

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based comparison between the Rio 2016 and Tokyo 2020 games

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060937
Article Type:	Original research
Date Submitted by the Author:	12-Jan-2022
Complete List of Authors:	FUKUI, KAZUKI; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Maeda, Noriaki; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing, Department of Sports Rehabilitation Sasadai, Junpei; Sports Medical Center, Japan Institute of Sports Sciences (JISS) Shimizu, Reia; Sports Medical Center, Japan Institute of Sports Sciences (JISS) Tsutsumi, Shogo; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing, Department of Sports Rehabilitation Arima, Satoshi; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Tashiro, Tsubasa; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Kaneda, Kazuki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Kaneda, Kazuki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Yoshimi, Mitsuhiro; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Abekura, Takeru; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Ferada, Tomoki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Komiya, Makoto; Hiroshima University Faculty of Med

	(JISS) Urabe, Yukio; Hiroshima University Faculty of Medicine Graduate Schoo of Biomedical and Health Sciences, Department of Sports Rehabilitation
Keywords:	SPORTS MEDICINE, REHABILITATION MEDICINE, ORTHOPAEDIC & TRAUMA SURGERY
	SCHOLARONE [™] Manuscripts

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Title

Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based comparison between the Rio 2016 and Tokyo 2020 games

Authors

Kazuki Fukui¹, Noriaki Maeda¹, Junpei Sasadai², Reia Shimizu², Shogo Tsutsumi¹, Satoshi Arima¹, Tsubasa Tashiro¹, Kazuki Kaneda¹, Mitsuhiro Yoshimi¹, Rami Mizuta¹, Takeru Abekura¹, Hinata Esaki¹, Tomoki Terada¹, Makoto Komiya¹, Akira Suzuki², Yukio Urabe¹

Affiliations

¹Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan ²Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056, Japan

Corresponding author

Yukio Urabe

Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan E-mail address: <u>yurabe@hiroshima-u.ac.jp</u>

Word count

3471 words

ABSTRACT

Objectives

To identify the fall characteristics of athletes in wheelchair rugby and wheelchair basketball during the Tokyo 2020 Paralympic Games and compare these with those of the Rio 2016 Paralympic Games.

Design

Cross-sectional analysis

Primary and secondary outcome measures

We obtained video footage from the International Paralympic Committee of the Tokyo 2020 Paralympic Games that included 8 teams from each of the 18 wheelchair rugby and 10 wheelchair basketball games (men and women). The data were analyzed to evaluate the number of falls, class difference (low or high pointer), time of play during the fall, phase of play, contact with other athletes, fall direction, fall location, and the body part that first contacted the floor during the fall. These data from the Rio 2016 and Tokyo 2020 games were compared.

Results

Overall, 430 falls (rugby, 104; men's basketball, 230; and women's basketball, 96) occurred (average per game: 5.8, 23.0, and 9.6, respectively). Significant differences were observed among the three sports regarding the class, direction, fall location, and body part point of contact. In wheelchair rugby, falls occurred mainly in high-pointers and tended to be more lateral due to contact. In wheelchair basketball, falls occurred more in female high-pointers and in male low-pointers, with more forward falls due to forward contact. Unlike in the Rio 2016 games, no difference between the events based on the presence or absence of contact was observed in the Tokyo 2020 games.

Conclusions

The number of falls increased in Tokyo 2020 compared to Rio 2016, with no significant difference in the characteristics of falls between the Rio 2016 and Tokyo 2020 games. Only in men's wheelchair basketball, the number of falls in low pointers significantly increased in the Tokyo 2020 games when compared to that in the Rio 2016 games.

Strengths and limitations of this study

- This is the first study to characterize the falls of athletes in wheelchair team sports using data from the Rio 2016 and Tokyo 2020 Games.
- Injuries caused by the wheelchair falls in the videos were not identified.
- To clarify the relationship between falls and injuries, further analysis of the factors that causes falls should be combined and compared with survey data on injuries.

The Tokyo 2020 Paralympic Games featured 4403 athletes competing in 539 events in 22 sports, making it the largest Paralympic Games in history and drawing increasing attention to the Paralympic Games. Hence, with the increase in the number of athletes, the level of competition is expected to improve, and sports injuries are also expected to increase[1]. A total of 441 athletes sustained as many as 510 injuries during the 14 days of competition at the Rio 2016 Paralympics, with 61 athletes injured during their participation in wheelchair rugby (WR) and wheelchair basketball (WB); this translated to 14.9 and 12.8 injuries per 1000 athlete days, respectively [2]. Furthermore, contact team sports such as WR and WB have a higher incidence of acute injuries than fencing and tennis (61%, 65%, and 42%, 37%, respectively)[3]. In these two wheelchair team sports, many falls commonly occur. Regarding the incidence of falls at the Rio 2016 Paralympics, 359 falls occurred in three disciplines (WR, men's WB, and women's WB). The rate of falls was the highest for MWB, followed by WWB and WR[4]. However, no other study has clarified the characteristics of falls in each sport. Moreover, the relationship between sports injury characteristics and the occurrence of falls in wheelchair team sports has not yet been presented. In the case of wheelchair sports, falls can result in head impacts and emergencies such as concussions, and research in the area of concussions has received increasing attention[5,6]. Therefore, understanding the causes of falls during games is essential in considering the prevention of injury occurrence in these team sports, and more data needs to be collected. One way to analyze the occurrence of falls in wheelchair-related sports is to use video recordings of games.

By retrospectively analyzing the video recordings of the games, which is an effective method that has been used previously to interpret injury occurrence in healthy individuals,[7-9] the occurrence and characteristics of these wheelchair-related sport injuries can be identified. The analysis of anterior cruciate ligament injuries helped researchers to understand the change of dynamic alignment during injury and plan preventive measures,[7] which is why we used this method to investigate the incidence of falls in WR and WB games at the Rio 2016 Paralympic Games[4].

WR and WB players also include individuals with quadriplegia, paraplegia, and amputations. Overall, WR players have more severe functional impairments than WB players, especially those affecting the extremities, such as cervical spinal cord injury (tetraplegia), multiple amputations, polio, cerebral palsy, and other neurological diseases[10]. WR players are classified based on their hand, arm, shoulder, and trunk functions, with disability levels ranging from 0.5 (lowest physical function) to 3.5(highest physical function), and are placed into seven categories based on their level of disability[11]. WB players must

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

have a permanent physical disability with reduced function of the lower extremities, which includes paralysis of the lower extremities, musculoskeletal disorders, spina bifida, amputation, and childhood paralysis[11]. These athletes are classified from 1.0 (lowest physical function) to 4.5 (highest physical function)[12]. Performance and injury rates vary greatly by class[13,14], and fall rates are expected to vary as well. However, no analysis of fall incidence by class has been reported.

At the Rio 2016 Paralympics, the incidence of falls and the duration of competition, the presence of contact, the direction of the fall, and the initial site of contact had different characteristics in the three events[4]. Meanwhile, we have not been able to clarify the incidence of falls for each class. In addition, five years have passed since the Rio 2016 Paralympics, and the incidence of falls is expected to be different due to the improvement of athletic performance. Moreover, the Tokyo 2020 Paralympics was held under special circumstances, with the games being postponed for one year due to the COVID-19 pandemic. Therefore, new characteristics of fall occurrence different from those of the Rio 2016 Paralympics may emerge, and accumulation of data will be crucial for injury prevention. This study aimed to investigate the number of falls and the occurrence of falls among wheelchair athletes in team sports at the 2020 Tokyo Paralympic Games, to compare the results with those at the 2016 Rio Paralympic Games, and to clarify the characteristics of major falls among the three major wheelchair team sports (WR, MWB, and W WB).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

METHODS

In this cross-sectional video analysis, we obtained the official match videos of the WR and WB wheelchair team competitions from the IPC's official website, and analyzed the match videos of all eight teams participating in the WR and eight teams each from the MWB and WWB that advanced to the quarterfinals of the Tokyo 2020 Paralympic Games (Fig. 1). The WR matches are played in four 8-minute periods, and the WB matches are played in four 10-minute periods. Three physiotherapists with expertise in para-sports systematically analyzed the videos for fall mechanism and play circumstances. The videos were repeated as needed and displayed at normal speed, slow speed, or in still images. To record the number of falls, duration of play at the time of the fall, phase of play (offense or defense), contact with another player, direction of the fall, location of the fall (backcourt, frontcourt, or key or paint area), and the body part that first made contact with the floor, we modified a standard form similar to the one used in previous video analyses[4,15]. In order to record all falls, contact with the floor was considered to be necessary. Additionally, the fall data obtained from the IPC official website of the Rio 2016 Paralympic Games and used in our previous study, from a total of 18 WR and 10 WB match videos of men (MWB) and women (WWB), including eight teams in one event, were also used in this analysis[4].

Data regarding player information (age, sex, and functional classification) were used from the IPC website (Table 1). Regarding disability classification, based on previous studies, for WR, \geq 2.0 were classified as high pointer and \leq 1.5 and below as low pointer[16]; for WB, \geq 3.0 were classified as high pointer and \leq 2.5 as low pointer[17].

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Statistical analysis

For all categorical variables, results that were consistent with the ratings of two out of three observers were reported. A good agreement among the three observers for all variables was considered when two or more observers were in agreement for all categorical items and the kappa coefficient was >0.8. A one-way analysis of variance was used to compare the mean incidence of falls for each of the three wheelchair sports games. Followup analyses were conducted using Bonferroni's post hoc test, if necessary. For the comparison of categorical variables, Pearson's X² test or Fisher's exact test was used. The Fisher's exact test was used instead of the X² test when the expected number was <5. All statistical analyses were performed using IBM SPSS version 27.0 (IBM japan, Tokyo, Japan). A p-value <0.05 considered statistically significant.

Patient and public involvement

This study was conducted without patient involvement. Patients were not asked to comment on the study design, consulted to derive results relevant to them, or consulted to

interpret the results. Patients were also not consulted in the writing or editing of this document for readability or accuracy.

tor peer terier ont

RESULTS

Overall, 430 falls were recorded, of which 104 (24.2%) occurred in WR, 230 (53.5%) in MWB, and 96 (22.3%) in WWB, with the average number of falls per game being 5.8, 23.0, and 9.6, respectively. A significant difference in the number of falls was observed among the three sports (p<0.001). Table 2 shows the characteristics of falls in the three sport groups, and significant differences in class difference (p<0.001), direction of fall (p<0.001), location of fall (p=0.019), and body part first impacted (p<0.001) were detected among the three sports. When comparing falls with and without foul play, significant differences were detected in class (p=0.021) and whether contact occurred (p=0.007) (Table 3). Table 4 shows a comparison of the characteristics of falls during the Rio 2016 Paralympics and the Tokyo 2020 Paralympics. In Rio 2016, a significant difference in the tendency of falls was observed among the three groups with and without contact (p=0.037), while in Tokyo 2020, no difference was observed (p=0.167). In terms of the number of low pointer falls, a significant difference in the tendency of falls was observed among the three groups (p=0.003, p<0.001).

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2	
4	
5	
6	
7	
8	
9 10	
12	
13	
11 12 13 14	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25	
26	
27	
28 29	
29 30	
31	
32	
33	
34	
35 36	
36	
37 38	
30 39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

1 2

Table 1. Demographic characteristics of athletes who participated th	ne
matches	

matches	Wheelchair	Men's wheelchair	Women's wheelchair
	rugby (n=92)	basketball (n=96)	basketball (n=95)
Age			busketbull (H 90)
(years±SD	34.0±6.4	30.5±6.1	28.9±6.6
)			
Sex			
Male	88	96	-
Female	4	-	95
Classificatio	on (%)		
0.5	15(16)	-	-
1.0	17(18)	16(17)	15(16)
1.5	8(9)	11(11)	9(9)
2.0	18(20)	10(10)	9(9)
2.5	7(8)	14(15)	10(11)
3.0	18(20)	7(7)	19(20)
3.5	9(10)	5(5)	8(8)
4.0	-	15(16)	13(14)
4.5	-	17(18)	13(14)

Table 2. Fall characteristics of the three groups

	Wheelchair rugby (n=104)	Men's wheelchair basketball (n=230)	Women's wheelchair basketball (n=96)	<i>p -</i> value
Classification (%)				<0.001
Low pointer	16(15.4)	125(54.3)	43(44.8)	
High pointer	88(84.6)	105(45.7)	53(55.2)	
Playing time (%)				
First quarter	29(27.9)	46(20.0)	28(29.2)	0.389
Second quarter	24(23.1)	48(20.9)	21(21.9)	
Third quarter	25(24.0)	57(24.8)	22(22.9)	

BMJ Open

Fourth quarter	26(25.0)	79(34.3)	25(26.0)	
-	20(2010)	, , , , , , , , , , , , , , , , , , , ,	23(2010)	0 1 5 4
Playing phase (%)				0.154
Offence	60(57.7)	147(63.9)	68(70.8)	
Defence	44(42.3)	83(36.1)	28(29.2)	
Unidentified	-	-	-	
Contact with				
another player (%)				0.167
Contact	99(95.2)	209(90.9)	90(93.8)	
Non-contact	5(4.8)	15(6.5)	3(3.1)	
	5(4.0)			
Unidentified	-	6(2.6)	3(3.1)	
Direction of the fall				<0.001
(%)				
Left	32(30.8)	27(11.7)	18(18.8)	
Right	31(29.8)	38(16.5)	15(15.6)	
Forward	27(26.0)	106(46.1)	42(43.8)	
Backward	12(11.5)	53(23.0)	16(16.7)	
Unidentified	2(1.9)	6(2.6)	5(5.2)	
Location of the fall (%)				0.019
Back court	40(38.5)	62(27.0)	27(28.1)	
Front court	43(41.3)	79(34.3)	34(35.4)	
Paint/key area	21(20.2)	89(38.7)	35(36.5)	
Body part first in				
contact with the				<0.001
floor (%)				
Hand	60(57.7)	180(78.3)	81(84.4)	
Elbow	24(23.1)	16(7.0)	2(2.1)	
Shoulder	7(6.7)	5(2.2)	1(1.0)	
Back	6(5.8)	15(6.5)	5(5.2)	
Unidentified/combine				
d	7(6.7)	14(6.1)	7(7.3)	

Table 3. Fall characteristics of classification, contact situation and foul judgment

	No foul	Foul	p -
	(n=258)	(n=172)	value
Classification (%)			0.021
Low pointer	122(47.3)	62(36.0)	
High pointer	136(52.7)	110(64.0)	
Contact with another player (%)			0.007
Contact	227(88.0)	171(99.4)	
Non-contact	23(8.9)	0(0.0)	
Unidentified	8(3.1)	1(0.6)	
	4.		

Table 4. The difference of fall characteristics during Tokyo 2020 and Rio 2016

Variable	Olympic	Competition	Number of falls	p - value
Contact with	Die	WR	78	
another player	Rio	WK	78	
		MWB	152	0.037
		WWB	85	
		Total	315	
	Tokyo	WR	99	0.167

39					
38					
36 37			Total	184	
35					
34				тJ	
33			WWB	43	
32					<0.001
31			MWB	125	
30				125	
29					
28		Tokyo	WR	16	
27		Talava		10	
26					
25			Total	112	
23					
22					
21			WWB	30	
20 21					0.003
19					0.002
18			MWB	65	
17					
16			VVIX	± /	
15	Low pointer	Rio	WR	17	
14					
13			Total	398	
12			Total	200	
11					
10			WWB	90	
8 9					
8					
6 7			MWB	209	
5					
4					
3					
Z					

DISCUSSION

The characteristics of the number of falls occurring during the Tokyo 2020 Games among the three sports were similar to those of Rio 2016, with WB having a higher likelihood of falling than WR, especially with MWB having the highest risk of falling. Furthermore, the number of falls ranged from 5.8 to 23.0 per game, which was more than in Rio 2016 (5.3 to 17.2 per game). However, in terms of the presence or absence of contact and competition time, which tended to differ among the three events in Rio 2016, no difference was observed among the three events in Tokyo 2020. Meanwhile, a new difference was noted in the tendency of falls by class. To the best of our knowledge, this is the first study to characterize falls in wheelchair athletes playing team sports at the Paralympic Games and to compare them between Rio 2016 and Tokyo 2020.

As a result of dividing the number of fallers in each category into high and low pointers, WR (84.6%) and WWB (55.2%) tended to have a high percentage of high pointers,

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1

while MWB (54.3%) conversely tended to have a high percentage of low pointers. Low pointing includes severe trunk dysfunction in addition to upper limb dysfunction in WR and severe trunk dysfunction in WB[11,12]. Therefore, they were considered to have less dynamic movements and lower risk of falling than high pointers. Nevertheless, in the MWB, the low pointers fell more often than the high pointers. This could be due to the difference in the proportion of low pointers and high pointers in the competition. In a previous study comparing the performance of male and female WB players, it has been reported that female players performed similarly to male players with 1.5 class points lower[18]. Hence, it can be inferred that up to 2.0–2.5 of the low pointers in MWB were able to move nearly as much as the high pointers in WWB. Assuming that high pointers can move aggressively on the court and that the increased contact with the opponent and have an increased risk of falling, players >2.0 (72%) may be at risk of falling in MWB. If we assume that the athletes can move aggressively in the MWB and are at an increased risk of falling, we would expect that athletes with a \geq 2.0 MWB (72%) would be at risk of falling. Meanwhile, 2.0–2.5 athletes, who are low pointers but can perform as well as female high pointers, may have fallen more frequently in the MWB because they have less residual function. In order to consider the risk of falling in MWB, it is necessary to focus on the 2.0–2.5 athletes who can perform as well as female high pointers and have less residual function among men, rather than using the general classification of low point and high point.

When the incidence of falls with and without foul play was compared, the low pointer had 66.3% of falls without foul play. Meanwhile, the high pointers showed a different trend from the low pointers, with 55.3% of falls without foul play and 44.7% of falls with foul play, showing little difference in the incidence of falls with and without foul play. Moreover, despite the overwhelming prevalence of contact-type falls, there were more falls without foul play (n=258) than with foul play (n=172). In Rio 2016, the incidence of contact falls in WR was lower than in WB, but this time there was no difference in the incidence of contact falls in the three disciplines. This result may be due to an increase in falls caused by tackles without foul play in WR. At the Tokyo 2020 Games, the Paralympics were postponed for one year due to the pandemic, during which time the number of external games themselves decreased [19,20]. Since no international competitions were held for about a year, it is possible that there was little experience of contact play in the games. In addition, due to the pandemic, there was a period when contact play itself was avoided, and it is possible that contact play was not satisfactory during practice. Therefore, it is expected that WRs who were allowed to make contact forward of the axle were less tolerant of contact during games, and that falls in contact increased. Since we did not observe the situation during practice, we can only speculate, but the environment of Tokyo 2020 is unique in many ways, and these factors may

have changed the situation in which falls occurred.

In terms of fall direction, the WR players tended to fall more to the left, right, and front while the WB players tended to fall more to the front. The proportion of elbows and shoulders in the WR players was higher than that in the WB players, and most of the WB players fell from their hands. In WR, tackling from behind is a foul, while tackling from in front of the axle is allowed. Since the impact at contact is large, the momentum of the contacting side leads directly to a fall, and it is expected that there are many falls to the left and right. In addition, the tackled player still has the momentum of forward propulsion and falls forward as it is, so the WR is expected to have more falls to the left and right and forward. On the other hand, for WBs, contact is allowed, but not as violent contact as tackling, so even if the player loses balance due to contact, he will fall while rotating forward, which is expected to result in more forward falls. Additionally, most WR players have out-of-place injuries in their upper limbs, and their remaining trunk function is less than that of the WB players[21]. In the case of a fall, WR players may not be able to put out their hands immediately and may contact the ground from the elbow or shoulder. When the incidence of falls was divided into the backcourt, frontcourt, and paint (key) area, the incidence of falls in the key area was lower in the WR players, while the WB players tended to have more falls in the paint area. This may be due to the competition characteristics of WR, where contact in the key area is prohibited, and WB, where many players gather in the paint area under the goal. Therefore, it is necessary to understand that the occurrence of falls and the site of physical contact at the time of falls are different between WR and WB, even in the same team sports event. The incidence of injuries in WR and WB team sport events in the Paralympics did not improve in the London and Rio Paralympics (2012 and 2016, respectively)[2,3]. Furthermore, a detailed analysis of the mechanisms of trauma and injury has not been reported. The fact that the trends of fall characteristics of WR and WB were similar in Rio 2016 and Tokyo 2020 should be very useful data for the prevention of injury occurrence in WR and WB in the future.

This study's most significant findingis that the number of MWB low pointer falls increased the most in Tokyo 2020 compared with Rio 2016. This may be due to the difference in team composition. In Rio 2016, MWB low pointers accounted for 47%[4], while in Tokyo 2020, they accounted for 53%. In particular, there was a 9% decrease in the number of 3.0–3.5 players and a 4% increase in the number of 2.0–2.5 players. Therefore, it is expected that the countries that remain in the MWB final tournament tend to have more opportunities for players with \geq 2.0 points, who have some remaining trunk function. However, in the MWB, the players with less residual function may be required to exert more effort to keep up with the high pointers. Therefore, in order to prevent falls in the future, it will be important to

conduct research focusing on the details of falls (e.g., the situation at the time of the fall and the direction of the fall) in athletes with MWB between 2.0 and 2.5, as well as on measures to prevent falls during contact. It will then be important to link this research to the prevention of injury occurrence in wheelchair team sports.

Limitations

 There are several limitations to this study. First, we analyzed only official IPC videos and Internet-based IPC reports, so it is unclear whether we were able to analyze all actual falls. Nevertheless, we were able to analyze most of the falls, including those that interrupted the video. Second, we analyzed the games of the top eight teams in MWB and WWB to unify the number of teams, players, and level of competition with WR. The analysis of the 53 qualifying games excluded in our study can be used to present the characteristics of future WB falls. Last, we have not identified any injuries that occurred during the games. Therefore, whether these falls resulted in injuries or not was unknown. However, comparing Rio 2016 and Tokyo 2020, it is expected that more attention and research focus will be given to Paralympic sports injuries in the three popular team sports events of the Paralympics to clarify the differences in fall injuries between WR and WB athletes.

CONCLUSION

As in Rio 2016, the incidence of falls was high in Tokyo 2020 with MWB having the highest number of falls, followed by WWB and WR. The direction of fall occurrence and the first site of body contact at the time of the fall in Tokyo 2020 were also similar to those in Rio 2016. However, the occurrence of falls with and without contact in Tokyo 2020 was different from that in Rio 2016. Moreover, a new finding was obtained when comparing the low and high pointers, that more falls occurred in the low pointers of MWB. Further research will be conducted to understand the mechanism of fall injuries in wheelchair athletes and to relate these results to injury research.

COMPETING INTERESTS: None declared.FUNDING: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

AUTHOR CONTRIBUTIONS: KF designed the study and wrote the paper; all authors provided editing and comments for revision; NM, JS, and RS contributed to the analysis and

interpretation of the data and assisted in the preparation of the manuscript; ST, SA, TT, KK, MY, RM, TA, HE, and TT performed the video analysis; MK provided advice and YU was the principal investigator. All authors have approved the final version of the manuscript and have agreed to be accountable for all aspects of the work to ensure that any questions related to the accuracy or completeness of any part of the work are properly investigated and resolved.

PATINT AND PUBLIC INVOLVEMENT: Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

PATIENT CONSENT FOR PUBLICATION: Not required.

ETHICS APPROVAL: This study protocol was approved by Hiroshima University's Institutional Review Board (Study protocol ID number: E-1459).

DATA AVAILABILITY STATEMENT: All data relevant to the study are included in the article or uploaded as supplementary information. All data generated or analysed during this study are included in this published article.

REFERENCES

- Clifton DR, Hertel J, Onate JA, et al. The first decade of web-based sports injury surveillance: descriptive epidemiology of injuries in US high school Girls' basketball (2005–2006 through 2013–2014) and National Collegiate Athletic Association Women's basketball (2004–2005 through 2013–2014). J Athl Train 2018;53:1037–48.
- Derman W, Runciman P, Schwellnus M, et al. High precompetition injury rate dominates the injury profile at the Rio 2016 Summer Paralympic Games: a prospective cohort study of 51 198 athlete days. *Br J Sports Med* 2018;52:24–31. https://doi.org/10.1136/bjsports-2017-098039.
- Willick SE, Webborn N, Emery C, et al. The epidemiology of injuries at the London 2012 Paralympic Games. *Br J Sports Med* 2013;47:426–32. https://doi.org/10.1136/bjsports-2013-092374.
- 4. Sasadai J, Maeda N, Shimizu R, et al. Analysis of team-sport wheelchair falls during the Rio 2016 Summer Paralympic Games: a video-based cross-sectional observational study. *BMJ Open* 2020;10:e033088. https://doi.org/10.1136/bmjopen-2019-033088.

 Weiler R, Blauwet C, Clarke D, et al. Concussion in para sport: the first position statement of the Concussion in Para Sport (CIPS) Group. *Br J Sports Med* 2021;55:1187-95. https://doi.org/10.1136/bjsports-2020-103696.

- Moran RN, Broglio SP, Francioni KK, et al. Exploring Baseline Concussion-Assessment Performance in Adapted Wheelchair Sport Athletes. *J Athl Train* 2020;55(8):856–62. https://doi.org/10.4085/1062-6050-294-19.
- Olsen OE, Myklebust G, Engebretsen L, et al. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. *Am J Sports Med* 2004;32:1002–12. https://doi.org/10.1177/0363546503261724.
- Hutchison MG, Comper P, Meeuwisse WH, et al. A systematic video analysis of National Hockey League (NHL) concussions, part I: who, when, where and what? *Br J Sports Med* 2015;49:547–51. https://doi.org/10.1136/bjsports-2013-092234.
- Hutchison MG, Comper P, Meeuwisse WH, et al. A systematic video analysis of National Hockey League (NHL) concussions, part II: how concussions occur in the NHL. *Br J Sports Med* 2015;49:552–5. https://doi.org/10.1136/bjsports-2013-092235.
- Tweedy S, Diaper N. Introduction to wheelchair sport. In: Goosey-Tolfrey V, ed.
 Wheelchair sport. A complete guide for athletes, coaches and teachers. Illinois, USA: Human Kinetics 2010: 3–28.
- 11. International wheelchair rugby federation. 2021. https://worldwheelchair.rugby/the-gameclassifications/ (accessed).
- 12. IWBF player classification manual. 2021. https://iwbf.org/downloads/ (accessed).
- Haydon DS, Pinder RA, Grimshaw PN, et al. Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby. *Int J Sports Physiol Perform* 2021 Feb;13(2):156– 62. https://journals.humankinetics.com/view/journals/ijspp/13/2/article-p156.xml (accessed Nov 30, 2021).
- Marszałek J, Kosmol A, Morgulec-Adamowicz N, et al. Laboratory and Nonlaboratory Assessment of Anaerobic Performance of Elite Male Wheelchair Basketball Athletes. *Front Psychol* 2019;10:514. https://doi.org/10.3389/fpsyg.2019.00514.
- 15. Blauwet C, Webborn N, Kissick J, et al. When van Mechelen's sequence of injury prevention model requires pragmatic and accelerated action: the case of para alpine skiing in Pyeong Chang 2018. *Br J Sports Med* 2019;53:1390–1.
- Sadate B, Thierry W, Marjolaine A, et al. Performance, asymmetry and biomechanical parameters in wheelchair rugby players. *Sports Biomech* 2021 Apr;1898670. www.doi.org/10.1080/14763141.2021.1898670 (accessed Nov 29, 2021).

ו ר	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
19 20 21	
21	
22	
23 24	
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
46 47	
47 48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

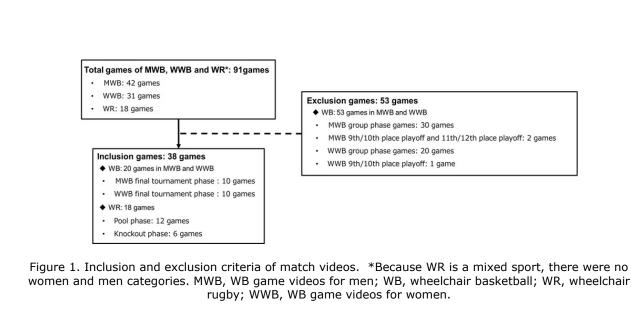

- Tachibana K, Mutsuzaki H, Shimizu Y, et al. Influence of functional classification on skill tests in elite female wheelchair basketball athletes. *Medicina* 2019;55:740. https://doi.org/10.3390/medicina55110740 (accessed).
- Cavedon V, Zancanaro C, Milanese C. Anthropometry, Body Composition, and Performance in Sport-Specific Field Test in Female Wheelchair Basketball Players. *Front Physiol* 2018;30:568. https://doi.org/10.3389/fphys.2018.00568.
- 19. Dove J, Gage A, Kriz P, et al. COVID-19 and Review of Current Recommendations for Return to Athletic Play. *R I Med J* 2013;103:15–20.
- 20. Mann RH, Clift BC, Boykoff J, et al. Athletes as community; athletes in community: covid-19, sporting mega-events and athlete health protection. *Br J Sports Med* 2020;54:1071–2. https://doi.org/10.1136/bjsports-2020-102433.
- 21. van der Slikke RMA, Berger MAM, Bregman DJJ, et al. Wearable Wheelchair Mobility Performance Measurement in Basketball, Rugby, and Tennis: Lessons for Classification and Training. *Sensors (Basel)* 2020;20:3518. https://doi.org/10.3390/s20123518.

Figure legend

Figure 1. Inclusion and exclusion criteria of match videos.*Because WR is a mixed sport, there were no women and men categories.MWB, WB game videos for men; WB, wheelchair basketball; WR, wheelchair rugby; WWB, WB game videos for women.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2022-060937 on 30 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

161x59mm (150 x 150 DPI)

	Item No	Recommendation	Page No		
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2		
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4		
Objectives	3	State specific objectives, including any prespecified hypotheses	4		
Methods			1		
Study design	4	Present key elements of study design early in the paper	5		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5		
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5		
Variables	7	arly define all outcomes, exposures, predictors, potential founders, and effect modifiers. Give diagnostic criteria, if applicable			
Data sources/	8*	For each variable of interest, give sources of data and details of methods	5		
measurement		of assessment (measurement). Describe comparability of assessment methods if there is more than one group			
Bias	9	Describe any efforts to address potential sources of bias	5		
Study size	10	Explain how the study size was arrived at	5		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why			
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	5		
		(b) Describe any methods used to examine subgroups and interactions	5		
		(c) Explain how missing data were addressed	5		
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	5		
		(<i>e</i>) Describe any sensitivity analyses	5		
Results					
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7		
		(b) Give reasons for non-participation at each stage	-		
		(c) Consider use of a flow diagram	Fig1		
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table		
		(b) Indicate number of participants with missing data for each variable of interest	-		
Outcome data	15*	Report numbers of outcome events or summary measures	Fig1		
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	-		

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
20
21
22 23
23
24
25
26
27
28
29
29 30
31
32
33
34
35
36
36 37
38
39
40
40 41
43
44
45
46
47
48
49
50
50
51 52
53
54
55
56
57
58
59
29

60

1 2

		(b) Report category boundaries when continuous variables were	7
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	-
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	-
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential	13
		bias or imprecision. Discuss both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-13
		limitations, multiplicity of analyses, results from similar studies, and	
		other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	14
		study and, if applicable, for the original study on which the present	
		article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based descriptive comparison between the Rio 2016 and Tokyo 2020 games

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060937.R1
Article Type:	Original research
Date Submitted by the Author:	14-May-2022
Complete List of Authors:	FUKUI, KAZUKI; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Maeda, Noriaki; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing, Department of Sports Rehabilitation Sasadai, Junpei; Sports Medical Center, Japan Institute of Sports Sciences (JISS) Shimizu, Reia; Sports Medical Center, Japan Institute of Sports Sciences (JISS) Tsutsumi, Shogo; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing, Department of Sports Rehabilitation Arima, Satoshi; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Tashiro, Tsubasa; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Kaneda, Kazuki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Kaneda, Kazuki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Yoshimi, Mitsuhiro; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Abekura, Takeru; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Ferada, Tomoki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Komiya, Makoto; Hiroshima University Faculty of Med

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 29
30

	(JISS) Urabe, Yukio; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation
Primary Subject Heading :	Sports and exercise medicine
Secondary Subject Heading:	Epidemiology, Sports and exercise medicine, Rehabilitation medicine
Keywords:	SPORTS MEDICINE, REHABILITATION MEDICINE, ORTHOPAEDIC & TRAUMA SURGERY

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

 Field 1 Title Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based descriptive comparison between the Rio 2016 and Tokyo 2020 games 4 5 Authors 6 Kazuki Fukui¹, Noriaki Maeda¹, Junpei Sasadai², Reia Shimizu², Shogo Tsutsumi¹, Satoshi 7 Arima¹, Tsubasa Tashiro¹, Kazuki Kaneda¹, Mitsuhiro Yoshimi¹, Rami Mizuta¹, Takeru 8 Abekura¹, Hinata Esaki¹, Tomoki Terada¹, Makoto Komiya¹, Akira Suzuki², Yukio Urabe¹ 9 10 Affiliations 11 'Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 13 'Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, 14 Tokyo, 115-0056, Japan 15 16 Corresponding author 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 14 Minami-ku, Hiroshima, 734-8553, Japan 15 16 Corresponding author 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 19 Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: yurabe@hiroshima-u.ac.jp 21 22 Word count 	2		
51Title2Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based3descriptive comparison between the Rio 2016 and Tokyo 2020 games441254Authors1366Kazuki Fukui ¹ , Noriaki Maeda ¹ , Junpei Sasadai ² , Reia Shimizu ² , Shogo Tsutsumi ¹ , Satoshi14Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru16817Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹ 18910Affiliations211111 ¹ Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,231213 ² Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,251426152715281629Corresponding author2917301731School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,311832Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,33193420352136213722Word count	3 ⊿		
 Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based descriptive comparison between the Rio 2016 and Tokyo 2020 games Authors Kazuki Fukui¹, Noriaki Maeda¹, Junpei Sasadai², Reia Shimizu², Shogo Tsutsumi¹, Satoshi Arima¹, Tsubasa Tashiro¹, Kazuki Kaneda¹, Mitsuhiro Yoshimi¹, Rami Mizuta¹, Takeru Abekura¹, Hinata Esaki¹, Tomoki Terada¹, Makoto Komiya¹, Akira Suzuki², Yukio Urabe¹ Affiliations If Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan ²⁵Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056, Japan Corresponding author Yukio Urabe Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan E-mail address: yurabe@hiroshima-u.ac.jp Word count 			
 Analysis of Wreetchan fails in team sports at the Faradynphe Gantes. Video-based descriptive comparison between the Rio 2016 and Tokyo 2020 games Authors Kazuki Fukui¹, Noriaki Maeda¹, Junpei Sasadai², Reia Shimizu², Shogo Tsutsumi¹, Satoshi Arima¹, Tsubasa Tashiro¹, Kazuki Kaneda¹, Mitsuhiro Yoshimi¹, Rami Mizuta¹, Takeru Abekura¹, Hinata Esaki¹, Tomoki Terada¹, Makoto Komiya¹, Akira Suzuki², Yukio Urabe¹ Affiliations If Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan ²Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056, Japan Corresponding author Yukio Urabe Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan E-mail address: yurabe@hiroshima-u.ac.jp Word count 			
9 3 descriptive comparison between the Rio 2016 and Tokyo 2020 games 10 4 11 5 Authors 12 6 Kazuki Fukui ¹ , Noriaki Maeda ¹ , Junpei Sasadai ² , Reia Shimizu ² , Shogo Tsutsumi ¹ , Satoshi 14 7 Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru 16 8 Abekura ¹ , Hinata Esaki ¹ , Tomoki Terada ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹ 17 9 10 Affiliations 21 11 ¹ Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 23 12 Minami-ku, Hiroshima, 734-8553, Japan 24 13 ² Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, 25 14 Tokyo, 115-0056, Japan 26 15 27 15 28 16 Corresponding author 29 17 Yukio Urabe 31 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 31 19 Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: yurabe@hiroshima-u.ac.jp <td></td> <td>2</td> <td>Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based</td>		2	Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based
117125Authors136Kazuki Fukui ¹ , Noriaki Maeda ¹ , Junpei Sasadai ² , Reia Shimizu ² , Shogo Tsutsumi ¹ , Satoshi147Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru168Abekura ¹ , Hinata Esaki ¹ , Tomoki Terada ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹ 17910Affiliations2010Affiliations2111'Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,2312Minami-ku, Hiroshima, 734-8553, Japan2413'Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,2514Tokyo, 115-0056, Japan2616Corresponding author27151828Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,3118Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,3319Minami-ku, Hiroshima, 734-8553, Japan3420E-mail address: yurabe@hiroshima-u.ac.jp352136213722Word count		3	descriptive comparison between the Rio 2016 and Tokyo 2020 games
125Authors136Kazuki Fukui ¹ , Noriaki Maeda ¹ , Junpei Sasadai ² , Reia Shimizu ² , Shogo Tsutsumi ¹ , Satoshi147Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru168Abekura ¹ , Hinata Esaki ¹ , Tomoki Terada ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹ 17910Affiliations201021I22Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,231224132529261427152816291720173017311831Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,331934203521372237223722		4	
 Arima¹, Tukur, Noriaki Macua, Juliper Jasadai, Kela Simini, J. Sitögö Fadishin, Satoshi Arima¹, Tsubasa Tashiro¹, Kazuki Kaneda¹, Mitsuhiro Yoshimi¹, Rami Mizuta¹, Takeru Abekura¹, Hinata Esaki¹, Tomoki Terada¹, Makoto Komiya¹, Akira Suzuki², Yukio Urabe¹ 9 10 Affiliations 11 ¹Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan ²⁵Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, 14 Tokyo, 115-0056, Japan 15 16 Corresponding author 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan 26 Deresponding author 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: yurabe@hiroshima-u.ac.jp 21 22 Word count 		5	Authors
157Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru168Abekura ¹ , Hinata Esaki ¹ , Tomoki Terada ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹ 17910Affiliations2111 ¹ Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,2212Minami-ku, Hiroshima, 734-8553, Japan23 ² Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,2413 ² Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,2514Tokyo, 115-0056, Japan2616Corresponding author2917Yukio Urabe3118Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,3319Minami-ku, Hiroshima, 734-8553, Japan3420E-mail address: yurabe@hiroshima-u.ac.jp35213722Word count		6	Kazuki Fukui ¹ , Noriaki Maeda ¹ , Junpei Sasadai ² , Reia Shimizu ² , Shogo Tsutsumi ¹ , Satoshi
168Abekura ¹ , Hinata Esaki ¹ , Tomoki Terada ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹ 17910Affiliations211111'Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,221223'Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,2413251426152715281629Corresponding author2917201721Yukio Urabe311831Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,3319342035213722Word count		7	Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru
1791891910Affiliations2011'Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,21Minami-ku, Hiroshima, 734-8553, Japan2312Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,2514Tokyo, 115-0056, Japan2616Corresponding author2916Corresponding author2917Yukio Urabe3118Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,3319Minami-ku, Hiroshima, 734-8553, Japan3420E-mail address: yurabe@hiroshima-u.ac.jp35213722Word count		8	
10Affiliations2111'Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,2212Minami-ku, Hiroshima, 734-8553, Japan2313'Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,2514Tokyo, 115-0056, Japan261527152816Corresponding author2917Yukio Urabe3118Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,3319Minami-ku, Hiroshima, 734-8553, Japan3420E-mail address: yurabe@hiroshima-u.ac.jp36213722Word count		9	
 ²⁰ ¹¹ ¹Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, ²² 12 Minami-ku, Hiroshima, 734-8553, Japan ²³ ²Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, ²⁵ 14 Tokyo, 115-0056, Japan ²⁸ 16 Corresponding author ²⁹ 17 Yukio Urabe ³¹ 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, ³² Minami-ku, Hiroshima, 734-8553, Japan ³⁴ 20 E-mail address: yurabe@hiroshima-u.ac.jp ³⁵ 21 ³⁷ 22 Word count 		10	Affiliations
 Minami-ku, Hiroshima, 734-8553, Japan ²² Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, ²⁴ Tokyo, 115-0056, Japan ²⁷ 15 ²⁸ 16 Corresponding author ²⁹ 17 Yukio Urabe ³¹ 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, ³² Minami-ku, Hiroshima, 734-8553, Japan ³⁴ 20 E-mail address: yurabe@hiroshima-u.ac.jp ³⁵ 21 ³⁷ 22 Word count 			
 ²³ ²³ ¹³ ²Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, ²⁵ 14 Tokyo, 115-0056, Japan ²⁶ 15 ²⁸ 16 Corresponding author ²⁹ 17 Yukio Urabe ³¹ 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, ³² 19 Minami-ku, Hiroshima, 734-8553, Japan ³⁴ 20 E-mail address: <u>yurabe@hiroshima-u.ac.jp</u> ³⁵ 21 ³⁷ 22 Word count 			
 14 Tokyo, 115-0056, Japan 15 16 Corresponding author 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 19 Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: yurabe@hiroshima-u.ac.jp 21 37 22 Word count 			
 26 27 28 28 29 20 20 21 22 23 24 25 26 27 27 27 28 29 20 21 <			
 16 Corresponding author 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 19 Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: yurabe@hiroshima-u.ac.jp 21 37 22 Word count 			
 Yukio Urabe 17 Yukio Urabe 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 19 Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: yurabe@hiroshima-u.ac.jp 21 37 22 Word count 	28		Corresponding author
 31 18 Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, 33 19 Minami-ku, Hiroshima, 734-8553, Japan 34 20 E-mail address: <u>yurabe@hiroshima-u.ac.jp</u> 35 21 37 22 Word count 		17	
 19 Minami-ku, Hiroshima, 734-8553, Japan 20 E-mail address: <u>yurabe@hiroshima-u.ac.jp</u> 21 37 22 Word count 	31	18	Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
³⁵ ³⁶ 21 ³⁷ 22 Word count		19	Minami-ku, Hiroshima, 734-8553, Japan
 36 21 37 22 Word count 		20	E-mail address: <u>yurabe@hiroshima-u.ac.jp</u>
		21	
		22	Word count
39 23 3471 words	38 39	23	3471 words
40 24 41		24	
42 25		25	
43 26 44		26	
44 45 27		27	
46 28		28	
47 48 29		29	
⁴⁹ 30		30	
50 51 31		31	
⁵² 32		32	
53 54 33		33	
55 34	55	34	
56 57 35		35	
⁵⁸ 36		36	
59 60			

ABSTRACT Objectives To identify the fall characteristics of athletes in wheelchair rugby and wheelchair basketball during the Tokyo 2020 Paralympic Games and descriptively compare these with those of the Rio 2016 Paralympic Games. Design Cross-sectional analysis Primary and secondary outcome measures We obtained video footage from the International Paralympic Committee of the Tokyo 2020 Paralympic Games that included 8 teams from each of the 18 wheelchair rugby and 10 wheelchair basketball games (men and women). The data were analyzed to evaluate the number of falls, class difference (low or high pointer), time of play during the fall, phase of play, contact with other athletes, fall direction, fall location, and the body part that first contacted the floor during the fall. These data from the Rio 2016 and Tokyo 2020 games were compared. Results Overall, 430 falls (rugby, 104; men's basketball, 230; and women's basketball, 96) occurred (average per game: 5.8, 23.0, and 9.6, respectively). Significant differences were observed among the three sports regarding the class, direction, fall location, and body part point of contact. In wheelchair rugby, falls occurred mainly in high-pointers and tended to be more lateral due to contact. In wheelchair basketball, falls occurred more in female high-pointers and in male low-pointers, with more forward falls due to forward contact. Unlike in the Rio 2016 games, no difference between the events based on the presence or absence of contact was observed in the Tokyo 2020 games. Conclusions The number of falls increased in Tokyo 2020 compared to Rio 2016, with no significant difference in the characteristics of falls between the Rio 2016 and Tokyo 2020 games. Only in men's wheelchair basketball, the number of falls in low pointers significantly increased in the Tokyo 2020 games when compared to that in the Rio 2016 games. Strengths and limitations of this study The analysis of wheelchair sport falls at the Tokyo 2020 Paralympic Games and the • Rio 2016 Paralympic Games was conducted using official Paralympic videos available on the Internet. The characteristics of falls during wheelchair rugby and wheelchair basketball competitions were analyzed.

1 2 3		
2	73 • 74 - 75 • 76 • 77 •	The data from the Tokyo 2020 Paralympic Games and the Rio 2016 Paralympic Games were compared, and the characteristics of falls at the Tokyo Paralympic Games were analyzed. No injuries due to wheelchair falls were identified in the videos. The relationship between falls and injuries could not be explained.
57 58 59 60		

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

78 INTRODUCTION

The Tokyo 2020 Paralympic Games featured 4403 athletes competing in 539 events in 22 sports, making it the largest Paralympic Games in history and drawing increasing attention to the Paralympic Games. Hence, with the increase in the number of athletes, the level of competition is expected to improve, and sports injuries are also expected to increase [1]. A total of 441 athletes sustained as many as 510 injuries during the 14 days of competition at the Rio 2016 Paralympics, with 61 athletes injured during their participation in wheelchair rugby (WR) and wheelchair basketball (WB); this translated to 14.9 and 12.8 injuries per 1000 athlete days, respectively [2]. Furthermore, contact team sports such as WR and WB have a

87 higher incidence of acute injuries than fencing and tennis (61%, 65%, and 42%, 37%,

respectively) [3]. In these two wheelchair team sports, many falls commonly occur. Regarding the incidence of falls at the Rio 2016 Paralympics, 359 falls occurred in three disciplines (WR, men's WB, and women's WB). The rate of falls was the highest for MWB, followed by WWB and WR [4]. However, no other study has clarified the characteristics of falls in each sport. Moreover, the relationship between sports injury characteristics and the occurrence of falls in wheelchair team sports has not yet been presented. In the case of wheelchair sports, falls can result in head impacts and emergencies such as concussions, and research in the area of concussions has received increasing attention [5, 6]. Therefore, understanding the causes of falls during games is essential in considering the prevention of injury occurrence in these team sports, and more data needs to be collected. One way to analyze the occurrence of falls in wheelchair-related sports is to use video recordings of games.

By retrospectively analyzing the video recordings of the games, which is an effective method that has been used previously to interpret injury occurrence in healthy individuals, [7-9] the occurrence and characteristics of these wheelchair-related sport injuries can be identified. The analysis of anterior cruciate ligament injuries helped researchers to understand the change of dynamic alignment during injury and plan preventive measures, [7] which is why we used this method in our previous study to investigate the incidence of falls in WR and WB games at the Rio 2016 Paralympic Games [4].

WR and WB players also include individuals with quadriplegia, paraplegia, and
amputations. Overall, WR players have more severe functional impairments than WB
players, especially those affecting the extremities, such as cervical spinal cord injury
(tetraplegia), multiple amputations, polio, cerebral palsy, and other neurological diseases
[10]. WR players are classified based on their hand, arm, shoulder, and trunk functions, with
disability levels ranging from 0.5 (lowest physical function) to 3.5 (highest physical function),

BMJ Open

 and are placed into seven categories based on their level of disability [11]. WB players must have a permanent physical disability with reduced function of the lower extremities, which includes paralysis of the lower extremities, musculoskeletal disorders, spina bifida, amputation, and childhood paralysis [11]. These athletes are classified from 1.0 (lowest physical function) to 4.5 (highest physical function) [12]. Performance and injury rates vary greatly by class [13, 14], and fall rates are expected to vary as well. However, no analysis of fall incidence by class has been reported.

At the Rio 2016 Paralympics, the incidence of falls and the duration of competition, the presence of contact, the direction of the fall, and the initial site of contact had different characteristics in the three events [4]. Meanwhile, in our previous study we have not been able to clarify the incidence of falls for each class. In addition, five years have passed since the Rio 2016 Paralympics, and the incidence of falls is expected to be different due to the improvement of athletic performance. Moreover, the Tokyo 2020 Paralympics was held under special circumstances, with the games being postponed for one year due to the COVID-19 pandemic. Therefore, new characteristics of fall occurrence different from those of the Rio 2016 Paralympics may emerge, and accumulation of data will be crucial for injury prevention. This study aimed to investigate the number of falls and the occurrence of falls among wheelchair athletes in team sports at the 2020 Tokyo Paralympic Games, to compare the results with those at the 2016 Rio Paralympic Games, and to clarify the characteristics of major falls among the three major wheelchair team sports (WR, MWB, and W WB).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

134 METHODS

 In this cross-sectional video analysis, we obtained the official match videos of the WR and WB wheelchair team competitions from the International Paralympic Committee's (IPC) official website, and analyzed the match videos of all eight teams participating in the WR and eight teams each from the MWB and WWB that advanced to the quarterfinals of the Tokyo 2020 Paralympic Games (Fig. 1). The WR matches are played in four 8-minute periods, and the WB matches are played in four 10-minute periods. Three physiotherapists with expertise in para-sports systematically analyzed the videos for fall mechanism and play circumstances. The videos were repeated as needed and displayed at normal speed, slow speed, or in still images. To record the number of falls, duration of play at the time of the fall, phase of play (offense or defense), contact with another player, direction of the fall, location of the fall (backcourt, frontcourt, or key or paint area), and the body part that first made contact with the floor, we modified a standard form similar to the one used in previous video analyses [4, 15]. In order to record all falls, contact with the floor was considered to be necessary. Additionally, the fall data obtained from the IPC official website of the Rio 2016 Paralympic Games and used in our previous study, from a total of 18 WR and 10 WB match videos of men (MWB) and women (WWB), including eight teams in one event, were also used in this analysis [4]. Analysis of the Rio 2016 Paralympic Games data was also conducted using the same methods as for the present 2020 analysis.

153 Data regarding player information (age, sex, and functional classification) were 154 used from the IPC website (Table 1). Regarding disability classification, based on previous 155 studies, for WR, \geq 2.0 were classified as high pointer and \leq 1.5 and below as low pointer [16]; 156 for WB, \geq 3.0 were classified as high pointer and \leq 2.5 as low pointer [17].

158 Statistical analysis

For all categorical variables, results that were consistent with the ratings of two out of three observers were reported. A good agreement among the three observers for all variables was considered when two or more observers were in agreement for all categorical items and the kappa coefficient was >0.8. A one-way analysis of variance was used to compare the mean incidence of falls for each of the three wheelchair sports games. Follow-up analyses were conducted using Bonferroni's post hoc test, if necessary. For the comparison of categorical variables, Pearson's X² test or Fisher's exact test was used. The Fisher's exact test was used instead of the X² test when the expected number was <5. Adjusted residuals were used for post hoc tests. Comparisons of the incidence of falls with and without foul contact were also conducted using Pearson's chi-square test. In order to compare the characteristics of falls at the Tokyo 2020 Paralympic Games with those at the Rio 2016

1 2		
3 4		
5 6	170	Paralympic Games, descriptive comparisons were also made between the results from the
7	171	2020 and 2016 Games regarding the presence of contact with other athletes, and the
8 9	172	percentage of low pointer falls. All statistical analyses were performed using IBM SPSS
10	173	version 27.0 (IBM japan, Tokyo, Japan). A p-value <0.05 considered statistically significant.
11 12	174	Patient and public involvement
13	175	This study was conducted without patient involvement. Patients were not asked to
14 15	176	comment on the study design, consulted to derive results relevant to them, or consulted to
16	177	interpret the results. Patients were also not consulted in the writing or editing of this
17 18	178	interpret the results. Patients were also not consulted in the writing or editing of this document for readability or accuracy.
19	179	
20 21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

180 RESULTS

Overall, 430 falls were recorded, of which 104 (24.2%) occurred in WR, 230 (53.5%) in MWB, and 96 (22.3%) in WWB, with the average number of falls per game being 5.8, 23.0, and 9.6, respectively. There was a significant difference in the mean number of falls, occurring only between MWB and the other events (WR and WWB) (p<0.001). Table 2 shows the characteristics of falls in the three sport groups, and significant differences in class difference (p<0.001), direction of fall (p<0.001), location of fall (p=0.019), and body part first impacted (p<0.001) were detected among the three sports. When comparing falls with and without foul play, significant differences were detected in class (p=0.021) and whether contact occurred (p=0.007) (Table 3). Table 4 shows a comparison of the characteristics of falls during the Rio 2016 Paralympics and the Tokyo 2020 Paralympics. In Rio 2016, a significant difference in the tendency of falls was observed among the three groups with and without contact (p=0.037), while in

193 Tokyo 2020, no difference was observed (p=0.167). In terms of the number of low pointer

194 falls, a significant difference in the tendency of falls was observed among the three groups

in both Rio 2016 and Tokyo 2020 Paralympic Games (p=0.003, p<0.001).

Table 1. Demographic characteristics of athletes who participated the matches

	Wheelchair rugby (n=92)	Men's wheelchair basketball (n=96)	Women's wheelchair basketball (n=95)
Age (years±SD)	34.0±6.4	30.5±6.1	28.9±6.6
Sex			
Male	88	96	-
Female	4	-	95
Classificati	on (%)		
0.5	15(16)	-	-
1.0	17(18)	16(17)	15(16)
1.5	8(9)	11(11)	9(9)
2.0	18(20)	10(10)	9(9)
2.5	7(8)	14(15)	10(11)
3.0	18(20)	7(7)	19(20)
3.5	9(10)	5(5)	8(8)
4.0	-	15(16)	13(14)
4.5	-	17(18)	13(14)

Table 2. Fall characteristics of the three groups

	Wheelchair rugby (n=104)	Men's wheelchair basketball (n=230)	Women's wheelchair basketball (n=96)	p - value
Classification (%)				<0.001
Low pointer	16(15.4)*	125(54.3)*	43(44.8)	
High pointer	88(84.6)*	105(45.7)*	53(55.2)	
Playing time (%)				
First quarter	29(27.9)	46(20.0)	28(29.2)	0.389
Second quarter	24(23.1)	48(20.9)	21(21.9)	
Third quarter	25(24.0)	57(24.8)	22(22.9)	
Fourth quarter	26(25.0)	79(34.3)	25(26.0)	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2 3
-
4
4 5 6 7 8 9 10 11 12 13 14 15 16
6
7
8
9
10
11
12
13
14 15 16 17
15
16
17
18
19
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
21
22
23
24
25
26
27
28
29
30
31
32
33
34
34 35 36 37 38
36
30
27 20
30 39
39 40
41 42
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1

Playing phase (%)				0.154
Offence	60(57.7)	147(63.9)	68(70.8)	
Defence	44(42.3)	83(36.1)	28(29.2)	
Unidentified	-	-	-	
Contact with another player (%)				0.16
Contact	99(95.2)	209(90.9)	90(93.8)	
Non-contact	5(4.8)	15(6.5)	3(3.1)	
Unidentified	-	6(2.6)	3(3.1)	
Direction of the fall (%)				<0.00
Left	32(30.8)*	27(11.7)*	18(18.8)	
Right	31(29.8)*	38(16.5)	15(15.6)	
Forward	27(26.0)†	106(46.1)*	42(43.8)	
Backward	12(11.5)*	53(23.0)*	16(16.7)	
Unidentified	2(1.9)	6(2.6)	5(5.2)	
Location of the fall (%)				0.01
Back court	40(38.5)*	62(27.0)	27(28.1)	
Front court	43(41.3)	79(34.3)	34(35.4)	
Paint/key area	21(20.2)*	89(38.7)*	35(36.5)	
Body part first in contact with the floor (%)				<0.00
Hand	60(57.7) [†]	180(78.3)	81(84.4)*	
Elbow	24(23.1)*	16(7.0)*	2(2.1)*	
Shoulder	7(6.7)*	5(2.2)	1(1.0)	
Back	6(5.8)	15(6.5)	5(5.2)	
Unidentified/combined	7(6.7)	14(6.1)	7(7.3)	

199 • * Significantly higher among the three events (p<0.05)

• *Significantly lower among the three events (p<0.05)

58 59

60

			No foul	(n=258)	Foul (n=172)	p - valu	
	Classification (%)					0.021	
	Low pointer		122	(47.3)*	62(36.0)†		
	High pointer	136	(52.7)†	110(64.0)*			
	Contact with anothe	er player (%)				0.007	
	Contact		227	(88.0)†	171(99.4)*		
	Non-contact		23	(8.9)*	0(0.0)*		
	Unidentified		8	(3.1)	1(0.6)		
)2	• Values are expresse	ad as the numb	a_{n} of falls (9/ of	total falle) f	for each group		
02	values are expresse	eu as the numb		iotal lalis) l	or each group	•	
203	*Significantly high	ner in foul jud	gment (p<0.0	5)			
04	 *Significantly lower in foul judgment (p<0.05) 						
05							
205	Table 4. The differer	ice of fall chara	cteristics during	; Tokyo 202	0 and Rio 2016	6	
)5	Table 4. The differer Variable	ce of fall chara Paralympic	cteristics during	; Tokyo 202 Number		5 <i>p</i> - value	
)5				-	of falls		
05	Variable Contact with	Paralympic	Competition	Number	of falls .8)†		
05	Variable Contact with	Paralympic	Competition WR	Number 78(24	of falls .8)† 8.3)	p - value	
)5	Variable Contact with	Paralympic	Competition WR MWB	Number 78(24 152(4	of falls .8) [†] 8.3) 7.0)	p - value	
05	Variable Contact with	Paralympic	Competition WR MWB WWB	Number 78(24 152(4 85(27	of falls .8) [†] 8.3) 7.0) 5	p - value	
05	Variable Contact with	Paralympic Rio	Competition WR MWB WWB Total	Number 78(24 152(4 85(27 31)	of falls .8) [†] 8.3) 7.0) 5 1.9)	<i>p</i> - value 0.037	
05	Variable Contact with	Paralympic Rio	Competition WR MWB WWB Total WR MWB	Number 78(24 152(4 85(27 31) 99(24 209(5	of falls .8) [†] 8.3) 7.0) 5 1.9) 2.5)	p - value	
05	Variable Contact with	Paralympic Rio	Competition WR MWB WWB Total WR MWB WWB	Number 78(24 152(4 85(27 31) 99(24 209(5 90(22	of falls .8) [†] 8.3) 7.0) 5 1.9) 2.5) 2.6)	<i>p</i> - value 0.037	
05	Variable Contact with another player (%)	Paralympic Rio Tokyo	Competition WR MWB WWB Total WR MWB WWB Total	Number 78(24 152(4 85(27 31) 99(24 209(5 90(22 39)	of falls .8) [†] 8.3) 7.0) 5 1.9) 2.5) 2.6) 8	<i>p</i> - value 0.037	
05	Variable Contact with	Paralympic Rio	Competition WR MWB WWB Total WR MWB WWB Total WR	Number 78(24 152(4 85(27 31) 99(24 209(5 90(22 39) 17(15	of falls .8) [†] 8.3) 7.0) 5 1.9) 2.5) 2.6) 8 .2) [†]	<i>p</i> - value 0.037	
05	Variable Contact with another player (%)	Paralympic Rio Tokyo	Competition WR MWB WWB Total WR MWB WWB Total	Number 78(24 152(4 85(27 31) 99(24 209(5 90(22 39)	of falls .8) [†] 8.3) 7.0) 5 1.9) 2.5) 2.6) 8 .2) [†] .0)*	<i>p</i> - value 0.037	

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	Tokyo WR	16(8.7) [†]	
	MWB	125(67.9)*	<0.001
	WWB	43(23.4)	<0.001
	Total	184	

• Values are expressed as the number of falls (% of total falls) for each Paralympic Games.

• * Significantly higher among the three events (p<0.05)

• *Significantly lower among the three events (p<0.05)

210 DISCUSSION

The characteristics of the number of falls occurring during the Tokyo 2020 Games among the three sports were similar to those of Rio 2016, with WB having a higher likelihood of falling than WR, especially with MWB having the highest risk of falling. Furthermore, the number of falls ranged from 5.8 to 23.0 per game, which was more than in Rio 2016 (5.3 to 17.2 per game). However, in terms of the presence or absence of contact and competition time, which tended to differ among the three events in Rio 2016, no difference was observed among the three events in Tokyo 2020. Meanwhile, a new difference was noted in the tendency of falls by class. To the best of our knowledge, this is the first study to characterize falls in wheelchair athletes playing team sports at the Paralympic Games and to descriptively compare them between Rio 2016 and Tokyo 2020.

As a result of dividing the number of fallers in each category into high and low pointers, WR (84.6%) and WWB (55.2%) tended to have a high percentage of falls among high pointers, while MWB (54.3%) conversely tended to have a high percentage of falls among low pointers. Low pointing includes severe trunk dysfunction in addition to upper limb dysfunction in WR and severe trunk dysfunction in WB [11, 12]. Therefore, less dynamic than high pointers, they avoided playing with the risk of falling, and as a result, estimated that the number of falls was lower. Nevertheless, in the MWB, the low pointers fell more often than the high pointers. This could be due to the difference in the proportion of low pointers and high pointers in the competition. In a previous study comparing the performance of male and female WB players, it has been reported that female players performed similarly to male players with 1.5 class points lower [18]. Hence, it can be inferred that up to 2.0–2.5 of the low pointers in MWB were able to move nearly as much as the high pointers in WWB. Assuming that high pointers can move aggressively on the court and that

BMJ Open

the increased contact with the opponent and have an increased risk of falling, players >2.0 (72%) may be at risk of falling in MWB. If we assume that the athletes can move aggressively in the MWB and are at an increased risk of falling, we would expect that athletes with a ≥ 2.0 MWB (72%) would be at risk of falling. Meanwhile, 2.0–2.5 athletes, who are low pointers but can perform as well as female high pointers, may have fallen more frequently in the MWB because they have less residual function. In order to consider the risk of falling in MWB, it is necessary to focus on the 2.0–2.5 athletes who can perform as well as female high pointers and have less residual function among men, rather than using the general classification of low point and high point.

When the incidence of falls with and without foul play was compared, the low pointer had 66.3% of falls without foul play. Meanwhile, the high pointers showed a different trend from the low pointers, with 55.3% of falls without foul play and 44.7% of falls with foul play, showing little difference in the incidence of falls with and without foul play. Moreover, despite the overwhelming prevalence of contact-type falls, there were more falls without foul play (n=258) than with foul play (n=172). In Rio 2016, the incidence of contact falls in WR was lower than in WB, but this time there was no difference in the incidence of contact falls in the three disciplines. This result may be due to an increase in falls caused by tackles without foul play in WR. At the Tokyo 2020 Games, the Paralympics were postponed for one year due to the pandemic, during which time the number of external games themselves decreased [19, 20]. Since no international competitions were held for about a year, it is possible that there was little experience of contact play in the games. In addition, due to the pandemic, there was a period when contact play itself was avoided, and it is possible that contact play was not satisfactory during practice. Therefore, it is expected that WRs who were allowed to make contact forward of the axle were less tolerant of contact during games, and that falls in contact increased. Since we did not observe the situation during practice, we can only speculate, but the environment of Tokyo 2020 is unique in many ways, and these factors may have changed the situation in which falls occurred.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

In terms of fall direction, the WR players tended to fall more to the left, right, and front while the WB players tended to fall more to the front. The proportion of elbows and shoulders in the WR players was higher than that in the WB players, and most of the WB players fell from their hands. In WR, tackling from behind is a foul, while tackling from in front of the axle is allowed. Since the impact at contact is large, the momentum of the contacting side leads directly to a fall, and it is expected that there are many falls to the left and right. In addition, the tackled player still has the momentum of forward propulsion and falls forward as it is, so the WR is expected to have more falls to the left and right and forward. On the other hand, for WBs, contact is allowed, but not as violent contact as tackling, so even

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

if the player loses balance due to contact, he will fall while rotating forward, which is expected to result in more forward falls. Additionally, most WR players have out-of-place injuries in their upper limbs, and their remaining trunk function is less than that of the WB players [21]. In the case of a fall, WR players may not be able to put out their hands immediately and may contact the ground from the elbow or shoulder. When the incidence of falls was divided into the backcourt, frontcourt, and paint (key) area, the incidence of falls in the key area was lower in the WR players, while the WB players tended to have more falls in the paint area. This may be due to the competition characteristics of WR, where contact in the key area is prohibited, and WB, where many players gather in the paint area under the goal. Therefore, it is necessary to understand that the occurrence of falls and the site of physical contact at the time of falls are different between WR and WB, even in the same team sports event. The incidence of injuries in WR and WB team sport events in the Paralympics did not improve in the London and Rio Paralympics (2012 and 2016, respectively) [2, 3]. Furthermore, a detailed analysis of the mechanisms of trauma and injury has not been reported. The fact that the trends of fall characteristics of WR and WB were similar in Rio 2016 and Tokyo 2020 should be very useful data for the prevention of injury occurrence in WR and WB in the future.

This study's most significant finding is that the number of MWB low pointer falls increased the most in Tokyo 2020 compared with Rio 2016. This may be due to the difference in team composition. In Rio 2016, MWB low pointers accounted for 47% [4], while in Tokyo 2020, they accounted for 53%. In particular, there was a 9% decrease in the number of 3.0–3.5 players and a 4% increase in the number of 2.0–2.5 players. Therefore, it is expected that the countries that remain in the MWB final tournament tend to have more opportunities for players with ≥ 2.0 points, who have some remaining trunk function. However, in the MWB, the players with less residual function may be required to exert more effort to keep up with the high pointers. Therefore, in order to prevent falls in the future, it will be important to conduct research focusing on the details of falls (e.g., the situation at the time of the fall and the direction of the fall) in athletes with MWB between 2.0 and 2.5, as well as on measures to prevent falls during contact. It will then be important to link this research to the prevention of injury occurrence in wheelchair team sports.

300 Limitations

There are several limitations to this study. First, we analyzed only official IPC videos and Internet-based IPC reports, so it is unclear whether we were able to analyze all actual falls. Nevertheless, we were able to analyze most of the falls, including those that interrupted the video. Second, we analyzed the games of the top eight teams in MWB and WWB to unify the number of teams, players, and level of competition with WR. The analysis

1	
2 3	
4	
5 6	306
7	307
8 9	308
10	309
11 12	310
12 13	311
14 15	312
16	313
17 18	314
19	315
20 21	316
22	317
23 24	318
25	319
26 27	320
28	321
29 30	322
31	323
32 33	324
34	325
35 36	326
37	327
38 39	328
40	329
41 42	330
43	331
44 45	332
46	333
47 48	334
49 50	335
50 51	336
52	337
53 54	338
55 56	339
56 57	340
58 50	341

)6 of the 53 qualifying games excluded in our study can be used to present the characteristics)7 of future WB falls. Third, the players were not directly involved in this study, and the results)8 were only obtained from the videos. A more detailed and accurate analysis could be)9 conducted by directly surveying the players who fell. Lastly, we have not identified any LO injuries that occurred during the games. This is because the video and data used for this 11 analysis did not provide data on whether an injury had occurred, whether the player was 12 treated by a doctor, or whether the player left the game injured after the fall. Therefore, L3 whether these falls resulted in injuries or not was unknown. However, comparing Rio 2016 14 and Tokyo 2020, it is expected that more attention and research focus will be given to 15 Paralympic sports injuries in the three popular team sports events of the Paralympics to 16 clarify the differences in fall injuries between WR and WB athletes. Further research is L7 needed to determine the differences in fall injuries between WR and WB athletes. 8

19 CONCLUSION

20 As in Rio 2016, the incidence of falls was high in Tokyo 2020 with MWB having the 21 highest number of falls, followed by WWB and WR. The direction of fall occurrence and the 22 first site of body contact at the time of the fall in Tokyo 2020 were also similar to those in Rio 23 2016. However, the occurrence of falls with and without contact in Tokyo 2020 was different 24 from that in Rio 2016. Moreover, a new finding was obtained when comparing the low and 25 high pointers, that more falls occurred in the low pointers of MWB. Further research will be 26 conducted to understand the mechanism of fall injuries in wheelchair athletes and to relate 27 these results to injury research.

332 COMPETING INTERESTS: None declared.

FUNDING: This research received no specific grant from any funding agency in the public,commercial or not-for-profit sectors.

AUTHOR CONTRIBUTIONS: KF designed the study and wrote the paper; all authors
provided editing and comments for revision; NM, JS, and RS contributed to the analysis and
interpretation of the data and assisted in the preparation of the manuscript; ST, SA, TT, KK,
MY, RM, TA, HE, and TT performed the video analysis; MK and AS provided advice and
YU was the principal investigator. All authors have approved the final version of the

manuscript and have agreed to be accountable for all aspects of the work to ensure that any
questions related to the accuracy or completeness of any part of the work are properly
investigated and resolved.

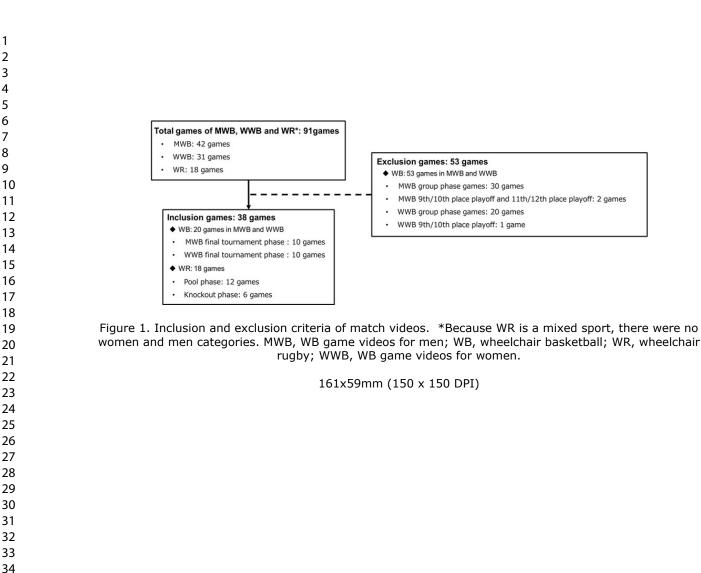
346 PATINT AND PUBLIC INVOLVEMENT: Patients and/or the public were not involved in347 the design, or conduct, or reporting or dissemination plans of this research.

PATIENT CONSENT FOR PUBLICATION: Not required.

351 ETHICS APPROVAL: This study protocol was approved by Hiroshima University's
352 Institutional Review Board (Study protocol ID number: E-1459). The same Review Board

353 waived the need for obtaining informed consent from the athletes.

 355 DATA AVAILABILITY STATEMENT: All data relevant to the study are included in the
356 article or uploaded as supplementary information. All data generated or analysed during
357 this study are included in this published article.


REFERENCES

- Clifton DR, Hertel J, Onate JA, et al. The first decade of web-based sports injury
 surveillance: descriptive epidemiology of injuries in US high school Girls' basketball
 (2005–2006 through 2013–2014) and National Collegiate Athletic Association Women's
 basketball (2004–2005 through 2013–2014). J Athl Train 2018;53:1037–48.
- 40
 41
 42
 45
 46
 47
 48
 49
 49
 49
 40
 40
 41
 42
 43
 43
 46
 47
 48
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 <
 - 367 https://doi.org/10.1136/bjsports-2017-098039.
- 368 3. Willick SE, Webborn N, Emery C, et al. The epidemiology of injuries at the London
 47
 - 2012 Paralympic Games. *Br J Sports Med* 2013;47:426–32.
 - 370 https://doi.org/10.1136/bjsports-2013-092374.
- 371
 371
 4. Sasadai J, Maeda N, Shimizu R, et al. Analysis of team-sport wheelchair falls during
 372
 372
 373
 373
 373
 374
 374
 375
 375
 376
 377
 377
 378
 378
 379
 379
 370
 370
 370
 371
 371
 371
 371
 372
 373
 373
 373
 374
 374
 375
 375
 376
 377
 377
 378
 378
 378
 379
 379
 370
 370
 370
 371
 371
 371
 371
 372
 373
 373
 373
 374
 374
 374
 375
 375
 376
 377
 377
 378
 378
 378
 378
 379
 379
 379
 370
 370
 370
 371
 371
 371
 372
 373
 373
 374
 374
 375
 375
 376
 377
 377
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
- 374 5. Weiler R, Blauwet C, Clarke D, et al. Concussion in para sport: the first position
 375 375 statement of the Concussion in Para Sport (CIPS) Group. *Br J Sports Med* 2021;55:1187-
- ⁵⁸ 376 95. https://doi.org/10.1136/bjsports-2020-103696.

BMJ Open

2 3			
4 5			
6	377	6.	Moran RN, Broglio SP, Francioni KK, et al. Exploring Baseline Concussion-Assessment
7 8	378		Performance in Adapted Wheelchair Sport Athletes. J Athl Train 2020;55(8):856-62.
9	379		https://doi.org/10.4085/1062-6050-294-19.
10 11	380	7.	Olsen OE, Myklebust G, Engebretsen L, et al. Injury mechanisms for anterior cruciate
12	381		ligament injuries in team handball: a systematic video analysis. Am J Sports Med
13 14	382		2004;32:1002–12. https://doi.org/10.1177/0363546503261724.
15	383	8.	Hutchison MG, Comper P, Meeuwisse WH, et al. A systematic video analysis of
16 17	384		National Hockey League (NHL) concussions, part I: who, when, where and what? Br J
17	385		Sports Med 2015;49:547–51. https://doi.org/10.1136/bjsports-2013-092234.
19 20	386	9.	Hutchison MG, Comper P, Meeuwisse WH, et al. A systematic video analysis of
20 21	387		National Hockey League (NHL) concussions, part II: how concussions occur in the
22	388		NHL. Br J Sports Med 2015;49:552–5. https://doi.org/10.1136/bjsports-2013-092235.
23 24	389	10.	Tweedy S, Diaper N. Introduction to wheelchair sport. In: Goosey-Tolfrey V, ed.
25	390		Wheelchair sport. A complete guide for athletes, coaches and teachers. Illinois, USA:
26 27	391		Human Kinetics 2010: 3–28.
28 29	392	11.	International wheelchair rugby federation. 2021.
30 31	393		https://worldwheelchair.rugby/the-game-classifications/ (accessed).
32 33	394	12.	IWBF player classification manual. 2021. https://iwbf.org/downloads/ (accessed).
34	395	13.	Haydon DS, Pinder RA, Grimshaw PN, et al. Overground-Propulsion Kinematics and
35 36	396		Acceleration in Elite Wheelchair Rugby. Int J Sports Physiol Perform 2021 Feb;13(2):156–
37	397		62. https://journals.humankinetics.com/view/journals/ijspp/13/2/article-p156.xml
38 39	398		(accessed Nov 30, 2021).
40	399	14.	Marszałek J, Kosmol A, Morgulec-Adamowicz N, et al. Laboratory and Non-
41 42	400		laboratory Assessment of Anaerobic Performance of Elite Male Wheelchair Basketball
43	401		Athletes. Front Psychol 2019;10:514. https://doi.org/10.3389/fpsyg.2019.00514.
44 45	402	15.	Blauwet C, Webborn N, Kissick J, et al. When van Mechelen's sequence of injury
46	403		prevention model requires pragmatic and accelerated action: the case of para alpine
47 48	404		skiing in Pyeong Chang 2018. Br J Sports Med 2019;53:1390–1.
49	405	16.	Sadate B, Thierry W, Marjolaine A, et al. Performance, asymmetry and biomechanical
50 51	406		parameters in wheelchair rugby players. Sports Biomech 2021 Apr;1898670.
52 53	407		www.doi.org/10.1080/14763141.2021.1898670 (accessed Nov 29, 2021).
54 55	408	17.	Tachibana K, Mutsuzaki H, Shimizu Y, et al. Influence of functional classification on
56 57	409		skill tests in elite female wheelchair basketball athletes. <i>Medicina</i> 2019;55:740.
58	410		https://doi.org/10.3390/medicina55110740 (accessed).
59 60	-		1 ··· O ^p , ··· · · · · · · · /·

2 3		
4		
5 6	411	18. Cavedon V, Zancanaro C, Milanese C. Anthropometry, Body Composition, and
7	412	Performance in Sport-Specific Field Test in Female Wheelchair Basketball Players.
8 9	413	<i>Front Physiol</i> 2018;30:568. https://doi.org/10.3389/fphys.2018.00568.
10	414	19. Dove J, Gage A, Kriz P, et al. COVID-19 and Review of Current Recommendations for
11 12	415	Return to Athletic Play. <i>R I Med J</i> 2013;103:15–20.
13	416	20. Mann RH, Clift BC, Boykoff J, et al. Athletes as community; athletes in community:
14 15	417	covid-19, sporting mega-events and athlete health protection. <i>Br J Sports Med</i>
16	418	2020;54:1071–2. https://doi.org/10.1136/bjsports-2020-102433.
17 18	419	21. van der Slikke RMA, Berger MAM, Bregman DJJ, et al. Wearable Wheelchair Mobility
19	420	Performance Measurement in Basketball, Rugby, and Tennis: Lessons for Classification
20 21	421	and Training. <i>Sensors (Basel)</i> 2020;20:3518. https://doi.org/10.3390/s20123518.
22	422	
23 24	423	Figure legend
25	424	Figure 1. Inclusion and exclusion criteria of match videos.
26 27	425	*Because WR is a mixed sport, there were no women and men categories.
28	426	MWB, WB game videos for men; WB, wheelchair basketball; WR, wheelchair rugby; WWB,
29 30	427	WB game videos for women.
31	120	WB game videos for women.
32 33	428	
34 25		
35 36		
37		
38 39		
40 41		
41		
43 44		
44 45		
46 47		
47		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53 54
54 55
50
57
50
59 60
611

60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studie	2S

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what	1-2
		was done and what was found	
Introduction			-
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	5
		(<u>e</u>) Describe any sensitivity analyses	5
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included	7
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	- Eial
Descriptive data	14*	(c) Consider use of a flow diagram(a) Give characteristics of study participants (eg demographic, clinical,	Fig1 Table
Descriptive data	14.	social) and information on exposures and potential confounders	Table
		(b) Indicate number of participants with missing data for each variable of interest	-
Outcome data	15*	Report numbers of outcome events or summary measures	Fig1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted	-
	10	estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were	7
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions,	_
other unaryses	17	and sensitivity analyses	
Discussion			1
Key results	18	Summarise key results with reference to study objectives	10-1
Limitations	19	Discuss limitations of the study, taking into account sources of potential	13
		bias or imprecision. Discuss both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-1
		limitations, multiplicity of analyses, results from similar studies, and	
		other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-1
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	14
		study and, if applicable, for the original study on which the present	
		article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based descriptive comparison between the Rio 2016 and Tokyo 2020 games

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060937.R2
Article Type:	Original research
Date Submitted by the Author:	07-Jul-2022
Complete List of Authors:	Fukui, Kazuki; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing Maeda, Noriaki; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing, Department of Sports Rehabilitation Sasadai, Junpei; Sports Medical Center, Japan Institute of Sports Sciences (JISS) Shimizu, Reia; Sports Medical Center, Japan Institute of Sports Sciences (JISS) Tsutsumi, Shogo; Hiroshima University Graduate School of Biomedical and Health Sciences Faculty of Medicine Institute of Health Sciences Department of Nursing, Department of Sports Rehabilitation Arima, Satoshi; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Tashiro, Tsubasa; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Kaneda, Kazuki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Kaneda, Kazuki; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Mizuta, Rami; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Esaki, Hinata; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Esaki, Hinoshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation Komiya, Makoto; Hiroshima University Faculty of Medici

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 29
30

	(JISS) Urabe, Yukio; Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Department of Sports Rehabilitation
Primary Subject Heading :	Sports and exercise medicine
Secondary Subject Heading:	Epidemiology, Sports and exercise medicine, Rehabilitation medicine
Keywords:	SPORTS MEDICINE, REHABILITATION MEDICINE, ORTHOPAEDIC & TRAUMA SURGERY

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

3 4		
4 5		
6	1	Title
7 8	2	Analysis of wheelchair falls in team sports at the Paralympic Games: Video-based
9	3	descriptive comparison between the Rio 2016 and Tokyo 2020 games
10	4	
11 12	5	Authors
13	6	Kazuki Fukui ¹ , Noriaki Maeda ¹ , Junpei Sasadai ² , Reia Shimizu ² , Shogo Tsutsumi ¹ , Satoshi
14 15	7	Arima ¹ , Tsubasa Tashiro ¹ , Kazuki Kaneda ¹ , Mitsuhiro Yoshimi ¹ , Rami Mizuta ¹ , Takeru
16	8	Abekura ¹ , Hinata Esaki ¹ , Tomoki Terada ¹ , Makoto Komiya ¹ , Akira Suzuki ² , Yukio Urabe ¹
17 18	9	
19	10	Affiliations
20 21	11	¹ Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
22	12	Minami-ku, Hiroshima, 734-8553, Japan
23 24	13	² Sports Medical Center, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku,
25	14	Tokyo, 115-0056, Japan
26 27	15	
28	16	Corresponding author
29 30	17	Yukio Urabe
31	18	Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
32 33	19	Minami-ku, Hiroshima, 734-8553, Japan
34	20	E-mail address: <u>yurabe@hiroshima-u.ac.jp</u>
35 36	21	E-mail address: <u>yurabe@hiroshima-u.ac.jp</u> Word count
37	22	Word count
38 39	23	3298 words
40	24	
41 42	25	
43	26	
44 45	27	
46	28	
47 48	29	
49	30	
50 51	31	
52	32	
53 54	33	
55	34	
56 57	35	
58	36	
59 60		

37	ABSTRACT
38	Objectives
39	To identify the fall characteristics of athletes in wheelchair rugby and wheelchair basketball
40	during the Tokyo 2020 Paralympic Games and descriptively compare these with those of
41	the Rio 2016 Paralympic Games.
42	Design
43	Cross-sectional analysis
44	Primary and secondary outcome measures
45	We obtained video footage from the International Paralympic Committee of the Tokyo
46	2020 Paralympic Games that included 8 teams from each of the 18 wheelchair rugby and 10
47	wheelchair basketball games (men and women). The data were analyzed to evaluate the
48	number of falls, class difference (low or high pointer), time of play during the fall, phase of
49	play, contact with other athletes, fall direction, fall location, and the body part that first
50	contacted the floor during the fall. These data from the Rio 2016 and Tokyo 2020 games
51	were compared.
52	Results
53	Overall, 430 falls (rugby, 104; men's basketball, 230; and women's basketball, 96) occurred
54	(average per game \pm standard deviation: 5.8 \pm 3.1, 23.0 \pm 5.4, and 9.6 \pm 5.0, respectively).
55	Significant differences in class, direction, fall location, and body part point of contact
56	between the three sports were observed. In wheelchair rugby, falls occurred mainly in
57	high-pointers and tended to be more lateral due to contact. In wheelchair basketball, falls
58	occurred more in female high-pointers and in male low-pointers, with more forward falls
59	due to forward contact. Unlike in the Rio 2016 games, no difference between the events
60	based on the presence or absence of contact was observed in the Tokyo 2020 games.
61	Conclusions
62	The number of falls increased in Tokyo 2020 compared to Rio 2016, with no significant
63	difference in the characteristics of falls between the Rio 2016 and Tokyo 2020 games. Only
64	in men's wheelchair basketball, the number of falls in low pointers significantly increased
65	in the Tokyo 2020 games when compared to that in the Rio 2016 games.
66	
67	Strengths and limitations of this study
68	• The analysis of wheelchair sport falls at the Tokyo 2020 Paralympic Games and the
69	Rio 2016 Paralympic Games was conducted using official Paralympic videos
70	available on the Internet.
71	• The characteristics of falls during wheelchair rugby and wheelchair basketball
72	competitions were analyzed by three physiotherapists to ensure consistency.
71	• The characteristics of falls during wheelchair rugby and wheelchair bas

1		
2		
3		
4 5		
5 6	73	• Data from the Tokyo 2020 Paralympic Games and Rio 2016 Paralympic Games
7		
8	74	were analyzed using video-based descriptive comparisons.
9	75	• To match the number of teams in wheelchair rugby and wheelchair basketball, it
10	76	was not possible to include data of the 53 wheelchair basketball qualifying games
11		
12	77	in the analysis.
13	78	• This video analysis cannot explain the relationship between falls and injuries.
14		
15		
16		
17 18		
18		
20		
21		
22		• This video analysis cannot explain the relationship between fails and injuries.
23		
24		
25		
26		
27		
28		
29 30		
30		
32		
33		
34		
35		
36		
37		
38		
39		
40 41		
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
53 54		
54 55		
56		
57		
58		
59		
60		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

79 INTRODUCTION

The Tokyo 2020 Paralympic Games featured 4403 athletes competing in 539 events in 22 sports, making it the largest Paralympic Games in history and drawing increasing attention to the Paralympic Games. Hence, with the increase in the number of athletes, the level of competition is expected to improve, and sports injuries are also expected to increase [1]. A total of 441 athletes sustained as many as 510 injuries during the 14 days of competition at the Rio 2016 Paralympics, with 61 athletes injured during their participation in wheelchair rugby (WR) and wheelchair basketball (WB); this translated to 14.9 and 12.8 injuries per 1000 athlete days, respectively [2]. Furthermore, contact team sports such as WR and WB have a higher incidence of acute injuries than fencing and tennis (61% 65%, 42%, and 37%, respectively) [3]. In these two wheelchair team sports, many falls are common. Regarding the incidence of falls at the Rio 2016 Paralympics, 359 falls occurred in three disciplines (WR, men's WB [MWB], and women's WB [WWB]). The rate of falls was the highest for MWB, followed by WWB and WR [4]. However, no other study has clarified the characteristics of falls in each sport. Moreover, the relationship between sports injury characteristics and the occurrence of falls in wheelchair team sports has not yet been presented. In the case of wheelchair sports, falls can result in head impacts and emergencies such as concussions, and research in the area of concussions has received increasing attention [5, 6]. Therefore, understanding the causes of falls during games is essential in considering the prevention of injury occurrence in these team sports, and more data needs to be collected. One way to analyze the occurrence of falls in wheelchair-related sports is to use video recordings of games.

By retrospectively analyzing the video recordings of the games, which is an effective method that has been used previously to interpret injury occurrence in healthy individuals, [7-9] the occurrence and characteristics of these wheelchair-related sport injuries can be identified. The analysis of anterior cruciate ligament injuries helped researchers to understand the change of dynamic alignment during injury and plan preventive measures, [7] which is why we used this method in our previous study to investigate the incidence of falls in WR and WB games at the Rio 2016 Paralympic Games [4].

WR and WB players also include individuals with quadriplegia, paraplegia, and amputations. Overall, WR players have more severe functional impairments than WB players, especially those affecting the extremities, such as cervical spinal cord injury (tetraplegia), multiple amputations, polio, cerebral palsy, and other neurological diseases [10]. WR players are classified based on their hand, arm, shoulder, and trunk functions, with disability levels ranging from 0.5 (lowest physical function) to 3.5 (highest physical function) and are placed into seven categories based on their level of disability [11]. WB players must

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

 have a permanent physical disability with reduced function of the lower extremities, which includes paralysis of the lower extremities, musculoskeletal disorders, spina bifida, amputation, and childhood paralysis [11]. These athletes are classified from 1.0 (lowest physical function) to 4.5 (highest physical function) [12]. Performance and injury rates vary greatly by class [13, 14], and fall rates are expected to vary as well. However, no analysis of fall incidence by class has been reported.

At the Rio 2016 Paralympics, the incidence of falls and the duration of competition, the presence of contact, the direction of the fall, and the initial site of contact had different characteristics in the three events [4]. Meanwhile, in our previous study we have not been able to clarify the incidence of falls for each class. In addition, five years have passed since the Rio 2016 Paralympics, and the incidence of falls is expected to be different due to the improvement of athletic performance. Moreover, the Tokyo 2020 Paralympics was held under special circumstances, with the games being postponed for one year due to the coronavirus disease 2019 pandemic. Therefore, new characteristics of fall occurrence different from those of the Rio 2016 Paralympics may emerge, and accumulation of data will be crucial for injury prevention. This study aimed to investigate the number of falls and the occurrence of falls among wheelchair athletes in team sports at the 2020 Tokyo Paralympic Games, to compare the results with those at the 2016 Rio Paralympic Games, and to clarify the characteristics of major falls among the three major wheelchair team sports (WR, MWB, and WWB).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Page 8 of 21

136 METHODS

In this cross-sectional video analysis, we obtained the official match videos of the WR and WB wheelchair team competitions from the International Paralympic Committee's (IPC) official website, and analyzed the match videos of all eight teams participating in the WR and eight teams each from the MWB and WWB that advanced to the quarterfinals of the Tokyo 2020 Paralympic Games (Fig. 1). The WR matches are played in four 8-minute periods, and the WB matches are played in four 10-minute periods. Three physiotherapists with expertise in para-sports systematically analyzed the videos for fall mechanism and play circumstances. The videos were repeated as needed and displayed at normal speed, slow speed, or in still images. To record the number of falls, duration of play at the time of the fall, phase of play (offense or defense), contact with another player, direction of the fall, location of the fall (backcourt, frontcourt, or key or paint area), and the body part that first made contact with the floor, we modified a standard form similar to the one used in previous video analyses [4, 15]. In order to record all falls, contact with the floor was considered to be necessary. Additionally, the fall data obtained from the IPC official website of the Rio 2016 Paralympic Games and used in our previous study from a total of 18 WR and 10 WB match videos of men (MWB) and women (WWB), including eight teams in one event, were also used in this analysis [4]. Analysis of the Rio 2016 Paralympic Games data was also conducted using the same methods in this present 2020 analysis.

155 Data regarding player information (age, sex, and functional classification) were 156 used from the IPC website (Table 1). Regarding disability classification, based on previous 157 studies, for WR, \geq 2.0 was classified as high pointer and \leq 1.5 as low pointer [16]; for WB, \geq 3.0 158 were classified as high pointer and \leq 2.5 as low pointer [17].

160 Statistical analysis

For all categorical variables, results that were consistent with the ratings of two out of three observers were reported. A good agreement among the three observers for all variables was considered when two or more observers were in agreement for all categorical items and the kappa coefficient was >0.8. A one-way analysis of variance was used to compare the mean incidence of falls for each of the three wheelchair sports games. Follow-up analyses were conducted using Bonferroni's post hoc test, if necessary. For the comparison of categorical variables, Pearson's X² test or Fisher's exact test was used. Fisher's exact test was used instead of the X² test when the expected number was <5. Adjusted residuals were used for post hoc tests. Comparisons of the incidence of falls with and without foul contact were also conducted using Pearson's chi-square test. In order to compare the characteristics of falls at the Tokyo 2020 Paralympic Games with those at the Rio 2016

interpret the results. Patients were also not consulted in the writing or editing of this

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4		
5 6	172	Paralympic Games, descriptive comparisons were also made between the results from the
7 8	173	2020 and 2016 Games regarding the presence of contact with other athletes, and the
o 9	174	percentage of low pointer falls. All statistical analyses were performed using IBM SPSS
10 11	175	version 27.0 (IBM Japan, Tokyo, Japan). A p-value <0.05 was considered statistically
12	176	significant.
13	177	Patient and public involvement
14 15	178	This study was conducted without patient involvement. Patients were not asked to
16 17	179	comment on the study design, consulted to derive results relevant to them, or consulted to

document for readability or accuracy.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

RESULTS Overall, 430 falls were recorded, of which 104 (24.2%) occurred in WR, 230 (53.5%) in MWB, and 96 (22.3%) in WWB, with an average number of falls per game of 5.8±3.1, 23.0±5.4, and 9.6±5.0, respectively. There was a significant difference in the mean number of falls between only MWB and the other events (WR and WWB) (p<0.001). Table 2 shows the characteristics of falls in the three sport groups. Significant differences in class difference (p<0.001), direction of fall (p<0.001), location of fall (p=0.019), and body part first impacted (p<0.001) were detected among the three sports. When comparing falls with and without foul play, significant differences were detected in class (p=0.021) and whether contact occurred (p=0.007) (Table 3). Table 4 shows a comparison of the characteristics of falls during the Rio 2016 Paralympics

193 Table 4 shows a comparison of the characteristics of fails during the Rio 2016 Paralympics

and the Tokyo 2020 Paralympics. In Rio 2016, a significant difference in the tendency of
 falls was observed among the three groups with and without contact (p=0.037), while in

196 Tokyo 2020, no difference was observed (p=0.167). In terms of the number of low pointer

197 falls, a significant difference in the tendency of falls was observed among the three groups

in both Rio 2016 and Tokyo 2020 Paralympic Games (p=0.003, p<0.001).

E. E. ONL

Table 1. Demographic characteristics of athletes who participated in the matches

	Wheelchair rugby (n=92)	Men's wheelchair basketball (n=96)	Women's wheelchair basketball (n=95)
Age			
(years±SD)	34.0±6.4	30.5±6.1	28.9±6.6
Sex			
Male	88	96	-
Female	4	-	95
Classificatio	on (%)		
0.5	15 (16)	-	-
1.0	17 (18)	16 (17)	15 (16)
1.5	8 (9)	11 (11)	9 (9)
2.0	18 (20)	10 (10)	9 (9)
2.5	7 (8)	14 (15)	10 (11)
3.0	18 (20)	7 (7)	19 (20)
3.5	9 (10)	5 (5)	8 (8)
4.0	-	15 (16)	13 (14)
4.5	-	17 (18)	13 (14)

Table 2. Fall characteristics of the three groups

	Wheelchair rugby (n=104)	Men's wheelchair basketball (n=230)	Women's wheelchair basketball (n=96)	p - value
Classification (%)				<0.001
Low pointer	16 (15.4)*	125 (54.3)*	43 (44.8)	
High pointer	88 (84.6)*	105 (45.7)†	53 (55.2)	
Playing time (%)				
First quarter	29 (27.9)	46 (20.0)	28 (29.2)	0.389
Second quarter	24 (23.1)	48 (20.9)	21 (21.9)	
Third quarter	25 (24.0)	57 (24.8)	22 (22.9)	
Fourth quarter	26 (25.0)	79 (34.3)	25 (26.0)	

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Playing phase (%)				0.154
Offence	60 (57.7)	147 (63.9)	68 (70.8)	
Defence	44 (42.3)	83 (36.1)	28 (29.2)	
Unidentified	-	-	-	
Contact with another player (%)				0.167
Contact	99 (95.2)	209 (90.9)	90 (93.8)	
Non-contact	5 (4.8)	15 (6.5)	3 (3.1)	
Unidentified	-	6 (2.6)	3 (3.1)	
Direction of the fall (%)				<0.00
Left	32 (30.8)*	27 (11.7)*	18 (18.8)	
Right	31 (29.8)*	38 (16.5)	15 (15.6)	
Forward	27 (26.0)†	106 (46.1)*	42 (43.8)	
Backward	12 (11.5)†	53 (23.0)*	16 (16.7)	
Unidentified	2 (1.9)	6 (2.6)	5 (5.2)	
Location of the fall (%)				0.019
Back court	40 (38.5)*	62 (27.0)	27 (28.1)	
Front court	43 (41.3)	79 (34.3)	34 (35.4)	
Paint/key area	21 (20.2)*	89 (38.7)*	35 (36.5)	
Body part first in contact with the floor (%)				<0.00
Hand	60 (57.7) [†]	180 (78.3)	81 (84.4)*	
Elbow	24 (23.1)*	16 (7.0) [†]	2 (2.1)*	
Shoulder	7 (6.7)*	5 (2.2)	1 (1.0)	
Back	6 (5.8)	15 (6.5)	5 (5.2)	
Unidentified/combined	7 (6.7)	14 (6.1)	7 (7.3)	

• *Significantly lower among the three events (p<0.05)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			No foul (n=	=258)	Foul (n=172)	p - val
Classification (%)						0.022
	Low pointer High pointer Contact with another player (%) Contact		122 (47	.3)*	62 (36.0)†	
			136 (52	.7)†	110 (64.0)*	
						0.002
			227 (88	.0)†	171 (99.4)*	
	Non-contact		23 (8.9	9)*	0 (0.0)*	
	Unidentified		8 (3.1	l)	1 (0.6)	
5	• Values are express	ed as the number of f	falls (% of tota	l falls) for	r each group.	
	1		Υ.	,	0 1	
6	 *Significantly high 	ner in foul judgmer	nt (p<0.05)			
-						
)7	 *Significantly low 	er in foul judgment	t (p<0.05)			
าย						
08						
08 09	Table 4. The difference			-		
	Table 4. The difference Variable	ce of fall characteristi Olympic	cs during Tok WR	xyo 2020 a MWE		<i>p</i> - va
				-	B WWB	,
	Variable	Olympic Rio (total=315)	WR	MWE	3 WWB .3) 85 (27.0) 0.03
	Variable Contact with another player (%)	Olympic Rio (total=315)	WR 78 (24.8)†	MWF 152 (48	3 WWB .3) 85 (27.0 .5) 90 (22.6)) 0.0 3 5) 0.16
	Variable Contact with	Olympic Rio (total=315) Tokyo (total=398)	WR 78 (24.8) [†] 99 (24.9)	MWE 152 (48 209 (52	3 WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8	0) 0.03 5) 0.16 3) 0.00
Э	Variable Contact with another player (%) Low pointer (%)	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184)	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†]	MWF 152 (48 209 (52 65 (58.0 125 (67.	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0
9	Variable Contact with another player (%)	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184)	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†]	MWF 152 (48 209 (52 65 (58.0 125 (67.	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0
9	Variable Contact with another player (%) Low pointer (%)	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184) ed as the number of f	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†] Falls (% of tota	MWE 152 (48 209 (52 65 (58.0 125 (67. 11 falls) for	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0
9 0 1	Variable Contact with another player (%) Low pointer (%) • Values are expresse • * Significantly high	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184) ed as the number of f	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†] Falls (% of tota ree events (pe	MWE 152 (48 209 (52 65 (58.0 125 (67. 125 (67. 125 (67.	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0
	Variable Contact with another player (%) Low pointer (%) • Values are expresse • * Significantly high	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184) ed as the number of f	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†] Falls (% of tota ree events (pe	MWE 152 (48 209 (52 65 (58.0 125 (67. 125 (67. 125 (67.	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0
9 0 1	Variable Contact with another player (%) Low pointer (%) • Values are expresse • * Significantly high	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184) ed as the number of f	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†] Falls (% of tota ree events (pe	MWE 152 (48 209 (52 65 (58.0 125 (67. 125 (67. 125 (67.	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0
9 0 1 2	Variable Contact with another player (%) Low pointer (%) • Values are expresse • * Significantly high	Olympic Rio (total=315) Tokyo (total=398) Rio (total=112) Tokyo (total=184) ed as the number of f	WR 78 (24.8) [†] 99 (24.9) 17 (15.2) [†] 16 (8.7) [†] Falls (% of tota ree events (pe	MWE 152 (48 209 (52 65 (58.0 125 (67. 125 (67. 125 (67.	B WWB .3) 85 (27.0 .5) 90 (22.6 .0)* 30 (26.8 9)* 43 (23.4)) 0.03 5) 0.16 3) 0.00 4) < 0.0

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

of falling than WR; MWB had the highest risk of falling. Furthermore, the number of falls ranged from 5.8 to 23.0 per game, which was more than in Rio 2016 (5.3 to 17.2 per game). However, in terms of the presence or absence of contact and competition time, which tended to differ among the three events in Rio 2016, no difference was observed among the three events in Tokyo 2020. Meanwhile, a new difference was noted in the tendency of falls by class. To the best of our knowledge, this is the first study to characterize falls in wheelchair athletes playing team sports at the Paralympic Games and to descriptively compare them between Rio 2016 and Tokyo 2020.

As a result of dividing the number of fallers in each category into high and low pointers, WR (84.6%) and WWB (55.2%) tended to have a high percentage of falls among high pointers, while MWB (54.3%) conversely tended to have a high percentage of falls among low pointers. Low pointing includes severe trunk dysfunction in addition to upper limb dysfunction in WR and severe trunk dysfunction in WB [11, 12]. Therefore, less dynamic than high pointers, they avoided playing with the risk of falling, and as a result, estimated that the number of falls was lower. Nevertheless, in the MWB, the low pointers fell more often than the high pointers. This could be due to the difference in the proportion of low pointers and high pointers in the competition. In a previous study comparing the performance of male and female WB players, it has been reported that female players performed similarly to male players with a point ≥ 1.5 [18]. Hence, it can be inferred that up to 2.0–2.5 of the low pointers in MWB were able to move nearly as much as the high pointers in WWB. Assuming that high pointers can move aggressively on the court and that the increased contact with the opponent increases the risk of falling, players with a point >2.0 (72%) may be at risk of falling in MWB. If we assume that the athletes can move aggressively in the MWB and are at an increased risk of falling, we would expect that athletes with a point ≥2.0 would be at risk of falling in MWB (72%). Meanwhile, athletes with 2.0–2.5 points (low pointers) who can perform as well as female high pointers may have fallen more frequently in the MWB because they have less residual function. In order to consider the risk of falling in MWB, it is necessary to focus on the athletes with 2.0–2.5 points who can perform as well as female high pointers and have a less residual function among men, rather than using the general classification of low pointer and high pointer.

When the incidence of falls with and without foul play was compared, the low pointers had 66.3% of falls without foul play. Meanwhile, the high pointers showed a different trend from the low pointers, with 55.3% of falls without foul play and 44.7% of falls with foul play, showing little difference in the incidence of falls with and without foul play. Moreover, despite the overwhelming prevalence of contact-type falls, there were more falls without foul play (n=258) than with foul play (n=172). In Rio 2016, the incidence of contact

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

falls in WR was lower than in WB, but this time there was no difference in the incidence of contact falls in the three disciplines. This result may be due to an increase in falls caused by tackles without foul play in WR. At the Tokyo 2020 Games, the Paralympics were postponed for one year due to the pandemic, during which time the number of external games themselves decreased [19, 20]. Since no international competitions were held for about a year, it is possible that there was little experience of contact play in the games. In addition, due to the pandemic, there was a period when contact play itself was avoided, and it is possible that contact play was not satisfactory during practice. Therefore, it is expected that WRs who were allowed to make contact forward of the axle were less tolerant of contact during games, and that falls in contact increased. Since we did not observe the situation during practice, we can only speculate, but the environment of Tokyo 2020 is unique in many ways, and these factors may have changed the situation in which falls occurred.

In terms of fall direction, the WR players tended to fall more to the left, right, and front while the WB players tended to fall more to the front. The proportion of elbows and shoulders in the WR players was higher than that in the WB players, and most of the WB players fell from their hands. In WR, tackling from behind is a foul, while tackling from in front of the axle is allowed. Since the impact at contact is large, the momentum of the contacting side leads directly to a fall, and it is expected that there are many falls to the left and right. In addition, the tackled player still has the momentum of forward propulsion and falls forward as it is, so the WR is expected to have more falls to the left and right and forward. On the other hand, for WBs, contact is allowed, but not as violent contact as tackling; therefore, even if the player loses balance due to contact, he will fall while rotating forward, which is expected to result in more forward falls. Additionally, most WR players have out-of-place injuries in their upper limbs, and their remaining trunk function is less than that of the WB players [21]. In the case of a fall, WR players may not be able to put out their hands immediately and may contact the ground from the elbow or shoulder. When the incidence of falls was divided into the backcourt, frontcourt, and paint (key) area, the incidence of falls in the key area was lower in the WR players, while the WB players tended to have more falls in the paint area. This may be due to the competition characteristics of WR, where contact in the key area is prohibited, and WB, where many players gather in the paint area under the goal. Therefore, it is necessary to understand that the occurrence of falls and the site of physical contact at the time of falls are different between WR and WB, even in the same team sports event. The incidence of injuries in WR and WB team sport events in the Paralympics did not improve in the London and Rio Paralympics (2012 and 2016, respectively) [2, 3]. Furthermore, a detailed analysis of the mechanisms of trauma and injury has not been reported. The fact that the trends of fall characteristics of WR and WB were similar in Rio

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

289 2016 and Tokyo 2020 should be very useful data for the prevention of injury occurrence in290 WR and WB in the future.

This study's most significant finding is that the number of MWB low pointer falls increased more in Tokyo 2020 compared with Rio 2016. This may be due to the difference in team composition. In Rio 2016, MWB low pointers accounted for 47% [4], while in Tokyo 2020, they accounted for 53%. In particular, there was a 9% decrease in the number of players with a with 3.0–3.5 points and a 4% increase in the number of players with 2.0–2.5 points. Therefore, it is expected that the countries that remain in the MWB final tournament tend to have more opportunities for players with ≥ 2.0 points, who have some remaining trunk function. However, in the MWB, the players with less residual function may be required to exert more effort to keep up with the high pointers. Therefore, in order to prevent falls in the future, it will be important to conduct research focusing on the details of falls (e.g., the situation at the time of the fall and the direction of the fall) in athletes with MWB between 2.0 and 2.5, as well as on measures to prevent falls during contact. It will then be important to link this research to the prevention of injury occurrence in wheelchair team sports.

304 Limitations

There are several limitations to this study. First, we analyzed only official IPC videos and Internet-based IPC reports, so it is unclear whether we were able to analyze all actual falls. Nevertheless, we were able to analyze most of the falls, including those that interrupted the video. Second, we analyzed the games of the top eight teams in MWB and WWB to unify the number of teams, players, and level of competition with WR. The analysis of the 53 qualifying games excluded in our study can be used to present the characteristics of future WB falls. Third, the players were not directly involved in this study, and the results were only obtained from the videos. A more detailed and accurate analysis could be conducted by directly surveying the players who fell. Lastly, we did not identify any injuries that occurred during the games. This is because the video and data used for this analysis did not provide data on whether an injury had occurred, whether the player was treated by a doctor, or whether the player left the game injured after the fall. Therefore, whether these falls resulted in injuries or not was unknown. However, comparing Rio 2016 and Tokyo 2020, it is expected that more attention and research focus will be given to Paralympic sports injuries in the three popular team sports events of the Paralympics to clarify the differences in fall injuries between WR and WB athletes. Further research is needed to determine the differences in fall injuries between WR and WB athletes.

323 CONCLUSION

As in Rio 2016, the incidence of falls in Tokyo 2020 was high, with MWB having the

highest number of falls, followed by WWB and WR. The direction of fall occurrence and the first site of body contact at the time of the fall in Tokyo 2020 were also similar to those in Rio 2016. However, the occurrence of falls with and without contact in Tokyo 2020 was different from that in Rio 2016. Moreover, a new finding was obtained when comparing the low and high pointers: more falls occurred in the low pointers of MWB. Further research will be conducted to understand the mechanism of fall injuries in wheelchair athletes and to relate these results to injury research. **ACKNOWLEDGMENTS: COMPETING INTERESTS: None declared.** FUNDING: This research received no specific grant from any funding agency in the public, commercial. or not-for-profit sectors. AUTHOR CONTRIBUTIONS: KF designed the study and wrote the paper; all authors revised the manuscript; NM, JS, and RS contributed to the analysis and interpretation of the data and assisted in the preparation of the manuscript; ST, SA, TT, KK, MY, RM, TA, HE, and TT performed the video analysis; MK and AS provided advice, and YU was the principal investigator. All authors have approved the final version of the manuscript and have agreed to be accountable for all aspects of the work to ensure that any questions related to the accuracy or completeness of any part of the work are properly investigated and resolved. PATINT AND PUBLIC INVOLVEMENT: Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research. PATIENT CONSENT FOR PUBLICATION: Not required. ETHICS APPROVAL: This study protocol was approved by Hiroshima University's Institutional Review Board (Study protocol ID number: E-1459). The same Review Board waived the need for obtaining informed consent from the athletes.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

3 4	
5	358
6 7	359
8	360
9 10	361
11	362
12 13	363
14	364
15 16	365
17	365
18 19	367
20	
21 22	368
23	369
24 25	370
26	371
27 28	372
28	373
30 31	374
32	375
33	376
34 35	377
36	378
37 38	379
39	380
40 41	381
42	382
43 44	383
45	384
46 47	385
48	386
49 50	387
51	388
52	389
53 54	390
55 56	391
56 57	
58	
59 60	

1 2

> **DATA AVAILABILITY STATEMENT:** All data relevant to the study are included in the article or uploaded as supplementary information. All data generated or analyzed during this study are included in this published article.

BMJ Open

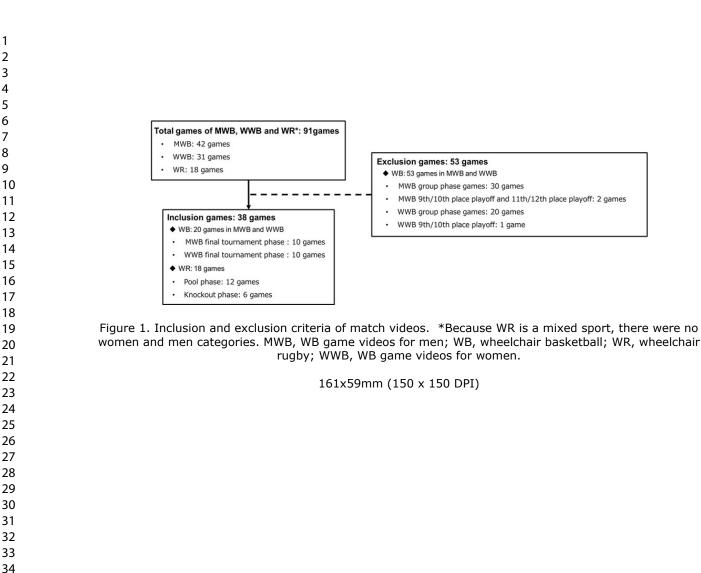
362 REFERENCES

- Clifton DR, Hertel J, Onate JA, et al. The first decade of web-based sports injury
 surveillance: descriptive epidemiology of injuries in US high school Girls' basketball
 (2005–2006 through 2013–2014) and National Collegiate Athletic Association Women's
 basketball (2004–2005 through 2013–2014). J Athl Train 2018;53:1037–48.
- 367 2. Derman W, Runciman P, Schwellnus M, et al. High precompetition injury rate
 368 dominates the injury profile at the Rio 2016 Summer Paralympic Games: a prospective
 369 cohort study of 51 198 athlete days. *Br J Sports Med* 2018;52:24–31.
 - 370 https://doi.org/10.1136/bjsports-2017-098039.
- 371 3. Willick SE, Webborn N, Emery C, et al. The epidemiology of injuries at the London
 372 2012 Paralympic Games. *Br J Sports Med* 2013;47:426–32.
- 373 https://doi.org/10.1136/bjsports-2013-092374.
- 374 4. Sasadai J, Maeda N, Shimizu R, et al. Analysis of team-sport wheelchair falls during
 375 the Rio 2016 Summer Paralympic Games: a video-based cross-sectional observational
 376 study. *BMJ Open* 2020;10:e033088. https://doi.org/10.1136/bmjopen-2019-033088.
- 377 5. Weiler R, Blauwet C, Clarke D, et al. Concussion in para sport: the first position
 378 statement of the Concussion in Para Sport (CIPS) Group. *Br J Sports Med* 2021;55:1187379 95. https://doi.org/10.1136/bjsports-2020-103696.
- 380 6. Moran RN, Broglio SP, Francioni KK, et al. Exploring Baseline Concussion-Assessment
 381 Performance in Adapted Wheelchair Sport Athletes. *J Athl Train* 2020;55(8):856–62.
 382 https://doi.org/10.4085/1062-6050-294-19.
- 33837. Olsen OE, Myklebust G, Engebretsen L, et al. Injury mechanisms for anterior cruciate4384ligament injuries in team handball: a systematic video analysis. Am J Sports Med63852004;32:1002–12. https://doi.org/10.1177/0363546503261724.
- 386
 8. Hutchison MG, Comper P, Meeuwisse WH, et al. A systematic video analysis of
 387
 388
 388
 388
 388
 Autional Hockey League (NHL) concussions, part I: who, when, where and what? *Br J*388 *Sports Med* 2015;49:547–51. https://doi.org/10.1136/bjsports-2013-092234.
- 389
 389
 4
 390
 Autional Hockey League (NHL) concussions, part II: how concussions occur in the 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391
 391

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2			17
3			
4			
5 6	392	10.	Tweedy S, Diaper N. Introduction to wheelchair sport. In: Goosey-Tolfrey V, ed.
7 8	393		Wheelchair sport. A complete guide for athletes, coaches and teachers. Illinois, USA:
8 9	394		Human Kinetics 2010: 3–28.
10 11	395	11.	International wheelchair rugby federation. 2021.
12 13	396		https://worldwheelchair.rugby/the-game-classifications/ (accessed).
14 15	397	12.	IWBF player classification manual. 2021. https://iwbf.org/downloads/ (accessed).
16	398	13.	Haydon DS, Pinder RA, Grimshaw PN, et al. Overground-Propulsion Kinematics and
17 18	399		Acceleration in Elite Wheelchair Rugby. Int J Sports Physiol Perform 2021 Feb;13(2):156–
19	400		62. https://journals.humankinetics.com/view/journals/ijspp/13/2/article-p156.xml
20 21	401		(accessed Nov 30, 2021).
22	402	14.	Marszałek J, Kosmol A, Morgulec-Adamowicz N, et al. Laboratory and Non-
23 24	403		laboratory Assessment of Anaerobic Performance of Elite Male Wheelchair Basketball
25	404		Athletes. Front Psychol 2019;10:514. https://doi.org/10.3389/fpsyg.2019.00514.
26 27	405	15.	Blauwet C, Webborn N, Kissick J, et al. When van Mechelen's sequence of injury
28	406		prevention model requires pragmatic and accelerated action: the case of para alpine
29 30	407		skiing in Pyeong Chang 2018. Br J Sports Med 2019;53:1390–1.
31	408	16.	Sadate B, Thierry W, Marjolaine A, et al. Performance, asymmetry and biomechanical
32 33	409		parameters in wheelchair rugby players. Sports Biomech 2021 Apr;1898670.
34	410		Numu dei ere (10.1020/14762141.2021.1202670 (assessed Nass 20.2021)
35 36	410		www.doi.org/10.1080/14763141.2021.1898670 (accessed Nov 29, 2021).
37	411	17.	Tachibana K, Mutsuzaki H, Shimizu Y, et al. Influence of functional classification on
38 39	412		skill tests in elite female wheelchair basketball athletes. Medicina 2019;55:740.
40	413		https://doi.org/10.3390/medicina55110740 (accessed).
41 42	414	18.	Cavedon V, Zancanaro C, Milanese C. Anthropometry, Body Composition, and
43	415		Performance in Sport-Specific Field Test in Female Wheelchair Basketball Players.
44 45	416		Front Physiol 2018;30:568. https://doi.org/10.3389/fphys.2018.00568.
46	417	19.	Dove J, Gage A, Kriz P, et al. COVID-19 and Review of Current Recommendations for
47 48	418		Return to Athletic Play. R I Med J 2013;103:15–20.
49	419	20.	Mann RH, Clift BC, Boykoff J, et al. Athletes as community; athletes in community:
50 51	420		covid-19, sporting mega-events and athlete health protection. Br J Sports Med
52	421		2020;54:1071–2. https://doi.org/10.1136/bjsports-2020-102433.
53 54	422	21.	van der Slikke RMA, Berger MAM, Bregman DJJ, et al. Wearable Wheelchair Mobility
55	423		Performance Measurement in Basketball, Rugby, and Tennis: Lessons for Classification
56 57	424		and Training. Sensors (Basel) 2020;20:3518. https://doi.org/10.3390/s20123518.
58 59 60	425		


BMJ Open

426 Figure legend

- 427 Figure 1. Inclusion and exclusion criteria of match videos.
- 428 *Because WR is a mixed sport, there were no women and men categories.
- 429 MWB, WB game videos for men; WB, wheelchair basketball; WR, wheelchair rugby; WWB,
- 430 WB game videos for women.

tor peet terien only

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2
2
3 4
4 5
6
7
8
9
9 10
11
12
12
14
15
16
17
18
19
19 20
20 21
22
22 23
24
25
26
27
28
29
30
31
32
33
34 35
36 37
38
39
40
41 42
42 43
44 45
45 46
40 47
47 48
40 49
49 50
50 51
51 52
52 53
53 54
54 55
55 56
56 57
58
59 60
611

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies	

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what	1-2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	5
		(<i>e</i>) Describe any sensitivity analyses	5
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow an and englaged	7
		in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	- Fig1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table
Descriptive data	14	social) and information on exposures and potential confounders	1 abic
		(b) Indicate number of participants with missing data for each variable of interest	-
Outcome data	15*	Report numbers of outcome events or summary measures	Fig1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear	-
		which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were	7
		categorized	'
		(c) If relevant, consider translating estimates of relative risk into absolute	_
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions,	_
	17	and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-1
Limitations	19	Discuss limitations of the study, taking into account sources of potential	13
		bias or imprecision. Discuss both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-1
		limitations, multiplicity of analyses, results from similar studies, and	
		other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-1
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	14
		study and, if applicable, for the original study on which the present	
		article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.