

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Longitudinal trajectories of sedation level and clinical outcomes in mechanically ventilated patients: a prospective, multicenter, longitudinal, observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072628
Article Type:	Original research
Date Submitted by the Author:	10-Feb-2023
Complete List of Authors:	Hyun, Dong-gon; Asan Medical Center, Ahn, Jee Hwan; University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine Gil, Ha-Yeong; pzfier Nam, Chung Mo; Yonsei University College of Medicine, Preventive Medicine Yun, Choa; Department of Biostatistics & Computing, College of Medicine, Yonsei University Lim, Chae-Man; University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine
Keywords:	Adult anaesthesia < ANAESTHETICS, EPIDEMIOLOGY, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Thoracic medicine < INTERNAL MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Longitudinal trajectories of sedation level and clinical outcomes in mechanically ventilated patients: a prospective, multicenter, longitudinal, observational study

Dong-gon Hyun¹, Jee Hwan Ahn¹, Ha-Yeong Gil², Chung Mo Nam³, Choa Yun⁴, Chae-Man Lim¹*

¹Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

²Medical Research Project Team, IM Medical, Pfizer Korea Pharmaceuticals Ltd., Seoul, Republic of Korea

³Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

⁴Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea

*Corresponding author: Chae-Man Lim, M.D., Ph.D., FCCM

E-mail: cmlim@amc.seoul.kr

Word Count: 2743

ABSTRACT

Objectives: Although low sedation depth level is recommended for intensive care unit (ICU) patients, actual sedation often deviates from this recommendation due to prolonged ICU stay. Therefore, we investigated changes in sedation levels over time and their association with clinical outcomes in a national cohort of mechanically ventilated patients.

Design: This was a multicenter, prospective, longitudinal, observational study.

Setting: Twenty ICUs spanning several medical institutions in Korea.

Participants: Patients who received mechanical ventilation and sedatives in the ICU within 48 h of admission between April 2020 and July 2021.

Primary and secondary outcome measures: The primary objective of this study was to identify the pattern of sedation practice. Also, we analyzed associations of trajectory groups with clinical outcomes as the secondary outcome.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Results: Sedation depth was monitored using the Richmond agitation-sedation scale. A groupbased trajectory model was used to classify 631 patients into four trajectories based on sedation depth: persistent suboptimal (13.2%), delayed lightening (13.9%), early lightening (38.4%), and persistent optimal (34.6%). The "persistent suboptimal" trajectory was associated with delayed extubation (hazard ratio [HR] 0.23, 95% confidence interval [CI] 0.16–0.32, p < 0.001), longer ICU stay (HR 0.36, 95% CI 0.26–0.51, p < 0.001), and hospital mortality (HR 13.62, 95% CI 5.99–30.95, p < 0.001) compared with the "persistent optimal". The "delayed lightening" and "early lightening" trajectories showed lower extubation probability (HR 0.30, 95% CI 0.23–0.41, p < 0.001; HR 0.72, 95% CI 0.59–0.87, p < 0.001, respectively) and ICU discharge (HR 0.44, 95% CI 0.33–0.59; p < 0.001 and HR 0.80, 95%CI 0.65–0.97; p = 0.024) compated to "persistently optimal".

Conclusions: Among the four trajectories describing longitudinal sedation depth, "persistent suboptimal" trajectory was associated with higher mortality.

Keywords: deep sedation; intensive care units; mortality; critical care; mechanical ventilators

STRENGTHS AND LIMITATIONS OF THIS STUDY

 \Rightarrow Large national data from 20 ICUs in Korea representing real-world practice.

 \Rightarrow A Unique investigation into the level of long-term sedation in mechanically ventilated

patients.

 \Rightarrow A group-based trajectory model identifying patterns of sedation over time.

 \Rightarrow Misclassification of nondifferential group as inherent restriction of group-based trajectory

models with limited generalizability.

 \Rightarrow Unclear causal relationship between trajectory and outcome.

INTRODUCTION

Sedation is cruical to promote tolerance in patients during mechanical ventilation in the intensive care unit (ICU).¹ Previously, ICU patients were considered unnecessarily oversedated, and the tools to assess the depth of sedation varied widely.² Inappropriate sedation was associated with adverse outcomes, such as prolonged ventilation, longer ICU stay, and higher post-ICU psychological concerns.³⁻⁶ Over-sedation also predicted long-term mortality in critically ill patients.⁷ Considering its essential role in the care of mechanically ventilated patients, international guidelines guide to improve sedation practice for favorable outcomes in ICU patients.⁸⁻¹⁰

Currently, sedation monitoring in the ICU is clinically recommended to achieve low levels of sedation,¹¹ though real-world implementation is debated.¹² Longitudinal studies on the level of sedation over long time are limited. Previous national surveys mainly focused on the type of sedatives and assessment tools.¹³⁻¹⁶ Moreover, most studies are cross-sectional, evaluating the association between the sedation level for the first 2–3 days and clinical outcomes.^{17 18} Therefore, we aimed to investigate long-term sedation levels in a national cohort of mechanically ventilated patients by classifying them into different longitudinal patterns. We further assessed the association between these patterns and clinical outcomes.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

METHODS

Study design

We conducted a multicenter, prospective, longitudinal, and observational, cohort study in 20 ICUs in Korea between April 2020 and July 2021, which was sponsored by Pfizer Korea Pharmaceuticals Ltd. and involved 30 investigators (table S1). We designed a harmonized electric case report form that was centrally managed and combined into one database for data entry, day queries, and analysis. During the study period, patients were recruited according to

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

the number of available patients at each ICU. Principal investigators, research staff, and nurses at each participating center were trained in the study procedures. The decisions regarding a patient's care were at the discretion of the attending medical staff. Our inclusion criteria were as follows: patients aged >19 years, who had undergone mechanical ventilation and sedation in the ICU within 48 h, and were expected to remain sedated and on mechanical ventilation for >48 h. We excluded patients with a disease that was likely to cause death within 90 days, those whose treatment had been discontinued due to imminent death or non-effective therapy, and who needed non-selective deep sedation due to medical conditions, including brain damage and hemorrhage, spinal cord injury, drug overdose, burns, and nerve root block.

Monitoring of sedation and measurement of outcome

We monitored sedation depth using the Richmond agitation-sedation scale (RASS), ranging from -5 to +4 every 8 h until ICU discharge or day 30.¹⁹ The daily depth of sedation was calculated as the median RASS value for 1 day. The primary objective of this study was to identify the pattern of sedation practice. Group-based trajectory models have been widely employed for analyzing developmental trajectories.²⁰ They can address the dynamic profile of sedation by classifying patients into different trajectories of sedation level over time. We used a group-based trajectory model analyzing a scale form of RASS over the first 30 days after enrollment. To characterize each trajectory group, an analysis between the trajectory groups and the patients' characteristics was also performed. The secondary objective included associations of trajectory groups with clinical outcomes by adjusting for covariates.

Covariates

Demographic, clinical, and laboratory data, including age, gender, reason for ICU admission, type of ICU admission, comorbidities, and illness severity (acute physiology and

BMJ Open

chronic health evaluation [APACHE] I score), were collected. Severe to moderate liver disease was defined as cirrhosis and portal hypertension with or without variceal bleeding history. Severe to moderate chronic kidney disease was defined as serum creatinine >3 mg/dL or on dialysis or post-kidney transplant status or uremia status. The need for vasopressors, renal replacement therapy, and neuromuscular blockade was also recorded. We collected and calculated the daily cumulative dose and the number of days prescribed for the sedatives and analgesics administered to patients during their ICU stay. Patients were followed up until hospital discharge, death, or day 30 in the ICU. Clinical outcomes, including ICU discharge, ventilator days, and survival status, were recorded.

Patient and public involvement

Patient and the public were not involved in the design, conduct, reporting or NIC dissemination plans of this research.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Statistical analysis

The pattern of sedation over time was described using a group-based trajectory model, which identified differential patterns of individual change in the populations. The final model was selected based on a combination of the Bayesian information criterion and the estimated trajectory group proportions that were sufficiently large. In this study, four-group solutions that best characterized the cohort were identified.

Data are presented as numbers and proportions for categorical variables and as means \pm standard deviations or medians (interquartile range) for continuous variables. Differences between groups were analyzed using the χ^2 test or Fisher's exact test and the independent twosample t-test or Mann–Whitney U test with a normal or non-normal distribution, as appropriate. The normality of the data was assessed by inspecting histograms. For time-to-event analysis,

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

the Kaplan–Meier method was used to estimate survival curves, whereas a log-rank test was used to test the significance of the differences. Univariable and multivariable Cox proportional hazards regression models were used to identify associations with clinical outcomes by adjusting known prognostic covariates, including age, gender, type of admission, type of ICU, vasopressor, and neuromuscular blockade. The results are presented as hazard ratios (HR) with 95% confidence interval (CI). Two-sided *p*-values <0.05 indicated significance. All analyses were performed using SAS (Statistical Analysis System) software version 9.4 (SAS Institute, Cary, NC).

RESULTS

In 20 participating centers, 676 patients were recruited from April 2020 to July 2021 (figure S1). Of them, 45 were excluded because of missing data, an RASS date before mechanical ventilation, or were enrolled \geq 48 h after mechanical ventilation. The final cohort included 631 patients. The profile of sedatives and analgesics administered within the first 48 h was summarized in Table S2. Dexmedetomidine was the most frequently used sedative (38.2%), followed by propofol (26.1%) and midazolam (19.2%). The most commonly used analgesic was remifentanil (73.5%).

A four-group model was chosen for the cohort based on specified selection criteria: trajectory 1 (persistent suboptimal; 13.2% of patients, RASS level ≤ -3 throughout the 30 days), trajectory 2 (delayed lightening; 13.9% of patients, RASS level ≥ -2 after the first 15 days), trajectory 3 (early lightening; 38.4% of patients, RASS level ≥ -2 after the first 7 days), trajectory 4 (persistent optimal: 34.6%, RASS level ≥ -2 during the first 30 days) (figure 1).

A large number of patients in the "persistent suboptimal" group were older, with 35.82% in the >80 age group (*p*-value = 0.002) (table 1). Conversely, 39.24% and 40.46% of patients in the "early lightening" and "persistent optimal" groups, respectively, were aged between 50–

Page 9 of 30

BMJ Open

69 years. Gender and body weight did not significantly differ between the trajectories. Considering the comorbidities, there was a significant difference in dementia between patients of different trajectories (p-value = 0.010). Although no significant difference was found, the "persistent suboptimal" group had the highest percentage of solid tumor and cerebrovascular disease (38.00%, p-value = 0.278; 28.00%, p-value = 0.101, respectively), whereas the "delayed lightening" group had the lowest percentage of moderate to severe chronic kidney disease (4.61%, p-value = 0.375). The "persistent suboptimal" and "delayed lightening" groups were more likely to be admitted to a medical ICU (52.24% and 48.81% versus 34.72% and 31.63%, respectively) with a medical illness (61.19% and 58.33% versus 46.79% and 43.26%, respectively) and less likely to be admitted to a surgical ICU (44.78% and 50.00% versus 59.25% and 66.05%, respectively; p-value = 0.023) for scheduled surgery (10.45% and 11.90% versus 23.77% and 23.72%, respectively; p-value = 0.001). The most common cause for ICU admission was respiratory (56.8%) in all the groups, and the "delayed lightening" group had the highest proportion for respiratory-related admissions (67.86%), whereas the "early lightening" group had the lowest (51.32%, p-value = 0.030). Cardiovascular-related ICU admissions were most common in the "early lightening" group (25.66%, p-value = 0.610), although there was no statistical significance. The APACHE I score was significantly different among the four trajectories (27.82, 25.28, 21.39, and 24.07 for "persistent suboptimal," "delayed lightening," "early lightening," and "persistent optimal" groups, respectively; p-value <0.001). As a part of ICU support within the first 48 h, the "delayed lightening" group received the largest number of vasopressor infusions (91.67%, p-value < 0.001), renal replacement therapy (26.19%, p-value = 0.078), and neuromuscular blockade use (46.43%, p-value < 0.001). In-hospital death occurred in 12.2% patients in the entire cohort. By trajectory, in-hospital mortality was 49.52% in the "persistent suboptimal" group, 21.43% in the "delayed lightening" group, 6.79% in the "early lightening" group, and 3.72% in the

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

"persistent optimal" group (*p*-value < 0.001). Similarly, differences according to the trajectories were observed for ICU discharge and extubation. The proportion of ICU discharge was 67.16%, 79.76%, 92.45%, and 92.09%, respectively (*p*-value < 0.001); rate of extubation was 68.16%, 78.57%, 95.47%, and 95.81%, respectively (*p*-value < 0.001). Moreover, differences in time to extubation (*p*-value < 0.001), ICU discharge (*p*-value < 0.001), and inhospital mortality (*p*-value < 0.001) were observed among the four trajectories (figure 2). Table 2 summarizes the representative phenotypes of each trajectory.

In adjusted Cox proportional hazard analyses, the "persistent suboptimal" (HR 13.62, 95% CI 5.99–30.95, *p*-value < 0.001) and "delayed lightening" groups (HR 5.62, 95% CI 2.36–13.38, *p*-value < 0.001) had a significantly higher risk of death than the "persistent optimal" group (table 3). The "persistent suboptimal" (HR 0.23, 95% CI 0.16–0.32, *p*-value < 0.001), "delayed lightening" (HR 0.30, 95% CI 0.23–0.41, *p*-value < 0.001), and "early lightening" groups (HR 0.72, 95% CI 0.59–0.87, *p*-value < 0.001) showed a reduced probability of extubation and were less likely to discharge from the ICU (HR 0.36, 95% CI 0.26–0.51, *p*-value < 0.001; HR 0.44, 95% CI 0.33–0.59, *p*-value < 0.001; HR 0.80, 95% CI 0.65–0.97, *p*-value = 0.024, respectively) than the "persistent optimal" group. Patients undergoing scheduled surgery showed a higher probability of extubation (HR 2.13, 95% CI 1.64–2.78, *p*-value < 0.001) and ICU discharge (HR 2.10, 95% CI 1.59–2.78, *p*-value < 0.001) than outpatient admissions. Patients in the surgical ICU had a lower risk of death (HR 0.45, 95% CI 0.23–0.89, *p*-value = 0.021) than medical ICU patients. No additional significant differences were found with respect to age, gender, vasopressor infusions, or neuromuscular blockade.

DISCUSSION

To the best of our knowledge, this is the first study to characterize the longitudinal pattern of sedation level over time in mechanically ventilated patients. We identified four

distinct trajectories of sedation depth over the first 30 days after mechanical ventilation in our subjects. Only 34.6% patients were in an optimal depth of sedation during this period, whereas 13.2% were in the suboptimal range of RASS for most of this time, and the remaining patients achieved adequate depth of sedation 7 (early lightening: 38.4%) or 15 (delayed lightening: 13.9%) days after initiation. Patients who were at suboptimal levels of sedation throughout this period had a higher risk of mortality and lower probabilities of extubation and ICU discharge than those who were in consistently optimal level of sedation.

Group-based trajectory modeling is useful for characterizing longitudinal courses over time to identify distinct subgroups.^{21 22} This trajectory model is used in different domains of clinical research, such as nonadherence spectrum in newly-diagnosed juvenile epilepsy, health status in outpatients with heart failure, neurologic postinjury recovery, and symptom burden nuances of patients with metastatic cancer.²⁰ Therefore, group-based trajectory modeling is a specialized method for sorting individuals into meaningful subgroups that show statistically similar trajectories. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

There were several significant differences in characteristics between the four trajectory groups. Patients in trajectory 1 (persistent suboptimal) experienced deep sedation throughout the study period, with RASS ranging from -3 to -5. This group was mainly characterized by elderly patients with cognitive impairment, admitted to a medical ICU for treating illnesses, such as respiratory problems, with the worst condition at admission. Conversely, patients in trajectory 2 (delayed lightening) experienced initial deep sedation, which improved to a light depth of RASS -2 after 15 days. This group was characterized by elderly patients with dementia with respiratory failure, receiving vasopressors, neuromuscular blockade, and renal replacement therapy. Interestingly, although the two trajectories had relatively similar characteristics and the "delayed lightening" group even required more ICU support within the first 48 h, the "persistent suboptimal" group had worse time to extubation, ICU discharge, and

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

hospital mortality. These findings suggest that the longitudinal course of sedation depth in our subjects was not associated with the severity of illness; the difference in sedation practice between the two trajectories might have resulted into different outcomes.

A prospective multicenter study, conducted across 42 international ICUs, demonstrated that the time to extubation and mortality increased with the sedation intensity.¹⁸ In observational, matched-pair analyses based on the APACHE II score and the type of admission, early deep sedation during the first 48 h of ICU stay was associated with worse outcomes, including long-term mortality.⁷ We report similar findings in our study upon comparing trajectories 3 and 4 with the earlier trajectories. Patients in trajectory 3 (early lightening) experienced early deep sedation, which became lighter after 7 days, whereas those in trajectory 4 (persistent optimal) experienced light sedation throughout. Patients in these groups were younger, had fewer medical conditions, and were mostly admitted to surgical ICUs than those in the other two groups. They also had lower APACHE I scores and needed lesser ICU support within the first 48 h. Patients in the "early lightening" group, especially, had the lowest APACHE score, the lowest proportion of renal replacement therapy, and the fewest respiratory problems. Nevertheless, multivariable Cox proportional hazard analysis showed that patients in this group had a lower probability of extubation and ICU discharge than those in the "persistent optimal" group. The early practice of inadequate sedation in the "early lightening" group might have induced this relatively worse prognosis in these patients. A recent meta-analysis assessing the literature on early sedation suggested that interventions targeting the depth of early sedation, starting with ICU admission, could improve patient outcomes.²³ Appropriate sedation is a critical aspect in the management of mechanically ventilated patients.

We observed that 65.9% patients in our study were deeply sedated for at least the first week after mechanical ventilation, whereas only 34.07% patients received consistent light sedation throughout the sedation period. This finding is consistent with previous data

Page 13 of 30

BMJ Open

describing the sedation depth. A multinational survey among intensivists reported that 74% patients monitored using a validated sedation tool were deeply sedated.²⁴ A survey in Germany found that the actual depth of sedation was significantly deeper (39.5%–62.4%) than the desired depth in all categories of sedation.²⁵ A Swedish study investigating the relationship between memory and sedation showed that only 39% of ventilated patients achieved their target sedation goal.²⁶ A previous systematic review estimated the incidence of over-sedation in ICUs at 40%–60%, despite the poor quality of epidemiologic data.² In a recent study conducted in the emergency department, the incidence of deep sedation was 52.8%.²⁷ These data suggest that deep sedation remains a common real-world ICU practice. To improve the quality of patient care, further research is warranted focusing on the longitudinal profile in addition to the binary concept of sedation, light versus deep.

Our study has a few limitations. First, information bias may exist because only patients visiting tertiary or university-affiliated hospitals were included in our study. Second, unmeasured confounders could have affected the trajectories, despite many relevant variables in our study. Moreover, nondifferential group of patients may have been misclassified. This restriction is inherent to group-based trajectory models with limited generalizability. Third, the causal relationship between trajectory and outcome could not be established in this study. For example, it is unclear whether a prolonged duration of extubation reflected the effects of sedative overdose, or whether more sedation was needed because of longer mechanical ventilation. Thus, prospective and randomized controlled studies are required to investigate the interaction of two parameters (depth and duration) of sedation to better define the optimal practice. Finally, we were unable to examine the long-term complications in the trajectory groups. Further nationwide studies should evaluate long-term complications after sedation to comprehensively understand its socioeconomic and clinical burden.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

In conclusion, this study captured the four trajectories of sedation level over time in

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

> mechanically ventilated patients. The patterns were significantly associated with time to extubation, ICU discharge, and hospital mortality. Our findings suggest sedation strategy in ICU patient needs to incorporate a longitudinal pattern of sedation level.

Acknowledgements

None

Contributors

CML, HYG, JHA have contributed to the study conception and design. Material preparation was performed by HYG. Data collection was performed DH, JHA, CML. Statistical analysis were performed by CMN and CY. The first draft of the manuscript was written by DH and JHA, and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript. erie

Funding

This study was sponsored by Pfizer Korea Pharmaceuticals Ltd (Grant Number: N/A). The funding does not interfere with the analysis and interpretation of the data.

Competing Interests

Ha-Yeong Gil is an employee of Pfizer Korea. The other authors declare that they have no competing interests.

Patient consent for publication

Not applicable.

Ethic approval

The study protocol was approved by the Institutional Review Boards of all participating medical centers (B-1911/577-405, AJIRB-MED-OBS-19-372, AJIRB-MED-OBS-19-373, 1908-156-1058, 1908-157-1058, 1910-003-083, 2019-1624, 2019-1039, 2019-10-0321, 2019-09-040, 2019-10-162, GCIRB2019-366, DSMC 2019-08-018, HALLYM 2019-08-021, HALLYM 2019-08-022, 2019-09-010, 2019-08-082, DAUHIRB-19-166, 4-2019-0821, 4-2019-0820, 2019-09-011-002, 2019-07-038-002, CR-19-117-L, 2019AN0376, 2019AN0478, 20-2019-92, 20-2019-91, 2019GR0461, 2020GR0103, 2020AS0054). All patients (or patient representatives) provided their written informed consent. Some participating centers' local review boards waived the need for informed consent considering the observational nature of the study. This study was conducted per the amended Declaration of Helsinki. reliev

Data Availability statement

Data are available on request

References

Richards-Belle A, Canter RR, Power GS, et al. National survey and point prevalence 1. study of sedation practice in UK critical care. Crit Care 2016;20:355.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

- 2. Jackson DL, Proudfoot CW, Cann KF, et al. The incidence of sub-optimal sedation in the ICU: a systematic review. Crit Care 2009;13:R204.
- 3. Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts longterm mortality in ventilated critically ill patients. Am J Respir Crit Care Med 2012;186:724-31.

 Shehabi Y, Chan L, Kadiman S, et al. Sedation depth and long-term mortality in mechanically ventilated critically ill adults: a prospective longitudinal multicentre cohort study. *Intensive Care Med* 2013;39:910-8.

- Desai SV, Law TJ, Needham DM. Long-term complications of critical care. *Crit Care Med* 2011;39:371-9.
- 6. Burry L, Rose L, McCullagh IJ, et al. Daily sedation interruption versus no daily sedation interruption for critically ill adult patients requiring invasive mechanical ventilation. *Cochrane Database Syst Rev* 2014;2014:Cd009176.
- Balzer F, Weiß B, Kumpf O, et al. Early deep sedation is associated with decreased inhospital and two-year follow-up survival. *Crit Care* 2015;19:197.
- Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. *Crit Care Med* 2013;41:263-306.
- Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. *Crit Care Med* 2018;46:e825-e73.
- Pearson SD, Patel BK. Evolving targets for sedation during mechanical ventilation.
 Curr Opin Crit Care 2020;26:47-52.
- Guérin C. Calming Down about Sedation in Critically Ill Patients. N Engl J Med 2020;382:1162-4.
- Owen GD, Stollings JL, Rakhit S, et al. International Analgesia, Sedation, and Delirium Practices: a prospective cohort study. *J Intensive Care* 2019;7:25.
- 13. Yassin SM, Terblanche M, Yassin J, et al. A web-based survey of United Kingdom sedation practice in the intensive care unit. *J Crit Care* 2015;30:436.e1-6.

BMJ Open

npairing	
ntensive	-
entilated	-
56:23-9.	
ement of	Protec
two-part	ted by
	Enseignement Superieur (A Protected by copyright, including for uses related to text and data
omes of	ght, in
rit Care	cluding
	for us
Hours of	nseigr es rela
spective	ited to
·	Superi text an
in ICU	ieur (A d data
(RASS).	Ξœ
	g, Al tra
• Metab	aining,
nnu Rev	and sir
	nilar te
ion, and	E\$) . ining, Al training, and similar technologies.
nquency.	gies.
-	C

14.	Sneyers B, Laterre PF, Perreault MM, et al. Current practices and barriers imp
	physicians' and nurses' adherence to analgo-sedation recommendations in the inte
	care unita national survey. Crit Care 2014;18:655.
15.	Wøien H, Stubhaug A, Bjørk IT. Analgesia and sedation of mechanically vent
	patients - a national survey of clinical practice. Acta Anaesthesiol Scand 2012;56
16.	García-Sánchez M, Caballero-López J, Ceniceros-Rozalén I, et al. Manageme
	analgesia, sedation and delirium in Spanish Intensive Care Units: A national two
	survey. Med Intensiva (Engl Ed) 2019;43:225-33.
17.	Tanaka LM, Azevedo LC, Park M, et al. Early sedation and clinical outcom
	mechanically ventilated patients: a prospective multicenter cohort study. Crit
	2014;18:R156.
18.	Shehabi Y, Bellomo R, Kadiman S, et al. Sedation Intensity in the First 48 Hor
	Mechanical Ventilation and 180-Day Mortality: A Multinational Prospe
	Longitudinal Cohort Study. Crit Care Med 2018;46:850-9.
19.	Ely EW, Truman B, Shintani A, et al. Monitoring sedation status over time ir
	patients: reliability and validity of the Richmond Agitation-Sedation Scale (R.
	Jama 2003;289:2983-91.
20.	Nagin DS. Group-based trajectory modeling: an overview. Ann Nutr N
	2014;65:205-10.
21.	Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Ann
	<i>Clin Psychol</i> 2010;6:109-38.
22.	Nagin D, Tremblay RE. Trajectories of boys' physical aggression, opposition

nn ion hyperactivity on the path to physically violent and nonviolent juvenile delinqu Child Dev 1999;70:1181-96.

 Stephens RJ, Dettmer MR, Roberts BW, et al. Practice Patterns and Outcomes Associated With Early Sedation Depth in Mechanically Ventilated Patients: A Systematic Review and Meta-Analysis. *Crit Care Med* 2018;46:471-9.

- Luetz A, Balzer F, Radtke FM, et al. Delirium, sedation and analgesia in the intensive care unit: a multinational, two-part survey among intensivists. *PLoS One* 2014;9:e110935.
- 25. Martin J, Franck M, Fischer M, et al. Sedation and analgesia in German intensive care units: how is it done in reality? Results of a patient-based survey of analgesia and sedation. *Intensive Care Med* 2006;32:1137-42.
- 26. Samuelson K, Lundberg D, Fridlund B. Memory in relation to depth of sedation in adult mechanically ventilated intensive care patients. *Intensive Care Med* 2006;32:660-7.
- 27. Fuller BM, Roberts BW, Mohr NM, et al. The ED-SED Study: A Multicenter, Prospective Cohort Study of Practice Patterns and Clinical Outcomes Associated With Emergency Department SEDation for Mechanically Ventilated Patients. *Crit Care Med* 2019;47:1539-48.

Figure Legends

Figure 1 Trajectories of longitudinal Richmond Agitation Sedation Scale in the first 30 days of sedation for mechanical ventilation. The percentage of patients included in each trajectory were presented in central illustration. Outcome of y-axis indicates the score of richmond agitation sedation scale and T of x-axis represents day after the initiation of sedation.

Figure 2 Kaplan-Meier of clinical outcomes from admission according to the trajectory groups. (a) time to extubation in the intensive care unit, (b) length of stay in the intensive care unit, (c) in-hospital mortality.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

3 4

N = 631) $1.74%)$ $5.39%)$ $5.97%)$ $14.58%)$ $(22.19%)$ $(28.05%)$ $(21.08%)$ (64.0) $(53.0-71.0)$ (71.00) $4.31)$	Total Cohort and for 1 (N = 67) 0 (0.00%) 0 (0.00%) 3 (4.48%) 6 (8.96%) 12 (17.91%) 22 (32.84%) 24 (35.82%) 44 (65.67) 62.25 \pm 10.69 50 (74.62) 2 (4.00)		$\begin{array}{c} \text{ory group} \\ \hline 3 \ (\text{N} = 265) \\ \hline \\ 6 \ (2.26\%) \\ \hline \\ 12 \ (4.53\%) \\ \hline \\ 13 \ (4.91\%) \\ \hline \\ 44 \ (16.60\%) \\ \hline \\ 60 \ (22.64\%) \\ \hline \\ 80 \ (30.19\%) \\ \hline \\ 80 \ (30.19\%) \\ \hline \\ 165 \ (62.26) \\ \hline \\ 62.51 \pm 13.01 \\ \hline \\ 183 \ (69.05) \\ \hline \\ \end{array}$	28 on $4 (N = 3 (1.4)$ 20 of 27 June 20 (9.3) 17 (7.5) 20 (9.3) 17 (7.5) 36 (16) 51 (23) 52 (24) 36 (16) 138 (6) 138 (6) 138 (6) 150 (6) 150 (6) 150 (6)	= 215) 0%) 30%) 91%) 5.74%) 5.72%) 4.19%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.74%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.74%] 5.72%] 5.72%] 5.72%] 5.74%] 5.72%	<i>p</i> -value 0.002 0.807 0.785 0.434
N = 631) $1.74%)$ $5.39%)$ $5.97%)$ $14.58%)$ $(22.19%)$ $(28.05%)$ $(21.08%)$ (64.0) $(53.0-71.0)$ (71.00) $4.31)$	$1 (N = 67)$ $0 (0.00\%)$ $0 (0.00\%)$ $3 (4.48\%)$ $6 (8.96\%)$ $12 (17.91\%)$ $22 (32.84\%)$ $24 (35.82\%)$ $44 (65.67)$ 62.25 ± 10.69 $50 (74.62)$ $2 (4.00)$	Trajector2 (N = 84) 2 (2.38%) 2 (2.38%) 11 (13.10%) 6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 \pm 13.31 65 (77.38)	$\begin{array}{c} \text{ory group} \\ \hline 3 \ (\text{N} = 265) \\ \hline \\ 6 \ (2.26\%) \\ \hline \\ 12 \ (4.53\%) \\ \hline \\ 13 \ (4.91\%) \\ \hline \\ 44 \ (16.60\%) \\ \hline \\ 60 \ (22.64\%) \\ \hline \\ 80 \ (30.19\%) \\ \hline \\ 80 \ (30.19\%) \\ \hline \\ 165 \ (62.26) \\ \hline \\ 62.51 \pm 13.01 \\ \hline \\ 183 \ (69.05) \\ \hline \\ \end{array}$	28 on $4 (N = 3 (1.4)$ 20 of 27 June 20 (9.3) 17 (7.5) 20 (9.3) 17 (7.5) 36 (16) 51 (23) 52 (24) 36 (16) 138 (6) 138 (6) 138 (6) 150 (6) 150 (6) 150 (6)	= 215) 0%) 30%) 91%) 5.74%) 5.72%) 4.19%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.74%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.72%] 5.74%] 5.72%] 5.72%] 5.72%] 5.74%] 5.72%	0.002
1.74%) 5.39%) 6.97%) 14.58%) (22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) 4.31)	$\begin{array}{c} 0 \ (0.00\%) \\ \hline 0 \ (0.00\%) \\ \hline 3 \ (4.48\%) \\ \hline 6 \ (8.96\%) \\ \hline 12 \ (17.91\%) \\ \hline 22 \ (32.84\%) \\ \hline 24 \ (35.82\%) \\ \hline 44 \ (65.67) \\ \hline 62.25 \pm 10.69 \\ \hline 50 \ (74.62) \\ \hline 2 \ (4.00) \\ \hline \end{array}$	2 (N = 84) 2 (2.38%) 2 (2.38%) 11 (13.10%) 6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	$\begin{array}{c} 3 \ (N=265) \\ \hline \\ 6 \ (2.26\%) \\ \hline \\ 12 \ (4.53\%) \\ \hline \\ 13 \ (4.91\%) \\ \hline \\ 44 \ (16.60\%) \\ \hline \\ 60 \ (22.64\%) \\ \hline \\ 80 \ (30.19\%) \\ \hline \\ 80 \ (30.19\%) \\ \hline \\ 165 \ (62.26) \\ \hline \\ 165 \ (62.26) \\ \hline \\ 183 \ (69.05) \\ \hline \\ \end{array}$	June 3 (1.4) 20 (9.3) 17 (7.9) 36 (16) 36 (16) 52 (24) 36 (16) 36 (16) 138 (6) 63.79 150 (6)	0%) 30%) 91%) 5.74%) 5.72%) 4.19%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.72%	0.002
1.74%) 5.39%) 6.97%) 14.58%) (22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) 4.31)	$\begin{array}{c} 0 \ (0.00\%) \\ \hline 0 \ (0.00\%) \\ \hline 3 \ (4.48\%) \\ \hline 6 \ (8.96\%) \\ \hline 12 \ (17.91\%) \\ \hline 22 \ (32.84\%) \\ \hline 24 \ (35.82\%) \\ \hline 44 \ (65.67) \\ \hline 62.25 \pm 10.69 \\ \hline 50 \ (74.62) \\ \hline 2 \ (4.00) \\ \hline \end{array}$	2 (2.38%) 2 (2.38%) 11 (13.10%) 6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	6 (2.26%) 12 (4.53%) 13 (4.91%) 44 (16.60%) 60 (22.64%) 80 (30.19%) 165 (62.26) 165 (62.26) 183 (69.05)	June 3 (1.4) 20 (9.3) 17 (7.9) 36 (16) 36 (16) 52 (24) 36 (16) 36 (16) 138 (6) 63.79 150 (6)	0%) 30%) 91%) 5.74%) 5.72%) 4.19%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.72%	0.002
5.39%) 6.97%) 14.58%) (22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) 4.31)	$\begin{array}{c} 0 \ (0.00\%) \\ \hline 3 \ (4.48\%) \\ \hline 6 \ (8.96\%) \\ \hline 12 \ (17.91\%) \\ \hline 22 \ (32.84\%) \\ \hline 24 \ (35.82\%) \\ \hline 44 \ (65.67) \\ \hline 62.25 \pm 10.69 \\ \hline 50 \ (74.62) \\ \hline 2 \ (4.00) \end{array}$	2 (2.38%) 11 (13.10%) 6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	$\begin{array}{c} 12 \ (4.53\%) \\ 13 \ (4.91\%) \\ 44 \ (16.60\%) \\ 60 \ (22.64\%) \\ 80 \ (30.19\%) \\ 50 \ (18.87\%) \\ 165 \ (62.26) \\ 62.51 \pm 13.01 \\ 183 \ (69.05) \\ \end{array}$	20 (9.2) 17 (7.9) 36 (16) 51 (23) 52 (24) 36 (16) 53 (16) 53 (16) 53 (16) 53 (16) 53 (16) 138 (6) 138 (6) 138 (6) 150 (6) 150 (6)	0%) 30%) 91%) 5.74%) 5.72%) 5.72%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.72%] 5.72%	0.807 0.785
5.39%) 6.97%) 14.58%) (22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) 4.31)	$\begin{array}{c} 0 \ (0.00\%) \\ \hline 3 \ (4.48\%) \\ \hline 6 \ (8.96\%) \\ \hline 12 \ (17.91\%) \\ \hline 22 \ (32.84\%) \\ \hline 24 \ (35.82\%) \\ \hline 44 \ (65.67) \\ \hline 62.25 \pm 10.69 \\ \hline 50 \ (74.62) \\ \hline 2 \ (4.00) \end{array}$	2 (2.38%) 11 (13.10%) 6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	$\begin{array}{c} 12 \ (4.53\%) \\ 13 \ (4.91\%) \\ 44 \ (16.60\%) \\ 60 \ (22.64\%) \\ 80 \ (30.19\%) \\ 50 \ (18.87\%) \\ 165 \ (62.26) \\ 62.51 \pm 13.01 \\ 183 \ (69.05) \\ \end{array}$	20 (9.2) 17 (7.9) 36 (16) 51 (23) 52 (24) 36 (16) 53 (16) 53 (16) 53 (16) 53 (16) 53 (16) 138 (6) 138 (6) 138 (6) 150 (6) 150 (6)	30%) 91%) 5.74%) 5.72%) 4.19%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.75%] 5.76%]	0.785
6.97%) 14.58%) (22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) 4.31)	$3 (4.48\%)$ $6 (8.96\%)$ $12 (17.91\%)$ $22 (32.84\%)$ $24 (35.82\%)$ $44 (65.67)$ 62.25 ± 10.69 $50 (74.62)$ $2 (4.00)$	11 (13.10%) 6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	$\begin{array}{c} 12 \ (4.53\%) \\ 13 \ (4.91\%) \\ 44 \ (16.60\%) \\ 60 \ (22.64\%) \\ 80 \ (30.19\%) \\ 50 \ (18.87\%) \\ 165 \ (62.26) \\ 62.51 \pm 13.01 \\ 183 \ (69.05) \\ \end{array}$	20 (9.2) 17 (7.9) 36 (16) 51 (23) 52 (24) 36 (16) 53 (16) 53 (16) 53 (16) 53 (16) 53 (16) 138 (6) 138 (6) 138 (6) 150 (6) 150 (6)	30%) 91%) 5.74%) 5.72%) 4.19%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.74%) 5.75%] 5.76%]	0.785
14.58%) (22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) 4.31)	$ \begin{array}{c} 6 (8.96\%) \\ 12 (17.91\%) \\ 22 (32.84\%) \\ 24 (35.82\%) \\ 44 (65.67) \\ 62.25 \pm 10.69 \\ 50 (74.62) \\ 2 (4.00) \\ \end{array} $	6 (7.14%) 17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	$\begin{array}{c} 13 (4.91\%) \\ 44 (16.60\%) \\ 60 (22.64\%) \\ 80 (30.19\%) \\ 50 (18.87\%) \\ 165 (62.26) \\ 62.51 \pm 13.01 \\ 183 (69.05) \\ \end{array}$	3. 17 (7.9) 36 (16) 51 (23) 52 (24) 36 (16) 52 (24) 36 (16) 138 (6) 63.79 150 (6)	91%) 5.74%) 5.72%) 5.72%) 5.74%) 5.74%) 5.74%) 5.4.19) ± 17.62 59.76)	0.785
(22.19%) (28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) (4.31)	$12 (17.91\%)$ $22 (32.84\%)$ $24 (35.82\%)$ $44 (65.67)$ 62.25 ± 10.69 $50 (74.62)$ $2 (4.00)$	17 (20.24%) 23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	44 (16.60%) 60 60 (22.64%) 50 80 (30.19%) 60 50 (18.87%) 60 165 (62.26) 62.51 ± 13.01 183 (69.05) 60	36 (16) 51 (23) 52 (24) 36 (16) 36 (16) 138 (6) 63.79 150 (6)	5.74%) 5.72%) 5.72%) 5.74%) 5.74%) 54.19) ± 17.62 59.76)	0.785
(28.05%) (21.08%) (64.0) (53.0-71.0) (71.00) (4.31)	$22 (32.84\%)$ $24 (35.82\%)$ $44 (65.67)$ 62.25 ± 10.69 $50 (74.62)$ $2 (4.00)$	23 (27.38%) 23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	60 (22.64%) 60 80 (30.19%) and 50 (18.87%) and 165 (62.26) and 62.51 ± 13.01 and 183 (69.05) and	Suborteur (ABES), 51 (23) 52 (24) 36 (16) 138 (6) 63.79 150 (6)	5.72%) 6.79%) 5.74%) 5.74%) 54.19) ± 17.62 59.76)	0.785
(21.08%) (64.0) (53.0-71.0) (71.00) (4.31)	24 (35.82%) 44 (65.67) 62.25 ± 10.69 50 (74.62) 2 (4.00)	23 (27.38%) 57 (67.86) 62.81 ± 13.31 65 (77.38)	80 (30.19%) and 50 (18.87%) and 165 (62.26) and 62.51 ± 13.01 and 183 (69.05) and	ad 52 (24 36 (16 138 (6 BES), 150 (6	19%) 5.74%) 54.19) ± 17.62 59.76)	0.785
(64.0) (53.0-71.0) (71.00) (4.31)	$44 (65.67) \\62.25 \pm 10.69 \\50 (74.62) \\2 (4.00)$	57 (67.86) 62.81 ± 13.31 65 (77.38)	50 (18.87%) 165 (62.26) 62.51 ± 13.01 183 (69.05)	ABES: 150 (6	5.74%) 54.19) ± 17.62 59.76)	0.785
(53.0-71.0) (71.00) 4.31)	62.25 ± 10.69 50 (74.62) 2 (4.00)	62.81 ± 13.31 65 (77.38)	165 (62.26) 62.51 ± 13.01 183 (69.05)	ABE 138 (6 63.79 150 (6	54.19) ± 17.62 59.76)	0.785
(71.00) (71.100) (71.00)	50 (74.62) 2 (4.00)	65 (77.38)	183 (69.05) ing.	150 (6	69.76)	
4.31)	2 (4.00)					0.434
· · · · · · · · · · · · · · · · · · ·	· /	2 (3.07)				
8.6)			14 (7.65) ≥	1 2 (8.0	00)	0.573
	7 (14.00)	8 (12.30)	25 (13.66) fa	20 (13	5.33)	0.994
7.0)	3 (6.00)	7 (10.76)	19 (10.38) 11 9 (4.91) 9	20 (13	5.33)	0.596
3.8)	3 (6.00)	3 (4.61)	9 (4.91) ^(C)	12 (8.0	00)	0.681
6.6)	5 (10.00)	3 (4.61)	18 (9.83) d	2 0 (13	5.33)	0.375
(18.2)	19 (38.00)	15 (23.07)	48 (26.22) Sin	o 45 (30	0.00)	0.278
5.0)	6 (12.00)	9 (13.84)	16 (8.74) ar	لم ل 4 (3.00	0)	0.010
11.7)	14 (28.00)	14 (21.53)		De 26 (17	7.33)	0.101
			hnc	1 3,		0.023
(48.6)	41 (61.19)	49 (58.33)	124 (46.79) g	8 93 (43	6.26)	
(30.5)	19 (28.36)	25 (29.76)	78 (29.43)	a 71 (33	5.02)	
(20.7)	7 (10.45)	10 (11.90)	63 (23.77)	B 51 (23	5.72)	
				enc		0.001
(37.4)	35 (52.24)	41 (48.81)	92 (34.72)		.051	
(58.8)	30 (44.78)	42 (50.00)	157 (59.25)	b 142 (6	66.05)	
3.8)	2 (2.99)	1 (1.19)	16 (6.04)	6 5 (2.3)	3)	
$\frac{6.0}{(1)}$	6) 8.2) 0) .7) 8.6) 0.5) 0.7) 7.4) 8.8)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6) $5 (10.00)$ $3 (4.61)$ $8.2)$ $19 (38.00)$ $15 (23.07)$ $0)$ $6 (12.00)$ $9 (13.84)$ $.7)$ $14 (28.00)$ $14 (21.53)$ $88.6)$ $41 (61.19)$ $49 (58.33)$ $00.5)$ $19 (28.36)$ $25 (29.76)$ $20.7)$ $7 (10.45)$ $10 (11.90)$ $7.4)$ $35 (52.24)$ $41 (48.81)$ $88.8)$ $30 (44.78)$ $42 (50.00)$	6) $5 (10.00)$ $3 (4.61)$ $18 (9.83)$ nd $8.2)$ $19 (38.00)$ $15 (23.07)$ $48 (26.22)$ ni $0)$ $6 (12.00)$ $9 (13.84)$ $16 (8.74)$ nd $.7)$ $14 (28.00)$ $14 (21.53)$ $28 (15.30)$ nd $.8.6)$ $41 (61.19)$ $49 (58.33)$ $124 (46.79)$ nd $.0.5)$ $19 (28.36)$ $25 (29.76)$ $78 (29.43)$ nd $.0.7)$ $7 (10.45)$ $10 (11.90)$ $63 (23.77)$ $.7.4)$ $35 (52.24)$ $41 (48.81)$ $92 (34.72)$ $.8.8)$ $30 (44.78)$ $42 (50.00)$ $157 (59.25)$ $.8)$ $2 (2.99)$ $1 (1.19)$ $16 (6.04)$	6) $5 (10.00)$ $3 (4.61)$ $18 (9.83)$ a c $20 (13)$ $8.2)$ $19 (38.00)$ $15 (23.07)$ $48 (26.22)$ a $45 (30)$ $0)$ $6 (12.00)$ $9 (13.84)$ $16 (8.74)$ a $4 (3.00)$ $.7)$ $14 (28.00)$ $14 (21.53)$ $28 (15.30)$ c $26 (17)$ $.8.6)$ $41 (61.19)$ $49 (58.33)$ $124 (46.79)$ g $93 (43)$ $.0.5)$ $19 (28.36)$ $25 (29.76)$ $78 (29.43)$ c $71 (33)$ $.0.7)$ $7 (10.45)$ $10 (11.90)$ $63 (23.77)$ d $51 (23)$ $.7.4)$ $35 (52.24)$ $41 (48.81)$ $92 (34.72)$ d $68 (31)$	6) $5 (10.00)$ $3 (4.61)$ $18 (9.83)$ \mathbf{d} \mathbf{o} $20 (13.33)$ $8.2)$ $19 (38.00)$ $15 (23.07)$ $48 (26.22)$ \mathbf{s} $45 (30.00)$ $0)$ $6 (12.00)$ $9 (13.84)$ $16 (8.74)$ \mathbf{s} $4 (3.00)$ $.7)$ $14 (28.00)$ $14 (21.53)$ $28 (15.30)$ \mathbf{c} $26 (17.33)$ $.86.0$ $41 (61.19)$ $49 (58.33)$ $124 (46.79)$ \mathbf{c} $93 (43.26)$ $.05.0$ $19 (28.36)$ $25 (29.76)$ $78 (29.43)$ \mathbf{c} $71 (33.02)$ $.07.1$ $7 (10.45)$ $10 (11.90)$ $63 (23.77)$ $51 (23.72)$ $.7.4)$ $35 (52.24)$ $41 (48.81)$ $92 (34.72)$ $68 (31.63)$ $.8.8)$ $30 (44.78)$ $42 (50.00)$ $157 (59.25)$ $142 (66.05)$ $.8)$ $2 (2.99)$ $1 (1.19)$ $16 (6.04)$ \mathbf{g} $5 (2.33)$

			J Open		/ cop	2	
					copyright, ir		
Reason for ICU admission***						2202	
Renal	16 (2.5)	1 (1.49)	0 (0.00)	7 (2.64)	iding	8 (3.72)	0.294
Digestive	83 (13.1)	10 (14.93)	12 (14.29)	28 (10.57)	a fo	33 (15.35)	0.434
Cardiovascular	147 (23.3)	15 (22.39)	16 (19.05)	68 (25.66)	r us E	48 (22.33)	0.610
Hematologic	14 (2.2)	2 (2.99%)	3 (3.57%)	4 (1.51%)	es nse	5 (2.33%)	0.679
Respiratory	359 (56.8)	43 (64.18%)	57 (67.86%)	136 (51.32%)	ela	123 (57.21%)	0.030
Miscellaneous	67 (10.6)	3 (4.48%)	11 (13.10%)	34 (12.83%)		19 (8.84%)	0.152
Neurologic	12 (1.9)	3 (4.48%)	1 (1.19%)	4 (1.51%)	to to	4 (1.86%)	0.418
Others	105 (16.6)	11 (16.42%)	13 (15.48%)	42 (15.85%)	Sup	39 (18.14%)	0.907
APACHE II, score*	23.4 ± 10.0	27.82 ± 9.73	25.28 ± 11.45	21.39 ± 9.59	anc	24.07 ± 9.56	< 0.001
ICU support within first 48 hours							
Vasopressor infusions	486 (77.02)	57 (85.07)	77 (91.67)	199 (75.09)	eur (AB I data n	153 (71.16)	< 0.001
Renal replacement	107 (16.9)	11 (16.42)	22 (26.19)	37 (13.96)	nini	37 (17.21)	0.078
Neuromuscular blockade	171 (27.1)	27 (40.30)	39 (46.43)	69 (26.04)) . ng,	36 (16.74)	< 0.001
Clinical outcomes					A	3	
In-hospital mortality	77 (12.2)	33 (49.52)	18 (21.43)	18 (6.79)	train	8 (3.72)	< 0.001
ICU discharge	555 (87.9)	45 (67.16)	67 (79.76)	245 (92.45)	ning	198 (92.09)	< 0.001
Extubation	571 (90.4)	46 (68.66)	66 (78.57)	0.50 (0.5.15)	, ຊ	206 (95.81)	< 0.001
Length of ventilator support, days	5 (3–11)	11 (20–NE)	11.5 (7–23.5)	5 (3-8)	nd s	3 (2–5)	< 0.001
ICU length of stay, days	10 (5-18)	20 (12–NE)	18 (10–26)	9 (6-14)	in s	4 (6–10)	< 0.001

RMIOnen

bmj ý

Data are reported as mean ± standard deviation or median (interquartile range) for continuous variables and number (percenage) for categorical variables. *Data on body weight are presented for all 605 patients, excluding 26 patients with missing data (4 in the light sedation group and 22 in the deep sedation group). Data on APACHE I are presented for all 577 patients, excluding 54 patients with missing data (15 in the light sedation group and 39 in the deep sedation group). **Severe to moderate liver disease are defined as cirrhosis and portal hypertension with or without variceal bleeding histors. Severe to moderate CKD are defined as serum creatinine > 3 mg/dL or on dialysis or post-kidney transplant status or uremia status. ogies. ***172 patients had multiple reasons for ICU admission. at

ICU = intensive care unit; SMD = standardized mean difference; COPD = chronic obstructive pulmonary disease; CKD = chronic kidney disease; TIA = transient ischemic attack; APACHE II = acute physiology and chronic health evaluation II; NE = not estimated ence Bibliographique de l

Table 2 Summary of the demogra	aphics of the trajectories and the tr	ajectory ranks for characteristics		-0726;	
	Trajectory 1	Trajectory 2	Trajectory 3	omjopen-2023-072628 on bv copyright, including	Trajectory 4
Demographics				ずら	
Age	70–79 & ≥80	70–79 & ≥80	60–69 & 70–-79		60–69 & 70–-79
Gender	Male	Male	Male	27 June Ens	Male
Comorbidity	Solid tumor, CVD/TIA, COPD	Solid tumor, CVD/TIA, Dementia	Solid tumor, COPD Surgical ICU Respiratory & Ca	relate SD/TIA, 10,23.	Solid tumor, CVD/TIA,
Type of ICU	Medical ICU	Surgical ICU	Surgical ICU	id m D to D	Surgical ICU
Reason for ICU admission	Respiratory & Cardiovascular	Respiratory & Cardiovascular	Respiratory & Ca	dio sascular	Respiratory & Cardiovas
Ranks for characteristics	U k			loaded Superie	
Medical admission	lst	2nd	3rd	led nd	4th
Scheduled surgery	4th	3rd	2nd	l from ht ur (ABE: data mi	1st
АРАСНЕ ІІ	lst	2nd	4th		3rd
Vasopressor infusions	2nd	lst	3rd		4th
				Ā. N	
Renal replacement therapy	3rd	1st	4th	//bn	2nd
Neuromuscular blockade Representative demographics with determined by the comparison of ICU = intensive care unit; APAC	2nd th more than half of the patients proportion of variable within each CHE \mathbf{I} = acute physiology and cl	1st 1st on each trajectory, except age on trajectory. Trajectories are ordered pronic health evaluation II; CVD =	3rd ajectory 4, are sho from lowest (4th) to cardiovascular dise	The second secon	4th le. Rank-order of trajector rank values.
Neuromuscular blockade Representative demographics wit determined by the comparison of	2nd th more than half of the patients proportion of variable within each CHE \mathbf{I} = acute physiology and cl	1st on each trajectory, except age on tra n trajectory. Trajectories are ordered	3rd ajectory 4, are sho from lowest (4th) to cardiovascular dise	The second secon	4th le. Rank-order of trajector rank values.

Page 23 of 30

BMJ Open

			BMJ Open		d by copyright, including for	bmjopen-2023-072628 Time to in-hos	
Sable 3 Multivariable Cox Pro	portional Hazard regression Time to extu		event Time to ICU d	ischarge	includi	726 726 726 726 726 726 726 726 726 726	snital death
	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value	ng f	9 HR (95% CI)	<i>p</i> -value
Trajectory group					er u		
Group 1	0.23 (0.16–0.32)	< 0.001	0.36 (0.26–0.51)	< 0.001	Ises	2 3 .62 (5.99–30.95)	< 0.001
Group 2	0.30 (0.23–0.41)	< 0.001	0.44 (0.33–0.59)	< 0.001	relg	8.62 (2.36–13.38)	< 0.001
Group 3	0.72 (0.59–0.87)	< 0.001	0.80 (0.65–0.97)	0.024	atec	8 62 (2.36–13.38) 1 .76 (0.76–4.08)	0.185
Group 4	Reference		Reference		d to	Reference	
Age					tex	vnlo	
20–29	Reference		Reference		t an	d eference	
30–39	1.08 (0.53–2.21)	0.825	0.70 (0.35–1.42)	0.334	d d	1 .69 (0.06–7.72)	0.765
40–49	0.89 (0.43–1.81)	0.748	0.63 (0.31–1.25)	0.188	ata	9.59 (0.06-5.28)	0.641
50–59	1.04 (0.53–2.03)	0.893	0.65 (0.34–1.23)	0.192	min	4 .41 (0.04–3.46)	0.414
60–69	1.00 (0.52–1.93)	0.987	0.79 (0.42–1.48)	0.469	ing	88 (0.11–6.75)	0.905
70–79	1.04 (0.54–1.99)	0.893	0.64 (0.34–1.20)	0.170	, AI	9 .47 (0.06–3.65)	0.473
≥80	0.85 (0.44–1.64)	0.632	0.53 (0.28–1.00)	0.052		8 .82 (0.10–6.26)	0.850
Female	0.85 (0.71–1.01)	0.075	0.98 (0.81–1.17)	0.848	ining, and	3 .17 (0.73–1.89)	0.50
Type of admission					g, a	mj	
Medical	Reference		Reference			Reference	
Emergency surgery	1.02 (0.79–1.32)	0.839	1.17 (0.90–1.53)	0.234	sim	d .35 (0.62–2.91)	0.444
Scheduled surgery	2.13 (1.64–2.78)	< 0.001	2.10 (1.59–2.78)	< 0.001	similar	4 .91 (0.87–4.16)	0.102
Type of ICU					tec	Ine	
Medical ICU	Reference		Reference		hnc	Reference	
Surgical ICU	1.05 (0.83–1.33)	0.629	0.87 (0.68–1.12)	0.299	hnologi	8 .45 (0.23–0.89)	0.021
Others	1.53 (0.96–2.40)	0.068	1.28 (0.80–2.06)	0.289	ies.	5 .55 (0.12–2.47)	0.441
Vasopressor infusions	0.85 (0.69–1.04)	0.116	0.85 (0.69–1.04)	0.122		▶.25 (0.62–2.51)	0.529
Neuromuscular blockade	1.05 (0.86–1.28)	0.586	0.88 (0.72–1.07)	0.217		8 .42 (0.88–2.29)	0.148

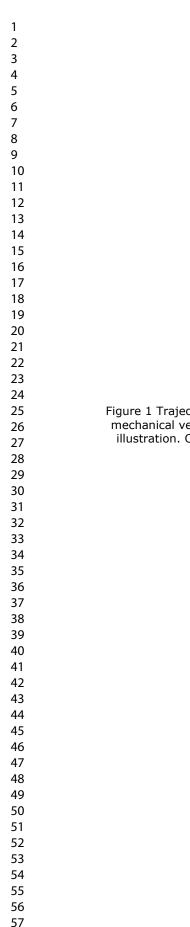
Hazard ratio > 1 indicates a higher probability of event than reference.

ICU = intensive care unit; HR hazard ratio = CI confidence interval.

Bibliographique de l

Outcome 100

0.00


-100

-2.00

-3.0

0.00

Group Percents

58 59

60

Figure 1 Trajectories of longitudinal Richmond Agitation Sedation Scale in the first 30 days of sedation for mechanical ventilation. The percentage of patients included in each trajectory were presented in central illustration. Outcome of y-axis indicates the score of richmond agitation sedation scale and T of x-axis represents day after the initiation of sedation.

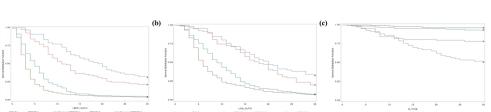
т

222 13.9

10.00

+++ 13.2

20.00


*** 38.4 *** 34.6

30.00

338x190mm (200 x 200 DPI)

Figure 2 Kaplan-Meier of clinical outcomes from admission according to the trajectory groups. (a) time to extubation in the intensive care unit, (b) length of stay in the intensive care unit, (c) in-hospital mortality.

338x190mm (200 x 200 DPI)

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Longitudinal trajectories of sedation level and clinical outcomes in mechanically ventilated patients: a prospective, multicenter, longitudinal, observational study

Dong-gon Hyun, M.D.¹, Jee Hwan Ahn, M.D.¹, Ha-Yeong Gil, M.S.², Chung Mo Nam,

Ph.D.³, Choa Yun, M.S.⁴, Chae-Man Lim, M.D., Ph.D.¹*

¹Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

²Medical Research Project Team, IM Medical, Pfizer Korea Pharmaceuticals Ltd., Seoul, Republic of Korea

³Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

⁴Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea

*Corresponding author: Chae-Man Lim, M.D., Ph.D., FCCM

E-mail: <u>cmlim@amc.seoul.kr</u>

City	Participating hospitals	Investigators
Seoul	Asan Medical Center	Dong-gon Hyun, Jee Hwan Ahn,
		Suk-Kyung Hong, Chae-Man
		Lim
Seoul	Seoul National University Hospital	Sang-Min Lee, Ho-Geol Ryu
Seoul	Samsung Medical Center	Gee Young Suh, Chi Min Park
Seoul	Severance Hospital	Su Hwan Lee, Jeoung Min Kim
Seoul	Seoul St. Mary's Hospital	Seok Chan Kim
Seoul	Korea University Anam Hospital	Won Jai Jung, Jae-Myeong Lee
Seoul	Korea University Guro Hospital	Young-Seok Lee, Nak-Jun Choi
Seoul	Seoul National University Boramae	Taeyun Park
	Medical Center	
Seongnam	Seoul National University Bundang	Dong Jung Kim
-	Hospital	
Suwon	Ajou University School of Medicine	Keu Sung Lee, Young-Gi Min
Busan	Pusan National University Hospital	Jae Hun Kim
Busan	Dong-A University Hospital	Dong-Hyun Lee
Busan	Inje University Haeundae Paik Hospital	Hang-Jea Jang, Ki Hoon Kim
Wonju	Yonsei University Wonju College of	Seok Jeong Lee
-	Medicine	
Incheon	Gachon University Gil Medical Center	Woo-Sung Choi
Daegu	Keimyung University School of Medicine	Jae-Bum Kim
Daegu	Yeungnam University Medical Center	Eun Young Choi, Jong-Hyun
-		Baek
Daegu	Daegu Catholic University Medical Center	Eun Jin Kim
Anyang	Hallym University Sacred Heart Hospital	Sunghoon Park, Hyung Won
		Kim
Ansan	Korea University Ansan Hospital	Je Hyeong Kim

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table S1. Participating intensive care units

2	
3 4 5	Table S
6	Type of
6 7	Diaze
8	Cun
9	Mida
10 11	Cun
12	Loraz
13	Cun
14	Other
15	Cun
16 17	Propo
17 18	Cun
19	Ketar
20	Cun
21	Halop
22	Cun
23	Dexm
24 25	Cun
26	Other
27	Cun
28	Type of
29	Fenta
30 21	Cum
31 32	Remi
33	Cum
34	Morp
35	Cun
36	Sufer
37 38	Cun
38 39	Data are
40	(percent
41	RASS =
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51 52	
52 53	
55 54	
55	
56	
57	
50	

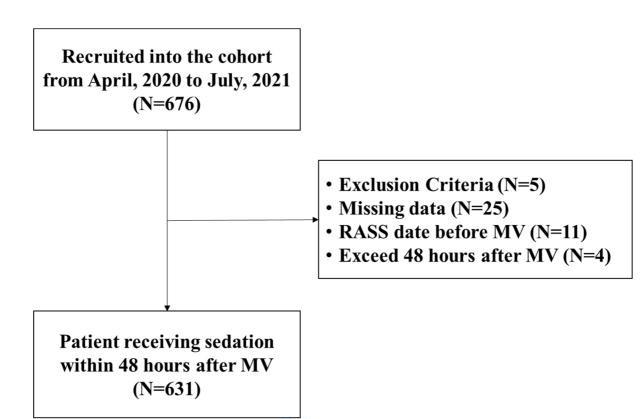

1

Table S2. Profile of analgesic and sedative within the first 48 hours

Type of Sedatives	N = 662
Diazepam	1 (0.2)
Cumulative dose (µg)	2000.0
Midazolam	127 (19.2)
Cumulative dose (µg)	64253.9 ± 133338.1
Lorazepam	14 (2.1)
Cumulative dose (µg)	2750 ± 1868.3
Other benzodiazepine	19 (2.9)
Cumulative dose (µg)	34294.7 ± 53960.7
Propofol	173 (26.1)
Cumulative dose (µg)	3444220.1 ± 2752320.0
Ketamine	53 (8.0)
Cumulative dose (µg)	1450147.2 ± 1830958.4
Haloperidol	1 (0.2)
Cumulative dose (µg)	5000.0
Dexmedetomidine	253 (38.2)
Cumulative dose (µg)	4080.2 ± 38325.4
Other non-benzodiazepine	21 (3.2)
Cumulative dose (µg)	75659.5 ± 133078.2
Type of analgesics	N = 528
Fentanyl	119 (22.5)
Cumulative dose (µg)	30861.1 ± 315168.1
Remifentanil	388 (73.5)
Cumulative dose (µg)	13227.8 ± 10971.7
Morphine	6 (1.1)
Cumulative dose (µg)	24000.0 ± 38740.2
Sufentanil	15 (2.8)
Cumulative dose (µg)	285.4 ± 280.6

Data are reported as means ± standard deviation for continuous variables and numbers (percentage) for categorical variables.

RASS = Richmond agitation-sedation scale

Figure S1. Flow diagram of patients in the present study. MV = mechanical ventilation; RASS = Richmond agitation-sedation scale

		BMJ Open by copyrig g	Page
		로 끊 STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cont studies	
Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		៉េ ឆ្នាំ ឆ្នាំ ឆ្នាំ (b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported 6 🚆 🖗	4
Objectives	3	State specific objectives, including any prespecified hypotheses 유명 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	4
Methods	_	aperied	
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	5
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifier Give diagnostic criteria, if	5
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (meas grentent). Describe	5
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which gou bongs were chosen and why	5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	6
		(e) Describe any sensitivity analyses	6
Results			

 bmjopen-202 1 by copyrigl

nphique de l

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, exanised for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram 호 것	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information of the second potential confounders	7
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precising eg, 95% confidence	8
		interval). Make clear which confounders were adjusted for and why they were included \vec{a}	
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion			
Key results	18	Summarise key results with reference to study objectives 5	9
Limitations		ning by	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information		ar te	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, original study on which the present article is based	13

👾 හි *Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine@rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.grobe-statement.org.

Longitudinal trajectories of sedation level and clinical outcomes in mechanically ventilated patients based on a group-based trajectory model: a prospective, multicenter, longitudinal, observational study in Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072628.R1
Article Type:	Original research
Date Submitted by the Author:	12-Apr-2023
Complete List of Authors:	Hyun, Dong-gon; Asan Medical Center, Ahn, Jee Hwan; University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine Gil, Ha-Yeong; pzfier Nam, Chung Mo; Yonsei University College of Medicine, Preventive Medicine Yun, Choa; Department of Biostatistics & Computing, College of Medicine, Yonsei University Lim, Chae-Man; University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Epidemiology
Keywords:	Adult anaesthesia < ANAESTHETICS, EPIDEMIOLOGY, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Thoracic medicine < INTERNAL MEDICINE
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

Longitudinal trajectories of sedation level and clinical outcomes in mechanically

2	ventilated patients based on a group-based trajectory model: a prospective, multicenter,
3	longitudinal, observational study in Korea
4	
5	Dong-gon Hyun ¹ , Jee Hwan Ahn ¹ , Ha-Yeong Gil ² , Chung Mo Nam ³ , Choa Yun ⁴ , Chae-Man
6	Lim ¹ *
7	¹ Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of
8	Ulsan College of Medicine, Seoul, Republic of Korea
9	² Medical Research Project Team, IM Medical, Pfizer Korea Pharmaceuticals Ltd., Seoul,
10	Republic of Korea
11	³ Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic
12	of Korea
13	⁴ Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University
14	College of Medicine, Seoul, Republic of Korea
15	
16	*Corresponding author: Chae-Man Lim, M.D., Ph.D., FCCM
17	E-mail: <u>cmlim@amc.seoul.kr</u>
18	
19	Word Count: 2995
20	
21	
22	
23	
24	

1 ABSTRACT

Objectives: Changes in sedation levels over long time in mechanically ventilated patients are
unknown. Therefore, we investigated long-term sedation levels of mechanically ventilated
patients by classifying them into different longitudinal patterns.

Design: This was a multicenter, prospective, longitudinal, observational study.

6 Setting: Twenty ICUs spanning several medical institutions in Korea.

Participants: Patients who received mechanical ventilation and sedatives in the ICU within 48
h of admission between April 2020 and July 2021.

9 Primary and secondary outcome measures: The primary objective of this study was to
10 identify the pattern of sedation practice. Also, we analyzed associations of trajectory groups
11 with clinical outcomes as the secondary outcome.

Results: Sedation depth was monitored using the Richmond agitation-sedation scale (RASS). A group-based trajectory model was used to classify 631 patients into four trajectories based on sedation depth: persistent suboptimal (13.2%, RASS ≤ -3 throughout the first 30 days), delayed lightening (13.9%, RASS ≥ -2 after the first 15 days), early lightening (38.4%, RASS ≥ -2 after the first 7 days), and persistent optimal (34.6%, RASS ≥ -2 during the first 30 days). The "persistent suboptimal" trajectory was associated with delayed extubation (hazard ratio [HR] 0.23, 95% confidence interval [CI] 0.16–0.32, *p* < 0.001), longer ICU stay (HR 0.36, 95%) CI 0.26–0.51, p < 0.001), and hospital mortality (HR 13.62, 95% CI 5.99–30.95, p < 0.001) compared with the "persistent optimal". The "delayed lightening" and "early lightening" trajectories showed lower extubation probability (HR 0.30, 95% CI 0.23–0.41, p < 0.001; HR 0.72, 95% CI 0.59–0.87, p < 0.001, respectively) and ICU discharge (HR 0.44, 95% CI 0.33– 0.59; p < 0.001 and HR 0.80, 95%CI 0.65–0.97; p = 0.024) compated to "persistently optimal". Conclusions: Among the four trajectories describing longitudinal sedation depth, "persistent

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

2		
3 4	1	suboptimal" trajectory was associated with higher mortality.
5	2	
6	2	
7 8	3	Keywords: deep sedation; intensive care units; mortality; critical care; mechanical ventilators
9 10	4	
11		
12 13	5	STRENGTHS AND LIMITATIONS OF THIS STUDY
14 15 16	6	\Rightarrow Large national data from 20 ICUs in Korea representing real-world practice.
17 18	7	\Rightarrow An investigation into the level of long-term sedation in mechanically ventilated patients.
19 20 21	8	\Rightarrow A group-based trajectory model identifying patterns of sedation over time.
22 23	9	\Rightarrow Misclassification of nondifferential group as inherent restriction of group-based trajectory
24 25 26	10	models with limited generalizability.
27 28	11	\Rightarrow Unclear causal relationship between trajectory and outcome.
29 30 31	12	
32 33	13	
34 35 36	14	
30 37 38	15	
39 40	16	
41 42	17	
43	10	
44 45	18	
45 46		
46 47	19	
47 48		
48 49	20	
49 50		
50 51	21	
51 52		
52 52	22	
53 54	22	
54 55		
55 56	23	
50 57		
58	24	
59		
60		3

BMJ Open

1 INTRODUCTION

Sedation is cruical to promote tolerance in patients during mechanical ventilation in the intensive care unit (ICU).¹ Previously, ICU patients were considered unnecessarily over-sedated, and the tools to assess the depth of sedation varied widely.² Inappropriate sedation was associated with adverse outcomes, such as prolonged ventilation, longer ICU stay, and higher post-ICU psychological concerns.³⁻⁶ Over-sedation also predicted long-term mortality in critically ill patients.⁷ Considering its essential role in the care of mechanically ventilated patients, international guidelines guide to improve sedation practice for favorable outcomes in ICU patients.8-10

Currently, sedation monitoring in the ICU is clinically recommended to achieve low levels of sedation,¹¹ though real-world implementation is debated.¹² Longitudinal studies on the level of sedation over long time are limited. Previous national surveys mainly focused on the type of sedatives and assessment tools.¹³⁻¹⁶ Moreover, most studies are cross-sectional, evaluating the association between the sedation level for the first 2–3 days and clinical outcomes.^{17 18} Therefore, we aimed to investigate long-term sedation levels in a national cohort of mechanically ventilated patients by classifying them into different longitudinal patterns. We further assessed the association between these patterns and clinical outcomes.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

METHODS

20 Study design

We conducted a multicenter, prospective, longitudinal, and observational, cohort study in 20 ICUs in Korea between April 2020 and July 2021, which was sponsored by Pfizer Korea Pharmaceuticals Ltd. and involved 30 investigators (table S1). We designed a harmonized electric case report form that was centrally managed and combined into one database for data

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

entry, day queries, and analysis. During the study period, patients were recruited according to the number of available patients at each ICU. Principal investigators, research staff, and nurses at each participating center were trained in the study procedures. The decisions regarding a patient's care were at the discretion of the attending medical staff. Our inclusion criteria were as follows: patients aged >19 years, who had undergone mechanical ventilation and sedation in the ICU within 48 h, and were expected to remain sedated and on mechanical ventilation for >48 h. We excluded patients with a disease that was likely to cause death within 90 days, those whose treatment had been discontinued due to imminent death or non-effective therapy, and who needed non-selective deep sedation due to medical conditions, including brain damage and hemorrhage, spinal cord injury, drug overdose, burns, and nerve root block.

Monitoring of sedation and measurement of outcome

We monitored sedation depth using the Richmond agitation-sedation scale (RASS), ranging from -5 to +4 every 8 h until ICU discharge or day $30.^{19}$ The daily depth of sedation was calculated as the median RASS value for 1 day. The primary objective of this study was to identify the pattern of sedation practice. Group-based trajectory models have been widely employed for analyzing developmental trajectories.²⁰ They can address the dynamic profile of sedation by classifying patients into different trajectories of sedation level over time. We used a group-based trajectory model analyzing a scale form of RASS over the first 30 days after enrollment. To characterize each trajectory group, an analysis between the trajectory groups and the patients' characteristics was also performed. The secondary objective included associations of trajectory groups with clinical outcomes by adjusting for covariates.

24 Covariates

BMJ Open

Demographic, clinical, and laboratory data, including age, gender, reason for ICU admission, type of ICU admission, comorbidities, and illness severity (acute physiology and chronic health evaluation [APACHE] I score), were collected. Severe to moderate liver disease was defined as cirrhosis and portal hypertension with or without variceal bleeding history. Severe to moderate chronic kidney disease was defined as serum creatinine >3 mg/dL or on dialysis or post-kidney transplant status or uremia status. The need for vasopressors, renal replacement therapy, and neuromuscular blockade was also recorded. We collected and calculated the daily cumulative dose and the number of days prescribed for the sedatives and analgesics administered to patients during their ICU stay. Patients were followed up until hospital discharge, death, or day 30 in the ICU. Clinical outcomes, including ICU discharge, ventilator days, and survival status, were recorded.

Patient and public involvement

Patient and the public were not involved in the design, conduct, reporting or dissemination plans of this research.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

17 Statistical analysis

The pattern of sedation over time was described using a group-based trajectory model, which identified differential patterns of individual change in the populations. The parameters of GBTM are generated by maximum likelihood estimation (MLE). The ultimate objective is to estimate a set of parameters, Ω , that maximize the probability of $Y_i = (y_{i1},...,y_{it})$. The equation describing the likelihood of an individual's observed repeated measures is composed of two elements: (1) the probability of group membership and (2) the probability of the observed data given group membership. The finite mixture model is defined by

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

60

1

2

3

4

1

$$P(Y_i) = \sum_k \pi_k P^k(Y_i),$$

where *k*: trajectory group, i (= 1,...,N): subject, and j (= 1,...,T): measurement time. The group membership probabilities,

$$\pi_k = e^{\theta_k} / \sum_k e^{\theta_k}$$

, k = 1,...,K, are not observed, so estimated by a multinomial logit function. For given k, 5 conditional independence is assumed for the sequential realizations of the elements of Y_i , y_{ij} , 6 7 over the T periods of measurement. This assumption implies that for each individual within a given trajectory group k, the distribution of y_{ij} for period T is independent of the realized 8 level of the outcome in prior periods. The likelihood function is $L = \prod_{i=1}^{N} P(y_i | z_i, w_i)$ where 9 $p(y_i|z_i, w_i) = \sum_{k=1}^{K} p(C_i = k \mid Z_i = z_i) p(Y_i = y_i \mid C_i = k, W_i = w_i)$ that the first term is the 10 11 probability of group membership and second term is the probability of the observed data given $Y_i = (Y_{i1}, ..., Y_{iT}), Z_i = (Z_{i1}, ..., Z_{iR}), W_i = (W_{i1}, ..., W_{iT}), p =$ group membership. 12 $\frac{\exp(\theta_k + \lambda'_k z_i)}{\sum_{i=1}^{K} \exp(\theta_k + \lambda'_k z_i)}, \text{ and } p(Y_i = y_i \mid C_i = k, W_i = w_i) \text{ which is specified by distribution of } Y_i. \text{ For } X_i = W_i + V_i + V$ 13 count data, it is specified as the zero-inflated Poisson distribution, for censored data, the 14 censored normal distribution and for binary data, it is specified as the binary logit distribution. 15 In this study, we use censored normal model. The final model was selected based on a 16 combination of the Bayesian information criterion and the estimated trajectory group 17 proportions that were sufficiently large. 18

Data are presented as numbers and proportions for categorical variables and as means \pm standard deviations or medians (interquartile range) for continuous variables. Differences between groups were analyzed using the χ^2 test or Fisher's exact test and the independent twosample t-test or Mann–Whitney *U* test with a normal or non-normal distribution, as appropriate.

BMJ Open

The normality of the data was assessed by inspecting histograms. For time-to-event analysis, the Kaplan–Meier method was used to estimate survival curves, whereas a log-rank test was used to test the significance of the differences. Univariable and multivariable Cox proportional hazards regression models were used to identify associations with clinical outcomes by adjusting known prognostic covariates, including age, gender, type of admission, type of ICU, vasopressor, and neuromuscular blockade. The results are presented as hazard ratios (HR) with 95% confidence interval (CI). Two-sided *p*-values <0.05 indicated significance. All analyses were performed using SAS (Statistical Analysis System) software version 9.4 (SAS Institute, Cary, NC).

RESULTS

In 20 participating centers, 676 patients were recruited from April 2020 to July 2021 (figure S1). Of them, 45 were excluded because of missing data, an RASS date before mechanical ventilation, or were enrolled \geq 48 h after mechanical ventilation. The final cohort included 631 patients. In this study, four-group solutions that best characterized the cohort were identified. A four-group model was chosen for the cohort based on specified selection criteria: trajectory 1 (persistent suboptimal; 13.2% of patients, RASS level ≤ -3 throughout the 30 days), trajectory 2 (delayed lightening; 13.9% of patients, RASS level ≥ -2 after the first 15 days), trajectory 3 (early lightening; 38.4% of patients, RASS level ≥ -2 after the first 7 days), trajectory 4 (persistent optimal: 34.6%, RASS level ≥ -2 during the first 30 days) (figure 1). A large number of patients in the "persistent suboptimal" group were older, with 35.82% in the >80 age group (*p*-value = 0.002) (table 1). Conversely, 39.24% and 40.46% of patients in the "early lightening" and "persistent optimal" groups, respectively, were aged between 50-69 years. Gender and body weight did not significantly differ between the trajectories.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	Considering the comorbidities, there was a significant difference in dementia between patients
2	of different trajectories (p -value = 0.010). Although no significant difference was found, the
3	"persistent suboptimal" group had the highest percentage of solid tumor and cerebrovascular
4	disease (38.00%, p-value = 0.278 ; 28.00%, p-value = 0.101 , respectively), whereas the
5	"delayed lightening" group had the lowest percentage of moderate to severe chronic kidney
6	disease (4.61%, <i>p</i> -value = 0.375). The "persistent suboptimal" and "delayed lightening" groups
7	were more likely to be admitted to a medical ICU (52.24% and 48.81% versus 34.72% and
8	31.63%, respectively) with a medical illness (61.19% and 58.33% versus 46.79% and 43.26%,
9	respectively) and less likely to be admitted to a surgical ICU (44.78% and 50.00% versus 59.25%
10	and 66.05%, respectively; p -value = 0.023) for scheduled surgery (10.45% and 11.90% versus
11	23.77% and 23.72%, respectively; p -value = 0.001). The most common cause for ICU
12	admission was respiratory (56.8%) in all the groups, and the "delayed lightening" group had
13	the highest proportion for respiratory-related admissions (67.86%), whereas the "early
14	lightening" group had the lowest (51.32%, p -value = 0.030). Cardiovascular-related ICU
15	admissions were most common in the "early lightening" group (25.66%, p -value = 0.610),
16	although there was no statistical significance. The APACHE I score was significantly
17	different among the four trajectories (27.82, 25.28, 21.39, and 24.07 for "persistent
18	suboptimal," "delayed lightening," "early lightening," and "persistent optimal" groups,
19	respectively; p-value <0.001). As a part of ICU support within the first 48 h, the "delayed
20	lightening" group received the largest number of vasopressor infusions (91.67%, p -value <
21	0.001), renal replacement therapy (26.19%, <i>p</i> -value = 0.078), and neuromuscular blockade use
22	(46.43%, <i>p</i> -value < 0.001). In-hospital death occurred in 12.2% patients in the entire cohort.
23	By trajectory, in-hospital mortality was 49.52% in the "persistent suboptimal" group, 21.43%
24	in the "delayed lightening" group, 6.79% in the "early lightening" group, and 3.72% in the

Page 11 of 33

BMJ Open

"persistent optimal" group (*p*-value < 0.001). Similarly, differences according to the
trajectories were observed for ICU discharge and extubation. The proportion of ICU discharge
was 67.16%, 79.76%, 92.45%, and 92.09%, respectively (*p*-value < 0.001); rate of extubation
was 68.16%, 78.57%, 95.47%, and 95.81%, respectively (*p*-value < 0.001). Moreover,
differences in time to extubation (*p*-value < 0.001), ICU discharge (*p*-value < 0.001), and in-
hospital mortality (*p*-value < 0.001) were observed among the four trajectories (figure 2). Table
2 summarizes the representative phenotypes of each trajectory.

In adjusted Cox proportional hazard analyses, the "persistent suboptimal" (HR 13.62, 95% CI 5.99–30.95, p-value < 0.001) and "delayed lightening" groups (HR 5.62, 95% CI 2.36– 13.38, *p*-value < 0.001) had a significantly higher risk of death than the "persistent optimal" group (table 3). The "persistent suboptimal" (HR 0.23, 95% CI 0.16–0.32, p-value < 0.001), "delayed lightening" (HR 0.30, 95% CI 0.23–0.41, *p*-value < 0.001), and "early lightening" groups (HR 0.72, 95% CI 0.59–0.87, p-value < 0.001) showed a reduced probability of extubation and were less likely to discharge from the ICU (HR 0.36, 95% CI 0.26–0.51, p-value < 0.001; HR 0.44, 95% CI 0.33–0.59, p-value < 0.001; HR 0.80, 95% CI 0.65–0.97, p-value = 0.024, respectively) than the "persistent optimal" group. Patients undergoing scheduled surgery showed a higher probability of extubation (HR 2.13, 95% CI 1.64–2.78, p-value < 0.001) and ICU discharge (HR 2.10, 95% CI 1.59–2.78, *p*-value < 0.001) than outpatient admissions. Patients in the surgical ICU had a lower risk of death (HR 0.45, 95% CI 0.23–0.89, p-value = 0.021) than medical ICU patients. No additional significant differences were found with respect to age, gender, vasopressor infusions, or neuromuscular blockade.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

DISCUSSION

To the best of our knowledge, this is the first study to characterize the longitudinal

Page 12 of 33

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

pattern of sedation level over time in mechanically ventilated patients. We identified four distinct trajectories of sedation depth over the first 30 days after mechanical ventilation in our subjects. Only 34.6% patients were in an optimal depth of sedation during this period, whereas 13.2% were in the suboptimal range of RASS for most of this time, and the remaining patients achieved adequate depth of sedation 7 (early lightening: 38.4%) or 15 (delayed lightening: 13.9%) days after initiation. Patients who were at suboptimal levels of sedation throughout this period had a higher risk of mortality and lower probabilities of extubation and ICU discharge than those who were in consistently optimal level of sedation.

9 Group-based trajectory modeling is useful for characterizing longitudinal courses over 10 time to identify distinct subgroups.^{21 22} This trajectory model is used in different domains of 11 clinical research, such as nonadherence spectrum in newly-diagnosed juvenile epilepsy, health 12 status in outpatients with heart failure, neurologic postinjury recovery, and symptom burden 13 nuances of patients with metastatic cancer.²⁰ Therefore, group-based trajectory modeling is a 14 specialized method for sorting individuals into meaningful subgroups that show statistically 15 similar trajectories.

There were several significant differences in characteristics between the four trajectory groups. Patients in trajectory 1 (persistent suboptimal) experienced deep sedation throughout the study period, with RASS ranging from -3 to -5. This group was mainly characterized by elderly patients with cognitive impairment, admitted to a medical ICU for treating illnesses, such as respiratory problems, with the worst condition at admission. Conversely, patients in trajectory 2 (delayed lightening) experienced initial deep sedation, which improved to a light depth of RASS -2 after 15 days. This group was characterized by elderly patients with dementia with respiratory failure, receiving vasopressors, neuromuscular blockade, and renal replacement therapy. Interestingly, although the two trajectories had relatively similar

Page 13 of 33

BMJ Open

characteristics and the "delayed lightening" group even required more ICU support within the first 48 h, the "persistent suboptimal" group had worse time to extubation, ICU discharge, and hospital mortality. These findings suggest that the longitudinal course of sedation depth in our subjects was not associated with the severity of illness; the difference in sedation practice between the two trajectories might have resulted into different outcomes.

A prospective multicenter study, conducted across 42 international ICUs, demonstrated that the time to extubation and mortality increased with the sedation intensity.¹⁸ In observational, matched-pair analyses based on the APACHE II score and the type of admission, early deep sedation during the first 48 h of ICU stay was associated with worse outcomes, including long-term mortality.⁷ We report similar findings in our study upon comparing trajectories 3 and 4 with the earlier trajectories. Patients in trajectory 3 (early lightening) experienced early deep sedation, which became lighter after 7 days, whereas those in trajectory 4 (persistent optimal) experienced light sedation throughout. Patients in these groups were younger, had fewer medical conditions, and were mostly admitted to surgical ICUs than those in the other two groups. They also had lower APACHE I scores and needed lesser ICU support within the first 48 h. Patients in the "early lightening" group, especially, had the lowest APACHE score, the lowest proportion of renal replacement therapy, and the fewest respiratory problems. Nevertheless, multivariable Cox proportional hazard analysis showed that patients in this group had a lower probability of extubation and ICU discharge than those in the "persistent optimal" group. The early practice of inadequate sedation in the "early lightening" group might have induced this relatively worse prognosis in these patients. A recent meta-analysis assessing the literature on early sedation suggested that interventions targeting the depth of early sedation, starting with ICU admission, could improve patient outcomes.²³ Appropriate sedation is a critical aspect in the management of mechanically ventilated patients.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

We observed that 65.9% patients in our study were deeply sedated for at least the first week after mechanical ventilation, whereas only 34.07% patients received consistent light sedation throughout the sedation period. This finding is consistent with previous data describing the sedation depth. A multinational survey among intensivists reported that 74% patients monitored using a validated sedation tool were deeply sedated.²⁴ A survey in Germany found that the actual depth of sedation was significantly deeper (39.5%-62.4%) than the desired depth in all categories of sedation.²⁵ A Swedish study investigating the relationship between memory and sedation showed that only 39% of ventilated patients achieved their target sedation goal.²⁶ A previous systematic review estimated the incidence of over-sedation in ICUs at 40%–60%, despite the poor quality of epidemiologic data.² In a recent study conducted in the emergency department, the incidence of deep sedation was 52.8%.²⁷ These data suggest that deep sedation remains a common real-world ICU practice. To improve the quality of patient care, further research is warranted focusing on the longitudinal profile in addition to the binary concept of sedation, light versus deep.

Our study has a few limitations. First, information bias may exist because only patients visiting tertiary or university-affiliated hospitals were included in our study. Second, unmeasured confounders could have affected the trajectories, despite many relevant variables in our study. Moreover, nondifferential group of patients may have been misclassified. This restriction is inherent to group-based trajectory models with limited generalizability. Third, the causal relationship between trajectory and outcome could not be established in this study. For example, it is unclear whether a prolonged duration of extubation reflected the effects of sedative overdose, or whether more sedation was needed because of longer mechanical ventilation. However, the strength, consistency, temporal precedence of the association and agreement with existing evidence of this study suggested the possibility of causal

BMJ Open

relationship.²⁸ Thus, prospective and randomized controlled studies are required to investigate the interaction of two parameters (depth and duration) of sedation to better define the optimal practice. Fourth, there was a restriction on recruiting patients due to corona-19 crisis. Although the number of patients with mechanical ventilation increased in the corona-19 era, the lack of man-power in the ICU led to a low rate of registration. Finally, we were unable to examine the long-term complications in the trajectory groups. Further nationwide studies should evaluate long-term complications after sedation to comprehensively understand its socioeconomic and clinical burden.

9 In conclusion, this study captured the four trajectories of sedation level over time in 10 mechanically ventilated patients. The patterns were significantly associated with time to 11 extubation, ICU discharge, and hospital mortality. Our findings suggest sedation strategy in 12 ICU patient needs to incorporate a longitudinal pattern of sedation level.

elien

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

14 Acknowledgements

15 None

Contributors

18 CML, HYG, JHA have contributed to the study conception and design. Material preparation 19 was performed by HYG. Data collection was performed DH, JHA, CML. Statistical analysis 20 were performed by CMN and CY. The first draft of the manuscript was written by DH and 21 JHA, and all authors commented on previous versions of the manuscript. All authors have read 22 and approved the final manuscript.

24 Funding

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

This study was sponsored by Pfizer Korea Pharmaceuticals Ltd (Grant Number: N/A). The funding does not interfere with the analysis and interpretation of the data.

Competing Interests

Ha-Yeong Gil is an employee of Pfizer Korea. The other authors declare that they have no competing interests. The Pfizer Korea, sponsor of the present study, made no influence on study design, data collection and analysis, and writing.

Patient consent for publication

- Not applicable.

Ethic approval

The study protocol was approved by the Institutional Review Boards of all participating medical centers (B-1911/577-405, AJIRB-MED-OBS-19-372, AJIRB-MED-OBS-19-373, 1908-156-1058, 1908-157-1058, 1910-003-083, 2019-1624, 2019-1039, 2019-10-0321, 2019-09-040, 2019-10-162, GCIRB2019-366, DSMC 2019-08-018, HALLYM 2019-08-021, HALLYM 2019-08-022, 2019-09-010, 2019-08-082, DAUHIRB-19-166, 4-2019-0821, 4-2019-0820, 2019-09-011-002, 2019-07-038-002, CR-19-117-L, 2019AN0376, 2019AN0478, 20-2019-92, 20-2019-91, 2019GR0461, 2020GR0103, 2020AS0054). All patients (or patient representatives) provided their written informed consent. Some participating centers' local review boards waived the need for informed consent considering the observational nature of the study. This study was conducted per the amended Declaration of Helsinki.

2 3	1	Data	Availability statement					
4	1	Data Availability statement						
5 6 7	2	Data a	Data are available on request					
7 8 9	3							
9 10 11	4	References						
12 13	5	1.	Richards-Belle A, Canter RR, Power GS, et al. National survey and point prevalence					
14 15	6		study of sedation practice in UK critical care. Crit Care 2016;20:355.					
16 17 18	7	2.	Jackson DL, Proudfoot CW, Cann KF, et al. The incidence of sub-optimal sedation in					
19 20	8		the ICU: a systematic review. Crit Care 2009;13:R204.					
21 22	9	3.	Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-					
23 24 25	10		term mortality in ventilated critically ill patients. Am J Respir Crit Care Med					
25 26 27	11		2012;186:724-31.					
28 29	12	4.	Shehabi Y, Chan L, Kadiman S, et al. Sedation depth and long-term mortality in					
30 31	13		mechanically ventilated critically ill adults: a prospective longitudinal multicentre					
32 33 34	14		cohort study. Intensive Care Med 2013;39:910-8.					
35 36	15	5.	Desai SV, Law TJ, Needham DM. Long-term complications of critical care. Crit Care					
37 38	16		Med 2011;39:371-9.					
39 40	17	6.	Burry L, Rose L, McCullagh IJ, et al. Daily sedation interruption versus no daily					
41 42 43	18		sedation interruption for critically ill adult patients requiring invasive mechanical					
44 45	19		ventilation. Cochrane Database Syst Rev 2014;2014:Cd009176.					
46 47	20	7.	Balzer F, Weiß B, Kumpf O, et al. Early deep sedation is associated with decreased in-					
48 49 50	21		hospital and two-year follow-up survival. Crit Care 2015;19:197.					
50 51 52	22	8.	Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of					
53 54	23		pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med					
55 56	24		2013;41:263-306.					
57 58								
59 60			16					

Page 18 of 33

BMJ Open

3 4	1	9.	Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention					
5 6 7	2		and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep					
7 8 9	3		Disruption in Adult Patients in the ICU. Crit Care Med 2018;46:e825-e73.					
10 11	4	10.	Pearson SD, Patel BK. Evolving targets for sedation during mechanical ventilation.					
12 13	5		<i>Curr Opin Crit Care</i> 2020;26:47-52.					
14 15 16	6	11.	Guérin C. Calming Down about Sedation in Critically Ill Patients. N Engl J Med					
17 18	7		2020;382:1162-4.					
19 20	8	12.	Owen GD, Stollings JL, Rakhit S, et al. International Analgesia, Sedation, and Delirium					
21 22 23	9		Practices: a prospective cohort study. J Intensive Care 2019;7:25.					
24 25	10	13.	Yassin SM, Terblanche M, Yassin J, et al. A web-based survey of United Kingdom					
26 27	11		sedation practice in the intensive care unit. J Crit Care 2015;30:436.e1-6.					
28 29 30	12	14.	Sneyers B, Laterre PF, Perreault MM, et al. Current practices and barriers impairing					
31 32	13		physicians' and nurses' adherence to analgo-sedation recommendations in the intensive					
33 34	14		care unita national survey. Crit Care 2014;18:655.					
35 36 27	15	15.	Wøien H, Stubhaug A, Bjørk IT. Analgesia and sedation of mechanically ventilated					
37 38 39	16		patients - a national survey of clinical practice. Acta Anaesthesiol Scand 2012;56:23-9.					
40 41	17	16.	García-Sánchez M, Caballero-López J, Ceniceros-Rozalén I, et al. Management of					
42 43	18		analgesia, sedation and delirium in Spanish Intensive Care Units: A national two-part					
44 45 46	19		survey. Med Intensiva (Engl Ed) 2019;43:225-33.					
40 47 48	20	17.	Tanaka LM, Azevedo LC, Park M, et al. Early sedation and clinical outcomes of					
49 50	21		mechanically ventilated patients: a prospective multicenter cohort study. Crit Care					
51 52 53 54	22		2014;18:R156.					

BMJ Open

- 6	
of	
ive	-
CU	-
S).	
tab	tecter
uo	d by c
	Enseignement Superieur (ABES Protected by copyright, including for uses related to text and data mini
Rev	yht, in
	cludir
ind	ng for
cy.	Ense uses
	relate
nes	nent S d to te
A	ext and
А	eur (A d data
	BES) . mining
ive	ng, Al
Dne	trainii
	ng, an
are	d sim
ind	ilar te
	ining, Al training, and similar technologies.
	ogies.
ult	Ċ
	c
	-

2 3 4	1	18.	Shehabi Y, Bellomo R, Kadiman S, et al. Sedation Intensity in the First 48 Hours of
5 6	2		Mechanical Ventilation and 180-Day Mortality: A Multinational Prospective
7 8	3		Longitudinal Cohort Study. Crit Care Med 2018;46:850-9.
9 10 11	4	19.	Ely EW, Truman B, Shintani A, et al. Monitoring sedation status over time in ICU
12 13	5		patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS).
14 15	6		Jama 2003;289:2983-91.
16 17 18	7	20.	Nagin DS. Group-based trajectory modeling: an overview. Ann Nutr Metab
19 20	8		2014;65:205-10.
21 22	9	21.	Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annu Rev
23 24 25	10		<i>Clin Psychol</i> 2010;6:109-38.
25 26 27	11	22.	Nagin D, Tremblay RE. Trajectories of boys' physical aggression, opposition, and
28 29	12		hyperactivity on the path to physically violent and nonviolent juvenile delinquency.
30 31	13		<i>Child Dev</i> 1999;70:1181-96.
32 33 34	14	23.	Stephens RJ, Dettmer MR, Roberts BW, et al. Practice Patterns and Outcomes
35 36	15		Associated With Early Sedation Depth in Mechanically Ventilated Patients: A
37 38	16		Systematic Review and Meta-Analysis. Crit Care Med 2018;46:471-9.
39 40 41	17	24.	Luetz A, Balzer F, Radtke FM, et al. Delirium, sedation and analgesia in the intensive
41 42 43	18		care unit: a multinational, two-part survey among intensivists. PLoS One
44 45	19		2014;9:e110935.
46 47	20	25.	Martin J, Franck M, Fischer M, et al. Sedation and analgesia in German intensive care
48 49 50	21		units: how is it done in reality? Results of a patient-based survey of analgesia and
50 51 52	22		sedation. Intensive Care Med 2006;32:1137-42.
53 54	23	26.	Samuelson K, Lundberg D, Fridlund B. Memory in relation to depth of sedation in adult
55 56	24		mechanically ventilated intensive care patients. Intensive Care Med 2006;32:660-7.
57 58 59 60			18

3 4	1	27.	Fuller BM, Roberts BW, Mohr NM, et al. The ED-SED Study: A Multicenter,
5 6	2		Prospective Cohort Study of Practice Patterns and Clinical Outcomes Associated With
7 8	3		Emergency Department SEDation for Mechanically Ventilated Patients. Crit Care Med
9 10 11	4		2019;47:1539-48.
12 13	5	28.	Austin Bradford Hill. The environment and disease: association or causation? J R Soc
14 15	6		Med 2015;108:32-7.
16 17 18	7		
19 20	8		
21 22	9		
23 24 25	10		
26 27	11		
28 29	12		
30 31 32	13		
33 34	14		
35 36	15		
37 38 39	16		
40 41	17		
42 43	18		
44 45 46	19		
47 48	20		
49 50	21		
51 52 53	22		
54 55	23		
56 57	24		
58 59 60			19

1 2		
- 3 4	1	Figure Legends
5 6	2	Figure 1 Trajectories of longitudinal Richmond Agitation Sedation Scale in the first 30 days
7 8 9	3	of sedation for mechanical ventilation. The percentage of patients included in each trajectory
10 11	4	were presented in central illustration. Outcome of y-axis indicates the score of richmond
12 13	5	agitation sedation scale and T of x-axis represents day after the initiation of sedation.
14 15 16	6	
17 18	7	Figure 2 Kaplan-Meier of clinical outcomes from admission according to the trajectory
19 20	8	groups. (a) time to extubation in the intensive care unit, (b) length of stay in the intensive care
21 22	9	unit, (c) in-hospital mortality.
23 24 25	10	
26 27	11	
28 29	12	
30 31 32	13	
33 34	14	
35 36	15	
37 38	16	
39 40 41	17	
42 43	18	
44 45	19	
46 47 48	20	
48 49 50	21	
51 52	22	
53 54	23	
55 56 57	24	
58 59		
60		20

Table 1 Baseline Characteristics and Clin	nical Outcomes for th	e Total Cohort and for	Each Trajectory of	the Richmond Agient	io Sedation Scale	
				tory group	No	
Characteristic	All (N = 631)	1 (N = 67)	2 (N = 84)	3 (N = 265)	9 4 (N = 215)	<i>p</i> -value
Age						0.002
20–29	11 (1.74%)	0 (0.00%)	2 (2.38%)	6 (2.26%)	3 (1.40%)	
30–39	34 (5.39%)	0 (0.00%)	2 (2.38%)	12 (4.53%) đ	20 (9.30%)	
40–49	44 (6.97%)	3 (4.48%)	11 (13.10%)	13 (4.91%)	3 17 (7.91%)	
50–59	92 (14.58%)	6 (8.96%)	6 (7.14%)	44 (16.60%) 5	36 (16.74%)	
60–69	140 (22.19%)	12 (17.91%)	17 (20.24%)	60 (22.64%) §		
70–79	177 (28.05%)	22 (32.84%)	23 (27.38%)	80 (30.19%) and	52 (24.19%)	
≥80	133 (21.08%)	24 (35.82%)	23 (27.38%)	50 (18.87%) d		
Male gender	404 (64.0)	44 (65.67)	57 (67.86)	165 (62.26) at 5	138 (64.19)	0.807
Body weight, kg*	62.0 (53.0-71.0)	62.25 ± 10.69	62.81 ± 13.31	62.51 ± 13.01	63.79 ± 17.62	0.785
Comorbidity	448 (71.00)	50 (74.62)	65 (77.38)		150 (69.76)	0.434
Diabetes with end-organ damage	30 (4.31)	2 (4.00)	2 (3.07)	14 (7.65)	12 (8.00)	0.573
COPD	60 (8.6)	7 (14.00)	8 (12.30)	25 (13.66) fa	20 (13.33)	0.994
Congestive heart failure	49 (7.0)	3 (6.00)	7 (10.76)	19 (10.38) D i	20 (13.33)	0.596
Moderate-to-severe liver disease**	27 (3.8)	3 (6.00)	3 (4.61)	19 (10.38) ni 9 (4.91) g 18 (9.83) nd	12 (8.00)	0.681
Moderate-to-severe CKD**	46 (6.6)	5 (10.00)	3 (4.61)	18 (9.83) d	2 0 (13.33)	0.375
Solid tumor	127 (18.2)	19 (38.00)	15 (23.07)	48 (26.22) S	o 45 (30.00)	0.278
Dementia	35 (5.0)	6 (12.00)	9 (13.84)	16 (8.74) ar	د 4 (3.00)	0.010
Cerebrovascular disease/TIA	82 (11.7)	14 (28.00)	14 (21.53)	28 (15.30) ह	De 26 (17.33)	0.101
Type of admission				hnc	13,	0.023
Medical	307 (48.6)	41 (61.19)	49 (58.33)	124 (46.79) og	8 93 (43.26)	
Emergency surgery	193 (30.5)	19 (28.36)	25 (29.76)	78 (29.43)	a) 71 (33.02)	
Scheduled surgery	131 (20.7)	7 (10.45)	10 (11.90)	63 (23.77)	b 51 (23.72)	
Type of ICU					b 51 (23.72) c 68 (31.63)	0.001
Medical ICU	236 (37.4)	35 (52.24)	41 (48.81)	92 (34.72)	68 (31.63)	
Surgical ICU	371 (58.8)	30 (44.78)	42 (50.00)	157 (59.25)	bi ographique de	

Page	23	of	33
------	----	----	----

BMJ Open

d by copyri bmjopen-2(

				ight,	023-	
Others	24 (3.8)	2 (2.99)	1 (1.19)	in 16 (6.04) 16 min	5 (2.33)	
Reason for ICU admission***				ding	8	
Renal	16 (2.5)	1 (1.49)	0 (0.00)	7 (2.64) 5	8 (3.72)	0.294
Digestive	83 (13.1)	10 (14.93)	12 (14.29)	28 (10.57)	2 33 (15.35)	0.434
Cardiovascular	147 (23.3)	15 (22.39)	16 (19.05)	68 (25.66) 8 3	e 48 (22.33)	0.610
Hematologic	14 (2.2)	2 (2.99%)	3 (3.57%)	4 (1.51%) reign	NO 5 (2.33%)	0.679
Respiratory	359 (56.8)	43 (64.18%)	57 (67.86%)	136 (51.32%) É	3 123 (57.21%)	0.030
Miscellaneous	67 (10.6)	3 (4.48%)	11 (13.10%)		8 19 (8.84%)	0.152
Neurologic	12 (1.9)	3 (4.48%)	1 (1.19%)	4 (1.51%) e u	1 4 (1.86%)	0.418
Others	105 (16.6)	11 (16.42%)	13 (15.48%)	42 (15.85%) and	3 9 (18.14%)	0.907
APACHE II, score*	23.4 ± 10.0	27.82 ± 9.73	25.28 ± 11.45			< 0.001
ICU support within first 48 hours		0		ta r	24.07 ± 9.56	
Vasopressor infusions	486 (77.02)	57 (85.07)	77 (91.67)	199 (75.09) ni 5	153 (71.16)	< 0.001
Renal replacement	107 (16.9)	11 (16.42)	22 (26.19)	37 (13.96) g ·	37 (17.21)	0.078
Neuromuscular blockade	171 (27.1)	27 (40.30)	39 (46.43)	69 (26.04) ≥	36 (16.74)	< 0.001
Clinical outcomes				traii	pe	
In-hospital mortality	77 (12.2)	33 (49.52)	18 (21.43)	18 (6.79) n	8 (3.72)	< 0.001
ICU discharge	555 (87.9)	45 (67.16)	67 (79.76)	245 (92.45) a	198 (92.09)	< 0.001
Extubation	571 (90.4)	46 (68.66)	66 (78.57)	253 (95.47) d	206 (95.81)	< 0.001
Length of ventilator support, days	5 (3-11)	11 (20–NE)	11.5 (7–23.5)	5 (3-8) B	9 3 (2–5)	< 0.001
ICU length of stay, days	10 (5-18)	20 (12–NE)	18 (10-26)	9 (6–14)	L 4 (6–10)	< 0.001

Data are reported as mean \pm standard deviation or median (interguartile range) for continuous variables and number (perce $\frac{1}{2}$ age) for categorical variables. *Data on body weight are presented for all 605 patients, excluding 26 patients with missing data (4 in the light sedation group and 22 in the deep sedation group). Data on APACHE I are presented for all 577 patients, excluding 54 patients with missing data (15 in the light sedation group and $\frac{2}{9}$ in the deep sedation group). **Severe to moderate liver disease are defined as cirrhosis and portal hypertension with or without variceal bleeding histor Severe to moderate CKD are defined as at serum creatinine > 3 mg/dL or on dialysis or post-kidney transplant status or uremia status. õ ***172 patients had multiple reasons for ICU admission. ICU = intensive care unit; SMD = standardized mean difference; COPD = chronic obstructive pulmonary disease; CKD = chroneck kidney disease; TIA = transient

ischemic attack; APACHE II = acute physiology and chronic health evaluation II; NE = not estimated Bibliographique de l

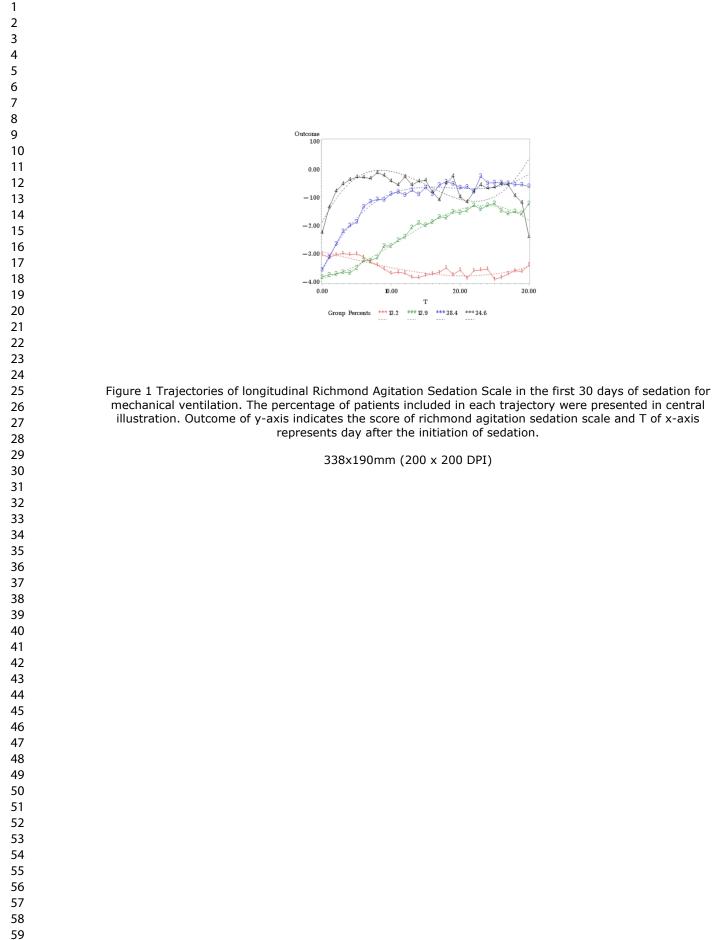
d by copyrig bmjopen-20

Page	24	of	33
ruge	27	U,	55

			923-0 ght, i	
Table 2 Summary of the demogra	aphics of the trajectories and the tr	ajectory ranks for characteristics	ncludii	
	Trajectory 1	Trajectory 2	Trajectory 3 G S	Trajectory 4
Demographics			or u	
Age	70–79 & ≥80	70–79 & ≥80	60–69 & 70–-79 g Hun	60–69 & 70–-79
Gender	Male	Male	Male R. 2	Male
Comorbidity	Solid tumor, CVD/TIA, COPD	Solid tumor, CVD/TIA, Dementia	Solid tumor, COPD	Solid tumor, CVD/TIA, COPD
Type of ICU	Medical ICU	Surgical ICU		Surgical ICU
Reason for ICU admission	Respiratory & Cardiovascular	Respiratory & Cardiovascular	Respiratory & Catol Respiratory	Respiratory & Cardiovascular
Ranks for characteristics			aded	
Medical admission	1st	2nd	3rd data from 2nd AB from 4th nicson	4th
Scheduled surgery	4th	3rd	2nd	1st
АРАСНЕ 🛙	1st	2nd	4th	3rd
Vasopressor infusions	2nd	1st	3rd 🙇 👼	4th
Renal replacement therapy	3rd	1st	4th Art Jo	2nd
Neuromuscular blockade	2nd	1st	3rd	4th

 Neuromuscular blockade
 Int
 Int
 Int
 Int

 Neuromuscular blockade
 2nd
 1st
 3rd
 Int
 I


Page	25 of	33
------	-------	----

BMJ Open

	portional Hazard regression Time to extu	1	Time to ICU discharge		d by copyright, including	bmjopen-2023-072628 on Time to in-hos	Time to in-hospital death	
	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value	ę	NR (95% CI)	<i>p</i> -value	
Trajectory group				1	Ens uses			
Group 1	0.23 (0.16–0.32)	< 0.001	0.36 (0.26–0.51)	< 0.001	문	₩3.62 (5.99–30.95)	< 0.001	
Group 2	0.30 (0.23–0.41)	< 0.001	0.44 (0.33–0.59)	< 0.001	ne	6 .62 (2.36–13.38)	< 0.001	
Group 3	0.72 (0.59–0.87)	< 0.001	0.80 (0.65–0.97)	0.024	nnei d t	8 .76 (0.76–4.08)	0.185	
Group 4	Reference		Reference		o te	Reference		
Age					t a	Reference Ogg		
20–29	Reference		Reference		nd u	eference		
30–39	1.08 (0.53–2.21)	0.825	0.70 (0.35–1.42)	0.334	Jr (7 Jata	ğ .69 (0.06–7.72)	0.765	
40–49	0.89 (0.43–1.81)	0.748	0.63 (0.31–1.25)	0.188		9 .59 (0.06–5.28)	0.641	
50–59	1.04 (0.53–2.03)	0.893	0.65 (0.34–1.23)	0.192		2.41 (0.04–3.46)	0.414	
60–69	1.00 (0.52–1.93)	0.987	0.79 (0.42–1.48)	0.469	9, A	8.88 (0.11-6.75)	0.905	
70–79	1.04 (0.54–1.99)	0.893	0.64 (0.34–1.20)	0.170		9 .47 (0.06–3.65)	0.473	
≥80	0.85 (0.44–1.64)	0.632	0.53 (0.28–1.00)	0.052	ni.	82 (0.10-6.26)	0.850	
Female	0.85 (0.71–1.01)	0.075	0.98 (0.81–1.17)	0.848	ng,	1 .17 (0.73–1.89)	0.50	
Type of admission			N		and	G		
Medical	Reference		Reference		sin	Reference		
Emergency surgery	1.02 (0.79–1.32)	0.839	1.17 (0.90–1.53)	0.234	simila	J .35 (0.62–2.91)	0.444	
Scheduled surgery	2.13 (1.64–2.78)	< 0.001	2.10 (1.59–2.78)	< 0.001	r teo	5 .91 (0.87–4.16)	0.102	
Type of ICU					chn	13		
Medical ICU	Reference		Reference		olog	Beference		
Surgical ICU	1.05 (0.83–1.33)	0.629	0.87 (0.68–1.12)	0.299		9 .45 (0.23–0.89)	0.021	
Others	1.53 (0.96–2.40)	0.068	1.28 (0.80–2.06)	0.289		55 (0.12–2.47)	0.441	
Vasopressor infusions	0.85 (0.69–1.04)	0.116	0.85 (0.69–1.04)	0.122		g .25 (0.62–2.51)	0.529	
Neuromuscular blockade	1.05 (0.86–1.28)	0.586	0.88 (0.72–1.07)	0.217		8 .42 (0.88–2.29)	0.148	

bmjopen-2023-072628 on 27 June 2023. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . by copyright, including for uses related to text and data mining, Al training, and similar technologies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

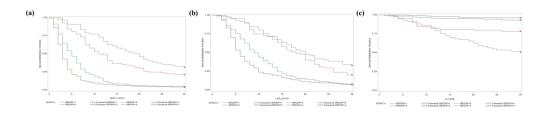


Figure 2 Kaplan-Meier of clinical outcomes from admission according to the trajectory groups. (a) time to extubation in the intensive care unit, (b) length of stay in the intensive care unit, (c) in-hospital mortality.

338x190mm (200 x 200 DPI)

BMJ Open

Longitudinal trajectories of sedation level and clinical outcomes in mechanically ventilated patients: a prospective, multicenter, longitudinal, observational study

Dong-gon Hyun, M.D.¹, Jee Hwan Ahn, M.D.¹, Ha-Yeong Gil, M.S.², Chung Mo Nam, Ph.D.³, Choa Yun, M.S.⁴, Chae-Man Lim, M.D., Ph.D.¹*

¹Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

²Medical Research Project Team, IM Medical, Pfizer Korea Pharmaceuticals Ltd., Seoul, Republic of Korea

³Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

⁴Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea

*Corresponding author: Chae-Man Lim, M.D., Ph.D., FCCM

E-mail: <u>cmlim@amc.seoul.kr</u>

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 33
33 34
35
36
37
38
39
40
41
42
43
44
45
46 47
47 48
48 49
49 50
50
52
53
54
55
56
57
58
59
60

60

City	Participating hospitals	Investigators	
Seoul	Asan Medical Center	Dong-gon Hyun, Jee Hwan Ahn,	
		Suk-Kyung Hong, Chae-Man	
		Lim	
Seoul	Seoul National University Hospital	Sang-Min Lee, Ho-Geol Ryu	
Seoul	Samsung Medical Center	Gee Young Suh, Chi Min Park	
Seoul	Severance Hospital	Su Hwan Lee, Jeoung Min Kim	
Seoul	Seoul St. Mary's Hospital	Seok Chan Kim	
Seoul	Korea University Anam Hospital	Won Jai Jung, Jae-Myeong Lee	
Seoul	Korea University Guro Hospital	Young-Seok Lee, Nak-Jun Choi	
Seoul	Seoul National University Boramae	Taeyun Park	
	Medical Center		
Seongnam	Seoul National University Bundang	Dong Jung Kim	
_	Hospital		
Suwon	Ajou University School of Medicine	Keu Sung Lee, Young-Gi Min	
Busan	Pusan National University Hospital	Jae Hun Kim	
Busan	Dong-A University Hospital	Dong-Hyun Lee	
Busan	Inje University Haeundae Paik Hospital	Hang-Jea Jang, Ki Hoon Kim	
Wonju	Yonsei University Wonju College of	Seok Jeong Lee	
	Medicine		
Incheon	Gachon University Gil Medical Center	Woo-Sung Choi	
Daegu	Keimyung University School of Medicine	Jae-Bum Kim	
Daegu	Yeungnam University Medical Center	Eun Young Choi, Jong-Hyun	
		Baek	
Daegu	Daegu Catholic University Medical Center	Eun Jin Kim	
Anyang	Hallym University Sacred Heart Hospital	Sunghoon Park, Hyung Won	
_		Kim	
Ansan	Korea University Ansan Hospital	Je Hyeong Kim	

Table S1. Participating intensive care units

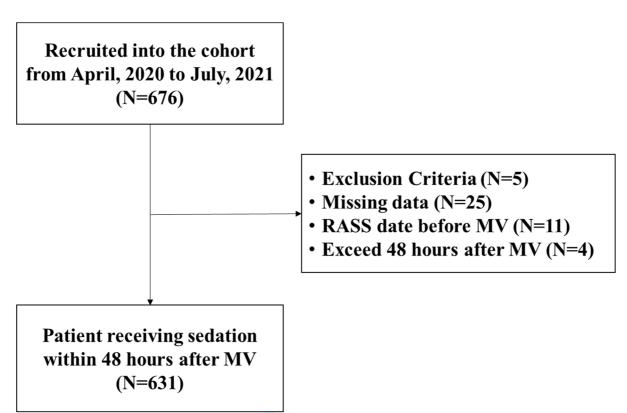

1 2	
3 4	
5 6	
7 8 9	
10 11	
12 13	
14 15	
16 17 18	
19 20	
21 22	
23 24 25	
26 27	
28 29	
30 31 32	
33 34	
35 36 37	
37 38 39	
40 41	
42 43 44	
44 45 46	
47 48	
49 50 51	
52 53	
54 55	
56 57	
58 59	

Table S2.	Profile	of analgesi	c and sedativ	ve within th	ne first 48 hours
	I I OI IIC	or unungeon	e una seaun		to mound

Type of Sedatives	N = 662
Diazepam	1 (0.2)
Cumulative dose (µg)	2000.0
Midazolam	127 (19.2)
Cumulative dose (µg)	64253.9 ± 133338.1
Lorazepam	14 (2.1)
Cumulative dose (µg)	2750 ± 1868.3
Other benzodiazepine	19 (2.9)
Cumulative dose (µg)	34294.7 ± 53960.7
Propofol	173 (26.1)
Cumulative dose (µg)	3444220.1 ± 2752320.0
Ketamine	53 (8.0)
Cumulative dose (µg)	1450147.2 ± 1830958.4
Haloperidol	1 (0.2)
Cumulative dose (µg)	5000.0
Dexmedetomidine	253 (38.2)
Cumulative dose (µg)	4080.2 ± 38325.4
Other non-benzodiazepine	21 (3.2)
Cumulative dose (µg)	75659.5 ± 133078.2
Type of analgesics	N = 528
Fentanyl	119 (22.5)
Cumulative dose (µg)	30861.1 ± 315168.1
Remifentanil	388 (73.5)
Cumulative dose (µg)	• 13227.8 ± 10971.7
Morphine	6 (1.1)
Cumulative dose (µg)	24000.0 ± 38740.2
Sufentanil	15 (2.8)
Cumulative dose (µg)	285.4 ± 280.6

Data are reported as means \pm standard deviation for continuous variables and numbers (percentage) for categorical variables.

RASS = Richmond agitation-sedation scale

Figure S1. Flow diagram of patients in the present study. MV = mechanical ventilation; RASS = Richmond agitation-sedation scale

		BMJ Open by copyright	
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of content studies	
Section/Topic	ltem #	Recommendation	Reported on page
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		័រ ភូតិ (b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported 6 g	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods	1	and a seried	
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifier Give diagnostic criteria, if	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which gou bongs were chosen and why	5
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(c) Explain how missing data were addressed Image: Comparison of the second s	6
		(e) Describe any sensitivity analyses	6

 phique de l

		BMJ Open BMJ Open-202	Page
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, exangine of the stage of study and the study and the study and the stu	7
		eligible, included in the study, completing follow-up, and analysed	7
			7
Descriptive data	14*	(c) Consider use of a flow diagram (a) Give characteristics of study participants (eg demographic, clinical, social) and information 중 하는 Constant of Confounders	7
		(b) Indicate number of participants with missing data for each variable of interest	8
		(b) Indicate number of participants with missing data for each variable of interest a b b b c 	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precedence interval). Make clear which confounders were adjusted for and why they were included	8
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion		a, bmj	
Key results	18	Summarise key results with reference to study objectives	9
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information		ar te un	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, by the original study on which the present article is based	13

👋 مې *Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in coss-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine 👼 rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www. Bobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Longitudinal trajectories of sedation level and clinical outcomes in patients who are mechanically ventilated based on a group-based trajectory model: a prospective, multicenter, longitudinal, and observational study in Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072628.R2
Article Type:	Original research
Date Submitted by the Author:	09-Jun-2023
Complete List of Authors:	Hyun, Dong-gon; Asan Medical Center, Ahn, Jee Hwan; University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine Gil, Ha-Yeong; pzfier Nam, Chung Mo; Yonsei University College of Medicine, Preventive Medicine Yun, Choa; Department of Biostatistics & Computing, College of Medicine, Yonsei University Lim, Chae-Man; University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Epidemiology
Keywords:	Adult anaesthesia < ANAESTHETICS, EPIDEMIOLOGY, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Thoracic medicine < INTERNAL MEDICINE
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Page 2 of 33

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

Longitudinal trajectories of sedation level and clinical outcomes in patients who are

2	mechanically ventilated based on a group-based trajectory model: a prospective,
3	multicenter, longitudinal, and observational study in Korea
4	
5	Dong-gon Hyun ¹ , Jee Hwan Ahn ¹ , Ha-Yeong Gil ² , Chung Mo Nam ³ , Choa Yun ⁴ , Chae-Man
6	Lim ¹ *
7	¹ Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of
8	Ulsan College of Medicine, Seoul, Republic of Korea
9	² Medical Research Project Team, IM Medical, Pfizer Korea Pharmaceuticals Ltd., Seoul,
10	Republic of Korea
11	³ Department of Preventive Medicine, Yonsei University College of Medicine, Seoul,
12	Republic of Korea
13	⁴ Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University
14	College of Medicine, Seoul, Republic of Korea
15	
16	*Corresponding author: Chae-Man Lim, M.D., Ph.D., FCCM
17	E-mail: <u>cmlim@amc.seoul.kr</u>
18	
19	Word Count: 3201
20	
21	
22	
23	
24	

ABSTRACT

Objectives: Changes in sedation levels over a long time in patients who are mechanically ventilated are unknown. Therefore, we investigated the long-term sedation levels of these patients by classifying them into different longitudinal patterns.

Design: This was a multicenter, prospective, longitudinal, and observational study.

Setting: Twenty intensive care units (ICUs) spanning several medical institutions in Korea.

Participants: Patients who received mechanical ventilation and sedatives in ICU within 48 h of admission between April 2020 and July 2021.

Primary and secondary outcome measures: The primary objective of this study was to identify the pattern of sedation practice. Additionally, we analyzed the associations of trajectory groups with clinical outcomes as the secondary outcome.

Results: Sedation depth was monitored using Richmond agitation-sedation scale (RASS). A group-based trajectory model was used to classify 631 patients into four trajectories based on sedation depth: persistent suboptimal (13.2%, RASS ≤ -3 throughout the first 30 days), delayed lightening (13.9%, RASS ≥ -2 after the first 15 days), early lightening (38.4%, RASS ≥ -2 after the first 7 days), and persistent optimal (34.6%, RASS ≥ -2 during the first 30 days). "Persistent suboptimal" trajectory was associated with delayed extubation (hazard ratio [HR] 0.23, 95% confidence interval [CI] 0.16–0.32, p < 0.001), longer ICU stay (HR 0.36, 95% CI 0.26–0.51, p < 0.001), and hospital mortality (HR 13.62, 95% CI 5.99–30.95, p< 0.001) compared with "persistent optimal". The "delayed lightening" and "early lightening" trajectories showed lower extubation probability (HR 0.30, 95% CI 0.23–0.41, p < 0.001; HR 0.72, 95% CI 0.59–0.87, p < 0.001, respectively) and ICU discharge (HR 0.44, 95% CI 0.33–0.59; p < 0.001 and HR 0.80, 95%CI 0.65–0.97; p = 0.024) compared with "persistently optimal."

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

2		
3 4	1	Conclusions: Among the four trajectories, "persistent suboptimal" trajectory was associated
4 5		
6	2	with higher mortality.
7	2	
8 9	3	
9 10	4	Keywords: deep sedation; intensive care units; mortality; critical care; mechanical ventilators
11	4	Reywords. deep sedation, intensive care units, mortanty, entical care, incenanical ventilators
12	5	
13 14	C	
15	6	STRENGTHS AND LIMITATIONS OF THIS STUDY
16		
17	7	\Rightarrow Large national data from 20 ICUs in Korea representing real-world practice
18 19		
20	8	\Rightarrow An investigation into the long-term sedation level in patients who are mechanically
21		
22	9	ventilated
23 24		
25	10	\Rightarrow A group-based trajectory model identifying patterns of sedation over time
26		
27 29	11	\Rightarrow Misclassification of nondifferential group as inherent restriction of group-based trajectory
28 29		
30	12	models with limited generalizability
31		
32 33	13	\Rightarrow Unclear causal relationship between trajectory and outcome
33 34		
35	14	
36	1.7	
37 38	15	
39	16	
40	10	
41 42	17	
42 43		
44	18	
45		
46 47	19	
48	20	
49	20	
50	21	
51 52	21	
53	22	
54		
55 56	23	
50 57	<i>.</i> .	
58	24	
59 60		3
60		

BMJ Open

1 INTRODUCTION

Sedation is crucial to promote tolerance in patients during mechanical ventilation in the intensive care unit (ICU).¹ Previously, ICU patients were considered unnecessarily oversedated, and the tools to assess the depth of sedation varied widely.² Inappropriate sedation was associated with adverse outcomes, such as prolonged ventilation, longer ICU stay, and higher post-ICU psychological concerns.³⁻⁶ Over-sedation also predicted long-term mortality in critically ill patients.⁷ Considering its essential role in the care of patients who were mechanically ventilated, international guidelines guide to improve sedation practice for favorable outcomes in ICU patients.⁸⁻¹⁰

Currently, sedation monitoring in the ICU is clinically recommended to achieve low levels of sedation,¹¹ though real-world implementation is debated.¹² Longitudinal studies on the level of sedation over a long time are limited. Previous national surveys mainly focused on the type of sedatives and assessment tools.¹³⁻¹⁶ Moreover, most studies are cross-sectional, evaluating the association between the sedation levels for the first 2–3 days and clinical outcomes.¹⁷ ¹⁸ Therefore, we aimed to investigate long-term sedation levels in a national cohort of patients who were mechanically ventilated by classifying them into different longitudinal patterns. We further assessed the association between these patterns and clinical outcomes.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

20 METHODS AND ANALYSIS

21 Study design

We conducted a multicenter, prospective, longitudinal, and observational cohort study in 20 ICUs in Korea between April 2020 and July 2021, sponsored by Pfizer Korea Pharmaceuticals Ltd. and involved 30 investigators (Table S1). We designed a harmonized

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

electric case report form that was centrally managed and combined into one database for data entry, day queries, and analysis. During the study period, patients were recruited according to the number of available patients at each ICU. Principal investigators, research staff, and nurses at each participating center were trained in the study procedures. The decisions regarding a patient's care were at the discretion of the attending medical staff. Our inclusion criteria were as follows: patients >19 years of age, who had undergone mechanical ventilation and sedation in the ICU within 48 h and were expected to remain sedated and on mechanical ventilation for >48 h. We excluded patients with a disease that was likely to cause death within 90 days, those whose treatment had been discontinued owing to imminent death or noneffective therapy, and those who needed nonselective deep sedation owing to medical conditions, including brain damage and hemorrhage, spinal cord injury, drug overdose, burns, and nerve root block.

14 Monitoring of sedation and measurement of outcome

We monitored sedation depth using the Richmond agitation-sedation scale (RASS), ranging from -5 to +4 every 8 h until ICU discharge or day 30.¹⁹ The daily depth of sedation was calculated as the median RASS value for 1 day. The primary objective of this study was to identify the pattern of sedation practice. Group-based trajectory models have been widely used for analyzing developmental trajectories.²⁰ They can address the dynamic profile of sedation by classifying patients into different trajectories of sedation level over time. We used a group-based trajectory model analyzing a scale form of RASS over the first 30 days after enrollment. To characterize each trajectory group, an analysis between the trajectory groups and the patients' characteristics was also performed. The secondary objective included associations of trajectory groups with clinical outcomes by adjusting for covariates.

1

2	
3	
4	
5	
6	
7	
γ Q	
0	
6 7 8 9 10	
10	
11	
12	
13	
12 13 14 15	
12 13 14 15	
16	
17	
18	
19	
20	
21	
22	
23	
16 17 18 19 20 21 22 23 24 25	
25	
26	
27	
26 27 28 29 30	
20	
20	
21	
31 32	
32	
33	
33 34 35	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
55 56	
57	
58	
59	
60	

2 Covariates

3 Demographic, clinical, and laboratory data, including age, gender, reason for ICU 4 admission, type of ICU admission, comorbidities, and illness severity (acute physiology and 5 chronic health evaluation [APACHE] I score), were collected. Moderate-to-severe liver 6 disease was defined as cirrhosis and portal hypertension with or without variceal bleeding 7 history. Moderate-to-severe chronic kidney disease was defined as serum creatinine >3 8 mg/dL or on dialysis or post-kidney transplant status or uremia status. The need for 9 vasopressors, renal replacement therapy, and neuromuscular blockade was also recorded. We 10 collected and calculated the daily cumulative dose and the number of days prescribed for the 11 sedatives and analgesics administered to patients during their ICU stay. Patients were 12 followed-up until hospital discharge, death, or day 30 in the ICU. Clinical outcomes, 13 including ICU discharge, ventilator days, and survival status, were recorded.

14

15 **Patient and public involvement**

16 The patient and public were not involved in the design, conduct, reporting, or 17 dissemination plans of this research. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

18

19 Sample size

The sample size was initially calculated for the study to evaluate the difference in ICU lengths of stay between patients with early deep sedation and with early light sedation.²¹ Considering previous results reporting that the hazard ratio (HR) of ICU length between the sedation group (n = 70) and non-sedation group (n =70) was 1.86 (95% CI 1.05–3.23), the following values were required to calculate the number of subjects: $S_{Deep Sedation} = e^{-\lambda_{Deep} * t}$

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

 $= e^{-0.03 * 28} = 0.43$, $S_{Light Sedation} = e^{-\lambda_{Light} * t} = e^{-0.02 * 28} = 0.57$, and HR = 1.5.²² The importance of the two-sided test was set at 5%, the power was 80%, and the ratio between the light and deep sedation groups was set at 3:7. The sample size was inflated by approximately 30% to account for attrition. No interim efficacy analyses were planned. Finally, 660 patients were planned. Thereafter, this study to classify the pattern of sedation over time was conducted by using this sample.

Statistical analysis

9 The pattern of sedation over time was described using a group-based trajectory model 10 that identified differential patterns of individual change in the population. The parameters of 11 GBTM are generated by maximum likelihood estimation. The ultimate objective is to 12 estimate a set of parameters, Ω , that maximize the probability of $Y_i = (y_{i1},...,y_{it})$. The 13 equation describing the likelihood of an individual's observed repeated measures comprises 14 two elements: (1) the probability of group membership and (2) the probability of the observed 15 data given group membership. The finite mixture model is defined by

$$P(Y_i) = \sum_k \pi_k P^k(Y_i),$$

17 where *k*: trajectory group, i (= 1,...,N): subject, and j (= 1,...,T): measurement time. The 18 group membership probabilities,

$$\pi_k = e^{ heta_k} / \sum_k e^{ heta_k}$$

k = 1,...,K, are not observed, so estimated by a multinomial logit function. For a given k, conditional independence is assumed for the sequential realizations of the elements of Y_i , y_{ij} , over the *T* periods of measurement. This assumption implies that for each individual within a given trajectory group k, the distribution of y_{ij} for period *T* is independent of the realized Page 9 of 33

BMJ Open

level of the outcome in prior periods. The likelihood function is $L = \prod_{i=1}^{N} P(y_i | z_i, w_i)$ where $p(y_i|z_i, w_i) = \sum_{k=1}^{K} p(C_i = k | Z_i = z_i) p(Y_i = y_i | C_i = k, W_i = w_i)$; the first term is the probability of group membership and the second term is the probability of the observed data membership. $Y_i = (Y_{i1}, ..., Y_{iT}), Z_i = (Z_{i1}, ..., Z_{iR}), W_i = (W_{i1}, ..., W_{iT}), p =$ given group $\frac{\exp(\theta_k + \lambda'_k z_i)}{\sum_{k=1}^{K} \exp(\theta_k + \lambda'_k z_i)}, \text{ and } p(Y_i = y_i \mid C_i = k, W_i = w_i), \text{ which is specified by the distribution of } Y_i.$ For count data, it is specified as the zero-inflated Poisson distribution, for censored data, the censored normal distribution and for binary data, it is specified as the binary logit distribution for binary data. In this study, we use a censored normal model. The final model was selected based on a combination of the Bayesian information criterion and the estimated trajectory group proportions that were sufficiently large.

Data are presented as numbers and proportions for categorical variables and as means ± standard deviations or medians (interquartile range) for continuous variables. Differences between groups were analyzed using the χ^2 test or Fisher's exact test and the independent two-sample t-test or Mann-Whitney U test with a normal or non-normal distribution, as appropriate. The normality of the data was assessed by inspecting histograms. For time-to-event analysis, the Kaplan-Meier method was used to estimate survival curves, whereas a log-rank test was used to test the importance of the differences. Univariable and multivariable Cox proportional hazards regression models were used to identify associations with clinical outcomes by adjusting known prognostic covariates, including age, gender, type of admission, type of ICU, vasopressor, and neuromuscular blockade. The results are presented as HR with 95% confidence interval (CI). Two-sided *p*-values <0.05 indicated significance. All analyses were performed using Statistical Analysis System (SAS) software version 9.4 (SAS Institute, Cary, NC).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

RESULTS

In 20 participating centers, 676 patients were recruited from April 2020 to July 2021 (Figure S1). Of them, 45 patients were excluded because of missing data, an RASS date before mechanical ventilation, or were enrolled ≥ 48 h after mechanical ventilation. The final cohort included 631 patients. In this study, four-group solutions that best characterized the cohort were identified. A four-group model was chosen for the cohort based on specified selection criteria: trajectory 1 (persistent suboptimal; 13.2% of patients, RASS level ≤ -3 throughout the 30 days), trajectory 2 (delayed lightening; 13.9% of patients, RASS level ≥ -2 after the first 15 days), trajectory 3 (early lightening; 38.4% of patients, RASS level ≥ -2 after the first 7 days), and trajectory 4 (persistent optimal: 34.6%, RASS level ≥ -2 during the first 30 days) (Figure 1). The majority of patients in "persistent suboptimal" group were older, with 35.82% in the >80 age group (p-value = 0.002) (Table 1). Conversely, 39.24% and 40.46% of patients in the "early lightening" and "persistent optimal" groups, respectively, were aged between 50 and 69 years. Gender and body weight did not considerably differ between the trajectories. Considering the comorbidities, there was a significant difference in dementia between patients of different trajectories (p-value = 0.010). Although no significant difference was found, the "persistent suboptimal" group had the highest percentage of solid tumor and cerebrovascular disease (38.00%, *p*-value = 0.278; 28.00%, *p*-value = 0.101, respectively), whereas the "delayed lightening" group had the lowest percentage of moderate-to-severe chronic kidney disease (4.61%, p-value = 0.375). The "persistent suboptimal" and "delayed lightening" groups were more likely to be admitted to medical ICU (52.24% and 48.81% versus 34.72% and 31.63%, respectively) with a medical illness (61.19% and 58.33% versus 46.79% and 43.26%, respectively) and less likely

BMJ Open

1	to be admitted to surgical ICU (44.78% and 50.00% versus 59.25% and 66.05%, respectively;
2	p-value = 0.023) for a scheduled surgery (10.45% and 11.90% versus 23.77% and 23.72%,
3	respectively; p -value = 0.001). The most common cause of ICU admission was respiratory
4	(56.8%) in all groups, and the "delayed lightening" group had the highest proportion of
5	respiratory-related admissions (67.86%), whereas the "early lightening" group had the lowest
6	proportion (51.32%, p -value = 0.030). Cardiovascular-related ICU admissions were most
7	common in the "early lightening" group (25.66%, p -value = 0.610), although there was no
8	statistical significance. The APACHE I score was significantly different among the four
9	trajectories (27.82, 25.28, 21.39, and 24.07 for "persistent suboptimal," "delayed lightening,"
10	"early lightening," and "persistent optimal" groups, respectively; p -value < 0.001). As a part
11	of ICU support within the first 48 h, the "delayed lightening" group received the largest
12	number of vasopressor infusions (91.67%, p -value < 0.001), renal replacement therapy
13	(26.19%, p-value = 0.078), and neuromuscular blockade use (46.43%, p-value < 0.001). In-
14	hospital death occurred in 12.2% of patients in the entire cohort. By trajectory, in-hospital
15	mortality was 49.52% in the "persistent suboptimal" group, 21.43% in the "delayed
16	lightening" group, 6.79% in the "early lightening" group, and 3.72% in the "persistent
17	optimal" group (p -value < 0.001). Similarly, differences according to the trajectories were
18	observed for ICU discharge and extubation. The proportion of ICU discharge was 67.16%,
19	79.76%, 92.45%, and 92.09%, respectively (<i>p</i> -value < 0.001); rate of extubation was 68.16%,
20	78.57%, 95.47%, and 95.81%, respectively (p -value < 0.001). Moreover, differences in time
21	to extubation (<i>p</i> -value < 0.001), ICU discharge (<i>p</i> -value < 0.001), and in-hospital mortality
22	(p-value < 0.001) were observed among the four trajectories (Figure 2). Table 2 summarizes
23	the representative phenotypes of each trajectory.
24	In adjusted Cox proportional hazard analyses, the "persistent suboptimal" (HR =

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	13.62, 95% CI 5.99–30.95, <i>p</i> -value < 0.001) and "delayed lightening" groups (HR = 5.62,
2	95% CI 2.36–13.38, p-value < 0.001) had a significantly higher risk of death than the
3	"persistent optimal" group (Table 3). The "persistent suboptimal" (HR = 0.23 , 95% CI 0.16 –
4	0.32, p-value < 0.001), "delayed lightening" (HR = 0.30, 95% CI 0.23–0.41, p-value <
5	0.001), and "early lightening" groups (HR = 0.72, 95% CI 0.59–0.87, p-value < 0.001)
6	showed a reduced probability of extubation and were less likely to discharge from the ICU
7	(HR = 0.36, 95% CI 0.26–0.51, <i>p</i> -value < 0.001; HR = 0.44, 95% CI 0.33–0.59, <i>p</i> -value <
8	0.001; HR = 0.80, 95% CI 0.65–0.97, p -value = 0.024, respectively) than the "persistent
9	optimal" group. Patients undergoing scheduled surgery showed a higher probability of
10	extubation (HR = 2.13, 95% CI 1.64–2.78, <i>p</i> -value < 0.001) and ICU discharge (HR = 2.10,
11	95% CI 1.59–2.78, <i>p</i> -value $<$ 0.001) than outpatient admissions. Patients in the surgical ICU
12	had a lower risk of death (HR = 0.45 , 95% CI $0.23-0.89$, <i>p</i> -value = 0.021) than medical ICU
13	patients. No additional considerable differences were found with respect to age, gender,
14	vasopressor infusions, or neuromuscular blockade.

DISCUSSION

To the best of our knowledge, this is the first study to characterize the longitudinal pattern of sedation level over time in patients who are mechanically ventilated. We identified four distinct trajectories of sedation depth in the first 30 days after mechanical ventilation in our patients. Only 34.6% patients were in an optimal depth of sedation during this period, whereas 13.2% were in the suboptimal range of RASS for most of this time, and the remaining patients achieved adequate depth of sedation 7 (early lightening: 38.4%) or 15 (delayed lightening: 13.9%) days after initiation. Patients who were at suboptimal levels of sedation throughout this period had a higher risk of mortality and lower probabilities of

BMJ Open

extubation and ICU discharge than those who were at consistently optimal levels of sedation. Group-based trajectory modeling is useful for characterizing longitudinal courses over time to identify distinct subgroups.^{23 24} This trajectory model is used in different domains of clinical research, such as nonadherence spectrum in newly-diagnosed juvenile epilepsy, health status in outpatients with heart failure, neurologic postinjury recovery, and symptom burden nuances of patients with metastatic cancer.²⁰ Therefore, group-based trajectory modeling is a specialized method for sorting individuals into meaningful subgroups that show statistically similar trajectories.

There were several considerable differences in characteristics between the four trajectory groups. Patients in trajectory 1 (persistent suboptimal) experienced deep sedation throughout the study period, with RASS ranging from -3 to -5. This group was mainly characterized by elderly patients with cognitive impairment, admitted to a medical ICU for treating illnesses, such as respiratory problems, with the worst condition at admission. Conversely, patients in trajectory 2 (delayed lightening) experienced initial deep sedation, which improved to a light depth of RASS -2 after 15 days. This group was characterized by elderly patients with dementia with respiratory failure, receiving vasopressors, neuromuscular blockade, and renal replacement therapy. Interestingly, although the two trajectories had relatively similar characteristics and the "delayed lightening" group even required more ICU support within the first 48 h, the "persistent suboptimal" group had worse time to extubation, ICU discharge, and hospital mortality. These findings suggest that the longitudinal course of sedation depth in our subjects was not associated with the severity of illness; the difference in sedation practice between the two trajectories might have resulted into different outcomes.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

A prospective multicenter study, conducted across 42 international ICUs,
 demonstrated that the time to extubation and mortality increased with sedation intensity.¹⁸ In

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

observational and matched-pair analyses based on the APACHE II score and the type of admission, early deep sedation during the first 48 h of ICU stay was associated with worse outcomes, including long-term mortality.⁷ We report similar findings in our study by comparing trajectories 3 and 4 with the earlier trajectories 1 and 2. Patients in trajectory 3 (early lightening) experienced early deep sedation, which became lighter after 7 days, whereas those in trajectory 4 (persistent optimal) experienced light sedation throughout. Patients in these groups (trajectories 3 and 4) were younger, had fewer medical conditions, and were mostly admitted to surgical ICUs than those in the other two groups (trajectories 1 and 2). They also had lower APACHE I scores and needed less ICU support within the first 48 h. The patients in "early lightening" group, especially, had the lowest APACHE score, the lowest proportion of renal replacement therapy, and the fewest respiratory problems. Nevertheless, multivariable Cox proportional hazard analysis showed that patients in this group had a lower probability of extubation and ICU discharge than those in the "persistent optimal" group. The early practice of inadequate sedation in "early lightening" group might have induced this relatively worse prognosis in these patients. A recent meta-analysis assessing the literature on early sedation suggested that interventions targeting the depth of early sedation, starting with ICU admission, could improve patient outcomes.²⁵ Appropriate sedation is a critical aspect in the management of patients who are mechanically ventilated.

We observed that 65.9% patients in our study were deeply sedated for at least the first week after mechanical ventilation, whereas only 34.07% patients received consistent light sedation throughout the sedation period. This finding is consistent with previous data describing the sedation depth. A multinational survey among intensivists reported that 74% patients monitored using a validated sedation tool were deeply sedated.²⁶ A survey in Germany found that the actual depth of sedation was considerably deeper (39.5%–62.4%) Page 15 of 33

BMJ Open

than the desired depth in all categories of sedation.²⁷ A Swedish study investigating the relationship between memory and sedation showed that only 39% of patients who were ventilated achieved their target sedation goal.²⁸ A previous systematic review estimated the incidence of oversedation in ICUs at 40%-60%, despite the poor quality of epidemiologic data.² In a recent study conducted in the emergency department, the incidence of deep sedation was 52.8%.²⁹ These data suggest that deep sedation remains a common real-world ICU practice. To improve the quality of patient care, further research is warranted focusing on the longitudinal profile in addition to the binary concept of sedation, light versus deep.

Our study has a few limitations. First, information bias may exist because only patients visiting tertiary or university-affiliated hospitals were included in our study. Second, unmeasured confounders could have affected the trajectories, despite many relevant variables in our study. Moreover, the nondifferential group of patients may have been misclassified. This restriction is inherent to group-based trajectory models with limited generalizability. Third, the causal relationship between trajectory and outcome could not be established in this study. For example, it is unclear whether a prolonged duration of extubation reflected the effects of sedative overdose or whether more sedation was needed because of longer mechanical ventilation. However, the strength, consistency, and temporal precedence of the association and agreement with existing evidence of this study suggested the possibility of a causal relationship.³⁰ Thus, prospective and randomized controlled studies are required to investigate the interaction of the two parameters (depth and duration) of sedation to better define the optimal practice. Fourth, there was a restriction on recruiting patients owing to the COVID-19 crisis. Although the number of patients with mechanical ventilation increased in the COVID-19 era, the lack of staff in the ICU led to a low rate of patient registration. Finally, we were unable to examine the long-term complications in the trajectory groups.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Furthermore, nationwide studies should evaluate long-term complications after sedation to
 comprehensively understand its socioeconomic and clinical burden.

In conclusion, this study captured the four trajectories of sedation level over time in patients who were mechanically ventilated. These patterns were considerably associated with time to extubation, ICU discharge, and hospital mortality. Our findings suggest that the sedation strategy in ICU patients should incorporate a longitudinal pattern of sedation level.

Acknowledgments

9 None

Contributors

12 CML, HYG, and JHA have equally contributed to the study conception and design. Material 13 preparation was performed by HYG. Data collection was performed DH, JHA, and CML. 14 Statistical analysis were performed by CMN and CY. The first draft of the manuscript was 15 written by DH and JHA, and all authors commented on the previous versions of the 16 manuscript. All authors have read and approved the final manuscript.

18 Funding

This study was sponsored by Pfizer Korea Pharmaceuticals Ltd (Grant Number: N/A). The
funding does not interfere with the analysis and interpretation of the data.

Competing interests

Ha-Yeong Gil is an employee of Pfizer Korea. The other authors declare that they have no
competing interests. Pfizer Korea, sponsor of this study, made no influence on study design,

2		
3 4	1	data collection and analysis, and writing.
5 6 7	2	
7 8 9	3	Patient consent for publication
10 11	4	Not applicable.
12 13	5	
14 15 16	6	Ethic approval
17 18	7	The study protocol was approved by the Institutional Review Boards of all
19 20	8	participating medical centers (B-1911/577-405, AJIRB-MED-OBS-19-372, AJIRB-MED-
21 22 22	9	OBS-19-373, 1908-156-1058, 1908-157-1058, 1910-003-083, 2019-1624, 2019-1039, 2019-
23 24 25	10	10-0321, 2019-09-040, 2019-10-162, GCIRB2019-366, DSMC 2019-08-018, HALLYM
26 27	11	2019-08-021, HALLYM 2019-08-022, 2019-09-010, 2019-08-082, DAUHIRB-19-166, 4-
28 29	12	2019-0821, 4-2019-0820, 2019-09-011-002, 2019-07-038-002, CR-19-117-L, 2019AN0376,
30 31 32	13	2019AN0478, 20-2019-92, 20-2019-91, 2019GR0461, 2020GR0103, 2020AS0054). All
32 33 34	14	patients (or patient representatives) provided their written informed consent. Some
35 36	15	participating centers' local review boards waived the need for informed consent considering
37 38	16	the observational nature of this study. This study was conducted per the amended Declaration
39 40 41	17	of Helsinki.
42 43	18	
44 45	19	Data availability statement
46 47 48	20	Data are available on request.
40 49 50	21	
51 52	22	References
53 54	23	1. Richards-Belle A, Canter RR, Power GS, et al. National survey and point prevalence
55 56 57	24	study of sedation practice in UK critical care. Crit Care 2016;20:355.
57 58 59		16

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1 2			
2 3 4	1	2.	Jackson DL, Proudfoot CW, Cann KF, Walsh TS. The incidence of sub-optimal
5 6	2		sedation in the ICU: a systematic review. Crit Care 2009;13:R204.
7 8	3	3.	Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-
9 10 11	4		term mortality in ventilated critically ill patients. Am J Respir Crit Care Med
12 13	5		2012;186:724–31.
14 15	6	4.	Shehabi Y, Chan L, Kadiman S, et al. Sedation depth and long-term mortality in
16 17 18	7		mechanically ventilated critically ill adults: a prospective longitudinal multicentre
19 20	8		cohort study. Intensive Care Med 2013;39:910-8.
21 22	9	5.	Desai SV, Law TJ, Needham DM. Long-term complications of critical care. Crit Care
23 24	10		Med 2011;39:371–9.
25 26 27	11	6.	Burry L, Rose L, McCullagh IJ, Fergusson DA, Ferguson ND, Mehta S. Daily
28 29	12		sedation interruption versus no daily sedation interruption for critically ill adult
30 31	13		patients requiring invasive mechanical ventilation. Cochrane Database Syst Rev
32 33 34	14		2014;2014:CD009176.
35 36	15	7.	Balzer F, Weiß B, Kumpf O, et al. Early deep sedation is associated with decreased
37 38	16		in-hospital and two-year follow-up survival. Crit Care 2015;19:197.
39 40 41	17	8.	Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of
41 42 43	18		pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med
44 45	19		2013;41:263–306.
46 47	20	9.	Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention
48 49 50	21		and management of pain, agitation/sedation, delirium, immobility, and sleep
51 52	22		disruption in adult patients in the ICU. Crit Care Med 2018;46:e825-73.
53 54	23	10.	Pearson SD, Patel BK. Evolving targets for sedation during mechanical ventilation.
55 56 57	24		Curr Opin Crit Care 2020;26:47–52.
58 59			
60			17

BMJ Open

2 3			
4	1	11.	Guérin C. Calming down about sedation in critically ill patients. N Engl J Med
5 6	2		2020;382:1162–4.
7 8 9	3	12.	Owen GD, Stollings JL, Rakhit S, et al. International analgesia, sedation, and delirium
10 11	4		practices: a prospective cohort study. J Intensive Care 2019;7:25.
12 13	5	13.	Yassin SM, Terblanche M, Yassin J, McKenzie CA. A web-based survey of United
14 15 16	6		Kingdom sedation practice in the intensive care unit. J Crit Care 2015;30:436.e1-
16 17 18	7		436.e6.
19 20	8	14.	Sneyers B, Laterre PF, Perreault MM, Wouters D, Spinewine A. Current practices and
21 22	9		barriers impairing physicians' and nurses' adherence to analgo-sedation
23 24 25	10		recommendations in the intensive care unita national survey. Crit Care 2014;18:655.
26 27	11	15.	Wøien H, Stubhaug A, Bjørk IT. Analgesia and sedation of mechanically ventilated
28 29	12		patients - a national survey of clinical practice. Acta Anaesthesiol Scand 2012;56:23-
30 31 22	13		9.
32 33 34	14	16.	García-Sánchez M, Caballero-López J, Ceniceros-Rozalén I, et al. Management of
35 36	15		analgesia, sedation and delirium in Spanish Intensive Care Units: A national two-part
37 38	16		survey. Med Intensiva (Engl Ed) 2019;43:225-33.
39 40 41	17	17.	Tanaka LM, Azevedo LC, Park M, et al. Early sedation and clinical outcomes of
42 43	18		mechanically ventilated patients: a prospective multicenter cohort study. Crit Care
44 45	19		2014;18:R156.
46 47 48	20	18.	Shehabi Y, Bellomo R, Kadiman S, et al. Sedation intensity in the first 48 hours of
49 50	21		mechanical ventilation and 180-day mortality: A multinational prospective
51 52	22		longitudinal cohort study. Crit Care Med 2018;46:850–9.
53 54			
55 56			
57 58			

1 2			
- 3 4	1	19.	Ely EW, Truman B, Shintani A, et al. Monitoring sedation status over time in ICU
5 6	2		patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS).
7 8 9	3		JAMA 2003;289:2983–91.
9 10 11	4	20.	Nagin DS. Group-based trajectory modeling: an overview. Ann Nutr Metab
12 13	5		2014;65:205–10.
14 15	6	21.	Hyun DG, Ahn JH, Gil HY, et al. The profile of early sedation depth and clinical
16 17 18	7		outcomes of mechanically ventilated patients in Korea. J Korean Med Sci
19 20	8		2023;38:e141.
21 22	9	22.	Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients
23 24 25	10		receiving mechanical ventilation: a randomised trial. Lancet 2010;375:475-80.
25 26 27	11	23.	Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annu
28 29	12		Rev Clin Psychol 2010;6:109–38.
30 31	13	24.	Nagin D, Tremblay RE. Trajectories of boys' physical aggression, opposition, and
32 33 34	14		hyperactivity on the path to physically violent and nonviolent juvenile delinquency.
35 36	15		Child Dev 1999;70:1181–96.
37 38	16	25.	Stephens RJ, Dettmer MR, Roberts BW, et al. Practice patterns and outcomes
39 40 41	17		associated with early sedation depth in mechanically ventilated patients: A systematic
42 43	18		review and meta-analysis. Crit Care Med 2018;46:471–9.
44 45	19	26.	Luetz A, Balzer F, Radtke FM, et al. Delirium, sedation and analgesia in the intensive
46 47 48	20		care unit: a multinational, two-part survey among intensivists. PLOS ONE
48 49 50	21		2014;9:e110935.
51 52	22	27.	Martin J, Franck M, Fischer M, Spies C. Sedation and analgesia in German intensive
53 54	23		care units: how is it done in reality? Results of a patient-based survey of analgesia and
55 56 57	24		sedation. Intensive Care Med 2006;32:1137-42.
58 59			10
60			19

3 4	1	28.	Samuelson K, Lundberg D, Fridlund B. Memory in relation to depth of sedation in
5 6	2		adult mechanically ventilated intensive care patients. Intensive Care Med
7 8	3		2006;32:660–7.
9 10 11	4	29.	Fuller BM, Roberts BW, Mohr NM, et al. The ED-SED Study: a Multicenter,
12 13	5		Prospective Cohort Study of Practice Patterns and Clinical Outcomes Associated With
14 15	6		Emergency Department SEDation for Mechanically Ventilated Patients. Crit Care
16 17 18	7		Med 2019;47:1539–48.
19 20	8	30.	Hill AB. The environment and disease: association or causation? 1965. J R Soc Med
21 22	9		2015;108:32–7.
23 24 25	10		
26 27	11		
28 29	12		
30 31 32	13		
33 34	14		
35 36	15		
37 38 39	16		2015;108:32–7.
40 41	17		
42 43	18		
44 45 46	19		
47 48	20		
49 50	21		
51 52 53	22		
54 55	23		
56 57	24		
58 59 60			20

2		
- 3 4	1	
5 6	2	
7 8	3	
9 10	4	Figure legends
11 12 13	5	Figure 1 Trajectories of longitudinal Richmond Agitation-Sedation Scale in the first 30 days
14 15	6	of sedation for mechanical ventilation. The percentage of patients included in each trajectory
16 17	7	was presented in central illustration. Outcome of y-axis indicates the score of Richmond
18 19 20	8	Agitation-Sedation Scale and T of x-axis represents day after the initiation of sedation.
20 21 22	9	
23 24	10	Figure 2 Kaplan–Meier of clinical outcomes from admission according to the trajectory
25 26 27	11	groups. (a) time to extubation in the intensive care unit, (b) length of stay in the intensive care
27 28 29	12	unit, and (c) in-hospital mortality.
30		unit, and (c) in-hospital mortality.
31 32		
33		
34		
35		
36 37		
38		
39		
40		
41		
42 43		
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53 54		
54 55		
56		
57		
58 59		
59 60		21
50		

Page 23 of 33

BMJ Open

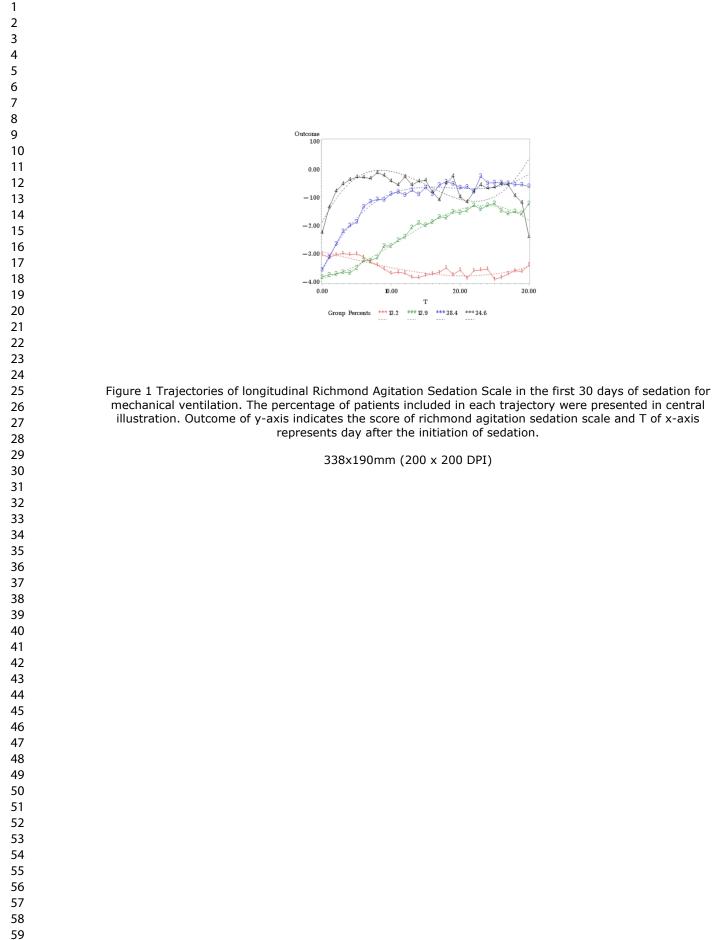
Table 1 Baseline Characteristics and C	linical Outcomes for t	he Total Cohort and for	· Fach Trajectory of th	e Richmond Agietio	Sedation Scale	
Tuble T Busenne Characteristics and C				ory group		
Characteristic	All (N = 631)	1 (N = 67)	2 (N = 84)	3 (N = 265)	4 (N = 215)	<i>p</i> -value
Age					X	0.002
20–29	11 (1.74%)	0 (0.00%)	2 (2.38%)	6 (2.26%) S II S	3 (1.40%)	
30–39	34 (5.39%)	0 (0.00%)	2 (2.38%)		3 20 (9.30%)	
40–49	44 (6.97%)	3 (4.48%)	11 (13.10%)	13 (4.91%) tem	3 17 (7.91%)	
50–59	92 (14.58%)	6 (8.96%)	6 (7.14%)	44 (16.60%) 6 1 4		
60–69	140 (22.19%)	12 (17.91%)	17 (20.24%)	60 (22.64%) t		
70–79	177 (28.05%)	22 (32.84%)	23 (27.38%)	80 (30.19%) an er		
≥80	133 (21.08%)	24 (35.82%)	23 (27.38%)	50 (18.87%) d eu	36 (16.74%)	
Male gender	404 (64.0)	44 (65.67)	57 (67.86)	165 (62.26)		0.807
Body weight, kg*	62.0 (53.0-71.0)	62.25 ± 10.69	62.81 ± 13.31	62.51 ± 13.01		0.785
Comorbidity	448 (71.00)	50 (74.62)	65 (77.38)	183 (69.05) in .		0.434
Diabetes with end-organ damage	30 (4.31)	2 (4.00)	2 (3.07)	14 (7.65) >	2	0.573
COPD	60 (8.6)	7 (14.00)	8 (12.30)		20 (13.33)	0.994
Congestive heart failure	49 (7.0)	3 (6.00)	7 (10.76)	25 (13.66) trained 19 (10.38) n 9 (4.91) g 18 (9.83) n	20 (13.33)	0.596
Moderate-to-severe liver disease**	27 (3.8)	3 (6.00)	3 (4.61)	9 (4.91)	12 (8.00)	0.681
Moderate-to-severe CKD**	46 (6.6)	5 (10.00)	3 (4.61)	18 (9.83) D	20 (13.33)	0.375
Solid tumor	127 (18.2)	19 (38.00)	15 (23.07)	48 (26.22) S	45 (30.00)	0.278
Dementia	35 (5.0)	6 (12.00)	9 (13.84)	16 (8.74) a	4 (3.00)	0.010
Cerebrovascular disease/TIA	82 (11.7)	14 (28.00)	14 (21.53)	28 (15.30) g	26 (17.33)	0.101
Type of admission				hno		0.023
Medical	307 (48.6)	41 (61.19)	49 (58.33)	124 (46.79) g	93 (43.26)	
Emergency surgery	193 (30.5)	19 (28.36)	25 (29.76)	78 (29.43)	ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	
Scheduled surgery	131 (20.7)	7 (10.45)	10 (11.90)	63 (23.77)	51 (23.72)	
Type of ICU				63 (23.77) 92 (34.72)		0.001
Medical ICU	236 (37.4)	35 (52.24)	41 (48.81)	92 (34.72)	68 (31.63)	
Surgical ICU	371 (58.8)	30 (44.78)	42 (50.00)	157 (59.25)		

d by copyrig bmjopen-202

Others	24 (3.8)	2 (2.99)	1 (1.19)	16 (6.04) C	5 (2.33)	
Reason for ICU admission***						
Renal	16 (2.5)	1 (1.49)	0 (0.00)	7 (2.64) 5	8 (3.72)	0.294
Digestive	83 (13.1)	10 (14.93)	12 (14.29)	28 (10.57) 5 m	N	0.434
Cardiovascular	147 (23.3)	15 (22.39)	16 (19.05)	68 (25.66) B S	e 48 (22.33)	0.610
Hematologic	14 (2.2)	2 (2.99%)	3 (3.57%)	4 (1.51%) reign	5 (2.33%)	0.679
Respiratory	359 (56.8)	43 (64.18%)	57 (67.86%)	136 (51.32%)	μ 123 (57.21%)	0.030
Miscellaneous	67 (10.6)	3 (4.48%)	11 (13.10%)	34 (12.83%) 6 ht	Q 19 (8.84%)	0.152
Neurologic	12 (1.9)	3 (4.48%)	1 (1.19%)	4 (1.51%) X	4 (1.86%)	0.418
Others	105 (16.6)	11 (16.42%)	13 (15.48%)	42 (15.85%) an er.		0.907
APACHE II, score*	23.4 ± 10.0	27.82 ± 9.73	25.28 ± 11.45	21.39 ± 9.59 a	24.07 ± 9.56	< 0.001
ICU support within first 48 hours				(AB	0 m	
Vasopressor infusions	486 (77.02)	57 (85.07)	77 (91.67)	199 (75.09) ni ES	153 (71.16)	< 0.001
Renal replacement	107 (16.9)	11 (16.42)	22 (26.19)	37 (13.96) g.	37 (17.21)	0.078
Neuromuscular blockade	171 (27.1)	27 (40.30)	39 (46.43)	69 (26.04) ≥	36 (16.74)	< 0.001
Clinical outcomes		L C		trai	pe	
In-hospital mortality	77 (12.2)	33 (49.52)	18 (21.43)	18 (6.79) ni	8 (3.72)	< 0.001
ICU discharge	555 (87.9)	45 (67.16)	67 (79.76)	245 (92.45) ق	198 (92.09)	< 0.001
Extubation	571 (90.4)	46 (68.66)	66 (78.57)	253 (95.47) d	206 (95.81)	< 0.001
Length of ventilator support, days	5 (3-11)	11 (20–NE)	11.5 (7–23.5)	<u> </u>	g 3 (2–5)	< 0.001
ICU length of stay, days	10 (5-18)	20 (12–NE)	18 (10-26)			< 0.001

Data are reported as mean \pm standard deviation or median (interquartile range) for continuous variables and number (perce $\frac{1}{2}$ as $\frac{1}{2}$ or categorical variables. *Data on body weight are presented for all 605 patients, excluding 26 patients with missing data (4 in the light sedation group and 22 in the deep sedation group). Data on APACHE I are presented for all 577 patients, excluding 54 patients with missing data (15 in the light sedation group and $\frac{2}{9}$ in the deep sedation group). ** Moderate-to-severe liver disease is defined as cirrhosis and portal hypertension with or without variceal bleeding histor & Moderate-to-severe CKD is defined as serum at creatinine > 3 mg/dL or on dialysis or post-kidney transplant status or uremia status. õ

 ***172 patients had multiple reasons for ICU admission. ICU = intensive care unit; SMD = standardized mean difference; COPD = chronic obstructive pulmonary disease; CKD = chronic kidney disease; TIA = transient ischemic attack; APACHE II = acute physiology and chronic health evaluation II; NE = not estimated Bibliographique de l


Page	25	of	33
------	----	----	----

BMJ Open

d by copyrigh bmjopen-202

	Trajectory 1	Trajectory 2	Trajectory 3	23-072628 or	Trajectory 4
Demographics					
Age	70–79 & ≥80	70–79 & ≥80	60–69 & 70–-79 Male	9 7 L_L	60–69 & 70–-79
Gender	Male	Male	Male	ses ses	Male
Comorbidity	Solid tumor, CVD/TIA, COPD	Solid tumor, CVD/TIA, Dementia	Solid tumor, COPD Surgical ICU Respiratory & Ca 3rd 2nd	reignen 2020/TIA, reignen	Solid tumor, CVD/TIA, C
Type of ICU	Medical ICU	Surgical ICU	Surgical ICU		Surgical ICU
Reason for ICU admission	Respiratory & Cardiovascular	Respiratory & Cardiovascular	Respiratory & Ca	ascular	Respiratory & Cardiovas
Ranks for characteristics	Ur	·			
Medical admission	1st	2nd	3rd	led pried	4th
Scheduled surgery	4th	3rd	2nd	l from ht ur (ABE	1st
АРАСНЕ П	1st	2nd	4th		3rd
Vasopressor infusions	2nd	lst	3rd	nin S)	4th
Renal replacement therapy	3rd	1st	4th		2nd
	2nd	1st	3rd		4th
Neuromuscular blockade Representative demographics w determined by the comparison o ICU = intensive care unit; APA chronic obstructive pulmonary d	ith more than half of the patients f proportion of variable within each CHE II = acute physiology and c	on each trajectory, except age on trajectory. Trajectories are ordered thronic health evaluation II ; CVD =	ajectory 4, are sho from lowest (4th) to cardiovascular dis	highest (1st) ase, TIA = tr	e. Rank-order of trajectoric rank values.
Representative demographics w determined by the comparison o ICU = intensive care unit; APA	ith more than half of the patients f proportion of variable within each CHE II = acute physiology and c	on each trajectory, except age on tr h trajectory. Trajectories are ordered	ajectory 4, are sho from lowest (4th) to cardiovascular dis	ind similar technologie	e. Rank-order of trajectoric rank values.
Representative demographics w determined by the comparison o ICU = intensive care unit; APA	ith more than half of the patients f proportion of variable within each CHE II = acute physiology and c	on each trajectory, except age on tr h trajectory. Trajectories are ordered	ajectory 4, are sho from lowest (4th) to cardiovascular dis	highest (1st) ase, TIA = tr	e. Rank-order of trajector rank values.

	Time to extu	bation	Time to ICU d	ischarge	di	bmjopen-2023-072628 Time to in-hos	pital death
	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value	d by copyright, including for	2 HR (95% CI)	<i>p</i> -value
Trajectory group					or us	27 	
Group 1	0.23 (0.16-0.32)	< 0.001	0.36 (0.26–0.51)	< 0.001	Ises	5 13.62 (5.99–30.95)	< 0.001
Group 2	0.30 (0.23–0.41)	< 0.001	0.44 (0.33–0.59)	< 0.001	rel	8.62 (2.36–13.38)	< 0.001
Group 3	0.72 (0.59–0.87)	< 0.001	0.80 (0.65–0.97)	0.024	atec	5 .62 (2.36–13.38) 5 .76 (0.76–4.08)	0.185
Group 4	Reference		Reference		l t 🖁	Reference	
Age					tex	a Reference	
20–29	Reference		Reference		t an	Reference	
30–39	1.08 (0.53–2.21)	0.825	0.70 (0.35-1.42)	0.334	d d	1 .69 (0.06–7.72)	0.765
40–49	0.89 (0.43–1.81)	0.748	0.63 (0.31–1.25)	0.188	ata	9 0.59 (0.06–5.28)	0.641
50–59	1.04 (0.53–2.03)	0.893	0.65 (0.34–1.23)	0.192	mir	0.41 (0.04–3.46)	0.414
60–69	1.00 (0.52–1.93)	0.987	0.79 (0.42–1.48)	0.469		0.88 (0.11-6.75)	0.905
70–79	1.04 (0.54–1.99)	0.893	0.64 (0.34–1.20)	0.170	, AI	3 .47 (0.06–3.65)	0.473
≥80	0.85 (0.44–1.64)	0.632	0.53 (0.28–1.00)	0.052	tra	0.82 (0.10-6.26)	0.850
Female	0.85 (0.71–1.01)	0.075	0.98 (0.81-1.17)	0.848	ining,	2 .17 (0.73–1.89)	0.50
Type of admission					6	mj.	
Medical	Reference		Reference		nd	Reference	
Emergency surgery	1.02 (0.79–1.32)	0.839	1.17 (0.90–1.53)	0.234	sim	o l.35 (0.62–2.91)	0.444
Scheduled surgery	2.13 (1.64–2.78)	< 0.001	2.10 (1.59–2.78)	< 0.001		2 1.91 (0.87–4.16)	0.102
Type of ICU					tec	Ine	
Medical ICU	Reference		Reference		hnc	Reference	
Surgical ICU	1.05 (0.83–1.33)	0.629	0.87 (0.68–1.12)	0.299	hnolog	2 .45 (0.23–0.89)	0.021
Others	1.53 (0.96–2.40)	0.068	1.28 (0.80–2.06)	0.289	ies.	a 0.55 (0.12–2.47)	0.441
Vasopressor infusions	0.85 (0.69–1.04)	0.116	0.85 (0.69–1.04)	0.122		A.25 (0.62–2.51) 1.42 (0.88–2.29)	0.529
Neuromuscular blockade	1.05 (0.86–1.28)	0.586	0.88 (0.72–1.07)	0.217		9 42 (0 88–2 29)	0.148

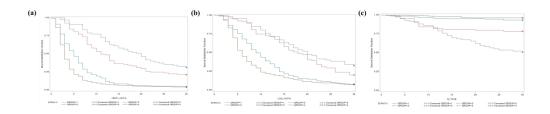


Figure 2. Kaplan–Meier of clinical outcomes from admission according to the trajectory groups. (a) time to extubation in the intensive care unit, (b) length of stay in the intensive care unit, and (c) in-hospital mortality.

199x112mm (600 x 600 DPI)

BMJ Open

Longitudinal trajectories of sedation level and clinical outcomes in mechanically ventilated patients: a prospective, multicenter, longitudinal, observational study

Dong-gon Hyun, M.D.¹, Jee Hwan Ahn, M.D.¹, Ha-Yeong Gil, M.S.², Chung Mo Nam, Ph.D.³, Choa Yun, M.S.⁴, Chae-Man Lim, M.D., Ph.D.¹*

¹Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

²Medical Research Project Team, IM Medical, Pfizer Korea Pharmaceuticals Ltd., Seoul, Republic of Korea

³Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

⁴Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea

*Corresponding author: Chae-Man Lim, M.D., Ph.D., FCCM

E-mail: <u>cmlim@amc.seoul.kr</u>

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 33
33 34
35
36
37
38
39
40
41
42
43
44
45
46 47
47 48
48 49
49 50
50
52
53
54
55
56
57
58
59
60

60

City	Participating hospitals	Investigators
Seoul	Asan Medical Center	Dong-gon Hyun, Jee Hwan Ahn,
		Suk-Kyung Hong, Chae-Man
		Lim
Seoul	Seoul National University Hospital	Sang-Min Lee, Ho-Geol Ryu
Seoul	Samsung Medical Center	Gee Young Suh, Chi Min Park
Seoul	Severance Hospital	Su Hwan Lee, Jeoung Min Kim
Seoul	Seoul St. Mary's Hospital	Seok Chan Kim
Seoul	Korea University Anam Hospital	Won Jai Jung, Jae-Myeong Lee
Seoul	Korea University Guro Hospital	Young-Seok Lee, Nak-Jun Choi
Seoul	Seoul National University Boramae	Taeyun Park
	Medical Center	
Seongnam	Seoul National University Bundang	Dong Jung Kim
_	Hospital	
Suwon	Ajou University School of Medicine	Keu Sung Lee, Young-Gi Min
Busan	Pusan National University Hospital	Jae Hun Kim
Busan	Dong-A University Hospital	Dong-Hyun Lee
Busan	Inje University Haeundae Paik Hospital	Hang-Jea Jang, Ki Hoon Kim
Wonju	Yonsei University Wonju College of	Seok Jeong Lee
	Medicine	
Incheon	Gachon University Gil Medical Center	Woo-Sung Choi
Daegu	Keimyung University School of Medicine	Jae-Bum Kim
Daegu	Yeungnam University Medical Center	Eun Young Choi, Jong-Hyun
		Baek
Daegu	Daegu Catholic University Medical Center	Eun Jin Kim
Anyang	Hallym University Sacred Heart Hospital	Sunghoon Park, Hyung Won
_		Kim
Ansan	Korea University Ansan Hospital	Je Hyeong Kim

Table S1. Participating intensive care units

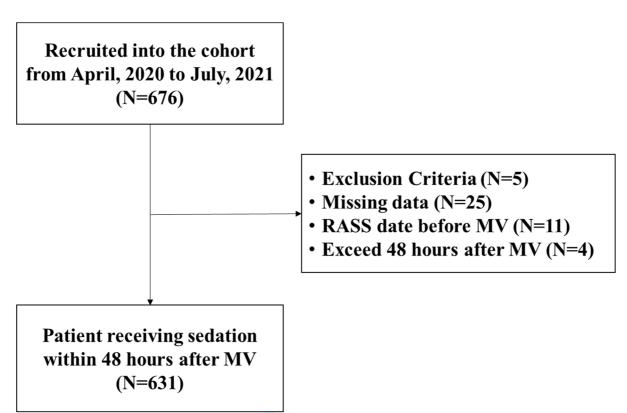

1 2	
3	
4 5	
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

Table S2.	Profile	of analgesi	c and sedativ	ve within th	ne first 48 hours
	I I OI IIC	or unungeon	e una seaun		to mound

Type of Sedatives	N = 662
Diazepam	1 (0.2)
Cumulative dose (µg)	2000.0
Midazolam	127 (19.2)
Cumulative dose (µg)	64253.9 ± 133338.1
Lorazepam	14 (2.1)
Cumulative dose (µg)	2750 ± 1868.3
Other benzodiazepine	19 (2.9)
Cumulative dose (µg)	34294.7 ± 53960.7
Propofol	173 (26.1)
Cumulative dose (µg)	3444220.1 ± 2752320.0
Ketamine	53 (8.0)
Cumulative dose (µg)	1450147.2 ± 1830958.4
Haloperidol	1 (0.2)
Cumulative dose (µg)	5000.0
Dexmedetomidine	253 (38.2)
Cumulative dose (µg)	4080.2 ± 38325.4
Other non-benzodiazepine	21 (3.2)
Cumulative dose (µg)	75659.5 ± 133078.2
Type of analgesics	N = 528
Fentanyl	119 (22.5)
Cumulative dose (µg)	30861.1 ± 315168.1
Remifentanil	388 (73.5)
Cumulative dose (µg)	13227.8 ± 10971.7
Morphine	6 (1.1)
Cumulative dose (µg)	24000.0 ± 38740.2
Sufentanil	15 (2.8)
Cumulative dose (µg)	285.4 ± 280.6

Data are reported as means \pm standard deviation for continuous variables and numbers (percentage) for categorical variables.

RASS = Richmond agitation-sedation scale

Figure S1. Flow diagram of patients in the present study. MV = mechanical ventilation; RASS = Richmond agitation-sedation scale

		copyrigh	
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>coport studies</i> 은 없	
Section/Topic	ltem #	Recommendation	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction		ate	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods	1	and a serie and a serie a	
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifier Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (meas grendent). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which gou bongs were chosen and why	5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(c) Explain how missing data were addressed Image: Constraint of the second s	6
		(e) Describe any sensitivity analyses Image: Constraint of the sense of the sen	6

 phique de l

		BMJ Open BMJ Open 202	Page
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, exangine of the stage of study and the study and the study and the stu	7
		eligible, included in the study, completing follow-up, and analysed	7
		(c) Consider use of a flow diagram 호 · · · · · · · · · · · · · · · · · ·	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information of motoosures and potential confounders	7
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their preceding of the section of the se	8
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information		ar te	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, by the original study on which the present article is based	13

👋 مې *Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in coss-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine 👼 rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www. Bobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml