. 
Therefore, we aimed to develop an explainable machine 
learning method that analyses retinal images to estimate 
the 5-year risk of the major adverse cardiovascular events 
(MACE) via explicitly estimating traditional CVD risk 
factors. In our proposed novel algorithm, we aimed to 
predict 10 CVD risk factors using a multitask learning 
structure to capture the internal correlation among risk 
factors and make predictions for individual risk factors 

given only retinal images. Then the 5-year MACE risk is 
estimated in the second stage. Through the first stage, we 
can make a risk profiling that tells why an individual is 
predicted to be in higher CVD risk.

METHODS
Dataset
Our dataset is acquired from UK Biobank (UKBB) 
(https://www.ukbiobank.ac.uk/), which contains data 
from 502 419 UK participants (as of 23 October 2021). 
We created a subset from the UKBB dataset with 52 297 
patients that comes with the complete set of required attri-
butes and supplementary data, which includes age, sex, 
smoking habits, systolic blood pressure (SBP), diastolic 
blood pressure (DBP), hemoglobin A1c (HbA1c), high-
density lipoprotein (HDL) cholesterol, low-density lipo-
protein (LDL) cholesterol, triglycerides, body mass index 
(BMI) and presence of diabetes, at least one retinal eye 
image and MACE outcome. A diagram illustrates the 
flow of data is shown in online supplemental figure 1. 
We randomly split the dataset into 3:1:1 as training set 
(n=31 403), validation set (n=10 420) and testing set 
(n=10 474). There are 327 (1.04%), 119 (1.14%) and 
132 (1.26%) incident MACE in the training, validation 
and testing set, respectively. The risk score distribution 
for Pooled Cohort Equation, Framingham Risk Score, 
SCORE and SCORE 2 is shown in online supplemental 

Table 1  Summary of characteristics of patients in the UK Biobank dataset

Train Validate Test

Number of patients 31 403 10 420 10 474

Number of images 61 554 20 392 20 503

Age, years 56.9 (8.2) 56.7 (8.2) 56.6 (8.2)

Gender (%, male) 46.3% 46.1% 46.2%

Body mass index, kg/m2 27.4 (4.7) 27.3 (4.8) 27.4 (4.8)

Systolic blood pressure, mm Hg 139.9 (19.7) 139.8 (19.7) 139.7 (19.4)

Diastolic blood pressure, mm Hg 81.9 (10.7) 81.9 (10.7) 81.8 (10.6)

Haemoglobin A1c, mmol/mol 36.1 (6.6) 36.3 (6.9) 36.2 (7.2)

High-density lipoprotein cholesterol, mmol/L 1.48 (0.39) 1.48 (0.39) 1.48 (0.39)

Low-density lipoprotein cholesterol, mmol/L 3.53 (0.86) 3.52 (0.86) 3.53 (0.86)

Triglycerides, mmol/L 1.68 (0.96) 1.67 (0.96) 1.68 (0.97)

Current smoker (%) 2971 (9.46%) 1030 (9.89%) 1067 (10.19%)

Number of diabetes (%) 1743 (5.55%) 603 (5.79%) 596 (5.69%)

Number of MACE in 5 years (%) 327 (1.04%) 119 (1.14%) 132 (1.26%)

SCORE (5 years) %; median (IQR) 0.590 (0.187–1.31) 0.57 (0.180–1.30) 0.57 (0.183–1.25)

SCORE (10 years) %; median (IQR) 1.62 (0.557–3.43) 1.57 (0.536–3.39) 1.65 (0.544–3.29)

SCORE 2 (10 years) %; median (IQR) 3.92 (2.21–6.03) 3.93 (2.22–6.19) 3.92 (2.23–6.07)

Pooled Cohort Equation (10 years) %; median (IQR) 3.56 (1.62–7.16) 3.56 (1.60–7.52) 3.59 (1.64–7.27)

Framingham Risk Score (10 years) %; median (IQR) 11.29 (6.43–18.36) 11.32 (6.42–19.05) 11.35 (6.50–18.81)

Values are presented as mean (SD) or median (IQR).
MACE, major adverse cardiovascular events; SCORE, Systematic COronary Risk Evaluation.
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figure 2. The code to implement the Cohort Equation, 
Framingham Risk Score, SCORE and SCORE 2 algorithm 
is available in online supplemental codes 1–4.

Definition of MACE
To define MACE outcome, we follow the instruction 
from McQueenie et al12 to extract 5-year incident MACE 
based on the definition of stroke and myocardial infarc-
tion hospitalisation event data. In brief, the International 
Classification of Diseases, 10th revision mortality codes: 
‘I00-I78’, ‘G45’, ‘G451-G454’, ‘G456’, ‘G458’, ‘G459’ and 
‘G460-G468’ are used to identify the MACE occurrence in 
the dataset within 5-year range. A summary of the charac-
teristics of patients in the dataset is shown in table 1.

Proposed MACE prediction models and comparisons to the six 
state-of-the-art algorithms
XMACE model
We propose ‘XMACE’ model which is a two-stage DL 
model that takes a retinal image as input and estimates 
CVD risk factors in the first stage and then predicts MACE 
outcome based on the estimated CVD risk factors in the 
second stage (figure 1A).

The first stage of the XMACE model is a multitask learning 
model equipped with an ImageNet pretrained ResNet13 as 
a backbone to estimate 10 CVD risk factors (age, gender, 
smoking habits, BMI, SBP, DBP, HbA1c, HDL cholesterol, 
LDL cholesterol and triglycerides) from a retinal fundus 
image. The retinal images are centre cropped, resized to 
480×480 resolution and then augmented with a series of 
random transformations. The ResNet backbone outputs 
a 512×1 vector, which is used as an intermediate layer that 
connects to 10 independent multilayer perceptron modules 
to estimate risk factors. This structure has advantage of 
reducing the risk of overfitting by an order of N, where N is 
the number of tasks.14 Given that the CVD risk factors are not 

strictly independent, they are correlated with each other in 
some degree. In this proposed model, a sophisticated inter-
mediate layer can capture such correlation from the multi-
task training and using it to improve the overall estimation 
performance.

The second stage of the XMACE model consists of two 
fully connected layers for binary 5-year MACE classifica-
tion based on estimated CVD risk factors from the first 
stage. To visualise the attention region in the image, we 
deployed a modified version of IGOS algorithm.15

Our model is trained with 4 Tesla V100 32G GPUs with 
a batch size of 256. The learning rate is set to 0.001 for the 
first 10 epochs, then reduced to 0.0001 for the additional 
50 epochs. The momentum is set to 0.9. The binary cross-
entropy (BCE) loss is used to evaluate the gender, smoke 
habits and MACE prediction. Mean squared error loss is 
applied to evaluate the rest of the CVD risk factors. Due 
to the heavy imbalance of our dataset, a weighting func-
tion is applied to the BCE losses. The training process 
is conducted in two steps. The multitask learning in the 
first stage was trained first, then we freeze its weight and 
continue to train the MACE classification model in the 
second stage.

XMACE+ model
We additionally built extended version of XMACE for 
comparison, namely ‘XMACE+’, to fully use information 
from both retinal and 10 actual CVD risk factors. XMACE+ 
uses a retinal image to estimate 10 risk factors in the first 
stage, which are then combined with actual CVD risk 
factors. We acquire the pretrained RestNet backbone and 
modify it to output 512×1 vector ‍Ve ‍. Similarly, the CVD 
risk factors from the UKBB dataset are input into a fully 
connected layer to create a 512×1 vector ‍Vg ‍. These two 
vectors ‍Ve ‍ and ‍Vg ‍ are concatenated to form a new 1024×1 

Figure 1  (A) Diagram of XMACE: two-stage MACE prediction network structure. (B) Diagram of XMACE+: MACE prediction 
network structure with both image and CVD risk factor as inputs. BMI, body mass index; CVD, cardiovascular disease; DBP, 
diastolic blood pressure; HbA1c, haemoglobin A1c, HDL, high-density lipoprotein; LDL, low-density lipoprotein; MACE, major 
adverse cardiovascular events; SBP, systolic blood pressure.
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vector ‍Vm‍ followed by a fully connected layer with 256 
neurons and a binary classification layer.

Patient and public involvement
This study was conducted under the UKBB project, 
with written informed consent obtained from all partic-
ipants. Patients were not involved in the development 
of the research question, the design of the study or the 
outcome measures. Consequently, the research was not 
directly informed by patients’ priorities, experience or 
preferences. The allocation of patient data into training, 
validation and testing sets was done randomly after 
data collection, without direct patient involvement. As 
the intervention did not impose any significant burden 
on patients, there was no assessment conducted by the 
patients themselves regarding the burden. The deidenti-
fied results of this study are publicly released, and there 
is no specific plan for direct dissemination to the study 
participants. Finally, since patients were not involved in 
the recruitment, conduct or advisement of this study, no 
patient advisers were acknowledged in the contributor-
ship statement or acknowledgments.

Comparison against six state-of-the-art Algorithms in MACE 
prediction
Our proposed models of XMACE and XMACE+ were 
compared with the six state-of-the-art algorithms, namely, 
SCORE, PCE,16 Framingham Risk Score, a logistic regres-
sion model, a neural network model and a retinal image-
based end-to-end DL model by Poplin et al.10 Detailed 
model descriptions are presented below. SCORE and 
the Framingham Risk Score are the two most widely used 
methods to conduct cardiovascular risk estimation, and 
we use them as a baseline. The logistic regression and 

neural network models are adopted in our comparison as 
they are two of the most widely used statistical methods. 
The retinal image-based end-to-end DL model was imple-
mented based on the structure proposed by Poplin et al.
1.	 SCORE: SCORE is a large-scale study that is based on 

12 European cohort studies with 250 000 patients and 
approximately 3 million person-years of observation. 
There are 7000 fatal CVD events observed in the data-
set. The SCORE conducts CVD risk assessment based 
on gender, age, LDL, HDL, triglycerides, SBP and 
smoking status. The model parameters for low-risk re-
gion are selected as the UKBB dataset is from the low-
risk region. Additionally, we also included the SCORE 
217 model in our comparison.

2.	 PCE: The PCE are used to estimate a person’s 10-year 
risk of developing atherosclerotic CVD. PCE conduct 
CVD risk assessment based on gender, age, LDL, HDL, 
SBP, diabetic status, race and smoking status. In our 
experiment, we set all race to Caucasian for UKBB 
dataset.

3.	 Framingham Risk Score: Framingham Risk Score ap-
plies Cox proportional hazards regression to evaluate 
the risk of developing a first CVD event in 8491 Fram-
ingham study participants who attended a routine ex-
amination between 30 and 74 years of age and were 
free of CVD. It incorporates age, total and HDL cho-
lesterol, SBP, treatment for hypertension, smoking and 
diabetes status as risk factors in the calculation. In our 
case, the UKBB dataset does not have information on 
treatment for hypertension, so all patients are assumed 
to be hypertension free.

4.	 Logistic regression: the standard logistic regression is 
applied in this work, where the input are 10 CVD risk 

Table 2  10 cardiovascular disease risk factors estimated from the retinal image

Risk factors Accuracy (%)

Age (years) ±1
19.8% (19.2%–20.3%)

±3
55.2% (54.5%–55.8%)

±5
78.3% (77.7%–78.8%)

SBP (mm Hg) ±5
24.7% (24.1%–25.3%)

±10
47.1% (46.4%–47.8%)

±15
65.3% (64.7%–66.0%)

DBP (mm Hg) ±3
25.8% (25.2%–26.4%)

±5
41.9% (41.2%–42.6%)

±10
72.2% (71.6%–72.8%)

LDL (mmol/L)
Triglycerides (mmol/L)

±1.0
75.8% (75.1%–76.3%)
81.6% (81.1%–82.1%)

±0.5
44.5% (43.8%–45.2%)
46.7% (46.0%–47.4%)

±0.3
27.4% (26.8%–28.0%)
28.2% (27.6%–28.9%)

HDL (mmol/L) ±0.1
21.8% (21.2%–22.4%)

±0.3
60.0% (59.4%–60.7%)

±0.5
84.7% (84.2%–85.1%)

BMI (kg/m2)
HbA1c (mmol/mol)

±5
78.3% (77.7%–78.8%)
77.4% (76.8%–78.0%)

±3
55.0% (54.3%–55.7%)
55.1% (54.4%–55.8%)

±1
19.9% (19.3%–20.4%)
20.7% (20.1%–21.2%)

Smoke 89.8% (89.4%–90.2%)

Gender 79.6% (79.0%–80.1%)

BMI, body mass index; DBP, diastolic blood pressure; HbA1c, haemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
SBP, systolic blood pressure.
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factors from the UKBB dataset and the output is the 
incident MACE binary label.

5.	 Neural networks: a neural network with two linear lay-
ers is implemented with 512 neurons in the hidden 
layer. It takes 10 CVD risk factors as input and gives a 
binary classification result of incident MACE.

6.	 Retinal image-based end-to-end DL model: Poplin et 
al suggested that the inception network can be used 
to estimate MACE. Following the information provid-
ed in Poplin’s work, we implemented a 27-layer incep-
tion network.18 The input resolution is 299×299 with 
a batch size of 256. The learning rate is set to 0.001 
for the first 10 epochs, then it is changed to 0.001 for 
the additional 50 epochs. The momentum is set to 0.9. 
The BCE loss is used for training, where a weighting 
function is applied to adjust the imbalance label distri-
bution in the dataset.

Statistical analysis for model evaluation
We conducted three statistical analysis to compare with 
the state-of-the-art algorithms. We conducted two sets of 
evaluations. The first evaluation focuses on measuring the 
accuracy of our XMACE model’s risk factor estimation. 
The second evaluation is the MACE prediction perfor-
mance comparisons between our models and the state-
of-the-art algorithms, where the area under the receiver 
operating characteristic curve (AUC) and its 95% CIs are 
calculated as performance metrics. The 95% CI is calcu-
lated based on 2000 bootstrap samples. We calculated 
Net Reclassification Index (NRI) and Integrate Discrimi-
nation Index (IDI) to evaluate the performance between 

risk prediction models.5 NRI evaluates the improvement 
in prediction performance gained by adding a marker to 
a set of baseline predictors. The pairwise value of positive 
or negative and total NRI shows relationships between 
different methods. IDI measures the change of the 
discrimination slope. It is basically the sum of integrated 
sensitivity and integrated specificity.

RESULTS
Evaluation of risk factor estimation in the first stage in the 
XMACE model
We followed an approach to Poplin et al10 in terms of 
error margin setting. The estimation performance is 
shown in table 2. In terms of age, it achieved 5 years of 
error margin of 78.3% accuracy; smoke habit and gender 
achieved 89.8% and 79.6% accuracy, respectively. The 
distribution of ground truth versus estimated values can 
be found in figure  1B, where the red diagonal line is 
drawn to indicate that a prediction and its ground-truth 
coincide. The red line goes through the area with the 
highest density, which indicates errors in our model are 
small. In the additional experiment using the blood vessel 
mask with red, green and blue (RGB) images to explore 
any potential gain with additional information, we found 
that attaching the blood vessel binary mask to the RGB 
image or replacing the blue channel did not improve the 
estimation. More visualisation of the model can be found 
in online supplemental figures 3 and 4.

Table 3  5-year MACE prediction model performance with or without blood test

Method Data used
Blood test 
required AUC (95% CI)

Proposed models with blood test

 � SCORE Age, gender, LDL cholesterol, HDL cholesterol, triglycerides, 
systolic blood pressure and smoking status

Y 0.682 (0.640 to 0.719)

 � SCORE 2 Age, gender, total and HDL cholesterol, systolic blood 
pressure, diabetes statues and smoking status

Y 0.714 (0.674 to 0.753)

 � PCE Age, gender, total and HDL cholesterol, systolic blood 
pressure, diabetes statues and smoking status

Y 0.695 (0.656 to 0.73)

 � Framingham Risk Score Age, total and HDL cholesterol, systolic blood pressure, 
treatment for hypertension, smoking and diabetes status

Y 0.689 (0.648 to 0.730)

 � Logistic regression 10 CVD risk factors* Y 0.758 (0.729 to 0.784)

 � Neural network Y 0.763 (0.734 to 0.790)

 � XMACE+ 10 CVD risk factors*+end-to-end retinal image DL model Y 0.769 (0.742 to 0.795)

Proposed models without blood test

 � Retinal image End-to-end retinal image DL model following Poplin et al10 N 0.662 (0.632 to 0.694)

 � XMACE Estimated 10 CVD risk factors* from the image N 0.738 (0.710 to 0.766)

*10 cardiovascular disease (CVD) risk factors: Age, gender, BMI, systolic and diastolic blood pressure, HbA1c, HDL cholesterol, LDL 
cholesterol, triglycerides and smoking habits. The logistic regression and neural network used the same data source.
AUC, area under the receiver operating characteristic curve; BMI, body mass index; DL, deep learning; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein; MACE, major adverse cardiovascular events; PCE, Pooled Cohort Equations; SCORE, Systematic COronary Risk 
Evaluation.
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Evaluation of XMACE prediction performance against the six 
state-of-the-art algorithms
We compared our algorithm with six state-of-the-art algo-
rithms described in the previous section. Among the 
models using 10 CVD risk factors based on blood test 
(table  3), the score-based algorithms, SCORE, SCORE 
2, PCE and Framingham Risk Score, achieved the AUCs 
of 0.682, 0.714, 0.695 and 0.689, respectively. We found 
that both logistic regression and neural network models 
obtained higher AUC of 0.758 and 0.763 than the score-
based methods. Among the models using predicted 10 
CVD risk factors, XMACE+, which additionally uses a 
retinal image in the second stage, performed the best 
with AUC of 0.769 (95% CI 0.742 to 0.795).

Our XMACE model (AUC 0.738, 95% CI 0.710 to 
0.766) outperformed the model proposed by Poplin et 
al.10 (AUC 0.662, 95% CI 0.632 to 0.694) by a margin of 
11.5% (95% CIs did not overlap). The NRI value shows 
that SCORE, Framingham Risk Score and Poplin et al 
model are overestimating 5-year MACE risk compared 
with XMACE. The logistic regression and neural network 
models’ total NRI and IDI values show higher similarity to 
our XMACE model (shown in table 4).

DISCUSSION
Overall, XMACE+, the model using a retinal image and 
measured 10 CVD risk factors, obtained the highest AUC 
among all, which indicates the maximum performance 
can be achieved when given both actual risk factor and 
retinal image to the DL model. At the same time, we 
found that XMACE, the mode using a retinal image as a 
sole input, performed the best within the models without 
using blood test results. Our results indicate the poten-
tial of using a DL model with retinal fundus images as 
a tool for rapid, non-invasive MACE risk analysis. Our 
XMACE model is purely based on retinal images; it first 
estimates CVD risk factors to predict MACE. Our model 
showed superior performance (0.738 AUC) over the 
traditional score-based methods2 3 17 (0.682, 0.714 and 
0.689 AUC, respectively) as well as the state-of-the-art DL 
model proposed by Poplin et al.10 (0.662 AUC). In terms 
of cardiovascular CVD risk factors estimation from retinal 
images, our model obtained 78.3% of age predictions fells 
into the 5 years error margin; smoke habit and gender 
prediction accuracy were 89.8% and 79.6%, respectively. 
This is also consistent with previous studies that suggest 
retinal imaging6 8 19–21 contains information about cardio-
vascular CVD risk factors and MACE.

Our experiments also showed XMACE+ performed the 
best; however, XMACE+ takes a retinal image and 10 
actual risk factors as input. Meanwhile, XMACE requires 
merely retinal imaging without any additional personal 
information and blood tests. We consider this can fit into 
a fast screening before doing blood tests. It has poten-
tial applications in senior homes, community centres and 
local pharmacies as a non-invasive quick health moni-
toring tool. Another advantage of XMACE is its excellent Ta
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interpretability. Our two-stage approach outputs CVD 
risk factors in the first stage, which increased the explain-
ability to allow researchers to have some level of confi-
dence in the second stage MACE prediction. Figure  2 
is an example of the retinal images and estimated CVD 
risk factors. Even though each subject has similar 5-year 
MACE risk, they have different risk profiles that require 
matched personalised intervention for preventing CVD. 
By explicitly estimating the interpretable CVD risk 
factors, XMACE has the potential to generate lifestyle 
recommendations to patients, which is shown in figure 3 
(more examples can be found from online supplemental 
figures 5–8). The classification of risk level is available in 
online supplemental table 1.

Despite the promising results, our study has several 
limitations. First, the UKBB dataset contains different 
levels of image qualities. Similar to Poplin et al, we 
deployed a simple algorithm to filter out low-quality 
images. The source of low-quality images may be from 
improper use of equipment or seniors with chronic 
conditions deteriorated their retinal images. Future work 

could be creating an algorithm that identifies such low-
quality images caused by chronic conditions. Additionally, 
tailoring an image enhancement algorithm for low-quality 
images could be an interesting direction. The second 
limitation is that some important CVD risk factors, such 
as HbA1c, BMI and triglycerides, are missing from many 
patients in the original UKBB dataset, which reduces the 
number of available training data (out of 502k patients 
in the UKBB dataset, only 52.3k patients satisfy the crite-
rial in this study). A semisupervised learning algorithm 
can be applied in this situation that conducts training on 
both labelled and unlabelled data. Using both labelled 
and unlabelled, data will largely increase the pool of data 
available for training, which potentially increases training 
quality. There have been studies22 demonstrating poten-
tial newer risk factors other than the traditional CVD risk 
factors we used in this study. However, there has been no 
consensus if they are good enough to improve the perfor-
mance in the clinical setting. Our experiments also found 
lipids estimate accuracy is worse than age and blood 
pressure which implies the lipids has higher volatility on 

Figure 2  Ground truth versus estimation on 10 risk factors; the colour indicates the density of samples. BMI, body mass 
index; DBP, diastolic blood pressure; HbA1c, haemoglobin A1c, HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
SBP, systolic blood pressure.
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person’s health conditions which is has less direct effect 
on the retinal.

In summary, we have provided evidence that a DL 
model with retinal image input may reveal hidden infor-
mation in the image that allows better MACE prediction 
than traditional risk models while securing explainability 
by providing estimated CVD risk profile. Our proposed 
model coupled with a mobile retinal imaging device has 
the potential to realise fast and simple CVD screening 
that does not require blood test facilities. Further clinical 
validation with a prospective cohort will secure our find-
ings in this context.
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