

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Long-Term Human Papillomavirus Vaccination Effectiveness and Immunity in Rwandan Women Living with and without Human Immunodeficiency Virus

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061650
Article Type:	Protocol
Date Submitted by the Author:	18-Feb-2022
Complete List of Authors:	Murenzi, Gad; Rwanda Military Hospital; RD Rwanda Shumbusho, Fabienne; Rwanda Military Hospital; RD Rwanda Hansen, Natasha; National Cancer Institute Division of Cancer Epidemiology and Genetics Munyaneza, Athanase; Rwanda Military Hospital; RD Rwanda Gage, Julia C. ; National Cancer Institute Division of Cancer Epidemiology and Genetics Muhoza, Benjamin; Rwanda Military Hospital; RD Rwanda Kanyabwisha, Faustin; Rwanda Military Hospital; RD Rwanda Pierz, Amanda; CUNY Graduate School of Public Health and Health Policy, Community Health and Health Sciences; Yeshiva University Alber Einstein College of Medicine Tuyisenge, Patrick; Rwanda Military Hospital; RD Rwanda Anastos, Kathryn; Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, Medicine; Albert Einstein College of Medicine, Department of Epidemiology and Population Health Castle, Philip; National Cancer Institute Division of Cancer Epidemiology and Genetics; National Cancer Institute Division of Cancer Prevention,
Keywords:	Public health < INFECTIOUS DISEASES, PREVENTIVE MEDICINE, PUBLI HEALTH, VIROLOGY, HIV & AIDS < INFECTIOUS DISEASES, GYNAECOLOGY

1		
2		
3	1	Long-Term Human Papillomavirus Vaccination Effectiveness and Immunity in Rwandan
4	2	Women Living with and without Human Immunodeficiency Virus
5	3	
6	4	Gad Murenzi ^{1,2*&} , Fabienne Shumbusho ^{1,2*} , Natasha Hansen ³ , Athanase Munyaneza ^{1,2} , Julia C.
7	5	Gage ³ , Benjamin Muhoza ^{1,2} , Faustin Kanyabwisha ^{1,2} , Amanda Pierz ^{4,5} , Patrick Tuyisenge ^{1,2} ,
8 9		
9 10	6	Kathryn Anastos ^{5,6#} , Philip E. Castle ^{3,7#}
11	7	
12	8	¹ Einstein-Rwanda Research & Capacity Building Program, Research for Development (RD
13	9	Rwanda) & Rwanda Military Hospital, Kigali, Rwanda
14	10	² RD Rwanda, Kigali, Rwanda
15	11	³ Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
16	12	⁴ Department of Community Health and Health Sciences, CUNY Graduate School of Public
17	13	Health and Health Policy, New York, NY, USA
18	14	⁵ Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center,
19	15	Bronx, NY, USA
20	16	⁶ Department of Epidemiology and Population Health, Albert Einstein College of Medicine,
21		
22	17	Bronx, NY, USA
23	18	⁷ Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
24	19	
25 26	20	*Co-first authors
20	21	[#] Co-senior authors
28	22	
29	23	^{&} Correspondence: Dr. Gad Murenzi, gadcollins@gmail.com
30		
31		
32		
33		
34		
35		
36		
37		
38 39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		9
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

 Introduction. Prophylactic human papillomavirus (HPV) vaccines have been shown to be highly effective in protecting women against cervical infections, high-grade abnormalities, and cancer caused by the targeted HPV types. However, the evidence for their effectiveness in women living with human immunodeficiency virus (HIV) (WLWH) is less clear.

Methods. WLWH and HIV-negative women who likely did (birth cohorts 1996 and later) and WLWH who likely did not (birth cohorts before 1996) receive HPV vaccination (n=757 for each of the three groups) through the Rwanda national vaccination program will be recruited into the study. Between groups, we will compare cervicovaginal, anal and oral prevalent and 6-month persistent HPV6/11/16/18 infections as measured using a modified AmpFire HPV genotyping assay that tests for 15 high-risk or intermediate-risk HPV genotypes, HPV6, and HPV11. We will also compare the HPV immune response in 548 HPV-vaccinated WLWH to 548 HPV-vaccinated HIV-negative women using an anti-HPV16 and -HPV18 ELISA. Vaccination status will be confirmed through national vaccination records.

Analysis. We will calculate point prevalence and prevalence of 6-month persisting infections by individual HPV-type specific infections and groups of infections for each anatomic site and for each group of women. Results will be stratified by age at vaccination, age at enrollment, and number of doses (3 vs. 2) as well as other factors possibly associated with HPV prevalence. Differences in endpoints between groups, overall and between sub-groups, will be tested for statistical significance (p<0.05) using Fisher's exact or Pearson chi-square test. Differences in geometric mean titers (GMT) and seropositivity will be tested for statistical significance using the Mann-Whitney and Fisher's exact tests, respectively.

Ethics and Dissemination. The study was approved by the Albert Einstein College of Medicine Institutional Review Board and the Rwanda National Ethics Committee. Results will be

disseminated through publication in peer-reviewed journals.

Key Words: Human papillomavirus (HPV), vaccination, cervical, anal, oral, cancer, Rwanda

³₄ 55 STRENGTHS AND LIMITATIONS OF THIS STUDY

56 Please note that 'Strengths and limitations of this study' should consist of 3-5 bullet points.

- The study is being conducted in Rwanda, a high cervical-cancer burden country
- National introduction of HPV vaccine in Rwanda in 2011 and relatively high prevalence of HIV makes a study of long-term HPV vaccination effective in women living with HIV (WLWH) possible.
 - The study is not a randomized control trial, but an observational study of populations selected from different groups of women.
- A convenience sample of Rwandan WLWH living in and around Kigali will be enrolled and therefore the study population is not representative of all Rwanda or WLWH living elsewhere.

66 INTRODUCTION

67	Current prophylactic vaccines against human papillomavirus (HPV), the necessary cause of
68	virtually all cervical cancer ¹² , are based on the self-assembly of recombinantly expressed L1
69	protein in cell lines into virus-like particles (VLPs) that resemble native viral capsids but without
70	the viral genome necessary for viral replication. The first generation of prophylactic HPV
71	vaccines, Gardasil® (Merck & Co, Kenilworth, NJ, USA) ³ and Cervarix [™] (GlaxoSmithKline,
72	Wavre, Belgium) ³ , targeted HPV16 and HPV18 (HPV16/18), which cause approximately 70% of
73	cervical cancers. ⁴ Gardasil® also targets HPV6 and HPV11 (HPV6/11), non-high-risk HPV
74	types responsible for approximately 90% of anogenital warts (Condylomata acuminata). ⁵
75	Several countries, including Australia ⁶⁻¹² , Scotland ¹³ , Denmark ¹⁴ , and the U.S. ¹⁵⁻¹⁷ , were early
76	adopters of HPV vaccination and have documented reductions in infections, diseases, and
77	cervical abnormalities related to the HPV vaccine-targeted types. A meta-analysis on the impact
78	of HPV vaccination found reductions in anogenital warts, HPV infections, cervical intraepithelial
79	neoplasia (CIN) grade 2 (CIN2) or more severe diagnoses (CIN2+) among girls and women, and
80	on anogenital warts diagnoses among girls, women, boys, and men. ¹⁸ Recent reports from
81	Finland ¹⁹ , Sweden ²⁰ , and England ²¹ now provided real-world evidence that HPV vaccination
82	prevents cervical cancer.
83	Cervical cancer was included as an acquired immunodeficiency syndrome (AIDS)-defining
84	disease in adolescents and adults in 1993. ^{22 23} Women living with human immunodeficiency

(WLWH) virus, the cause of AIDS, have a significantly elevated risk of cervical cancer²⁴²⁵, due

to an impaired immune response to HPV, compared to HIV-uninfected (HIV[-]) women. Meta-

87 analyses of HIV/AIDS cohorts reported a 6-fold increased incidence of cervical cancer compared

Page 5 of 38

BMJ Open

to the general female population/HIV[-] women.^{24 26} People living with HIV (PLWH) are also at an increased risk of other HPV-related malignancies, notably anal and oropharyngeal cancers.²⁴ ²⁷ HIV co-infection has a profound impact on the natural history of HPV, thereby increasing the risk of ICC. HIV co-infection increases the 1) likelihood of cervical and anal HPV persistence and 2) likelihood of cervical and anal HPV infections progressing to precancer.^{28 29} Data on HPV-vaccine efficacy and effectiveness are lacking for WLWH.^{24 25} To date, most studies of HPV vaccine in WLWH focused on immunogenicity and safety. Generally, HPV vaccination in PLWH has been well tolerated, safe, and resulted in good immune responses³⁰⁻³⁴; one study found lower seroconversion and anti-HPV antibody titers among PLWH compared to perinatally HIV-exposed, uninfected youth.³⁴ Studies have noted an impact of HIV disease status (CD4 counts and viral suppression) on the immune responses to HPV vaccination.³⁵⁻³⁷ Studies have reported lower seroconversion and antibody titers in WLWH not taking (vs. taking) antiretroviral therapy (ART) and with lower (vs. higher) CD4 counts.^{38 39} Similarly, another study found peak antibody titers to be 2- to 3-fold higher in mid-adult WLWH with full HIV viral suppression compared to those not suppressed.⁴⁰ Interestingly, higher anti-HPV18 titers but similar anti-HPV16 titers were reported in response to HPV vaccination by Cervarix® compared to Gardasil[®] in PLWH but the differences in the former was primarily due to differences in the immune responses in the WLWH.⁴¹ The few studies of HPV vaccine effectiveness in WLWH provided promising but inconclusive evidence. Immunogenicity studies in WLWH have been of insufficient sample size to address efficacy/effectiveness. Studies of HPV vaccination in select PLWH at high risk of anal cancer have been limited in sample size because of the high HPV anal exposure (and likely misclassification of exposure) to targeted HPV types prior to enrollment⁴² so that few truly

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

incident events could be observed. Of those studies that did have endpoints, one recent trial of
Gardasil® in PLWH aged 27 and older concluded that "This double-blind, randomized trial did
not find a benefit from HPV vaccination to prevent anal HPV infection or anal high-grade
squamous intraepithelial lesions" and favorable but inconclusive benefit for protection against
oral HPV.⁴³

The paucity of HPV-vaccine effectiveness data in WLWH is especially a concern for the prevention of cervical cancer in sub-Saharan Africa (SSA), where cervical cancer is the most common cause of cancer death in women.⁴⁴ Almost one quarter of the global burden of cervical cancer occurs in SSA and an estimated 20% of cervical cancer in SSA is attributable to HIV coinfection.²⁶ Evidence of the protective effects of HPV vaccination in SSA WLWH is needed, especially since most long-term public health planning to address cervical cancer in SSA depends on the unproven effectiveness of these vaccines.

Rwanda, a central/east African country that experiences a high burden of cervical cancer⁴⁵, is the ideal locale to answer questions about the long-term effectiveness and immunogenicity of Gardasil® in WLWH for the following reasons. First, in 2011-13, Rwanda, through a donation from Merck, launched a national HPV vaccination program.⁴⁶ In 2011, over 92,000 girls in primary school grade six (~12 years old) were vaccinated with three doses of Gardasil®. During 2012 and 2013, a catch-up vaccination program targeted girls in secondary school grade three (~15 years old).⁴⁶ In 2014, HPV vaccination was supported by GAVI⁴⁷ and reverted to vaccinating 12-year-old girls.⁴⁸ In 2015, Rwanda switched from 3 doses to 2 doses, 6 months apart, for vaccinating 12-year-old girls. In all years, Rwanda achieved \geq 90% annual coverage with the recommended number of HPV vaccine doses in the target population.^{46 47 49 50} Thus, Rwanda is one of the earliest and most successful adopters of HPV vaccination globally.

Second, the prevalence of HIV in Rwanda is 2.7% among 15-30 year olds.⁵¹ The excellent HIV care program in Rwanda allows for easy and efficient recruitment and following of WLWH in an observational study of HPV-vaccination impact. Third, given Rwanda's nearly complete national coverage with Gardasil®, HPV-vaccinated and unvaccinated WLWH are easily recruited based on birth year. Rwanda has excellent national vaccination records so that retrospectively the small number of participants misclassified by HPV vaccination status based on birth year subsequently can be correctly categorized. The Einstein/Rwanda/DRC Consortium for Research in HIV/HPV/Malignancies therefore launched an observational cohort of HPV-vaccinated and -unvaccinated WLWH and vaccinated HIV[-] women to study the long-term effectiveness of HPV vaccination on cervicovaginal, anal, and oral HPV carriage in Rwandan WLWH in late 2021. We will compare HPV-vaccinated

WLWH to HPV-vaccinated HIV[-] women to measure the relative long-term effectiveness and immunogenicity of HPV vaccination in WLWH. We will compare HPV-vaccinated WLWH to HPV-unvaccinated WLWH to measure the reduction of HPV burden in WLWH attributable to HPV vaccination. As a secondary goal, we will conduct a natural history study to investigate determinants, including cervicovaginal microbiome, of short-term HPV persistence in young WLWH and HIV[-] women living in a SSA setting.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

and

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text

Study Population and Setting

At community health centers in Kigali, 2,271 women aged 18-28 years will be enrolled: 757 WLWH (Group 1) and 757 HIV[-] women (Group 2) who did receive HPV vaccination (birth cohorts 1996 and later) and 757 WLWH (Group 3) who did not receive HPV vaccination (birth cohorts before 1996). Most Rwandan women born in 2003 or later will have been vaccinated with two doses of Gardasil®, women born between 1996 and 2002 will have been vaccinated with three doses of Gardasil®, and women born in 1995 or earlier will be unvaccinated. Within the HPV-vaccinated Groups 1 and 2, the study will enroll at least 274 women who received three doses and 274 women who received two doses of the HPV vaccine, with the remaining 209 not selected for the number of doses and may have received three or two doses.

We will recruit by HIV status and age, which will serve as a useful and very good proxy for HPV-vaccination status, which otherwise would be difficult to determine in real time at enrollment. HPV-vaccination status then will be confirmed by retrospective review of the HPV vaccination records kept by the Rwanda Ministry of Health (MoH), who are collaborating on this project. The number of women recruited will therefore be stratified by age (as proxy for vaccine status) and HIV status. Because this study has age-specific enrollment goals for WLWH and HIV[-] women, once those enrollment goals are met for each study group, the respective groups will be closed and other eligible women for that study group will be excluded from participation.

In Kigali, the study staff will work with five public health facilities that participate in the Central
Africa International Epidemiology Databases to Evaluate AIDS (IeDEA) program (ca-iedea.org)
and the WE-ACTx private health facility (**Table 1**). If needed, the staff will work with up to four

1 2 3				
4	173 174	Table 1. Study enrollment sites		
5 6		IeDEA Sites	Non-IeDEA sites	
7		1. Busanza health center (HC)	1. Cor-unum HC	
8 9		2. Gikondo HC	2. Kacyiru HC	
9 10		3. Kicukiro HC	3. Remera HC	
11		4. Nyarugunga HC	4. Rwampara HC	
12 13		5. Rwanda Military Hospital		
14		6. WE-ACTx private clinic		
15	175			
16 17	176	other public health clinics to recruit additional p	participants. We will recruit women attending	
18 19 20	177	collaborating health facilities and from the surro	ounding communities.	
21 22 23	178	Study Design		
24 25 26	179	Eligibility Criteria. Women are eligible to partic	cipate if they: live in Rwanda; are ages 18-28	
27 28	180	years who are known to be living with HIV or a	ges 18-25 years whose HIV status is unknown	
29 30 31	181	and consent to HIV testing to confirm HIV statu	is; have had sex; are physically and mentally able	
31 32 33	182	and willing to participate in the study; and are w	villing to provide written and signed or thumb	
34 35	183	printed, informed consent. A summary of the tar	rget population by HIV and HPV vaccination	
36 37 38	184	statuses are shown in Table 2 .		
39 40 41	185	Women are ineligible to participate if they: have	e positive pregnancy test or report to be pregnant	
42 43	186	at the time of visit or less than 6 weeks post-par	tum (will be asked to make an appointment 6 or	
44 45	187	more weeks post-partum); have a history of hyst	terectomy and no longer have a cervix; have a	
46 47 48	188	history of treatment for cervical abnormalities after cervical cancer screening, have a history of		
48 49 50	189	cervical cancer; report no previous sexual activi	ty; and/or HIV status is unknown and date of	
50 51 52	190	birth is 12/31/1995 or earlier. Women who repo	rt menstruating at the time of visit will be asked	
53 54 55	191	to make a new appointment 2 weeks later.		
56 57 58 59			17	

			5	
r	Ν			
	274 274 209 757		Protected	
	274 274 209 2,271		Protected by copyright, including for uses related to text and data	
ty	is confir	med	ncluding for	
e s	sample fo	or	uses r	
e p	participar	nts'	elated	(
e in	e including CD4			
ci	nation st	atus.	and data	
nav	ve a rapio	d HIV	mining	
ve) or react	tive	g, Al tr	
3. ⁵²	^{2 53} If the		aining	
SS	ified into	either	, and simi	
'is lly	k factors	(e.g.,	Al training, and similar technologies.	

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

1
2 3
4
5 6
7 8
9
10 11
12 13
14
15 16
17 18
19
20 21
22 23
24
25 26
27 28
29
30 31
32 33
34
35 36
37 38
39
40 41
42 43
44
45 46
47 48
49
51
52 53
54 55
56
57 58
59

60

192

193

194

Table 2. Target population by HIV status and age

HIV Status	Approximate number of HPV vaccine doses	Birth year	Age at ye enrollmer	ar of study nt (years)	N
			in 2021	in 2023	
WLWH	3 doses	1996-2002	19-25	21-26	274
	2 doses	2003-2005	16-18*	18-20	274
	2 or 3 doses	1996-2005	19-25	18-26	209
	0 doses - unvaccinated	1993-1995	26-30*	28-31*	757
HIV[-]	3 doses	1996-2002	19-25	21-26	274
	2 doses	2003-2005	16-18*	18-20	274
	2 or 3 doses	1996-2005	19-25	18-26	209
TOTAL					2,271

*Only women aged 18-28 are eligible for enrollment.

Enrollment Visit. The enrollment visit is summarized in Figure 1. After eligibility is confirmed
and consent given, eligible, consenting women (participants) will provide a urine sample for
pregnancy testing to confirm they are not pregnant. The consent form obtains the participants'
permission to extract from medical records information related to their HIV care including CD4
count, viral load, ART use, and age of initiation of HIV care as well as HPV vaccination status.

200 Participants recruited into Group 2, whose current HIV status is unknown, will have a rapid HIV

201 test followed by a confirmatory test if the initial test result is invalid (inconclusive) or reactive

202 (positive) according to the Rwanda National HIV Diagnostic Testing Guidelines.^{52 53} If the

203 newly HIV-diagnosed participant chooses not to exit the study, she will be reclassified into either

204 Group 1 or 3, depending on HPV vaccination status.

205 Participants will complete a baseline questionnaire on socio-demographics and risk factors (e.g.,

206 sexual behavior) for HPV, undergo blood collection for HPV serology, and finally

207 cervicovaginal, anal, and oral specimen collection for HPV testing.

Page 11 of 38

BMJ Open

Specimen Collection. The study nurse first will collect one 5 mL tube of blood for EDTA plasma from all participants. For the oral specimen collection, participants will alternate between a 5-second squish and a 5-second gargle of 10 mL of saline for 30 seconds and then spit out the specimen into sterile specimen container. The study nurse will then collect a cervicovaginal specimen using the AmpFire specimen collection brush (Atila BioSystems, Mountain View, CA, USA), placing it into the posterior vagina without a speculum, turning the brush 3 turns left and right. Then the study nurse will withdraw the brush, place it into collection tube, snap off the handle to break it, and seal the collection tube. Finally, the study nurse will collect an anal specimen inserting a water-moistened Dacron swab into the anal canal, turning the swab 2-3 turns left and right, before removing the swab. The study nurse will insert the swab into the collection tube, snap off the handle, and seal the collection tube.

Six-Month Follow-Up Visit of HPV-positive Women. The follow-up visit is summarized in Figure 2. Participants positive for HPV on any sample will have a 6-month follow-up visit to measure 6-month HPV type-specific persistence - a surrogate endpoint recommended by the World Health Organization (WHO).⁵⁴ At young ages, the risk of precancer is very low, but for safety purposes, participants will be offered colposcopy if they have a 6-month HPV type-specific persistent high-risk HPV cervical infection and anoscopy if they have a 6-month HPV type-specific persistent HPV16/18 anal infection. At this follow-up visit, participants will since the last visit if HIV negative at baseline, a rapid HIV test. They then will have cervicovaginal, anal, and/or oral specimens collected only from those tissue sites that were HPV positive at baseline for HPV testing as described.

Clinical Management. A summary of the management of HPV-positive results is shown in
Figure 3. Women with a 6-month, HPV type-specific persistent cervicovaginal HPV infection

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

for one or more of the 13 high risk HPV (hrHPV) types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52,
56, 58, 59, and 68), regardless of HIV status, will be referred for colposcopy and, as needed,
treatment.

Following application of dilute acetic acid to the cervix, digital images of the cervix will be
taken using a study-provided contemporary digital camera (e.g., Samsung A21S or similar
cellular phone camera). Then colposcopy-guided biopsies will be taken of all acetowhite, visible
cervical abnormalities.⁵⁵ Colposcopic impression and biopsy locations will be recorded.

Biopsies will be read by a local pathologist (and a second one if second opinion is required) and a US pathologist. All participants with a biopsy diagnosis of CIN grade 3 (CIN3) or more severe diagnoses (CIN3+) as rendered by any pathologist and WLWH with persistent HPV16- or HPV18 infection will undergo treatment by ablation or, if ineligible for ablative treatments, excision according to WHO guidelines.⁵⁶⁻⁵⁸ In accordance with US management guidelines⁵⁹, those diagnosed with CIN2 will not undergo immediate treatment due the likelihood of its regression and low risk of ICC following a CIN2 diagnosis especially in young women⁶⁰, and the possible increased risk in negative reproductive outcomes such as pre-term delivery following treatment.⁶¹ They will be advised to seek clinical follow-up in a year.

WLWH with 6-month persistent anal HPV16 or HPV18 infection will undergo anoscopy; HIV[-] participants with 6-month persistent HPV16- or HPV18 infection will not undergo anoscopy because only ~10% of anal cancer is due to HPV16 or HPV18 among HIV⁶², the low absolute risk of anal cancer²⁷, and the possibility of morbidity from treating anal abnormalities. A biopsy will be taken from acetowhite lesions. The anoscopy impression and location of biopsies will be recorded for clinical management files and saved in the participant record for study purposes. Page 13 of 38

BMJ Open

Those with a biopsy diagnosis of anal intraepithelial neoplasia (AIN) grade 3 (AIN3) or anal cancer will be treated or referred for anal cancer management, respectively. Those diagnosed with AIN grade 2 (AIN2) will not undergo immediate treatment due to the low risk of anal cancer following a AIN2 diagnosis and the morbidity associated with treatment. Those with untreated AIN2 or 6-month persistent anal hrHPV by non-HPV16/18 types will be advised to seek clinical follow-up in a year.

There are no management guidelines or evidence-based intervention for 6-month HPV typespecific persistent oral HPV infection. Therefore, participants will not receive any clinical
intervention for HPV type-specific persistent oral infection.

Other participants, including hrHPV-negative WLWH and/or women with 6-month persistent
 low-risk HPV infection, will exit the study without further follow-up visits. Those diagnosed
 with cervical or anal cancer will be referred for cancer care.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Study Outcomes. Main outcomes will be prevalence and 6-month type-specific persistence of cervicovaginal (as an excellent proxy for cervical sampling⁶³), anal, and/or oral infections by HPV6/11/16/18 as well as anti-HPV16 and -HPV18 geometric mean titers. Cervical and anal biopsy specimens diagnosed as CIN2 or more severe diagnoses (CIN2+) or AIN2 or more severe diagnoses AIN2+, respectively, will also be tested for HPV for a secondary analysis to measure the effects of HPV vaccination on the prevalence of HPV type-specific precursors to anogenital cancer. In an exploratory aim, we will examine risk factors, including the cervicovaginal microbiome⁶⁴ and current and past HIV status [positive vs. negative and current antiretroviral therapy, CD4 counts, and HIV viral load], for HPV type-specific persistence in WLWH and HIV[-] women living in Rwanda.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

	275	HPV Testing. We will use a modified version of the AmpFire HPV genotyping assay
	276	(Genotyping High Risk HPV Real Time Fluorescent Detection; Atila Biosystems, Mountain
	277	View, CA, USA) for HPV genotyping of cervicovaginal, anal, and oral specimens. AmpFire uses
0 1	278	real-time PCR to detect 15 individual HPV genotypes including 13 hrHPV types and 2
2 3	279	intermediate-risk HPV types (HPV53 and HPV66). The modified AmpFire HPV genotyping
4 5	280	assay will detect the 17 individual HPV genotypes, including vaccine targeted HPV6 and
6 7	281	HPV11, in 5 assay reactions. The AmpFire testing platform was previously established at the
8 9 0	282	study lab and validated against other commercially available assays at Rwanda Military Hospital
1 2 3	283	(RMH). ⁶⁵⁻⁶⁸ The assay will be run per the manufacturer's instructions.
3 4		
5 6	284	Anogenital samples, collected into a dry tube, will be processed directly according to the
7 8	285	manufacturer's instructions. Residual lysed anogenital specimens will be neutralized according
9 0 1	286	to the manufacturer's protocol and stored at -20°C for future use.
2 3	207	Unexperient to the lab, the end since end in the end of 490 for an end of the next
4	287	Upon arrival to the lab, the oral rinse specimens will be stored at 4°C for processing the next
5 6	288	working lab day. Oral rinse specimens in saline will first be concentrated by centrifugation to
7 8	289	enrich the sample before processing and then stored frozen at -20°C until tested for HPV. After
9 0 1	290	testing, residual specimens will be discarded.
2 3 4	291	Formalin-fixed paraffin-embedded tissues diagnosed as CIN2+ or AIN2+ will similarly have
4 5 6 7	292	HPV genotyping using the AmpFire system according to the manufacturer's protocol.
, 8 9 0	293	HPV Serology. Anti-HPV16 and HPV18 IgG antibody geometric mean titers (GMTs) will be
1 2	294	measured from plasma by an VLP-based ELISA using a previously described method. ⁶⁹⁻⁷¹ A
3 4	295	total of randomly selected 1,096 sera (548 from Groups 1 and 2) from HPV-vaccinated
5 6	296	participants (stratified by HIV status and 3 vs. 2 HPV vaccine doses) and 108 sera from
7 8		22
9		For peer review only http://bmienen.hmi.com/site/about/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 38

BMJ Open

unvaccinated participants (Group 3) will be run in total. First, 20% of each group will be run at the HPV Serology Laboratory at the National Cancer Institute (NCI) Frederick National Laboratories, then the results will be replicated (≥90% correlation) at the study lab in Rwanda (masked to the original results), and then the remaining 80% of the testing will be finished at the study lab. As an additional quality control measure, a 10% random sample of specimens will be re-run at the HPV Serology Laboratory (masked to the original results) (inter-laboratory reliability) and another 10% random sample of specimens at the study lab (intra-laboratory reliability). Positive (e.g., IS standards^{72 73}) and negative controls (e.g., negative plasma) will be included in some testing plates to monitor assay performance per WHO recommendations.⁷⁴ *Pathology*. All histopathology slides will be scanned at the study lab and reviewed by a local pathologist, with a second review if second opinion is required, and then the Einstein study pathologist.⁷⁵ If the diagnoses are concordant, no further review of the case will be performed. If the diagnosis is discordant and at least one pathologist diagnoses CIN2+, the biopsy slide will be subjected to a joint review and consensus diagnosis. For negative/cervical intraepithelial neoplasia grade 1 pairs of diagnoses, which does not influence our analyses or the care of the participants, there will be no joint review.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Analysis and Statistical Power

Analyses. We will calculate point prevalence and the prevalence of 6-month persisting infection by individual HPV-type specific infections, with binomial 95% confidence intervals (95%CI). for each anatomic site and for the woman (all anatomic sites) for Gardasil®-vaccinated WLWH, Gardasil®-vaccinated HIV[-] women and unvaccinated WLWH. We likewise will calculate point prevalence and the prevalence of 6-month persisting infection with 95%CI for all HPV

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 38

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

types in aggregate and in sub-groups of HPV types according to the protection afforded by Gardasil®: Gardasil®-targeted types (HPV6, 11, 16, and 18), Gardasil®-untargeted types for which there might be cross-protection (HPV31, 33, and 45)^{18 76 77}, and Gardasil®-untargeted HPV types for which there is little or no evidence of cross-protection (HPV35, 39, 51, 52, 53, 56, 58, 59, 66, and 68). Results will be stratified by age and number (3 vs. 2) of doses as well as other factors possibly related to HPV prevalence. Differences in prevalence of these HPV type sub-groups (targeted, possible cross-protection, and untargeted) between the three study groups of women will be tested using Fisher's exact or Pearson chi-square test. Differences in prevalence of these HPV type sub-groups by age, number of doses (3 vs. 2), and other factors within the group, will be tested for statistical significance (p < 0.05) using a Fisher's exact or Pearson chi-square test. Notably, study groups of participants are fundamentally different populations (vs. a randomized control trial that would recruit from the same population and, as result of randomization, enroll similar, representative populations in each arm). Specifically, there are known differences in age and therefore possible differences in sexual activity between Gardasil®-vaccinated (Group 1) vs.

-unvaccinated WLWH (Group 2), and possible differences in sexual behaviors between

335 Gardasil®-vaccinated WLWH (Group 1) vs. HIV[-] women (Group 3)(since HIV infection

Sardashe-vacemated w L with (Group 1) vs. In v[-] women (Group 5)(since In v infection

predominately is sexually transmitted in this population). Therefore, we will use a relative

measure of effectiveness to account for the differences in age and possible differences in

exposure to HPV. We will use logistic regression to calculate the odds ratio (OR) of the point

339 prevalence and the prevalence of 6-month persisting HPV infections of Gardasil®-targeted HPV

340 types, individually (HPV6, 11, 16, or 18) and in aggregate (HPV6, 11, 16, and 18), vs.

341 untargeted HPV genotypes for which there is no evidence of cross-protection, for each anatomic

<u>N_{HPV6/11/16/18}/N_{HPV35/39/51/52/53/56/58/59/66/68} [vaccinated WLWH] (Group 1)</u>

1	
2 3	240
4	342
5 6	343
7 8	
9	344
10 11	345
12 13	
14	346
15 16	-
17	347
18 19	348
20 21	349
22	549
23 24	350
25 26	351
27	
28 29	352
30	
31 32	353
33 34	354
35	255
36 37	355
38	356
39 40	
41 42	357
43	358
44 45	550
46 47	359
48	360
49 50	
51	361
52 53	362
54 55	363
56	303
57 58	
59 60	
00	

site individually (cervix, anus, OR oral cavity) and combined (cervix, anus, AND oral cavity).
That is, we also will compare the ratio between study groups of participants as follows:

- 345 $N_{HPV6/11/16/18}/N_{HPV35/39/51/52/53/56/58/59/66/68}$ [unvaccinated WLWH or HIV[-] women] (Group 2 or Group 3) 346 This will help us to account/adjust for differences, above what can be achieved statistically, in 347 HPV exposure, prevalence, and persistence due to differences in age (n.b., prevalence equals 348 incidence times duration; prevalent infections tend to be more persistent with increasing age⁷⁸) 349 and sexual behaviors between groups. Additional logistic regression models may be used to 350 adjust specifically on other factors, including age, number of doses, and sexual behaviors, to 351 account for population differences between study groups.
- Differences in GMT and seropositivity will be tested for statistical significance using the MannWhitney and Fisher's exact tests, respectively. ANOVA and logistic regression models will be
 used to adjust for/assess the association of other factors (e.g., age at vaccination, age at
 enrollment into the study, number of doses, current and past HIV status, and detection of HPV
 genotypes, etc.) with GMT and seropositivity, respectively.

Sample Size/Power. We made the following assumptions: 1) at least 30% prevalence of HPV infection (of any anatomic site) at baseline, 25% of which will by Gardasil®-target HPV types and 55% will be untargeted HPV types, 2) a 10% loss to follow-up (LTFU) in 6 months, and 3) at least 70% of HPV infections persist for 6 months. We justify an HPV prevalence of at least 30% among WLWH less than 30 years of age in this study, based on 30% prevalence of highrisk HPV infection of the cervix alone in 30-34 year-olds WLWH from our previous cervical cancer screening study in Rwanda.⁷⁹ We expect that the HPV prevalence may be higher since the

Page 18 of 38

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

364	prevalence of HPV, like that of other sexually transmitted infections, tends to peak about 5-10
365	years after the median age of sexual initiation in a population ^{80 81} , which in Rwanda is around 17
366	years of age. ^{82 83} However, we conservatively used 30% prevalence to ensure adequate statistical
367	power. We justify our assumption of a maximum of 10% loss to follow-up over 6 months, given
368	our experience working in Rwanda over the last ~ 20 years. We justify 70% of prevalent HPV
369	infections persisting for 6 months, given that 36-50% of prevalent HPV infections persist 6-
370	months in HIV[-] women ^{84 85} and WLWH have an impaired immunity to HPV compared to
371	HIV[-] women. ^{24 25}
372	Sample size calculation relates to the relative effectiveness measure as discussed. Under above
373	assumptions and accounting for 10% misclassification of HPV vaccine status, a sample size of
374	757 vaccinated and 757 unvaccinated WLWH will provide \geq 80% power (<i>p</i> =0.05) to detect an
375	OR of ≤ 0.5 for 6-month persistent HPV6/11/16/18 infections relative to
376	HPV35/39/51/52/53/56/58/59/66/68 (but not HPV31/33/45 because of possible cross protection),
377	in Gardasil®-vaccinated (Group 1) vsunvaccinated WLWH (Group 3). Consequently, because
378	there will be more participants with a prevalent infection than 6-month persistent HPV infection
379	(because there are no losses to follow-up or HPV viral clearance for which to account), there will
380	be \geq 80% power (<i>p</i> =0.05) to detect a OR of \leq 0.75 in point prevalence of HPV6/11/16/18
381	infection relative to HPV35/39/51/52/53/56/58/59/66/68, in Gardasil®-vaccinated (Group 1) vs.
382	-unvaccinated WLWH (Group 3).
383	Using the variance of GMT for HPV antibodies from Einstein et al. ^{86 87} , a sample size of 274
384	will provide 80% power ($p=0.05$) to detect a 30% difference in GMT between HPV-vaccinated
385	WLWH (Group 1) and HIV[-] (Group 2) women for the same number of doses. If there is no
386	appreciable difference in the GMT between those who got three or two doses, we can combine

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

394

BMJ Open

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
74	

60

those groups with different doses. In that case, with a sample size of 548, there will be 80% power (p=0.05) to detect a 22% difference between HPV-vaccinated WLWH (Group 1) and HIV[-] women (Group 2).

Patient and Public Involvement

391 Patients or the public WERE NOT involved in the design, or conduct, or reporting, or

- 392 dissemination plans of our research
- 393 **DISCUSSION**
 - Limitations

Several limitations in the proposed study are worth noting. First, our study is not a randomized
control trial, but an observational study of populations selected from different groups of women.
We have proposed several approaches to account/adjust for those age differences but as with any
observational study, these techniques may be unable to completely control for biases.

399 Populations recruited into this study are primarily from Kigali and therefore are not

- 400 representative of all Rwanda, nor are they representative of other populations in SSA or
- 401 elsewhere in the world. In 2018-9, almost 80% of Rwandan PLWH had a suppressed HIV viral
- 402 load⁸⁸, a higher percentage than for PLWH populations living in many SSA and other
- 403 countries.⁸⁹ Therefore, these results may not be generalizable to all WLWH populations,
- 404 especially populations of WLWH who are severely immunocompromised.

We are using 6-month HPV type-specific persistence as a proxy for cancer risk but ideally, we
want to measure the impact of Gardasil® on high-grade cervical and anal abnormalities as a

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

more proximal surrogate for cancer risk. The population will be still too young to have large numbers of these endpoints although we will evaluate these endpoints in secondary analyses.

Despite the noted limitations, there are some important strengths of the study that warrant highlighting. First, the early introduction of HPV vaccination that is documented through a national registry, excellent HIV care including a national database and patient tracking, and relatively high prevalence of HIV provides a unique opportunity to study the impact of HPV vaccination in WLWH, the population at the highest risk of cervical^{29 30} that therefore would gain the greatest benefit from it, living in Rwanda. Although a comparative effectiveness randomized control trial of different HPV vaccines is probably still warranted to determine how best to protect this most vulnerable population⁹⁰, these data may provide some of the first evidence of long-term effectiveness of HPV vaccination in WLWH and inform such a trial. A second strength is that the study is being conducted in Rwanda, a high cervical-cancer burden country.⁴⁵ The findings from this study, if positive, may encourage other high-burden countries to accelerate the introduction of HPV vaccination or at least target WLWH and PLWH populations. Finally, HPV DNA and serology testing are being done locally for this study could potentially be transferred and replicated in other LMICs that want to monitor and evaluate HPV-vaccine impact in their populations.

425 Importantly, as a result of implementing this research protocol, we will continue to expand the 426 local capacity to conduct state-of-the-art HPV and molecular epidemiologic research by 1) 427 establishing next-generation sequencing (NGS) technology to perform cervicovaginal, anal, and 428 oral microbiota characterization for this study that will enable locally conducted studies of the

human genome and genomic testing for personalized medicine in Rwanda; 2) building upon current ELISA capabilities at the study lab to perform titration of plasma antibodies, a skill that can be applied to other studies of vaccine response; 3) enhancing data capture and management through increased capacity to use REDCap⁹¹⁻⁹³; and 4) migrating current HPV vaccine records for participants living in Kigali into a common electronic database, which will allow us to conduct studies more easily on the impact of HPV vaccination on outcomes. Importantly, this will allow linkage of HPV-vaccination status to both the Rwanda National HIV Registry and the Rwanda Cancer Registry, the latter of which we, in collaboration with the Rwanda MoH, helped re-establish.94 This will allow investigations of the long-term impact of HPV vaccination on cancer incidence in Rwandan WLWH and HIV[-] women and, as a result of herd protection, Rwandan men.

As building research capacity in Rwanda is a major goal of this project, all members of the
research team will be asked and supported to lead at least one analysis and one manuscript
preparation, based on interests and expertise. Analytic and publication responsibilities will be
divided equally and collaboratively among both Rwandan and U.S. investigators.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

444 ETHICS AND DISSEMINATION 445 The study was approved by the Albert Einstein College of Medicine Institutional Review Board (IRB#: 2021-13087) and the Rwanda National Ethics Committee.

1 2

All participant data collected will be entered or transferred to a secure REDCap database, with
All participant data collected will be entered or transferred to a secure REDCap database, with
access to personal information restricted to the local staff. Study data will be stored in REDCap
and maintained on password protected study computers behind the institution firewall.

450 Copies of signed consents will be stored in locked file cabinets in a locked room, with access
 451 restricted to study personnel only, at the study lab. Data will be entered or transferred to a secure
 452 REDCap database, with access to personal information restricted to the local staff.

¹⁷₁₈ 453 Study data will be stored in REDCap and maintained on password protected study computers

19 454 behind the institution firewall. REDCap is a secure, web-based application designed to support

455 data capture for research studies providing: 1), an intuitive interface for validated data entry; 2)
 456 audit trails for tracking data manipulation and export procedures: 3) automated export procedur

456 audit trails for tracking data manipulation and export procedures; 3) automated export procedures
 457 for seamless data downloads to common statistical packages; and 4) procedures for importing

- 457 for seamless data downloads to common statistical packages; and 4) procedures for importin
 458 data from external sources. REDCap is hosted on a secure server and has undergone a
- 450 data nom external sources. REDCap is nosted on a secure server and has undergone a Governance Risk & Compliance Assessment by All REDCap electronic data files shared with
- 459 Governance Risk & Compliance Assessment by All REDCap electronic data mes shared with
 460 Albert Einstein College of Medicine will be maintained by the HIPAA-compliant Epidemiology
- 461 Study Management and Informatics Core Facility (ESMI) at Einstein. The Albert Einstein
- 28 462 College of Medicine policy on use of REDCap can be found at:

²⁹ 463 http://ric.einstein.yu.edu/ric_files/REDCap%20Appropriate%20Use%20Policy.pdf

31 464 Medical, screening, and preventive services, all of which are minimally invasive, safe, and 32 outpatient, and have been done in millions of people, provided by the study are on par with or 465 33 466 better than international standards-of-care, most of which have very low risks of even minor 34 adverse events or harms. Positive test results and diagnoses may result in psychologic distress 467 35 and anxiety. Of note, pregnancy and HIV testing may cause pre- and post-test anxiety. Therefore, 468 36 37 469 pre- and post-testing counseling will be provided as needed. Any participant who tests HIV 38 470 positive will be referred to the health facility's HIV clinic for HIV management following the 39 471 Rwanda MoH's HIV management guidelines. 40

41
42
43
473
473
474
474
474
475
475
475
476
476
477
477
477
478
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
<li

46 475 ETHICS STATEMENT 47

48 476 Patient consent for publication not required.

477 ACKNOWLEDGEMENTS 51

58 59

60

478 We acknowledge and thank the Rwandan women who participate in this study. We also thank
479 the research teams at Albert Einstein College of Medicine, the Einstein-Rwanda Research &
480 Capacity Building Program, and the U.S. National Cancer Institute for their contributions in
481 developing and implementing this research protocol.

1 2 3 4 5 6 7 8 9 10	482 483 484 485 486 487 488	• Contributorship statement: GM, PEC, and KA designed the study initially. GM, AP, PEC, and KA refined and finalized the overall study design and wrote the grant proposal that is the basis for this protocol. GM, FS, NH, AM, JCG, AP, KA, and PEC drafted and finalized the written protocol. GM, FS, NH, AM, JCG, BM, FK, AP, PT, KA, and PEC implemented it. PEC drafted this manuscript. All authors have read, revised, and approved the final manuscript. GM and FS are co-first authors; KA and PEC are co-senior authors.
11 12 13 14 15 16 17 18 19 20	489 490 491 492 493 494 495	 Competing interests statement: Dr. Castle is the Director of the Division of Cancer Prevention at the NCI, the NIH institute that funds this research. However, Dr. Castle has recused himself from any decisional or financial authority over this grant or any extramural HPV grants funded by the NCI. Other authors claim no competing interests. The study is receiving HPV genotyping tests at a reduce cost from Atila Biosystems. Funding statement: This work is being supported by NIH by grant numbers 5U54CA254568-02 and 2U01AI096299-13. This work is also being supported by the
21 22 23 24 25 26 27 28 29	496 497 498 499	 Data sharing statement: Data will be shared in accordance to policies for NIH-funded research at the conclusion of the study and after the publication of the main scientific findings.
30 31 32 33 34 35 36 37 38		
39 40 41 42 43 44 45 46 47		
47 48 49 50 51 52 53		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	500 501 502 503 504	Figure 1. Enrollment visit procedures Figure 2. Six-month follow-up visit procedures Figure 3. Follow-up and clinical management of baseline HPV-positive results
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 		
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		32 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1. Schiffman M, Castle PE, Jeronimo J, et al. Human papillomavirus and cervical cancer. *The Lancet* 2007:890-907. doi: 10.1016/S0140-6736(07)61416-0

- Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. *Infect Agent Cancer* 2009;4:8. doi: 10.1186/1750-9378-4-8 [published Online First: 2009/06/03]
- Munoz N, Sk K, K S, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. *J Natl Cancer Inst* 2010;102(5):325-39.
- 4. de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. *Lancet Oncol* 2010;11(11):1048-56. doi: 10.1016/S1470-2045(10)70230-8 [published Online First: 2010/10/19]
- 5. Giuliano AR, Tortolero-Luna G, Ferrer E, et al. Epidemiology of human papillomavirus infection in men, cancers other than cervical and benign conditions. *Vaccine* 2008;26 Suppl 10(0 10):K17-28. doi: 10.1016/j.vaccine.2008.06.021 [published Online First: 2008/10/14]
- 6. Donovan B, Franklin N, Guy R, et al. Quadrivalent human papillomavirus vaccination and trends in genital warts in Australia: analysis of national sentinel surveillance data. *Lancet Infect Dis* 2011;11(1):39-44. doi: 10.1016/S1473-3099(10)70225-5 [published Online First: 2010/11/12]
- 7. Australian Government Department of Health. Historical data from the National HPV Vaccination Program Register 2018 [Available from: <u>https://www.health.gov.au/resources/collections/historical-data-from-the-national-hpv-vaccination-program-register</u> accessed January 2 2022.
- Tabrizi SN, Brotherton JM, Kaldor JM, et al. Assessment of herd immunity and crossprotection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. *Lancet Infect Dis* 2014;14(10):958-66. doi: 10.1016/S1473-3099(14)70841-2 [published Online First: 2014/08/12]

among 18 to 35 year old Australian women, nine years following implementatio vaccination. <i>Journal of Infectious Disease</i> 2018	n of
10. Gertig DM, Brotherton JM, Budd AC, et al. Impact of a population-based HPV vacc	cination
program on cervical abnormalities: a data linkage study. <i>BMC Med</i> 2013;11:227	
10.1186/1741-7015-11-227 [published Online First: 2013/10/24]	
11. Crowe E, Pandeya N, Brotherton JM, et al. Effectiveness of quadrivalent human	
papillomavirus vaccine for the prevention of cervical abnormalities: case-control	l studv
nested within a population based screening programme in Australia. BMJ	
2014;348:g1458. doi: 10.1136/bmj.g1458 [published Online First: 2014/03/07]	
12. Brotherton JM, Gertig DM, May C, et al. HPV vaccine impact in Australian women	: ready
for an HPV-based screening program. <i>Med J Aust</i> 2016;204(5):184-84e1. doi:	5
10.5694/mja15.01038 [published Online First: 2016/03/18]	
13. Kavanagh K, Pollock KG, Cuschieri K, et al. Changes in the prevalence of human	
papillomavirus following a national bivalent human papillomavirus vaccination	
programme in Scotland: a 7-year cross-sectional study. Lancet Infect Dis	
2017;17(12):1293-302. doi: 10.1016/S1473-3099(17)30468-1 [published Online	e First:
2017/10/03]	
14. Baldur-Felskov B, Dehlendorff C, Munk C, et al. Early impact of human papillomav	virus
vaccination on cervical neoplasianationwide follow-up of young Danish wome	en. <i>J Natl</i>
Cancer Inst 2014;106(3):djt460. doi: 10.1093/jnci/djt460 [published Online Firs	st:
2014/02/21]	
15. LE M, S H, C L, et al. Reduction in human papillomavirus (HPV) prevalence among	g young
women following HPV vaccine introduction in the United States, National Healt	th and
Nutrition Examination Surveys, 2003-2010 J Infect Dis 2013;208(3):385-93.	
16. Markowitz LE, Liu G, Hariri S, et al. Prevalence of HPV After Introduction of the	
Vaccination Program in the United States. Pediatrics 2016;137(3):e20151968. d	loi:
10.1542/peds.2015-1968 [published Online First: 2016/02/26]	
17. Oliver SE, Unger ER, Lewis R, et al. Prevalence of Human Papillomavirus Among	Females
After Vaccine Introduction-National Health and Nutrition Examination Survey,	United
34	
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

States, 2003-2014. J Infect Dis 2017;216(5):594-603. doi: 10.1093/infdis/jix244 [published Online First: 2017/09/22] 18. Drolet M, Benard E, Perez N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 2019;394(10197):497-509. doi: 10.1016/S0140-6736(19)30298-3 [published Online First: 2019/07/01] 19. Luostarinen T, Apter D, Dillner J, et al. Vaccination protects against invasive HPVassociated cancers. Int J Cancer 2018;142(10):2186-87. doi: 10.1002/ijc.31231 [published Online First: 2017/12/28] 20. Lei J, Ploner A, Elfstrom KM, et al. HPV Vaccination and the Risk of Invasive Cervical Cancer. N Engl J Med 2020;383(14):1340-48. doi: 10.1056/NEJMoa1917338 [published Online First: 2020/10/01] 21. Falcaro M, Castañon A, Ndlela B, et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet 2021;398(10316):2084-92. doi: 10.1016/s0140-6736(21)02178-4 [published Online First: 2021/11/07] 22. Centers for Disease Control and Prevention. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. JAMA 1993;269(6):729-30. 23. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep 1992 41:1-19. 24. Grulich AE, van Leeuwen MT, Falster MO, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007;370(9581):59-67. doi: 10.1016/S0140-6736(07)61050-2 [published Online First: 2007/07/10] 25. Silverberg M, al e. Cumulative Incidence of Cancer Among Persons With HIV in North America: A Cohort Study. Ann Intern Med 2015;163(7):507=18. 26. Stelzle D, Tanaka LF, Lee KK, et al. Estimates of the global burden of cervical cancer associated with HIV. Lancet Glob Health 2021;9(2):e161-e69. doi: 10.1016/S2214-109X(20)30459-9 [published Online First: 2020/11/20]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

27. Colon-Lopez V, MS S, Machin M, et al. Anal Cancer Risk Among People with HIV Infection in the United States. *J Clin Oncol* 2018;36(1):68-75.

- 28. Wang CJ, Palefsky JM. HPV-Associated Anal Cancer in the HIV/AIDS Patient. *Cancer Treat Res* 2019;177:183-209. doi: 10.1007/978-3-030-03502-0_7 [published Online First: 2018/12/14]
- Liu G, Sharma M, Tan N, et al. HIV-positive women have higher risk of human papilloma virus infection, precancerous lesions, and cervical cancer. *AIDS* 2018;32(6):795-808. doi: 10.1097/QAD.00000000001765 [published Online First: 2018/01/26]
- 30. Levin MJ, Huang S, Moscicki AB, et al. Four-year persistence of type-specific immunity after quadrivalent human papillomavirus vaccination in HIV-infected children: Effect of a fourth dose of vaccine. *Vaccine* 2017;35(13):1712-20.
- Weinberg A, Huang S, Moscicki AB, et al. Persistence of memory B-cell and T-cell responses to the quadrivalent HPV vaccine in HIV-infected children. *AIDS* 2018;32(7):851-60.
- 32. Wilkin T, Lee JY, Lensing SY, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. *J Infect Dis* 2010;202(8):1246-53.
- 33. Giacomet V, Penagini F, Trabattoni D, et al. Safety and immunogenicity of a quadrivalent human papillomavirus vaccine in HIV-infected and HIV-negative adolescents and young adults. *Vaccine* 2014;32(43):5657-61.
- 34. Moscicki AB, Karalius B, Tassiopoulos K, et al. Human Papillomavirus Antibody Levels and Quadrivalent Vaccine Clinical Effectiveness in Perinatally Human Immunodeficiency Virus-infected and Exposed, Uninfected Youth. *Clin Infect Dis* 2019;69(7):1183-91. doi: 10.1093/cid/ciy1040 [published Online First: 2019/03/31]
- 35. Kahn JA, Xu J, Kapogiannis BG, et al. Immunogenicity and safety of the human papillomavirus 6, 11, 16, 18 vaccine in HIV-infected young women. *Clin Infect Dis* 2013;57(5):735-44.
- 36. Kojic EM, Kang M, Cespedes MS, et al. Immunogenicity and safety of the quadrivalent human papillomavirus vaccine in HIV-1-infected women. *Clin Infect Dis* 2014;59(1):127-35.

BMJ Open

37. Money DM, Moses E, Blitz S, et al. HIV viral suppression results in higher antibody
responses in HIV-positive women vaccinated with the quadrivalent human
papillomavirus vaccine. Vaccine 2016;34(40):4799-806.
38. Giacomet V, Penagini F, Trabattoni D, et al. Safety and immunogenicity of a quadrivalent
human papillomavirus vaccine in HIV-infected and HIV-negative adolescents and young
adults. Vaccine 2014;32(43):5657-61. doi: 10.1016/j.vaccine.2014.08.011 [published
Online First: 2014/08/26]
39. Kojic EM, Kang M, Cespedes MS, et al. Immunogenicity and safety of the quadrivalent
human papillomavirus vaccine in HIV-1-infected women. Clin Infect Dis
2014;59(1):127-35. doi: 10.1093/cid/ciu238 [published Online First: 2014/04/12]
40. Money DM, Moses E, Blitz S, et al. HIV viral suppression results in higher antibody
responses in HIV-positive women vaccinated with the quadrivalent human
papillomavirus vaccine. Vaccine 2016;34(40):4799-806. doi:
10.1016/j.vaccine.2016.08.016 [published Online First: 2016/08/22]
41. Toft L, Tolstrup M, Muller M, et al. Comparison of the immunogenicity of Cervarix(R) and
Gardasil(R) human papillomavirus vaccines for oncogenic non-vaccine serotypes HPV-
31, HPV-33, and HPV-45 in HIV-infected adults. Hum Vaccin Immunother
2014;10(5):1147-54. doi: 10.4161/hv.27925 [published Online First: 2014/02/21]
42. Cranston RD, Cespedes MS, Paczuski P, et al. High Baseline Anal Human Papillomavirus
and Abnormal Anal Cytology in a Phase 3 Trial of the Quadrivalent Human
Papillomavirus Vaccine in Human Immunodeficiency Virus-Infected Individuals Older
Than 26 Years: ACTG 5298. Sex Transm Dis 2018;45(4):266-71. doi:
10.1097/OLQ.000000000000745 [published Online First: 2018/03/13]
43. Wilkin T, Chen H, Cespedes MS, et al. A randomized, placebo-controlled trial of the
quadrivalent HPV vaccine in HIV-infected adults age 27 years or older: AIDS Clinical
Trials Group protocol A5298 Clin Infect Dis 2018
44. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of
Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin
2021;71(3):209-49. doi: 10.3322/caac.21660 [published Online First: 2021/02/05]
45. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA
37
51

Cancer J Clin 2018;68(6):394-424. doi: 10.3322/caac.21492 [published Online First: 2018/09/13] 46. Binagwaho A, Wagner CM, Gatera M, et al. Achieving high coverage in Rwanda's national human papillomavirus vaccination programme. Bull World Health Organ 2012;90(8):623-8. doi: 10.2471/BLT.11.097253 [published Online First: 2012/08/16] 47. Gallagher KE, Howard N, Kabakama S, et al. Lessons learnt from human papillomavirus (HPV) vaccination in 45 low- and middle-income countries. PLoS One 2017;12(6):e0177773. doi: 10.1371/journal.pone.0177773 [published Online First: 2017/06/03] 48. Ngabo F, Franceschi S, I B, et al. Human papillomavirus infection in Rwanda at the moment of implementation of a national HPV vaccination programme. BMC Infectious Diseases 2016;16:225. 49. LaMontagne DS, Bloem PJN, Brotherton JML, et al. Progress in HPV vaccination in lowand lower-middle-income countries. Int J Gynaecol Obstet 2017;138 Suppl 1:7-14. doi: 10.1002/ijgo.12186 [published Online First: 2017/07/12] 50. Black E, Richmond R. Prevention of Cervical Cancer in Sub-Saharan Africa: The Advantages and Challenges of HPV Vaccination. Vaccines (Basel) 2018;6(3) doi: 10.3390/vaccines6030061 [published Online First: 2018/09/13] 51. Rwanda Population-Based HIV Impact Assessment. 52. Rwanda Ministry of Health. National Guidelines for Prevention and Management of HIV, STIs & Other Blood Borne Infections, 2013. 53. Rwanda Ministry of Health. Circular of Key Changes in HIV Prevention and Management Guidelines, 2018. 54. Lowy DR, Herrero R, Hildesheim A, et al. Primary endpoints for future prophylactic human papillomavirus vaccine trials: towards infection and immunobridging. Lancet Oncol 2015;16(5):e226-33. doi: 10.1016/S1470-2045(15)70075-6 [published Online First: 2015/05/07] 55. Wentzensen N, Schiffman M, Silver MI, et al. ASCCP Colposcopy Standards: Risk-Based Colposcopy Practice. J Low Genit Tract Dis 2017;21(4):230-34. doi: 10.1097/LGT.00000000000334 [published Online First: 2017/09/28]

BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Enseignement Superieur (ABES) .	BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I
--	---------------------------------	---

	lesions for cervical cancer prevention 2013 [Available from:
	https://apps.who.int/iris/bitstream/handle/10665/96735/WHO_RHR_13.21_eng.pdf
57. S	Santesso N, Mustafa RA, Schünemann HJ, et al. World Health Organization Guidelines for
	treatment of cervical intraepithelial neoplasia 2-3 and screen-and-treat strategies to
	prevent cervical cancer. Int J Gynaecol Obstet 2016;132(3):252-8. doi:
	10.1016/j.ijgo.2015.07.038 [published Online First: 2016/02/13]
58. V	World Health Organization. WHO guidelines for the use of thermal ablation for cervical pro-
	cancer lesions. Geneva, Switzerland, 2019.
59. F	Perkins RB, Guido RS, Castle PE, et al. 2019 ASCCP Risk-Based Management Consensus
	Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J Lor
	Genit Tract Dis 2020;24(2):102-31. doi: 10.1097/lgt.000000000000525 [published
	Online First: 2020/04/04]
60. 7	Tainio K, Athanasiou A, Tikkinen KAO, et al. Clinical course of untreated cervical
	intraepithelial neoplasia grade 2 under active surveillance: systematic review and meta-
	analysis. <i>Bmj</i> 2018;360:k499. doi: 10.1136/bmj.k499 [published Online First:
	2018/03/01]
61. F	Kyrgiou M, Athanasiou A, Paraskevaidi M, et al. Adverse obstetric outcomes after local
	treatment for cervical preinvasive and early invasive disease according to cone depth:
	systematic review and meta-analysis. Bmj 2016;354:i3633. doi: 10.1136/bmj.i3633
	[published Online First: 2016/07/30]
62. I	Lin C, Franceschi S, Clifford GM. Human papillomavirus types from infection to cancer in
	the anus, according to sex and HIV status: a systematic review and meta-analysis. Lanc
	Infect Dis 2018;18(2):198-206. doi: 10.1016/s1473-3099(17)30653-9 [published Online
	First: 2017/11/22]
63. <i>I</i>	Arbyn M, Smith SB, Temin S, et al. Detecting cervical precancer and reaching
	underscreened women by using HPV testing on self samples: updated meta-analyses.
	BMJ 2018;363:k4823. doi: 10.1136/bmj.k4823 [published Online First: 2018/12/07]
64. E	Brown D, Muller M, Sehr P, et al. Concordance assessment between a multiplexed
	competitive Luminex immunoassay, a multiplexed IgG Luminex immunoassay, and a
	pseudovirion-based neutralization assay for detection of human papillomaviruse types
	39
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

and 18. *Vaccine* 2014;32(44):5880-7. doi: 10.1016/j.vaccine.2014.08.004 [published Online First: 2014/08/26]

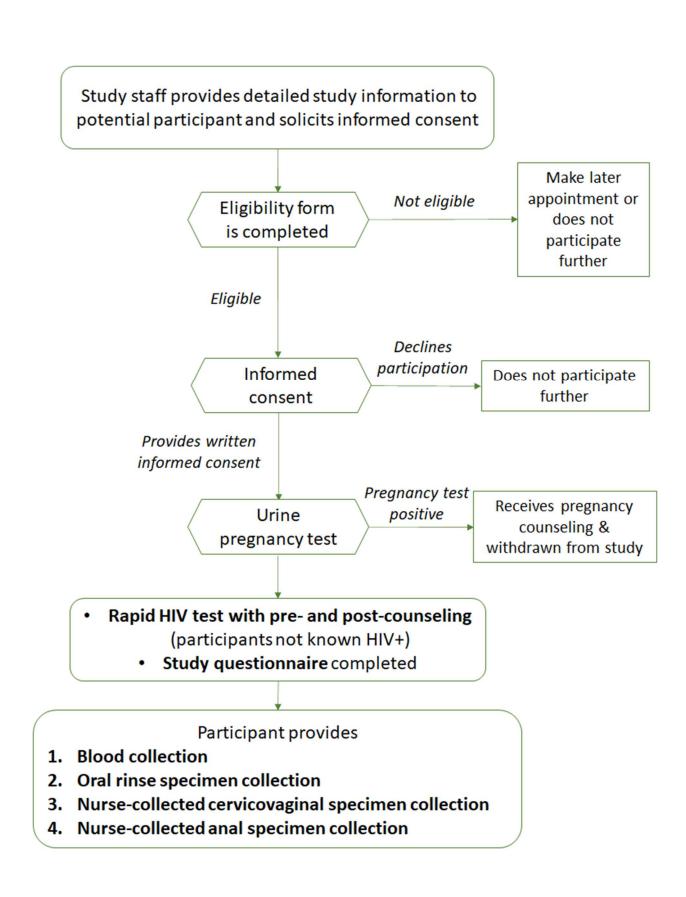
- 65. Murenzi G, Tuyisenge P, Kanyabwisha F, et al. Type-specific persistence, clearance and incidence of high-risk HPV among screen-positive Rwandan women living with HIV. *Infect Agent Cancer* 2021;16(1):16. doi: 10.1186/s13027-021-00355-6 [published Online First: 2021/02/21]
- 66. Zhang W, Du H, Huang X, et al. Evaluation of an isothermal amplification HPV detection assay for primary cervical cancer screening. *Infect Agent Cancer* 2020;15:65. doi: 10.1186/s13027-020-00328-1 [published Online First: 2020/10/29]
- 67. Tang YW, Lozano L, Chen X, et al. An Isothermal, Multiplex Amplification Assay for Detection and Genotyping of Human Papillomaviruses in Formalin-Fixed, Paraffin-Embedded Tissues. *J Mol Diagn* 2020;22(3):419-28. doi: 10.1016/j.jmoldx.2019.12.004 [published Online First: 2020/01/25]
- 68. Murenzi G, Kim HY, Munyaneza A, et al. Anogenital Human Papillomavirus and HIV Infection in Rwandan Men Who Have Sex With Men. J Acquir Immune Defic Syndr 2020;84(5):463-69. doi: 10.1097/QAI.00000000002376 [published Online First: 2020/07/22]
- 69. Kemp TJ, Garcia-Pineres A, Falk RT, et al. Evaluation of systemic and mucosal anti-HPV16 and anti-HPV18 antibody responses from vaccinated women. *Vaccine* 2008;26(29-30):3608-16. doi: 10.1016/j.vaccine.2008.04.074 [published Online First: 2008/06/11]
- 70. Herrin DM, Coates EE, Costner PJ, et al. Comparison of adaptive and innate immune responses induced by licensed vaccines for Human Papillomavirus. *Hum Vaccin Immunother* 2014;10(12):3446-54. doi: 10.4161/hv.34408 [published Online First: 2014/12/09]
- 71. HPV Serology Laboratory. HPV Serology Laboratory Standard Operating Procedure NCI Frederick: National Cancer Institute; [Available from: <u>https://frederick.cancer.gov/sites/default/files/2021-</u> <u>06/HSL%20LAB%20007%20HPV%20Antibody%20ELISA.pdf</u>.
- 72. National Institute for Biological Standards and Control. WHO International Standard 05-134 HPV 16 antibodies 2019 [Available from: <u>https://www.nibsc.org/documents/ifu/05-134.pdf</u>.

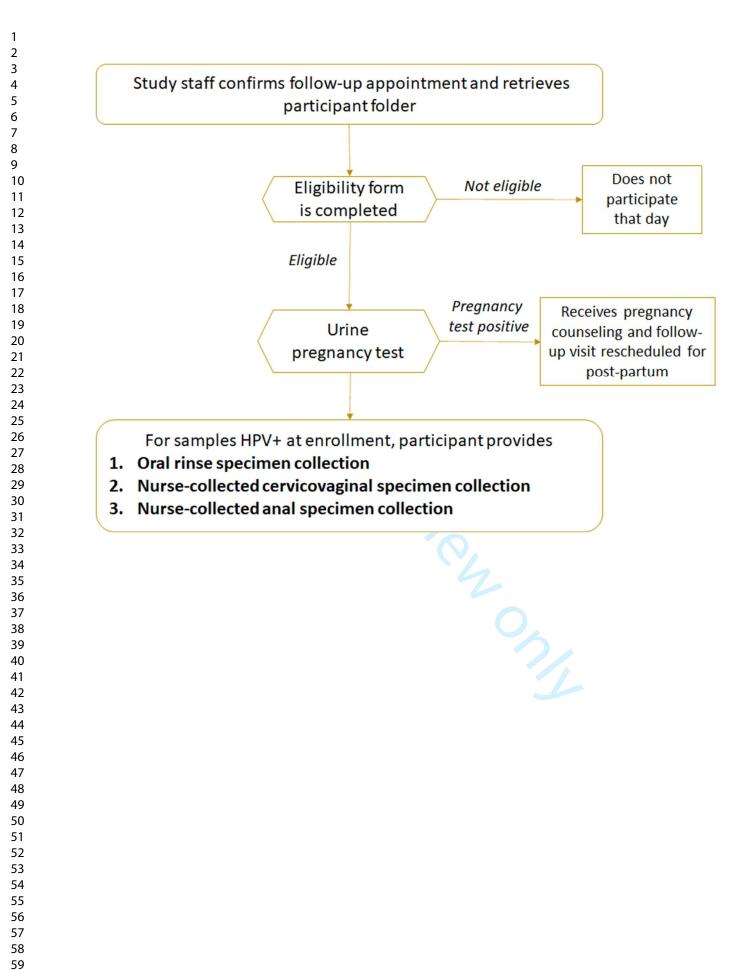
BMJ Open

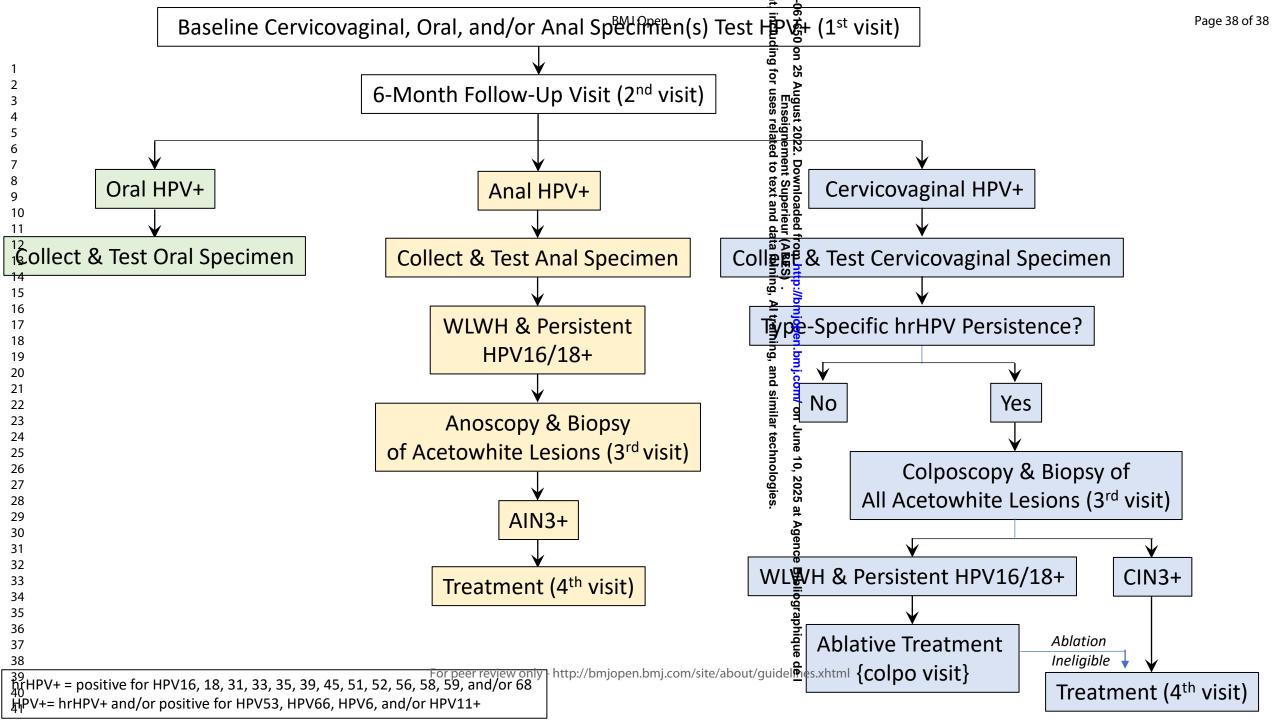
Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I
---	---

73. National Institute for Biological Standards and Control. WHO International Standard 1st				
WHO International Standard for anti-human papillomavirus 18 serum. 2019 [Available				
from: https://www.nibsc.org/documents/ifu/10-140.pdf. Published 20.				
74. World Health Organization. In vitro diagnostics and laboratory technology: ELISA tests				
2019 [Available from: https://www.who.int/diagnostics_laboratory/faq/elisa/en/				
75. American Society for Clinical Pathology. Partners for Cancer Diagnosis and Treatment in				
Africa: New Telepathology System to Serve All Hospitals in Kigali, Rwanda 2017				
[Available from: https://www.ascp.org/content/docs/default-source/get-involved-				
pdfs/partners-in-cancer-diagnosis-newsletter/partners-newsletter-july-2017.pdf?sfvrsn=2.				
76. Barzon L, Squarzon L, Masiero S, et al. Neutralizing and cross-neutralizing antibody titres				
induced by bivalent and quadrivalent human papillomavirus vaccines in the target				
population of organized vaccination programmes. Vaccine 2014;32(41):5357-62. doi:				
10.1016/j.vaccine.2014.07.014 [published Online First: 2014/07/22]				
77. Godi A, Panwar K, Haque M, et al. Durability of the neutralizing antibody response to				
vaccine and non-vaccine HPV types 7 years following immunization with either				
Cervarix(R) or Gardasil(R) vaccine. Vaccine 2019;37(18):2455-62. doi:				
10.1016/j.vaccine.2019.03.052 [published Online First: 2019/03/31]				
78. Castle PE, Schiffman M, Herrero R, et al. A prospective study of age trends in cervical				
human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. J Infect Dis				
2005;191(11):1808-16. doi: 10.1086/428779 [published Online First: 2005/05/05]				
79. Murenzi G, Kanyabwisha F, Murangwa A, et al. Twelve-Year Trend in the Prevalence of				
High-Risk Human Papillomavirus Infection Among Rwandan Women Living With HIV.				
J Infect Dis 2020;222(1):74-81. doi: 10.1093/infdis/jiaa065 [published Online First:				
2020/02/13]				
80. Smith JS, Melendy A, Rana RK, et al. Age-specific prevalence of infection with human				
papillomavirus in females: a global review. J Adolesc Health 2008;43(4 Suppl):S5-25,				
S25.e1-41. doi: 10.1016/j.jadohealth.2008.07.009 [published Online First: 2008/10/01]				
81. de Sanjosé S, Diaz M, Castellsagué X, et al. Worldwide prevalence and genotype distribution				
of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis.				

Lancet Infect Dis 2007;7(7):453-9. doi: 10.1016/s1473-3099(07)70158-5 [published Online First: 2007/06/29]


- Ntaganira J, Hass LJ, Hosner S, et al. Sexual risk behaviors among youth heads of household in Gikongoro, south province of Rwanda. *BMC Public Health* 2012;12:225. doi: 10.1186/1471-2458-12-225 [published Online First: 2012/03/24]
- 83. Umutesi J. Early sexual debut and subsequent risk factors among youth in Rwanda: A secondary data analysis of Rwanda Demographic and Health Survey 2015. University of Rwanda, 2016.
- 84. Rodriguez AC, Schiffman M, Herrero R, et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. *J Natl Cancer Inst* 2008;100(7):513-7. doi: 10.1093/jnci/djn044 [published Online First: 2008/03/28]
- 85. Plummer M, Schiffman M, Castle PE, et al. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. *J Infect Dis* 2007;195(11):1582-9. doi: 10.1086/516784 [published Online First: 2007/05/02]
- 86. Einstein MH, Baron M, Levin MJ, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18-45 years. *Hum Vaccin* 2009;5(10):705-19. doi: 10.4161/hv.5.10.9518 [published Online First: 2009/08/18]
- 87. Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12-24 in a Phase III randomized study of healthy women aged 18-45 years. *Hum Vaccin* 2011;7(12):1343-58. doi: 10.4161/hv.7.12.18281 [published Online First: 2011/11/04]
- 88. Government of Rwanda. Rwanda Population-Based HIV Impact Assessment (RPHIA): 2018–2019. Rwanda, 2019.
- 89. Han WM, Law MG, Egger M, et al. Global estimates of viral suppression in children and adolescents and adults on antiretroviral therapy adjusted for missing viral load measurements: a multiregional, retrospective cohort study in 31 countries. *Lancet HIV*


BMJ Open


2021;8(12):e766-e75. doi: 10.1016/s2352-3018(21)00265-4 [published Online First:
2021/12/03]
90. Castle PE, Einstein MH, Sahasrabuddhe VV. Cervical cancer prevention and control in
women living with human immunodeficiency virus. CA Cancer J Clin 2021;71(6):505-
26. doi: 10.3322/caac.21696 [published Online First: 2021/09/10]
91. Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an international
community of software platform partners. J Biomed Inform 2019;95:103208. doi:
10.1016/j.jbi.2019.103208 [published Online First: 2019/05/13]
92. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)a
metadata-driven methodology and workflow process for providing translational research
informatics support. J Biomed Inform 2009;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010
[published Online First: 2008/10/22]
93. REDCap. 2021 2021 [Available from: <u>https://www.project-redcap.org/</u> accessed December
29 2021.
94. National Institutes of Health. NIH Reporter: Building Research Capacity to Address the
Challenge of Non Communicable Diseases and Injuries in Rwanda The GUKORANA
Research Center Bethesda, MD, USA: National Institutes of Health,; 2021 [cited 2021
December 29]. Available from:
https://reporter.nih.gov/search/h81sRNzkn0e71v5Y6Xo2WQ/project-details/9854425.
43
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Long-Term Human Papillomavirus Vaccination Effectiveness and Immunity in Rwandan Women Living with and without Human Immunodeficiency Virus: A Study Protocol

Journal: Manuscript ID Article Type:	<i>BMJ Open</i> bmjopen-2022-061650.R1
· · ·	bmjopen-2022-061650.R1
Article Type:	
	Protocol
Date Submitted by the Author:	02-Jul-2022
Complete List of Authors:	Murenzi, Gad; Rwanda Military Hospital; RD Rwanda Shumbusho, Fabienne; Rwanda Military Hospital; RD Rwanda Hansen, Natasha; National Cancer Institute Division of Cancer Epidemiology and Genetics Munyaneza, Athanase; Rwanda Military Hospital; RD Rwanda Gage, Julia C. ; National Cancer Institute Division of Cancer Epidemiology and Genetics Muhoza, Benjamin; Rwanda Military Hospital; RD Rwanda Kanyabwisha, Faustin; Rwanda Military Hospital; RD Rwanda Pierz, Amanda; CUNY Graduate School of Public Health and Health Policy, Community Health and Health Sciences; Yeshiva University Albert Einstein College of Medicine Tuyisenge, Patrick; Rwanda Military Hospital; RD Rwanda Anastos, Kathryn; Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, Medicine; Albert Einstein College of Medicine, Department of Epidemiology and Population Health Castle, Philip; National Cancer Institute Division of Cancer Epidemiology and Genetics; National Cancer Institute Division of Cancer Prevention,
Primary Subject Heading :	Global health
Secondary Subject Heading:	HIV/AIDS, Obstetrics and gynaecology, Oncology, Infectious diseases
Keywords:	Public health < INFECTIOUS DISEASES, PREVENTIVE MEDICINE, PUBLIC HEALTH, VIROLOGY, HIV & AIDS < INFECTIOUS DISEASES, GYNAECOLOGY

SCHOLARONE[™] Manuscripts

1		
2		
3 4	1	Long-Term Human Papillomavirus Vaccination Effectiveness and Immunity in Rwandan
5	2	Women Living with and without Human Immunodeficiency Virus: A Study Protocol
6	3	
7	4	Gad Murenzi ^{1,2*&} , Fabienne Shumbusho ^{1,2*} , Natasha Hansen ³ , Athanase Munyaneza ^{1,2} , Julia C.
8	5	Gage ³ , Benjamin Muhoza ^{1,2} , Faustin Kanyabwisha ^{1,2} , Amanda Pierz ^{4,5} , Patrick Tuyisenge ^{1,2} ,
9	6	Kathryn Anastos ^{5,6#} , Philip E. Castle ^{3,7#}
10	7	
11 12	8	¹ Einstein-Rwanda Research & Capacity Building Program, Research for Development (RD
12	9	Rwanda) & Rwanda Military Hospital, Kigali, Rwanda
14	10	² RD Rwanda, Kigali, Rwanda
15	11	³ Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
16	12	⁴ Department of Community Health and Health Sciences, CUNY Graduate School of Public
17	13	Health and Health Policy, New York, NY, USA
18	14	⁵ Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center,
19	15	Bronx, NY, USA
20	16	⁶ Department of Epidemiology and Population Health, Albert Einstein College of Medicine,
21 22	17	Bronx, NY, USA
22	18	⁷ Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
23	19	
25	20	*Co-first authors
26	21	#Co-senior authors
27	22	
28	23	&Correspondence: Dr. Gad Murenzi, gadcollins@gmail.com
29 30	24	Correspondence. Dr. Odd Marchill, <u>Badeonnisto Binancom</u>
30 31	25	ClinicalTrials.gov Identifier: NCT05247853
32	20	<u>enmedittidis.gov</u> identifier. ite 1652 17655
33		
34		
35		ClinicalTrials.gov Identifier: NCT05247853
36		
37 38		
30 39		
40		
41		
42		
43		
44		
45 46		
40		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		9
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

Abstract

 Introduction. Prophylactic human papillomavirus (HPV) vaccines have been shown to be highly effective in protecting women against cervical infections, high-grade abnormalities, and cancer caused by the targeted HPV types. However, the evidence for their effectiveness in women living with human immunodeficiency virus (HIV) (WLWH) is less clear.

Methods. WLWH and HIV-negative women who likely did (birth cohorts 1996 and later) and WLWH and HIV[-] negative who likely did not (birth cohorts before 1996) receive HPV vaccination (n=3,028; 757 participants for each of the four groups). Between groups, we will compare cervicovaginal, and, and oral prevalent and 6-12-month persistent HPV6/11/16/18 infections as measured using a modified AmpFire HPV genotyping assay that tests for 15 high-risk or intermediate-risk HPV genotypes, HPV6, and HPV11. We will also compare the HPV immune response in HPV-vaccinated WLWH to HPV-vaccinated HIV-negative women using an anti-HPV16 and -HPV18 ELISA. Vaccination status will be confirmed through national vaccination records.

Analysis. We will calculate point prevalence and prevalence of 6-12-month persisting infections by individual HPV-type specific infections and groups of infections for each anatomic site and for each group of women. Results will be stratified by age at vaccination, age at enrollment, and the number of doses (3 vs. 2) as well as other factors possibly associated with HPV prevalence. Differences in endpoints between groups, overall and between sub-groups, will be tested for statistical significance (p<0.05) using Fisher's exact or Pearson chi-square test. Differences in geometric mean titers (GMT) and seropositivity will be tested for statistical significance using the Mann-Whitney and Fisher's exact tests, respectively.

Ethics and Dissemination. The study was approved by the Albert Einstein College of Medicine Institutional Review Board and the Rwanda National Ethics Committee. Results will be

- disseminated through publication in peer-reviewed journals.
 - Key Words: Human papillomavirus (HPV), vaccination, cervical, anal, oral, cancer, Rwanda

57	STRENGTHS AND LIMITATIONS OF THIS STUDY
58 59 60 61 62 63 64 65 66 67 68	 The study is being conducted in Rwanda, a high cervical-cancer burden country National introduction of HPV vaccine in Rwanda in 2011 and relatively high prevalence of HIV makes a study of long-term HPV vaccination effective in women living with HIV (WLWH) possible. The study is not a randomized control trial, but an observational study of populations selected from different groups of women. A convenience sample of Rwandan WLWH living in and around Kigali will be enrolled and therefore the study population is not representative of all Rwanda or WLWH living clsewhere. The quality of HPV vaccination status ascertainment is uncertain given the use of paper registers and the long time period that has elapsed since vaccination.
	11 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

69 INTRODUCTION

Current prophylactic vaccines against human papillomavirus (HPV), the necessary cause of virtually all cervical cancer [1, 2], are based on the self-assembly of recombinantly expressed L1 protein in cell lines into virus-like particles (VLPs) that resemble native viral capsids but lack the viral genome required for viral replication and infectivity. The first generation of prophylactic HPV vaccines, Gardasil[®] (Merck & Co, Kenilworth, NJ, USA)[3] and Cervarix[™] (GlaxoSmithKline, Wavre, Belgium)[3], targeted HPV16 and HPV18 (HPV16/18), which cause approximately 70% of cervical cancers [4]. Gardasil® also targets HPV6 and HPV11 (HPV6/11), non-high-risk HPV types responsible for approximately 90% of anogenital warts (Condylomata acuminata)[5]. Several countries, including Australia [6-12], Scotland [13], Denmark [14], and the U.S. [15-17], were early adopters of HPV vaccination and have documented reductions in infections, diseases, and cervical abnormalities related to the HPV vaccine-targeted types. A meta-analysis on the impact of HPV vaccination found reductions in anogenital warts, HPV infections, cervical intraepithelial neoplasia (CIN) grade 2 (CIN2) or more severe diagnoses (CIN2+) among girls and women, and on anogenital warts diagnoses among girls, women, boys, and men [18]. Recent reports from Finland [19], Sweden [20], England [21], and Denmark [22] provide real-world evidence that HPV vaccination prevents invasive cervical cancer. Cervical cancer was included as an acquired immunodeficiency syndrome (AIDS)-defining disease in adolescents and adults in 1993 [23, 24]. Women living with human immunodeficiency (WLWH) virus, the cause of AIDS, have a significantly elevated risk of cervical cancer [25, 26],

90 due to an impaired immune response to HPV, compared to HIV-uninfected (HIV[-]) women.

Page 5 of 39

BMJ Open

Meta-analyses of HIV/AIDS cohorts reported a 6-fold increased incidence of cervical cancer compared to the general female population/HIV[-] women [25-27]. People living with HIV (PLWH) are also at an increased risk of other HPV-related malignancies, notably anal and oropharyngeal cancers [25, 28]. HIV co-infection has a profound impact on the natural history of HPV, thereby increasing the risk of ICC. HIV co-infection increases the 1) likelihood of cervical and anal HPV persistence and 2) likelihood of cervical and anal HPV infections progressing to precancer [29, 30]. Data on HPV-vaccine efficacy and effectiveness in WLWH are lacking [31, 32]. To date, most studies of HPV vaccine in WLWH focused on immunogenicity and safety. Generally, HPV vaccination in PLWH has been well tolerated, safe, and resulted in good immune responses [33-37]; one study found lower seroconversion and anti-HPV antibody titers among PLWH compared to perinatally HIV-exposed, uninfected youth [37]. Studies have noted an impact of HIV disease status (CD4 counts and viral suppression) on the immune responses to HPV vaccination [38-40]. Studies have reported lower seroconversion and antibody titers in WLWH not taking (vs. taking) antiretroviral therapy (ART) and with lower (vs. higher) CD4 counts [34, 39]. Similarly, another study found peak antibody titers to be 2- to 3-fold higher in mid-adult WLWH with full HIV viral suppression compared to those not suppressed [40]. Interestingly, higher anti-HPV18 titers but similar anti-HPV16 titers were reported in response to HPV vaccination by Cervarix® compared to Gardasil® in PLWH but the differences in the immune responses were due to differences in women (WLWH) but not men [41]. The few studies of HPV vaccine effectiveness in WLWH provided promising but inconclusive evidence. Immunogenicity studies in WLWH have been of insufficient sample size to address efficacy/effectiveness. Studies of HPV vaccination in select PLWH at high risk of anal cancer For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

have been limited in sample size because of the high HPV anal exposure (and likely misclassification of exposure) to targeted HPV types prior to enrollment [42] so that few truly incident events could be observed. Of those studies that did have endpoints, one recent trial of Gardasil® in PLWH aged 27 years and older concluded that "This double-blind, randomized trial did not find a benefit from HPV vaccination to prevent anal HPV infection or anal high-grade squamous intraepithelial lesions" and favorable but inconclusive benefit for protection against oral HPV [43]. The paucity of HPV-vaccine effectiveness data in WLWH is especially a concern for the prevention of cervical cancer in sub-Saharan Africa (SSA), where cervical cancer is the most common cause of cancer death in women [44]. Almost one quarter of the global burden of cervical cancer occurs in SSA and an estimated 20% of cervical cancer in SSA is attributable to HIV coinfection [27]. Evidence of the protective effects of HPV vaccination in SSA WLWH is needed, especially since most long-term public health planning to address cervical cancer in SSA depends on the unproven effectiveness of these vaccines. Rwanda, a central/east African country that experiences a high burden of cervical cancer [45], is the ideal locale to answer questions about the long-term effectiveness and immunogenicity of Gardasil® in WLWH for the following reasons. First, in 2011-13, Rwanda, through a donation from Merck, launched a national HPV vaccination program [46]. In 2011, over 92,000 girls in primary school grade six (~12 years old) were vaccinated with three doses of Gardasil[®]. During 2012 and 2013, a catch-up vaccination program targeted girls in secondary school grade three (~15 years old) [46]. In 2014, HPV vaccination was supported by GAVI [47] and reverted to vaccinating 12-year-old girls [48]. In 2015, Rwanda switched from 3 doses to 2 doses, 6 months apart, for vaccinating 12-year-old girls. In all years, Rwanda achieved \geq 90% annual coverage

Page 7 of 39

56 57

58 59

60

BMJ Open

1 2		
3 4 5 6 7 8 9 10 11 12	137	with the recommended number of HPV vaccine doses in the target population [46, 47, 49, 50].
	138	Thus, Rwanda is one of the earliest and most successful adopters of HPV vaccination globally.
	139	Second, the prevalence of HIV in Rwanda is 2.7% among 15-30 year olds [51]. Approximately
	140	half of the Rwanda population of 13 million is female, and one-quarter of them are between the
13 14	141	age of 15-30 years. Thus, there is approximately 450,000 WLWH aged 15-30 years living in
15 16	142	Rwanda [52]. The excellent HIV care program in Rwanda allows for easy and efficient
17 18 19	143	recruitment and following of WLWH in an observational study of HPV-vaccination impact.
20 21	144	Third, given Rwanda's nearly complete national coverage with Gardasil®, HPV-vaccinated and
22 23	145	unvaccinated WLWH are easily recruited based on birth year. Rwanda has excellent national
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	146	vaccination records so that retrospectively the small number of participants misclassified by
	147	HPV vaccination status based on birth year subsequently can be correctly categorized.
	148	The Einstein/Rwanda/DRC Consortium for Research in HIV/HPV/Malignancies therefore
	149	launched an observational cohort of HPV-vaccinated and -unvaccinated WLWH and vaccinated
	150	and unvaccinated HIV[-] women to study the long-term effectiveness of HPV vaccination on
	151	cervicovaginal, anal, and oral HPV carriage in Rwandan WLWH in late 2021. We will compare
39 40	152	HPV-vaccinated WLWH to HPV-vaccinated HIV[-] women to measure the relative long-term
41 42 43	153	effectiveness and immunogenicity of HPV vaccination in WLWH. We will compare HPV-
44 45	154	vaccinated WLWH to HPV-unvaccinated WLWH to measure the reduction of HPV burden in
46 47	155	WLWH attributable to HPV vaccination. As a secondary goal, we will conduct a natural history
48 49 50	156	study to investigate determinants, including cervicovaginal microbiome, of short-term HPV
50 51 52 53 54 55	157	persistence in young WLWH and HIV[-] women living in a SSA setting.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

data mining, AI training, and similar technologies

Protected by copyright, including for uses related to text and

Study Population and Setting

At community health centers in Kigali, 3,028 women aged 18-28 years will be enrolled: 757 WLWH (Group 1) and 757 HIV[-] women (Group 2) who may have received HPV vaccination (birth cohorts 1996 and later) and 757 WLWH (Group 3) and 757 HIV[-] women (Group 4) who were older and unlikely to have received HPV vaccination (birth cohorts before 1996). Most Rwandan women born in 2003 or later will have been vaccinated with two doses of Gardasil®, women born between 1996 and 2002 will have been vaccinated with three doses of Gardasil®, and women born in 1995 or earlier will be unvaccinated. Within the HPV-vaccinated Groups 1 and 2, the study will enroll at least 274 women who received three doses and 274 women who received two doses of the HPV vaccine, with the remaining 209 not selected for the number of doses and may have received three or two doses.

We will recruit by HIV status and age, which will serve as a useful and very good proxy for HPV-vaccination status, which otherwise would be difficult to determine in real time at enrollment. HPV-vaccination status then will be confirmed by retrospective review of the HPV vaccination records kept by the Rwanda Ministry of Health (MoH), who are collaborating on this project. The number of women recruited will therefore be stratified by age (as proxy for vaccine status) and HIV status. Because this study has age-specific enrollment goals for WLWH and HIV[-] women, once those enrollment goals are met for each study group, the respective groups will be closed and other eligible women for that study group will be excluded from participation.

1 2	
2 3 4	178
5 6	179
7 8 9	180
10 11 12 13 14 15 16 17	181 182
18 19 20 21 22 23 24 25	183 184
26 27	185
28 29 30 31	186
32 33 34	187
35 36	188
37 38	189
39 40 41	190
42 43	191
44 45 46	192
40 47 48 49	193
50 51	194
52 53	195
54 55 56 57 58 59 60	196

78 In Kigali, the study staff will work with five public health facilities that participate in the Central 79 Africa International Epidemiology Databases to Evaluate AIDS (IeDEA) program (ca-iedea.org) and the WE-ACTx private health facility (Table 1). If needed, the staff will work with up to four 80

81

Table 1. Study enrollment sites

IeDEA Sites	Non-IeDEA sites	
1. Busanza health center (HC)	1. Cor-unum HC	
2. Gikondo HC	2. Kacyiru HC	
3. Kicukiro HC	3. Remera HC	
4. Nyarugunga HC	4. Rwampara HC	
5. Rwanda Military Hospital		
6. WE-ACTx private clinic		

34 other public health clinics to recruit additional participants. We will recruit women attending collaborating health facilities and from the surrounding communities. 85

Study Design

87 *Eligibility Criteria*. Women are eligible to participate if they: live in Rwanda; are ages 18-28 years who are either known to be living with HIV or, if HIV status is unknown, consent to HIV 88 39 testing to confirm HIV status; have had sex; are physically and mentally able and willing to 90 participate in the study; and are willing to provide written and signed or thumb printed, informed 91 consent. A summary of the target population by HIV and HPV vaccination statuses are shown in Table 2.

93 Women are ineligible to participate if they: have positive pregnancy test or report to be pregnant 94 at the time of visit or less than 6 weeks post-partum (will be asked to make an appointment 6 or 95 more weeks post-partum); have a history of hysterectomy and no longer have a cervix; have a 96 history of treatment for cervical abnormalities after cervical cancer screening, have a history of

197 cervical cancer; report no previous sexual activity. Women who report menstruating at the time

198 of visit will be asked to make a new appointment 2 weeks later.

Table 2.	Target population	n by HIV stat	us and age
----------	-------------------	---------------	------------

HIV Status			N	Group		
	vaccine doses		in 2021	in 2023		
WLWH	3 doses	1996-2002	19-25	21-26	274	
	2 doses	2003-2005	16-18*	18-20	274	1
	2 or 3 doses	1996-2005	19-25	18-26	209	
	subtotal				757	
	0 doses - unvaccinated	1993-1995	26-30*	28-31*	757	3
HIV[-]	3 doses	1996-2002	19-25	21-26	274	
	2 doses	2003-2005	16-18*	18-20	274	2
	2 or 3 doses	1996-2005	19-25	18-26	209	
	subtotal				757	
	0 doses - unvaccinated	1993-1995	26-30*	28-31*	757	4
TOTAL					3,028	

*Only women aged 18-28 are eligible for enrollment.

Enrollment Visit. The enrollment visit is summarized in Figure 1. After eligibility is confirmed
 and consent given, eligible, consenting women (participants) will provide a urine sample for
 pregnancy testing to confirm they are not pregnant. The consent form obtains the participants'
 permission to extract from medical records information related to their HIV care including CD4
 count, viral load, ART use, and age of initiation of HIV care as well as HPV vaccination status.

207 Participants recruited into Group 2 and 4, whose current HIV status is unknown, will have a

208 rapid HIV test followed by a confirmatory test if the initial test result is invalid (inconclusive) or

209 reactive (positive) according to the Rwanda National HIV Diagnostic Testing Guidelines.[53,

210 54] If the newly HIV-diagnosed participant chooses not to exit the study, she will be reclassified

into either Group 1 or 3, depending on HPV vaccination status.

Page 11 of 39

BMJ Open

Participants will complete a baseline questionnaire on socio-demographics and risk factors (e.g., sexual behavior) for HPV, undergo blood collection for HPV serology, and finally cervicovaginal, anal, and oral specimen collection for HPV testing. Specimen Collection. The study nurse first will collect one 5 mL tube of blood for EDTA plasma from all participants. For the oral specimen collection, participants will alternate between a 5-second squish and a 5-second gargle of 10 mL of saline for 30 seconds and then spit out the specimen into sterile specimen container. The study nurse will then collect a cervicovaginal specimen using the AmpFire specimen collection brush (Atila BioSystems, Mountain View, CA, USA), placing it into the posterior vagina without a speculum, turning the brush 3 turns left and right. Then the study nurse will withdraw the brush, place it into collection tube, snap off the handle to break it, and seal the collection tube. Finally, the study nurse will collect an anal specimen inserting a water-moistened Dacron swab into the anal canal, turning the swab 2-3 turns left and right, before removing the swab. The study nurse will insert the swab into the collection tube, snap off the handle, and seal the collection tube. Six to twelve Month Follow-Up Visit of HPV-positive Women. The follow-up visit is summarized in Figure 2. Participants positive for HPV on any sample will have a 6-12-month follow-up visit to measure 6-12-month HPV type-specific persistence - a surrogate endpoint recommended by the World Health Organization (WHO) [55]. At young ages, the risk of precancer is very low, but for safety purposes, participants will be offered colposcopy if they have a 6-12-month HPV type-specific persistent high-risk HPV cervical infection and anoscopy if they have a 6-12-month HPV type-specific persistent HPV16/18 anal infection. At this follow-up visit, participants will complete a brie sexual history questionnaire to identify likelihood of potential new exposure to HPV. If HIV negative at baseline, participants will also have a rapid HIV test. They then will

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Page 12 of 39

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

have cervicovaginal, anal, and/or oral specimens collected only from those tissue sites that were
HPV positive at baseline for HPV testing as described.

Clinical Management. A summary of the management of HPV-positive results is shown in
Figure 3. Women with HPV type-specific persistent cervicovaginal HPV infection for one or
more of the 13 high risk HPV (hrHPV) types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59,
and 68), regardless of HIV status, will be referred for colposcopy and, as needed, treatment.

Following application of dilute acetic acid to the cervix, digital images of the cervix will be
taken using a study-provided contemporary digital camera (e.g., Samsung A21S or similar
cellular phone camera). Then colposcopy-guided biopsies will be taken of all acetowhite, visible
cervical abnormalities [56]. Colposcopic impression and biopsy locations will be recorded.

Biopsies will be read by a local pathologist (and a second one if second opinion is required in order to guide care) and a US pathologist. All participants with a biopsy diagnosis of CIN grade 3 (CIN3) or more severe diagnoses (CIN3+) as rendered by any pathologist and WLWH with persistent HPV16- or HPV18 infection will undergo treatment by ablation or, if ineligible for ablative treatments, excision according to WHO guidelines [57-59]. In accordance with US management guidelines [60], those diagnosed with CIN2 will not undergo immediate treatment due the likelihood of its regression and low risk of ICC following a CIN2 diagnosis especially in young women [61], and the possible increased risk in negative reproductive outcomes such as pre-term delivery following treatment [62]. They will be advised to seek clinical follow-up in a year.

WLWH with persistent anal HPV16 or HPV18 infection will undergo anoscopy; HIV[-]
participants with persistent HPV16- or HPV18 infection will not undergo anoscopy because only

 $\sim 10\%$ of anal cancer is due to HPV16 or HPV18 among HIV[63], the low absolute risk of anal cancer [28], and the possibility of morbidity from treating anal abnormalities. A biopsy will be taken from acetowhite lesions. Anoscopy impression and location of biopsies will be recorded for clinical management files and saved in the participant record for study purposes. Those with a biopsy diagnosis of anal intraepithelial neoplasia (AIN) grade 3 (AIN3) or anal cancer will be treated or referred for anal cancer management, respectively. Those diagnosed with AIN grade 2 (AIN2) will not undergo immediate treatment due to the low risk of anal cancer following a AIN2 diagnosis and the morbidity associated with treatment. Those with untreated AIN2 or 6-12-month persistent anal hrHPV by non-HPV16/18 types will be advised to seek clinical follow-up in a year. There are no management guidelines or evidence-based intervention for 6-12-month HPV type-specific persistent oral HPV infection. Therefore, participants will not receive any clinical intervention for HPV type-specific persistent oral infection. Other participants, including hrHPV-negative WLWH and/or women with 6-12-month persistent low-risk HPV infection, will exit the study without further follow-up visits. Those diagnosed with cervical or anal cancer will be referred for cancer care. Study Outcomes. Main outcomes will be prevalence and 6-12-month type-specific persistence of cervicovaginal (as an excellent proxy for cervical sampling [64]), anal, and/or oral infections by HPV6/11/16/18 as well as anti-HPV16 and -HPV18 geometric mean titers. Cervical and anal biopsy specimens diagnosed as CIN2 or more severe diagnoses (CIN2+) or AIN2 or more severe diagnoses AIN2+, respectively, will also be tested for HPV for a secondary analysis to measure the effects of HPV vaccination on the prevalence of HPV type-specific precursors to anogenital

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

cancer. In an exploratory aim, we will examine risk factors, including the cervicovaginal microbiome [65] and current and past HIV status [positive vs. negative and current antiretroviral therapy, CD4 counts, and HIV viral load], for HPV type-specific persistence in WLWH and HIV[-] women living in Rwanda. *HPV Testing*. We will use a modified version of the AmpFire HPV genotyping assay (Genotyping High Risk HPV Real Time Fluorescent Detection; Atila Biosystems, Mountain View, CA, USA) for HPV genotyping of cervicovaginal, anal, and oral specimens. AmpFire uses real-time PCR to detect 15 individual HPV genotypes including 13 hrHPV types and 2 intermediate-risk HPV types (HPV53 and HPV66). The modified AmpFire HPV genotyping assay will detect the 17 individual HPV genotypes, including vaccine targeted HPV6 and HPV11, in 5 assay reactions. The AmpFire testing platform was previously established at the study lab and validated against other commercially available assays at Rwanda Military Hospital (RMH)[66-69]. The assay will be run per the manufacturer's instructions. Anogenital samples, collected into a dry tube, will be processed directly according to the manufacturer's instructions. Residual lysed anogenital specimens will be neutralized according to the manufacturer's protocol and stored at -20°C for future use. Upon arrival to the lab, the oral rinse specimens will be stored at 4°C for processing the next working lab day. Oral rinse specimens in saline will first be concentrated by centrifugation to enrich the sample before processing and then stored frozen at -20°C until tested for HPV. After testing, residual specimens will be discarded. Formalin-fixed paraffin-embedded tissues diagnosed as CIN2+ or AIN2+ will similarly have HPV genotyping using the AmpFire system according to the manufacturer's protocol.

HPV Serology. Anti-HPV16 and HPV18 IgG antibody geometric mean titers (GMTs) will be measured from plasma by an VLP-based ELISA using a previously described method [70-72]. All serum from Groups 1 and 2 (HPV-vaccinated groups) and a 10% sample from Groups 3 and 4 (HPV-unvaccinated groups (n=152, 76 from each group) will be tested. First, 20% of each group will be run at the HPV Serology Laboratory at the National Cancer Institute (NCI) Frederick National Laboratories, then the results will be replicated ($\geq 90\%$ correlation) at the study lab in Rwanda (masked to the original results), and then the remaining 80% of the testing will be finished at the study lab. As an additional quality control measure, a 10% random sample of specimens will be re-run at the HPV Serology Laboratory (masked to the original results) (inter-laboratory reliability) and another 10% random sample of specimens at the study lab (intra-laboratory reliability). Positive (e.g., IS standards [73, 74]) and negative controls (e.g., negative plasma) will be included in some testing plates to monitor assay performance per WHO recommendations [75]. *Pathology*. All histopathology slides will be scanned at the study lab and reviewed by a local pathologist, with a second review if second opinion is required, and then the Einstein study pathologist.[76] If the diagnoses are concordant, no further review of the case will be performed. If the diagnosis is discordant and at least one pathologist diagnoses CIN2+, the biopsy slide will be subjected to a joint review and consensus diagnosis. For negative/cervical intraepithelial

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

neoplasia grade 1 pairs of diagnoses, which does not influence our analyses or the care of theparticipants, there will be no joint review.

Analysis and Statistical Power

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

2	
2	
4	
5	
6	
7	
, 8	
9	
10	
11	
12 13 14 15 16	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28 29	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

322	Analyses. We will calculate point prevalence and the prevalence of persisting infection by
323	individual HPV-type specific infections, with binomial 95% confidence intervals (95%CI), for
324	each anatomic site and for the woman (all anatomic sites) for all 4 groups. We likewise will
325	calculate point prevalence and the prevalence of persisting infection with 95%CI for all HPV
326	types in aggregate and in sub-groups of HPV types according to the protection afforded by
327	Gardasil®: Gardasil®-targeted types (HPV6, 11, 16, and 18), Gardasil®-untargeted types for
328	which there might be cross-protection (HPV31, 33, and 45)[18, 77, 78], and Gardasil®-
329	untargeted HPV types for which there is little or no evidence of cross-protection (HPV35, 39, 51,
330	52, 53, 56, 58, 59, 66, and 68). Results will be stratified by age and number (3 vs. 2) of doses as
331	well as other factors possibly related to HPV prevalence. Differences in prevalence of these HPV
332	type sub-groups (targeted, possible cross-protection, and untargeted) between the four study
333	groups of women will be tested using Fisher's exact or Pearson chi-square test. Differences in
334	prevalence of these HPV type sub-groups by age, number of doses (3 vs. 2), and other factors
335	within the group, will be tested for statistical significance (p<0.05) using a Fisher's exact or
336	Pearson chi-square test.

337 Notably, study groups of participants are fundamentally different populations (vs. a randomized 338 control trial that would recruit from the same population and, as result of randomization, enroll similar, representative populations in each arm). Specifically, there are known differences in age 339 340 and therefore possible differences in sexual activity between Gardasil®-vaccinated (Group 1) vs. 341 -unvaccinated WLWH (Group 2), and possible differences in sexual behaviors between 342 Gardasil®-vaccinated WLWH (Group 1) vs. HIV[-] women (Group 3)(since HIV infection 343 predominately is sexually transmitted in this population). Therefore, we will use a relative 344 measure of effectiveness to account for the differences in age and possible differences in

Page 17 of 39

BMJ Open

	· ·	
		вмј ор
345	exposure to HPV. We will use logistic regression to calculate the odds ratio (OR) of the point	oen: firs
346	prevalence and the prevalence of 6-12 month persisting HPV infections of Gardasil®-targeted	st publi
347	HPV types, individually (HPV6, 11, 16, or 18) and in aggregate (HPV6, 11, 16, and 18), vs.	shed a
348	untargeted HPV genotypes for which there is no evidence of cross-protection, for each anatomic	ns 10.1 Prot
349	site individually (cervix, anus, OR oral cavity) and combined (cervix, anus, AND oral cavity).	136/brr tected
350	That is, we also will compare the ratio between study groups of participants as follows:	BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Enseignem Protected by copyright, including for uses related
351	<u>NHPV6/11/16/18</u> /NHPV35/39/51/52/53/56/58/59/66/68 [vaccinated WLWH] (Group 1)	22-061 ight, in
352	N _{HPV6/11/16/18} /N _{HPV35/39/51/52/53/56/58/59/66/68} [unvaccinated WLWH or HIV[-] women] (Group 2 or Group 3)	650 on cluding
353	or	25 Aug Ei y for us
354 355	<u>N_{HPV6/11/16/18}/N_{HPV35/39/51/52/53/56/58/59/66/68} [vaccinated WLWH] (Group 1)</u> N _{HPV6/11/16/18} /N _{HPV35/39/51/52/53/56/58/59/66/68} [vaccinated HIV[-] women] (Group 3)	
356	OI	o text
357 358	<u>N_{HPV6/11/16/18}/N_{HPV35/39/51/52/53/56/58/59/66/68}</u> [vaccinated HIV[-] women] (Group 3) N _{HPV6/11/16/18} /N _{HPV35/39/51/52/53/56/58/59/66/68} [unvaccinated HIV[-] women] (Group 4)	Downloaded from http: ent Superieur (ABES) . to text and data mining
359	This will help us to account/adjust for differences, above what can be achieved statistically, in	
360	HPV exposure, prevalence, and persistence due to differences in age (n.b., prevalence equals	bmjope Al traii
361	incidence times duration; prevalent infections tend to be more persistent with increasing age[79])	ning, a
362	and sexual behaviors between groups. Additional logistic regression models may be used to	.com/ c nd sim
363	adjust specifically on other factors, including age, number of doses, and sexual behaviors, to	on Jun ilar tec
364	account for population differences between study groups.	http://bmjopen.bmj.com/ on June 10, 2025 S) . ning, Al training, and similar technologies
365	Differences in GMT and seropositivity will be tested for statistical significance using the Mann-)25 at Ag
366	Whitney and Fisher's exact tests, respectively. ANOVA and logistic regression models will be	ence B
367	used to adjust for/assess the association of other factors (e.g., age at vaccination, age at	ibliogra
	25 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	// <mark>bmjopen.bmj.com/</mark> on June 10, 2025 at Agence Bibliographique de l , Al training, and similar technologies.

Page 18 of 39

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

enrollment into the study, number of doses, current and past HIV status, and detection of HPVgenotypes, etc.) with GMT and seropositivity, respectively.

Sample Size/Power. We made the following assumptions: 1) at least 30% prevalence of HPV infection (of any anatomic site) at baseline, 25% of which will by Gardasil®-target HPV types and 55% will be untargeted HPV types, 2) a 10% loss to follow-up (LTFU) in 6-12 months, and 3) at least 70% of HPV infections persist for 6-12 months. We justify an HPV prevalence of at least 30% among WLWH less than 30 years of age in this study, based on 30% prevalence of high-risk HPV infection of the cervix alone in 30-34 year-olds WLWH from our previous cervical cancer screening study in Rwanda [80]. We expect that the HPV prevalence may be higher since the prevalence of HPV, like that of other sexually transmitted infections, tends to peak about 5-10 years after the median age of sexual initiation in a population [81, 82], which in Rwanda is around 17 years of age [83, 84]. However, we conservatively used 30% prevalence to ensure adequate statistical power. We justify our assumption of a maximum of 10% loss to follow-up over 6-12 months, given our experience working in Rwanda over the last ~ 20 years. We justify 70% of prevalent HPV infections persisting for 6-12 months, given that 36-50% of prevalent HPV infections persist 6-months in HIV[-] women [85, 86] and WLWH have an impaired immunity to HPV compared to HIV[-] women.[25, 26]

Sample size calculation relates to the relative effectiveness measure as discussed. Under above assumptions and accounting for 10% misclassification of HPV vaccine status, a sample size of 757 vaccinated and 757 unvaccinated WLWH will provide $\geq 80\%$ power (*p*=0.05) to detect an 0757 vaccinated and 757 unvaccinated WLWH will provide $\geq 80\%$ power (*p*=0.05) to detect an 0757 vaccinated and 757 unvaccinated WLWH will provide $\geq 80\%$ power (*p*=0.05) to detect an 058 OR of ≤ 0.5 for persistent HPV6/11/16/18 infections relative to

 $389 \quad \text{HPV35/39/51/52/53/56/58/59/66/68 (but not \text{HPV31/33/45 because of possible cross protection),}}$

390 in Gardasil®-vaccinated (Group 1) vs. -unvaccinated WLWH (Group 3). Consequently, because

Page 19 of 39

BMJ Open

there will be more participants with a prevalent infection than persistent HPV infection (because there are no losses to follow-up or HPV viral clearance for which to account), there will be $\geq 80\%$ power (p=0.05) to detect a OR of ≤ 0.75 in point prevalence of HPV6/11/16/18 infection relative to HPV35/39/51/52/53/56/58/59/66/68, in Gardasil®-vaccinated (Group 1) vs. -unvaccinated WLWH (Group 3). Using the variance of GMT for HPV antibodies from Einstein *et al.* [87, 88], a sample size of 274 will provide 80% power (p=0.05) to detect a 30% difference in GMT between HPV-vaccinated WLWH (Group 1) and HIV[-] (Group 2) women for the same number of doses. If there is no appreciable difference in the GMT between those who got three or two doses, we can combine those groups with different doses. In that case, with a sample size of 548, there will be 80% power (p=0.05) to detect a 22% difference between HPV-vaccinated WLWH (Group 1) and N.C. HIV[-] women (Group 2). **Patient and Public Involvement** Patients or the public WERE NOT involved in the design, or conduct, or reporting, or dissemination plans of our research. The results of the study will be shared with interested parties including the Rwanda Ministry of Health and we will establish a Community Advisory Board, both of which will help disseminate our findings to the general Rwandan public. DISCUSSION Limitations Several limitations in the proposed study are worth noting. First, our study is not a randomized control trial, but an observational study of populations selected from different groups of women. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES).

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

We have proposed several approaches to account/adjust for those age differences but as with any observational study, these techniques may be unable to completely control for biases. Populations recruited into this study are primarily from Kigali and therefore are not representative of all Rwanda, nor are they representative of other populations in SSA or elsewhere in the world. In 2018-9, almost 80% of Rwandan PLWH had a suppressed HIV viral load[89], a higher percentage than for PLWH populations living in many SSA and other countries [90]. Therefore, these results may not be generalizable to all WLWH populations, especially populations of WLWH who are severely immunocompromised. We are using 6-12-month HPV type-specific persistence as a proxy for cancer risk but ideally, we want to measure the impact of Gardasil® on high-grade cervical and anal abnormalities as a more proximal surrogate for cancer risk. The population will be still too young to have large numbers of these endpoints although we will evaluate these endpoints in secondary analyses. This may warrant a follow-on, follow-up study to evaluate the longer-term effectiveness and immunogenicity in the cohort, especially in the WLWH. Strengths Despite noted limitations, there are some important strengths of the study to highlight. First, the early introduction of HPV vaccination that is documented through a national registry, excellent HIV care including a national database and patient tracking, and relatively high prevalence of HIV provides a unique opportunity to study the impact of HPV vaccination in WLWH, the

431 population at the highest risk of cervical cancer [25-27] that therefore would gain the greatest

432 benefit from it, living in Rwanda. Although a comparative effectiveness randomized control trial

433 of different HPV vaccines is probably still warranted to determine how best to protect this most

Page 21 of 39

BMJ Open

vulnerable population [31], these data may provide some of the first evidence of long-term effectiveness of HPV vaccination in WLWH and inform such a trial. A second strength is that the study is being conducted in Rwanda, a high cervical-cancer burden country [45]. The findings from this study, if positive, may encourage other high-burden countries to accelerate the introduction of HPV vaccination or at least target WLWH and PLWH populations. Finally, HPV DNA and serology testing are being done locally for this study could potentially be transferred and replicated in other LMICs that want to monitor and evaluate HPV-vaccine impact in their populations.

Importantly, as a result of implementing this research protocol, we will continue to expand the local capacity to conduct state-of-the-art HPV and molecular epidemiologic research by 1) establishing next-generation sequencing (NGS) technology to perform cervicovaginal, anal, and oral microbiota characterization for this study that will enable locally conducted studies of the human genome and genomic testing for personalized medicine in Rwanda; 2) building upon current ELISA capabilities at the study lab to perform titration of plasma antibodies, a skill that can be applied to other studies of vaccine response; 3) enhancing data capture and management through increased capacity to use REDCap [91-93]; and 4) migrating current HPV vaccine records for participants living in Kigali into a common electronic database, which will allow us to conduct studies more easily on the impact of HPV vaccination on outcomes. Importantly, this will allow linkage of HPV-vaccination status to both the Rwanda National HIV Registry and the Rwanda Cancer Registry, the latter of which we, in collaboration with the Rwanda MoH, helped re-establish [94]. This will allow investigations of the long-term impact of HPV vaccination on cancer incidence in Rwandan WLWH and HIV[-] women and, as a result of herd protection, Rwandan men.

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

457 As building research capacity in Rwanda is a major goal of this project, all members of the 458 research team will be asked and supported to lead at least one analysis and one manuscript 459 preparation, based on interests and expertise. Analytic and publication responsibilities will be 460 divided equally and collaboratively among both Rwandan and U.S. investigators.

to been terren ont

1 2		
2 3 4	461	ETHICS AND DISSEMINATION
5 6	462	The study was approved by the Albert Einstein College of Medicine Institutional Review Board
7 8 9	463	(IRB#: 2021-13087) and the Rwanda National Ethics Committee.
10 11 12	464	All participant data collected will be entered or transferred to a secure REDCap database, with
13 14	465	access to personal information restricted to the local staff. Study data will be stored in REDCap
15 16 17	466	and maintained on password protected study computers behind the institution firewall.
18 19 20	467	Copies of signed consents will be stored in locked file cabinets in a locked room, with access
21 22	468	restricted to study personnel only, at the study lab. Data will be entered or transferred to a secure
23 24 25	469	REDCap database, with access to personal information restricted to the local staff.
26 27 28	470	Study data will be stored in REDCap and maintained on password protected study computers
29 30	471	behind the institution firewall. REDCap is a secure, web-based application designed to support
31 32	472	data capture for research studies providing: 1), an intuitive interface for validated data entry; 2)
33 34 35	473	audit trails for tracking data manipulation and export procedures; 3) automated export procedures
35 36 37	474	for seamless data downloads to common statistical packages; and 4) procedures for importing
38 39	475	data from external sources. REDCap is hosted on a secure server and has undergone a
40 41 42	476	Governance Risk & Compliance Assessment by All REDCap electronic data files shared with
42 43 44	477	Albert Einstein College of Medicine will be maintained by the HIPAA-compliant Epidemiology
45 46	478	Study Management and Informatics Core Facility (ESMI) at Einstein. The Albert Einstein
47 48	479	College of Medicine policy on use of REDCap can be found at:
49 50 51	480	http://ric.einstein.yu.edu/ric_files/REDCap%20Appropriate%20Use%20Policy.pdf
52 53 54	481	Medical, screening, and preventive services, all of which are minimally invasive, safe, and
55 56	482	outpatient, and have been done in millions of people, provided by the study are on par with or
57 58		31
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 24 of 39

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) .

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

BMJ Open

better than international standards-of-care, most of which have very low risks of even minor adverse events or harms. Positive test results and diagnoses may result in psychologic distress and anxiety. Of note, pregnancy and HIV testing may cause pre- and post-test anxiety. Therefore, pre- and post-testing counseling will be provided as needed. Any participant who tests HIV positive will be referred to the health facility's HIV clinic for HIV management following the Rwanda MoH's HIV management guidelines.

We will publish a series of reports in peer-review scientific journals to disseminate these results. We will share the results with the Rwanda MoH. Data from this study will be made available by request in accordance with NIH policies and Rwandan laws.

ETHICS STATEMENT

Patient consent for publication not required.

ACKNOWLEDGEMENTS

We acknowledge and thank the Rwandan women who participate in this study. We also thank the research teams at Albert Einstein College of Medicine, the Einstein-Rwanda Research & Capacity Building Program, and the U.S. National Cancer Institute for their contributions in developing and implementing this research protocol.

1		
2 3 4	499	• Contributorship statement: GM, PEC, and KA designed the study initially. GM, AP,
5 6	500	PEC, and KA refined and finalized the overall study design and wrote the grant proposal
7 8 9	501	that is the basis for this protocol. GM, FS, NH, AM, JCG, AP, KA, and PEC drafted and
10 11	502	finalized the written protocol. GM, FS, NH, AM, JCG, BM, FK, AP, PT, KA, and PEC
12 13	503	implemented it. PEC drafted this manuscript. All authors have read, revised, and
14 15 16	504	approved the final manuscript. GM and FS are co-first authors; KA and PEC are co-
17 18	505	senior authors.
19 20 21	506	• Competing interests statement: Dr. Castle is the Director of the Division of Cancer
22 23	507	Prevention at the NCI, the NIH institute that funds this research. However, Dr. Castle has
24 25 26	508	recused himself from any decisional or financial authority over this grant or any
27 28	509	extramural HPV grants funded by the NCI. Other authors claim no competing interests.
29 30 31	510	The study is receiving HPV genotyping tests at a reduce cost from Atila Biosystems.
32 33	511	• Funding statement: This work is being supported by NIH by grant numbers
34 35 36	512	5U54CA254568-02 and 2U01AI096299-13. This work is also being supported by the
37 38 39	513	intramural research program of the National Cancer Institute/NIH.
40 41	514	• Data sharing statement: Data will be shared in accordance to policies for NIH-funded
42 43 44	515	research at the conclusion of the study and after the publication of the main scientific
45 46	516	findings.
47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59		33
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4	517	Figures
5 6 7	518 519 520 521	Figure 1. Enrollment visit procedures Figure 2. Follow-up visit procedures Figure 3. Follow-up and clinical management of baseline HPV-positive results
8 9 10 11	321	rigure 5. Follow-up and chinical management of baseline HPV-positive results
12 13 14 15		
16 17 18 19		
20 21 22 23		
24 25 26 27		
28 29 30 31		
32 33 34 35 36		
37 38 39 40		
41 42 43 44		
45 46 47 48		
49 50 51 52		
53 54 55 56		
57 58 59 60		34 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				
2 3 4	REF	REFERENCES		
5 6	1.	Schiffman M, Castle PE, Jeronimo J, al e. Human papillomavirus and cervical cancer.		
7 8		The Lancet 2007 : 890-907.		
9	2.	Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human		
10 11		papillomavirus types: addressing the limits of epidemiology at the borderline. Infect		
12 13		Agent Cancer 2009; 4: 8.		
14	3.	Munoz N, Sk K, K S, al e. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on		
15 16		all HPV-associated genital diseases in young women J Natl Cancer Inst 2010; 102(5):		
17 18		325-39.		
19	4.	de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution		
20 21		in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet		
22 23		Oncol 2010 ; 11(11): 1048-56.		
24	5.	Giuliano AR, Tortolero-Luna G, Ferrer E, et al. Epidemiology of human papillomavirus		
25 26		infection in men, cancers other than cervical and benign conditions. Vaccine 2008 ; 26		
27 28		Suppl 10(0 10): K17-28.		
29 30	6.	Donovan B, Franklin N, Guy R, et al. Quadrivalent human papillomavirus vaccination		
31	0.	and trends in genital warts in Australia: analysis of national sentinel surveillance data.		
32 33		Lancet Infect Dis 2011 ; 11(1): 39-44.		
34 35	7.	Gertig DM, Brotherton JM, Budd AC, Drennan K, Chappell G, Saville AM. Impact of a		
36	7.	population-based HPV vaccination program on cervical abnormalities: a data linkage		
37 38		study. BMC Med 2013 ; 11: 227.		
39 40	o			
41	8.	Australian Government Department of Health. Historical data from the National HPV		
42 43		Vaccination Program Register. Available at:		
44 45		https://www.health.gov.au/resources/collections/historical-data-from-the-national-hpv-		
46		vaccination-program-register. Accessed January 2.		
47 48	9.	Tabrizi SN, Brotherton JM, Kaldor JM, et al. Assessment of herd immunity and cross-		
49 50		protection after a human papillomavirus vaccination programme in Australia: a repeat		
51		cross-sectional study. Lancet Infect Dis 2014 ; 14(10): 958-66.		
52 53	10.	Crowe E, Pandeya N, Brotherton JM, et al. Effectiveness of quadrivalent human		
54 55		papillomavirus vaccine for the prevention of cervical abnormalities: case-control study		
56				
57 58				
50				

nested within a population based screening programme in Australia. BMJ **2014**; 348: g1458.

 Brotherton JM, Gertig DM, May C, Chappell G, Saville M. HPV vaccine impact in Australian women: ready for an HPV-based screening program. Med J Aust 2016; 204(5): 184-e1.

- Machalek DA, Garland SM, Brotherton JML, et al. Very Low Prevalence of Vaccine Human Papillomavirus Types Among 18- to 35-Year Old Australian Women 9 Years Following Implementation of Vaccination. J Infect Dis 2018; 217(10): 1590-600.
- Kavanagh K, Pollock KG, Cuschieri K, et al. Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: a 7-year cross-sectional study. Lancet Infect Dis 2017; 17(12): 1293-302.
- Baldur-Felskov B, Dehlendorff C, Munk C, Kjaer SK. Early impact of human papillomavirus vaccination on cervical neoplasia--nationwide follow-up of young Danish women. J Natl Cancer Inst 2014; 106(3): djt460.
- Markowitz LE, Liu G, Hariri S, Steinau M, Dunne EF, Unger ER. Prevalence of HPV After Introduction of the Vaccination Program in the United States. Pediatrics 2016; 137(3): e20151968.
- Oliver SE, Unger ER, Lewis R, et al. Prevalence of Human Papillomavirus Among Females After Vaccine Introduction-National Health and Nutrition Examination Survey, United States, 2003-2014. J Infect Dis 2017; 216(5): 594-603.
- Markowitz LE, Hariri S, Lin C, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003-2010. J Infect Dis 2013; 208(3): 385-93.
- Drolet M, Benard E, Perez N, Brisson M, Group HPVVIS. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 2019; 394(10197): 497-509.
- Luostarinen T, Apter D, Dillner J, et al. Vaccination protects against invasive HPVassociated cancers. Int J Cancer 2018; 142(10): 2186-7.

BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Enseignement Superieur (ABES) .	BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I
--	---------------------------------	---

20.	Lei J, Ploner A, Elfstrom KM, et al. HPV Vaccination and the Risk of Invasive Cerv
	Cancer. N Engl J Med 2020 ; 383(14): 1340-8.
21.	Falcaro M, Castañon A, Ndlela B, et al. The effects of the national HPV vaccination
	programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial
	neoplasia incidence: a register-based observational study. Lancet 2021 ; 398(10316): 2084-92.
22.	Kjaer SK, Dehlendorff C, Belmonte F, Baandrup L. Real-World Effectiveness of Hu
	Papillomavirus Vaccination Against Cervical Cancer. J Natl Cancer Inst 2021 ; 113(1) 1329-35.
23.	Centers for Disease Control and Prevention. 1993 revised classification system for H
	infection and expanded surveillance case definition for AIDS among adolescents and
	adults. JAMA 1993; 269(6): 729-30.
24.	1993 revised classification system for HIV infection and expanded surveillance case
	definition for AIDS among adolescents and adults. MMWR Recomm Rep 1992
41: 1-	-19.
25.	Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in peo
	with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-ana
	Lancet 2007 ; 370(9581): 59-67.
26.	Silverberg M, al e. Cumulative Incidence of Cancer Among Persons With HIV in No
	America: A Cohort Study. Ann Intern Med 2015; 163(7): 507=18.
27.	Stelzle D, Tanaka LF, Lee KK, et al. Estimates of the global burden of cervical canc
	associated with HIV. Lancet Glob Health 2021; 9(2): e161-e9.
28.	Colon-Lopez V, MS S, Machin M, al e. Anal Cancer Risk Among People with HIV
	Infection in the United States. J Clin Oncol 2018; 36(1): 68-75.
29.	Wang CJ, Palefsky JM. HPV-Associated Anal Cancer in the HIV/AIDS Patient. Car
	Treat Res 2019 ; 177: 183-209.
30.	Liu G, Sharma M, Tan N, Barnabas RV. HIV-positive women have higher risk of hu
	papilloma virus infection, precancerous lesions, and cervical cancer. AIDS 2018; 32

Castle PE, Einstein MH, Sahasrabuddhe VV. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA Cancer J Clin 2021; 71(6): 505-26.

- 32. Lacey CJ. HPV vaccination in HIV infection. Papillomavirus Res 2019; 8: 100174.
- Wilkin T, Lee JY, Lensing SY, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. J Infect Dis 2010; 202(8): 1246-53.
- 34. Giacomet V, Penagini F, Trabattoni D, et al. Safety and immunogenicity of a quadrivalent human papillomavirus vaccine in HIV-infected and HIV-negative adolescents and young adults. Vaccine **2014**; 32(43): 5657-61.
- 35. Levin MJ, Huang S, Moscicki AB, et al. Four-year persistence of type-specific immunity after quadrivalent human papillomavirus vaccination in HIV-infected children: Effect of a fourth dose of vaccine. Vaccine 2017; 35(13): 1712-20.
- Weinberg A, Huang S, Moscicki AB, Saah A, Levin MJ. Persistence of memory B-cell and T-cell responses to the quadrivalent HPV vaccine in HIV-infected children. AIDS 2018; 32(7): 851-60.
- Moscicki AB, Karalius B, Tassiopoulos K, et al. Human Papillomavirus Antibody Levels and Quadrivalent Vaccine Clinical Effectiveness in Perinatally Human Immunodeficiency Virus-infected and Exposed, Uninfected Youth. Clin Infect Dis 2019; 69(7): 1183-91.
- Kahn JA, Xu J, Kapogiannis BG, et al. Immunogenicity and safety of the human papillomavirus 6, 11, 16, 18 vaccine in HIV-infected young women. Clin Infect Dis 2013; 57(5): 735-44.
- Kojic EM, Kang M, Cespedes MS, et al. Immunogenicity and safety of the quadrivalent human papillomavirus vaccine in HIV-1-infected women. Clin Infect Dis 2014; 59(1): 127-35.
- Money DM, Moses E, Blitz S, et al. HIV viral suppression results in higher antibody responses in HIV-positive women vaccinated with the quadrivalent human papillomavirus vaccine. Vaccine 2016; 34(40): 4799-806.
- 41. Toft L, Tolstrup M, Muller M, et al. Comparison of the immunogenicity of Cervarix(R) and Gardasil(R) human papillomavirus vaccines for oncogenic non-vaccine serotypes

BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de
--	---

	HPV-31, HPV-33, and HPV-45 in HIV-infected adults. Hum Vaccin Immunother 2014;
	10(5): 1147-54.
42.	Cranston RD, Cespedes MS, Paczuski P, et al. High Baseline Anal Human
	Papillomavirus and Abnormal Anal Cytology in a Phase 3 Trial of the Quadrivalent
	Human Papillomavirus Vaccine in Human Immunodeficiency Virus-Infected Individuals
	Older Than 26 Years: ACTG 5298. Sex Transm Dis 2018 ; 45(4): 266-71.
43.	Wilkin TJ, Chen H, Cespedes MS, et al. A Randomized, Placebo-Controlled Trial of the
	Quadrivalent Human Papillomavirus Vaccine in Human Immunodeficiency Virus-
	Infected Adults Aged 27 Years or Older: AIDS Clinical Trials Group Protocol A5298.
	Clin Infect Dis 2018 ; 67(9): 1339-46.
44.	Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN
	Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA
	Cancer J Clin 2021 ; 71(3): 209-49.
45.	Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
	statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
	cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
46.	Binagwaho A, Wagner CM, Gatera M, Karema C, Nutt CT, Ngabo F. Achieving high
	coverage in Rwanda's national human papillomavirus vaccination programme. Bull
	World Health Organ 2012 ; 90(8): 623-8.
47.	Gallagher KE, Howard N, Kabakama S, et al. Lessons learnt from human papillomavirus
	(HPV) vaccination in 45 low- and middle-income countries. PLoS One 2017; 12(6):
	e0177773.
48.	Ngabo F, Franceschi S, I B, al e. Human papillomavirus infection in Rwanda at the
	moment of implementation of a national HPV vaccination programme. BMC Infectious
	Diseases 2016 ; 16: 225.
49.	LaMontagne DS, Bloem PJN, Brotherton JML, Gallagher KE, Badiane O, Ndiaye C.
	Progress in HPV vaccination in low- and lower-middle-income countries. Int J Gynaecol
	Obstet 2017 ; 138 Suppl 1: 7-14.
50.	Black E, Richmond R. Prevention of Cervical Cancer in Sub-Saharan Africa: The
	Advantages and Challenges of HPV Vaccination. Vaccines (Basel) 2018; 6(3).
51.	Rwanda Population-Based HIV Impact Assessment October 2019.
	39
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3

4 5

6

7 8

9 10

11

12 13

14 15

16 17

18

19 20

21 22

23

24 25

26 27

28 29

30

31 32

33 34

35 36

37

38 39

40 41

42 43

44

45 46

47 48

49

50 51

52 53

58 59

60

52. The World Bank, Rwanda, 2022. 53. Rwanda Ministry of Health. National Guidelines for Prevention and Management of HIV. STIs & Other Blood Borne Infections. 2013. 54. Rwanda Ministry of Health. Circular of Key Changes in HIV Prevention and Management Guidelines. 2018. Lowy DR, Herrero R, Hildesheim A, Participants in the INCIwoPEfPHPVVT. Primary 55. endpoints for future prophylactic human papillomavirus vaccine trials: towards infection and immunobridging. Lancet Oncol 2015; 16(5): e226-33. Wentzensen N, Schiffman M, Silver MI, et al. ASCCP Colposcopy Standards: Risk-56. Based Colposcopy Practice. J Low Genit Tract Dis 2017; 21(4): 230-4. World Health Organization. WHO guidelines for screening and treatment of 57. precancerous lesions for cervical cancer prevention. Available at: https://apps.who.int/iris/bitstream/handle/10665/96735/WHO RHR 13.21 eng.pdf 58. Santesso N, Mustafa RA, Schünemann HJ, et al. World Health Organization Guidelines for treatment of cervical intraepithelial neoplasia 2-3 and screen-and-treat strategies to prevent cervical cancer. Int J Gynaecol Obstet 2016; 132(3): 252-8. 59. World Health Organization. WHO guidelines for the use of thermal ablation for cervical pre-cancer lesions. Geneva, Switzerland, 2019. 60. Perkins RB, Guido RS, Castle PE, et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J Low Genit Tract Dis 2020; 24(2): 102-31. 61. Tainio K, Athanasiou A, Tikkinen KAO, et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and metaanalysis. Bmj 2018; 360: k499. 62. Kyrgiou M, Athanasiou A, Paraskevaidi M, et al. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: systematic review and meta-analysis. Bmj 2016; 354: i3633. 63. Lin C, Franceschi S, Clifford GM. Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: a systematic review and meta-analysis. Lancet Infect Dis 2018; 18(2): 198-206.

BMJ Open

64.	Arbyn M, Smith SB, Temin S, et al. Detecting cervical precancer and reaching
	underscreened women by using HPV testing on self samples: updated meta-analyses.
	BMJ 2018 ; 363: k4823.
65.	Brown D, Muller M, Sehr P, et al. Concordance assessment between a multiplexed
	competitive Luminex immunoassay, a multiplexed IgG Luminex immunoassay, and a
	pseudovirion-based neutralization assay for detection of human papillomaviruse types 16
	and 18. Vaccine 2014 ; 32(44): 5880-7.
66.	Murenzi G, Tuyisenge P, Kanyabwisha F, et al. Type-specific persistence, clearance and
	incidence of high-risk HPV among screen-positive Rwandan women living with HIV.
	Infect Agent Cancer 2021 ; 16(1): 16.
57.	Zhang W, Du H, Huang X, et al. Evaluation of an isothermal amplification HPV
	detection assay for primary cervical cancer screening. Infect Agent Cancer 2020 ; 15: 65.
68.	Tang YW, Lozano L, Chen X, et al. An Isothermal, Multiplex Amplification Assay for
	Detection and Genotyping of Human Papillomaviruses in Formalin-Fixed, Paraffin-
	Embedded Tissues. J Mol Diagn 2020 ; 22(3): 419-28.
<u>59</u> .	Murenzi G, Kim HY, Munyaneza A, et al. Anogenital Human Papillomavirus and HIV
	Infection in Rwandan Men Who Have Sex With Men. J Acquir Immune Defic Syndr
	2020; 84(5): 463-9.
0.	Kemp TJ, Garcia-Pineres A, Falk RT, et al. Evaluation of systemic and mucosal anti-
	HPV16 and anti-HPV18 antibody responses from vaccinated women. Vaccine 2008;
	26(29-30): 3608-16.
'1.	Herrin DM, Coates EE, Costner PJ, et al. Comparison of adaptive and innate immune
	responses induced by licensed vaccines for Human Papillomavirus. Hum Vaccin
	Immunother 2014 ; 10(12): 3446-54.
72.	HPV Serology Laboratory. HPV Serology Laboratory Standard Operating Procedure.
	Available at: https://frederick.cancer.gov/sites/default/files/2021-
	06/HSL%20LAB%20007%20HPV%20Antibody%20ELISA.pdf.
73.	National Institute for Biological Standards and Control. WHO International Standard 05-
	134 HPV 16 antibodies. Available at: https://www.nibsc.org/documents/ifu/05-134.pdf.

74.	National Institute for Biological Standards and Control. WHO International Standard 1st
	WHO International Standard for anti-human papillomavirus 18 serum. Available at:
	https://www.nibsc.org/documents/ifu/10-140.pdf. Published 20.
75.	World Health Organization. In vitro diagnostics and laboratory technology: ELISA tests.
	Available at: <u>https://www.who.int/diagnostics_laboratory/faq/elisa/en/</u> .
76.	American Society for Clinical Pathology. Partners for Cancer Diagnosis and Treatment in
	Africa: New Telepathology System to Serve All Hospitals in Kigali, Rwanda. Available
	at: https://www.ascp.org/content/docs/default-source/get-involved-pdfs/partners-in-
	cancer-diagnosis-newsletter/partners-newsletter-july-2017.pdf?sfvrsn=2.
77.	Barzon L, Squarzon L, Masiero S, et al. Neutralizing and cross-neutralizing antibody
	titres induced by bivalent and quadrivalent human papillomavirus vaccines in the target
	population of organized vaccination programmes. Vaccine 2014; 32(41): 5357-62.
78.	Godi A, Panwar K, Haque M, et al. Durability of the neutralizing antibody response to
	vaccine and non-vaccine HPV types 7 years following immunization with either
	Cervarix(R) or Gardasil(R) vaccine. Vaccine 2019; 37(18): 2455-62.
79.	Castle PE, Schiffman M, Herrero R, et al. A prospective study of age trends in cervical
	human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. J Infect Dis
	2005; 191(11): 1808-16.
80.	Murenzi G, Kanyabwisha F, Murangwa A, et al. Twelve-Year Trend in the Prevalence of
	High-Risk Human Papillomavirus Infection Among Rwandan Women Living With HIV.
	J Infect Dis 2020 ; 222(1): 74-81.
81.	Smith JS, Melendy A, Rana RK, Pimenta JM. Age-specific prevalence of infection with
	human papillomavirus in females: a global review. J Adolesc Health 2008; 43(4 Suppl):
	S5-25, S.e1-41.
82.	de Sanjosé S, Diaz M, Castellsagué X, et al. Worldwide prevalence and genotype
	distribution of cervical human papillomavirus DNA in women with normal cytology: a
	meta-analysis. Lancet Infect Dis 2007; 7(7): 453-9.
83.	Ntaganira J, Hass LJ, Hosner S, Brown L, Mock NB. Sexual risk behaviors among youth
	heads of household in Gikongoro, south province of Rwanda. BMC Public Health 2012;
	12: 225.
	42

BMJ Open

of

84.	Umutesi J. Early sexual debut and subsequent risk factors among youth in Rwanda: A
	secondary data analysis of Rwanda Demographic and Health Survey 2015. Kigali,
05	Rwanda: University of Rwanda, 2016.
85.	Rodriguez AC, Schiffman M, Herrero R, et al. Rapid clearance of human papillomavirus
	and implications for clinical focus on persistent infections. J Natl Cancer Inst 2008;
0.6	100(7): 513-7.
36.	Plummer M, Schiffman M, Castle PE, Maucort-Boulch D, Wheeler CM, Group A. A 2-
	year prospective study of human papillomavirus persistence among women with a
	cytological diagnosis of atypical squamous cells of undetermined significance or low-
_	grade squamous intraepithelial lesion. J Infect Dis 2007; 195(11): 1582-9.
37.	Einstein MH, Baron M, Levin MJ, et al. Comparison of the immunogenicity and safety o
	Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy
	women aged 18-45 years. Hum Vaccin 2009; 5(10): 705-19.
38.	Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of
	human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up
	from months 12-24 in a Phase III randomized study of healthy women aged 18-45 years.
	Hum Vaccin 2011 ; 7(12): 1343-58.
9.	Government of Rwanda. Rwanda Population-Based HIV Impact Assessment (RPHIA):
	2018–2019. Rwanda, 2019 .
0.	Han WM, Law MG, Egger M, et al. Global estimates of viral suppression in children and
	adolescents and adults on antiretroviral therapy adjusted for missing viral load
	measurements: a multiregional, retrospective cohort study in 31 countries. Lancet HIV
	2021 ; 8(12): e766-e75.
1.	Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic
	data capture (REDCap)a metadata-driven methodology and workflow process for
	providing translational research informatics support. J Biomed Inform 2009; 42(2): 377-
	81.
92.	Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an
	international community of software platform partners. J Biomed Inform 2019; 95:
	103208.
93.	REDCap. 2021. Available at: <u>https://www.project-redcap.org/</u> . Accessed December 29.
	43
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de I

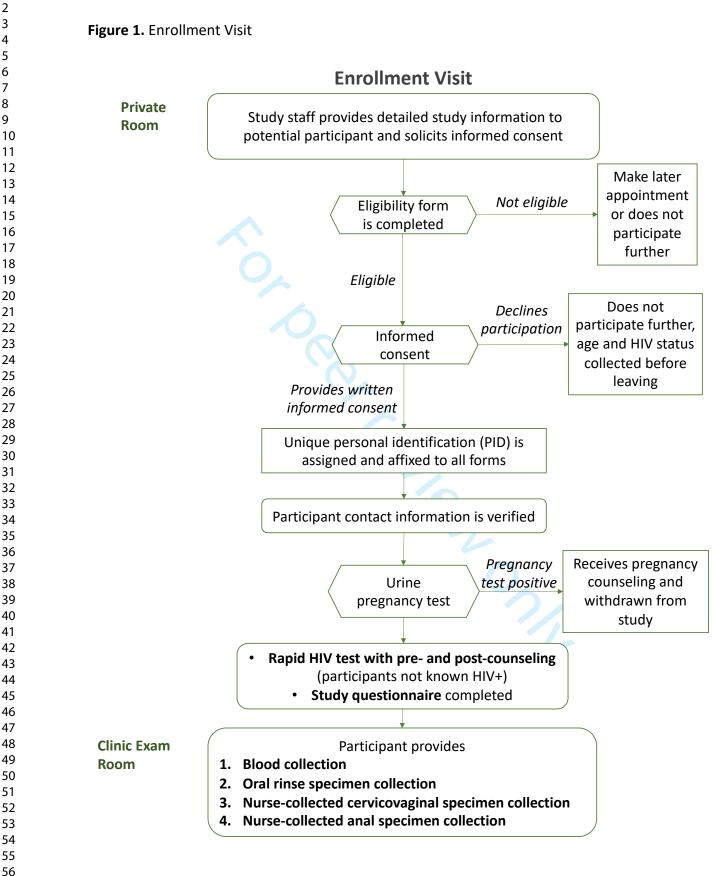
Enseignement Superieur

(ABES

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

94. National Institutes of Health. NIH Reporter: Building Research Capacity to Address the Challenge of Non Communicable Diseases and Injuries in Rwanda The GUKORANA Research Center. Available at:

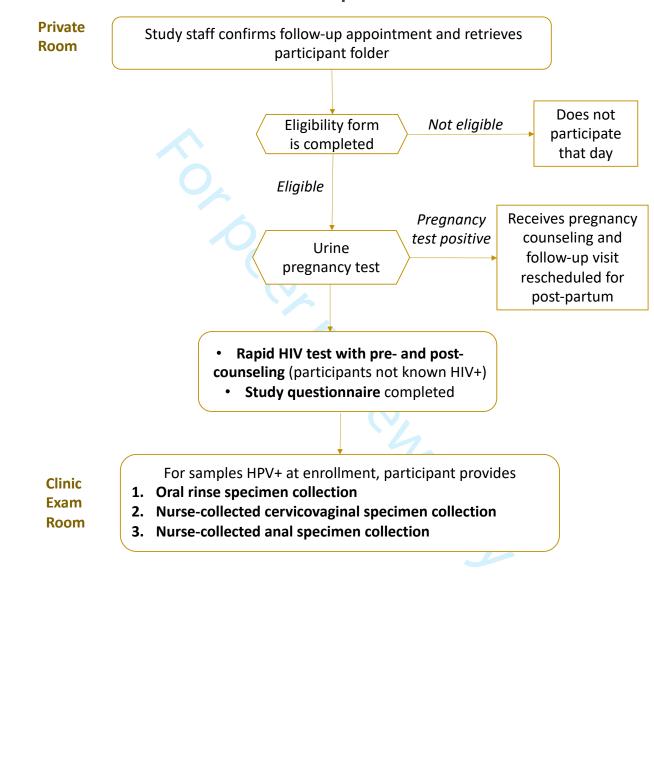

BMJ Open

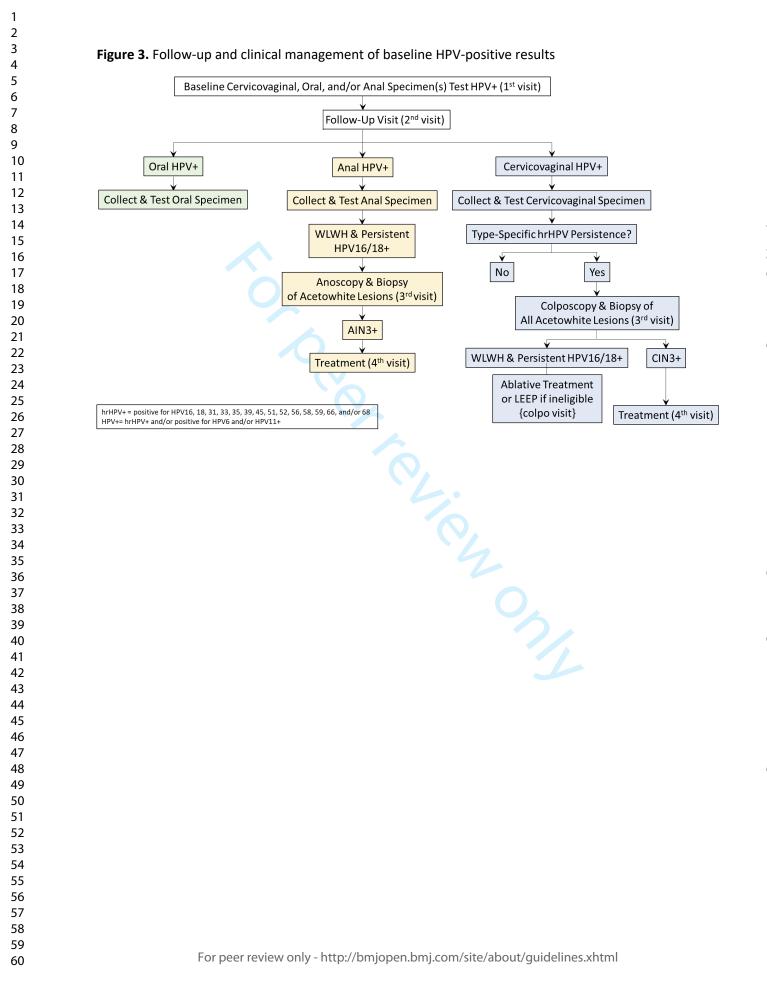
https://reporter.nih.gov/search/h81sRNzkn0e71v5Y6Xo2WQ/project-details/9854425.

for beer terien only

1

57 58 59




BMJ Open: first published as 10.1136/bmjopen-2022-061650 on 25 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 10, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

