

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Rising trend in 250HD during COVID-19 pandemic in Ireland

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059477
Article Type:	Original research
Date Submitted by the Author:	22-Nov-2021
Complete List of Authors:	McKenna, Malachi; St Vincent's University Hospital Crowley, Rachel ; St Vincent's University Hospital Twomey, Patrick; St Vincent's University Hospital Kilbane, Mark; St Vincent's University Hospital
Keywords:	COVID-19, NUTRITION & DIETETICS, Calcium & bone < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

2		
3 4	1	Rising trend in 250HD during COVID-19 pandemic in Ireland
5 6	2	
7	3	
8 9 10	4	Malachi J. McKenna, M.D. ^{1,2}
11 12 13	5	Rachel K Crowley, M.D. ^{1,2}
14 15	6	Patrick J. Twomey, F.R.C.Path. ^{1,2}
16 17	7	Mark T. Kilbane, Ph.D. ^{1,2}
18 19 20	8	
21 22 23	9	¹ Department of Clinical Chemistry, St. Vincent's University Hospital, Dublin, Ireland
24 25 26	10	² UCD School of Medicine, University College Dublin, Dublin, Ireland
27 28 29	11	
30 31	12	Corresponding author: Professor Malachi McKenna, St. Vincent's Healthcare Group, Dublin
32 33 34	13	4, Ireland. email: malachi.mckenna@ucd.ie
35 36 37	14	
38 39 40 41	15	Keywords: 250HD trend, COVID-19
42 43	16	Word Count: 2871
44 45	17	
46 47 48	18	
49		
50 51		
52		
53		
54 55		
56		
57		
58 59		
59 60		

2 3	19	ABSTRACT
4 5	20	Objectives: Vitamin D status has improved substantially in Ireland over the past 40 years.
6 7	20	Objectives. Vitamin D status has improved substantiany in incland over the past 40 years.
8 9	21	Since the onset of the Covid-19 pandemic in 2020, there have been plausible suggestions
10 11	22	about the need to augment vitamin D intake by supplementation on a population basis in
12 13 14	23	order to prevent SARS-Co-V2 infection and reduce mortality. Some groups have advocated
15 16	24	supplementations for all adults, but governmental agencies have advocated targeted
17 18 19	25	supplementation. We sought to explore the effect of COVID-19 pandemic on vitamin D status
20 21	26	from April 2020 to March 2021 by comparison with prior trend analysis of vitamin D status
22 23 24	27	over the past 28 years.
25 26 27	28	Setting: University hospital, Dublin, Ireland.
28 29 30	29	Participants: Laboratory-based samples of circulating 25-hydroxyvitamin D (250HD).
31 32 33	30	Primary and secondary outcome measures: Primary outcome: comparing yearly average
34 35	31	250HD in the 12 months prior to the pandemic (April 2019 to March 2020) with the first 12
36 37 38	32	months (April 2020 to March 2021) of the pandemic. Secondary outcome: comparing
39 40 41	33	prevalence of vitamin D deficiency and vitamin D excess during the two time periods.
42 43	34	Results: Regarding the primary outcome in a large sample ($n = 100,505$), we noted the
44 45 46	35	average yearly 25OHD increased by 2.8 nmol/L (61.4, 95%CI 61.5 – 61.7 vs 58.6, 95% CI 58.4-
47 48	36	58.9, $p < .001$). This yearly increase is almost 3-fold higher than the yearly increase in
49 50 51	37	average 250HD based on two similar trend analyses that we conducted between 1993 and
52 53	38	2016. Regarding secondary outcome, we showed a lower prevalence of low 25OHD
54 55 56	39	indicating benefit, but we also showed a higher prevalence of high 250HD.
57 58 59	40	Conclusions: The pandemic has emphasised the need to correct vitamin D deficiency. Rather
60	41	than a blanket recommendation about vitamin D supplementation for all adults during the

Page 4 of 24

BMJ Open

1 ว		
2 3 4	42	pandemic, we recommend a targeted approach of supplementation within current
5 6 7	43	governmental guidelines that augments vitamin D intake in at-risk groups.
8 9 10	44	
11 12	45	
13 14 15 16	46	Strengths and limitations
17 18 19	47	• This is a laboratory-based 250HD trend analysis that includes a large sample size.
20 21	48	• This trend analysis is compared to with two prior trend analyses dating back to 1993.
22 23 24	49	• This is not a population-based representative sample and is subject to selection bias.
25 26 27	50	• There is no clinical information about reason for 250HD testing or about vitamin D
28 29 30	51	supplementation.
31 32 33		supplementation.
34 35 36		
37 38 39		
40 41		
42 43 44		
45 46 47		
48 49		
50 51 52		
53 54		
55 56 57		
58 59 60		

52 INTRODUCTION

Vitamin D is an essential micronutrient in all age groups for bone and muscle health¹⁻ ⁴. Vitamin D may have a role in extraskeletal health such as the immune response to acute respiratory illnesses⁵, which is pertinent during the COVID-19 pandemic⁶. Following the onset of the pandemic, some reports advocated blanket oral supplementation to entire populations with doses ranging from 20 µg to 50 µg daily⁷⁻¹⁰, which are in excess of vitamin D intake requirement as specified by governmental agencies in Europe and North America¹⁻⁴. By contrast, other groups have countered this blanket recommendation, favouring a targeted approach based on modelling of total vitamin D intakes^{11 12}.

These governmental reports, which have been issued over the past decade prior to the pandemic, are based on similar health outcomes such as musculoskeletal health, falls and total risk of mortality, but not on immune response to infection. Subsequently, governmental agencies from England and Ireland issued advice about vitamin D supplementation during the pandemic, targeting at-risk populations, including measures to facilitate supplementation¹³ ¹⁴(Table 1). Given the ongoing concerns about vitamin D inadequacy across Europe¹⁵, we suggest that these governmental measures at augmenting vitamin D status during the pandemic can be beneficial to at-risk groups but that blanket recommendations may predispose to unnecessary self-supplementation of vitamin D doses more than requirement in healthy persons.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22 23 24	
23	
24	
27	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
50 59	
59 60	

60

73 74

75

76

77

1 2

Region Year Vitamin D Intake **Population Reference Intake** µg/day (age group) USA & Canada¹ 2011 Total intake 15 (<70 y) 20 (≥70 y) Nordic Countries² 2014 Total intake 10 (<75 y) 20 (≥75 y) European Union³ 2016 Total intake 15 (≥18) United Kingdom⁴ 2016 Total intake 10 (all adults) COVID-19 vitamin D Supplemental 20-50 (all adults, all year) 2020 advocates7-10 intake Post COVID-19 United 2020 Supplemental 10 (October to March for healthy Kingdom¹³ intake adults) 10 (all year for those with limited sunlight exposure) Post COVID-19 Ireland¹⁴ 2020 Supplemental 10 (October to March >65 y) intake 15 (all year for housebound >65 y)

Total intake refers to vitamin D intake from all sources: skin production and oral intake (natural foods, fortified foods, supplements). Population reference intakes for governmental agencies refers to intake that meets the needs of 97.5% on the population; these intakes are based on health outcomes such as musculoskeletal health, falls and total risk of mortality,

Ensuring adequate vitamin D intake across all age groups is a challenging population 78 health task. Vitamin D intake requirements must be modelled to cover total intake because 79 vitamin D supply has various sources: skin production on exposure to ultra-violet light, natural 80 foods, fortified foods, and supplements. There is almost complete unanimity about total 81 vitamin D intake requirements across governmental agencies for North America and for 82 Europe¹⁻⁴. In circumstances of minimal or no sunlight exposure, the total oral intake 83 requirement approximates to between 10 μ g and 20 μ g daily (400 IU to 800 IU daily)¹⁻⁴. The 84 pre-eminent measure of vitamin D status is the measurement of the circulating vitamin D 85 86 metabolite, 25-hydroxyvitamin D (250HD).

72 **Table 1** Vitamin D intake recommendations

Page 7 of 24

BMJ Open

We have been engaged in clinical research on 25OHD since the 1970s¹⁷. We have noted substantial improvement in vitamin D status over the past 45 years. In our early studies in Ireland, we noted the primacy of oral intake over sunlight exposure for both the prevention and correction of vitamin D deficiency¹⁸⁻²¹. Following the advent of voluntary milk fortification in Ireland in the 1980s at 1 μ g/100 ml (but more recently some milk products fortify at 2 μ g/100 ml) and the ready availability of low-dose vitamin D supplements, vitamin D status improved substantially²². In more recent years, we reported instances of hypervitaminosis D raising concerns about excessive oral intake of vitamin D²³.

We have published two trend analyses of laboratory-based 25OHD results: the first trend study reported 250HD from 1993 to 2013 that incorporated a time series analysis to predict 250HD trend from 2014 to 2016²⁴; the second trend study reported 250HD from 2014 to 2016 that confirmed the forecast analysis from the first study²⁵. Our analyses over the past 24 years in Ireland show yearly average 25OHD concentrations increased by about 1 nmol/L/year. As early as 2014, we recognized a dual concern about vitamin D status in Ireland: hypovitaminosis D in at risk groups; and hypervitaminosis D due to high supplemental intake, especially from over-the-counter preparations in individuals who already have adequate vitamin D status²⁶. One of the consequences of raising public awareness, whether it be from governmental agencies or from professional bodies, is the increased supply of vitamin D supplements, which are available for over-the-counter purchase.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

We sought to explore the effect of COVID-19 pandemic on vitamin D status from April
 We sought to explore the effect of COVID-19 pandemic on vitamin D status from April
 2020 to March 2021 given the conflicting advice: governmental agencies promoting vitamin
 D supplementation in at-risk groups, and groups advocating blanket recommendations for
 vitamin D supplementation to all adults.

110 METHODS111 Data mining

Our laboratory data system was mined to identify all 25OHD samples over a 24-month period from April 2019 to March 2021: pre-COVID-19 era being represented by 12 months from April 2019 to March 2020, and the COVID-19 era being represented by April 2020 to March 2021. In order to identify duplicate samples, the following identifiers were extracted: date of birth and medical record number. Additional data included age, sex, referral source (either hospital consultant or general practitioner), and date of 25OHD test.

The sample size for the 24 months from April 2019 to March 2021 was 137,963; after excluding those with more than one sample during the 2 years (n = 37,458) the final sample was trimmed to 100,505. Regarding those cases with more than one 250HD sample, the analysis was based on the 250HD being first sample, which hereafter is termed the first in sequence. A secondary analysis was performed, whereby the selected 25OHD of those cases with more than one sample was the final sample, which hereafter is termed the last in sequence.

- 41 125 **Research Ethics Approval**
 - 126 The Clinical Audit Committee, St Vincent's Healthcare Group, approved the extraction and
 - 127 audit of the data from our hospital laboratory system (Reference number: 3174).

- 52 129 Public and Patient Involvement
- 130 It was not appropriate or possible to involve patients or the public in the design, or conduct,
- 5758 131 or reporting, or dissemination plans of our research

32	Study	design

The primary analysis related to comparison of 25OHD in the pre-Covid-19 era, hereafter referred to as group 1, with 25OHD in the Covid-19 era, hereafter referred to as group 2. The prevalence estimates for categories of 25OHD in the two groups was calculated according to the following thresholds: <30 nmol/L; 30-50 nmol/L; 50.1-125 nmol/L; 125.1 to 175 nmol/L; >175 nmol/L. In addition, a composite analysis of the entire group over the 2 years was performed in order to assess vitamin D status according to age, sex, and different age groups.

140 Analytical Methods

Serum 25OHD concentrations were quantified using the Elecsys Vitamin D Total (Roche Diagnostics GmbH, Mannheim, Germany) automated competitive binding protein assay, which measures total vitamin D, including isomers in the form of the C3 epimer as well as 24,250HD metabolites. This is not specifically corrected for; rather, an assumption is made that there is a non-statistically significant difference in the percent concentration of vitamin D metabolites relative to the measured concentration in patient samples tested over the three-year period. The average inter-assay coefficients of variation (CV) for the 250HD assay determined over the period studied were as follows: 14.6% at a mean concentration of 37.7 nmol/L, 8.7% at a mean concentration of 74.6 nmol/L, and 7.6% at a mean concentration of 112.1 nmol/L. Functional sensitivity was verified at 15 nmol/L (%CV <20%). To ensure a high standard of analysis for serum 25OHD concentrations, the laboratory participates in an external quality assurance scheme: the Vitamin D External Quality Assessment Scheme (DEQAS)²⁷. During the 2-year period 2019 to 2021, our assay displayed a mean bias of 1.12 % from target values provided by the Centers for Disease Control and Prevention (Atlanta,

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Georgia, USA) using their isotope dilution LC-MS/MS Reference Measurement Procedure²⁸. Assay performance met DEQAS defined performance criteria set at ±25%. For samples with undetectable 25OHD (<15 nmol/L), the result was censored at 14.9 pmol/L. For samples with high 25OHD (>175 mol/L), the result was censored at 175.1 nmol/L.

159 Statistical analysis

Descriptive statistics are presented as number and percent for categorical variables and as mean (95% confidence intervals) for continuous variables. Differences in independent categorical variables were tested by chi-square. The distribution for 25OHD exhibited positive skewness and thus was log-transformed prior to parametric statistical tests. Differences between two means were tested by independent-samples *t* test using Levene's test for equality of variances. Statistics were considered significant if *p* value <.05. Analyses were performed using IBM SPSS Statistics version 25 (Armonk, NY, USA).

RESULTS

Group 1 and group 2 were similar with respect to age, sex, and source of referral (Table 1). Mean 25OHD was 2.8 nmol/L higher in group 2 compared to group 1 (61.4, 95%CI 61.5, 61.7 nmol/L vs 58.6, 95% CI 58.4, 58.9 nmol/L, p <.001) (Table 1). If the 25OHD duplicate result was selected as last in sequence, then mean 250HD was 5.1 nmol/L higher in group 2 compared to group 1 (63.3, 95%CI 63.2, 63.6 nmol/L vs 58.2, 95% CI 58.0, 58.5 nmol/L, p <.001). In group 2 compared to group 1, there was a lower percent (12.0% vs 13.4%) of low vitamin D status (250HD <30 nmol/L) but a higher percent (2.1% vs 1.7%) of high vitamin D status (250HD >125 nmol/L) (p < .001) (Table 1). The monthly 250HD trimmed values for both groups are plotted showing the seasonal variation (Figure 1). The average seasonal change in

1 2		
2 3 4	177	250HD from nadir to peak was almost identical for both at 20.2 nmol/L in group 1 and 20.1
5 6	178	nmol/L in group 2.
7 8		
9 10	179	
11 12		
13 14		
15 16 17		
17 18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48 49		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		
		10

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2 3 4 5 6 7 8 9 10 11 12 13	180
14 15 16 17 18 19 20 21	
22 23	181
24 25	182
26 27	183
28 29 30	184
31 32 33	185
34 35	186
36 37 38	187
39 40	188
41 42 43	189
44 45	190
46 47 48	191
49 50	192
51 52 53	193
54 55 56 57 58	194
59 60	

60

1

180 **Table 2**: Descriptive statistics

	Variable	Group 1	Group 2
		(<i>n</i> = 58,642)	(n = 41,863)
	Age, years	52.5 (52.3, 52.7)	52.3 (52.1, 52.5)
	Women : Men, %	66.4 : 33.6	64.3 : 35.7
	Hospital : Primary Care, %	30.0 : 70.0	25.5 : 74.5
	250HD status, %		
	<30 nmol/L	13.4	12.0
	30-50 nmol/L	28.4	25.1
	51-125 nmol/L	56.6	60.7
	125.1-175 nmol/L	1.4	1.8
	>175 nmol/L	0.3	0.3
	25OHD, nmol/L	58.6 (58.4-58.9)	61.4 (61.5 – 61.7)
181	Results are presented as % for categoric	cal variables and as mean	(95%CI) for continuous
182	variables		
183			
184	For the composite analysis, mean 250HD was higher in women compared to men		
185	(61.3, 95%CI 61.1 – 61.5 nmol/L vs 56.9, 95% CI 56.7-57.3 nmol/L, p <.001), and in those		
186	sourced from primary care compared to hospital care (60.7, 95%CI 60.5 – 60.9 nmol/L vs 57.4,		
187	95% CI 57.0-57.7 nmol/L, <i>p</i> <.001). Vitamin D status according to age categories showed that		
188	infants and toddlers had the lowest prevalence of 250HD <30 nmol/L and the highest		
189	prevalence for 250HD >125 nmol/L (Table 3). Regarding vitamin D status according to age		
190	categories and sex, adult females had	better vitamin D status t	han males, but in infants a
191	greater percent of females compared	d to males had both th	e lowest and the highest
192	prevalence of vitamin D status, but the	numbers were small (Tabl	e 3).
193			
194			

197	Age Categories			Vita	min D Status	s, nmol/L	
			<30	30 -	50.1 -	125.1 -	>175
				50	125	175	
	Infants	Female (<i>n</i> =87)	8.0	6.9	67.8	10.3	6.9
		Male (<i>n</i> =128)	4.7	10.2	76.6	7.8	0.8
		Total (<i>n</i> =215)	6.0	8.8	73.0	8.8	3.3
	Toddlers	Female (<i>n</i> =250)	3.6	17.6	74.4	3.2	1.2
		Male (<i>n</i> =288)	6.3	15.6	73.3	4.5	0.3
		Total (<i>n</i> =538)	5.0	16.5	73.8	3.9	0.7
	Children &	Female (<i>n</i> =3,253)	16.5	33.4	49.5	0.6	0.1
	adolescents	Male (<i>n</i> =2,271)	13.7	30.8	54.3	1.0	0.2
		Total (<i>n</i> =5,524)	15.4	32.3	51.4	0.7	0.1
	Young adults	Female (<i>n</i> =42,757)	12.0	28.4	57.8	1.6	0.3
		Male (<i>n</i> =20,533)	15.9	31.0	51.7	1.1	0.3
		Total (<i>n</i> =63,290)	13.3	29.2	55.8	1.4	0.3
	Older adults	Female (<i>n</i> =19,493)	10.0	19.1	68.3	2.3	0.4
		Male (<i>n</i> =11,415)	14.1	26.5	57.7	1.4	0.2
		Total (<i>n</i> =30,908)	11.6	21.8	64.3	2.0	0.3
	Total	Female (<i>n</i> =65,840)	11.6	25.8	60.5	1.8	0.3
		Male (<i>n</i> =34,635)	15.1	29.3	54.1	1.3	0.2
		Total (<i>n</i> =100,475)	12.8	27.0	58.3	1.6	0.3
98 99	Results are prese	ented as %					
00	DISCUSSION						
)1	In a tren	d analysis of laborator	y-based	250HD sa	amples com	paring yearly	/ avera
202	250HD in the 12	months before onset o	f the Cov	vid-19 pan	demic (Apri	2019 to Ma	rch 202
203	with the first 12	months of the Covid-19	pandem	ic in Irela	nd (April 202	20 to March 2	2021), v
204	showed the aver	age yearly 250HD increa	ased by 2	.8 nmol/L	/year. This y	early trend w	vas nea
205	2 fold higher the	in the average yearly in			f 1		

206

207

208

53 54

55

56 57

58 59

60

.95	Table 2. Crosstabulation of vitamin D status according to age categories and sex
-----	---

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

in two prior trend analyses of laboratory-based samples from 1993 to 2016^{24 25}. If the 25OHD

duplicate was selected as last in sequence for the trend analysis, then average 25OHD

increase during the pandemic was even higher at 5.1 nmol/L/year. We did observe benefit

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

with respect to their being lower prevalence of 25OHD <30 nmol/L, but to a lesser extent
there was a higher prevalence of 25OHD >125 nmol/L.

The 25OHD threshold for diagnosis of vitamin D deficiency depends on the approach: whether is it viewed as being population-based^{1 4} or as being case-based^{29 30}. There are important differences. For instance, the Institute of Medicine (IOM) for the USA and Canada in 2011 used a statistical probability method to determine the prevalence of nutrient inadequacy³¹. The IOM set a 250HD threshold of 30 nmol/L. IOM referred to 250HD as a "biomarker of exposure" but not as a "biomarker of effect", which means that 250HD is the preeminent measure of total vitamin D intake, but it only estimates risk of disease. Thus, 25OHD below 30 nmol/L was defined by IOM as "risk of deficiency". Choosing a higher 25OHD threshold for defining vitamin D deficiency inflates the prevalence³¹. Similarly, the Scientific Advisory Committee on Nutrition (SACN) for the UK set a 250HD threshold of 25 nmol/L⁴. Another key difference is that governmental agencies set their specifications for vitamin D intake based on total vitamin D intake. Modelling intake from all sources estimates the shortfall in vitamin D intake that can be bridged by supplemental intake³².

Whereas, in a case-based approach, the 250HD threshold is agreed by expert clinical opinion on optimal vitamin D status in individuals, such as the European Calcified Tissue Society that set a 25OHD threshold at 50 nmol/L²⁹. The Endocrine Society, which set an even higher 250HD threshold at 75 nmol/L, specified vitamin D intakes as supplemental intake not total vitamin D intake up to 37µg to 50µg that were up to 5-fold higher than those specified by IOM³⁰. The higher 25OHD threshold and higher vitamin D intakes were critiqued as lacking evidence and as overestimating the 25OHD response to vitamin D supplementation^{33 34}. That critique has been validated by the findings of the subsequent VITAL trial using 50 µg vitamin

BMJ Open

D daily for 5 years with 25,871 participants that reported no benefit with respect to lowering
incidence of invasive cancer or cardiovascular events³⁵.

Governmental agencies have adopted a precautionary approach to vitamin D harm. The tolerable upper intake level (UL) for vitamin D is 100 μ g (4000 IU) daily, as set by governmental agencies ^{1 36}. The UL is 10-fold higher than the average total vitamin D intake requirement for healthy adults¹. The UL is not intended as a target intake; rather, the risk for harm begins to increase once vitamin D intake surpasses this level³⁷. In Ireland, over-the-counter vitamin D products are regulated by the Food Safety Authority of Ireland. The UL determines the maximum dose of a vitamin D product that can be marketed over-thecounter. Labelling requires that the dose not exceed the UL. There is no requirement to model total vitamin D intake, such that a healthy adult with vitamin D intake from other sources can self-medicate with a vitamin D supplement at the threshold of the UL.

Risk of harm from vitamin D supplementation is vaguely defined. Defining harm just in terms of hypercalcemia sets the vitamin D dose and the 250HD threshold at high levels³⁰. Some vitamin D studies, where the primary endpoint was prevention of fracture or prevention of falls or increase in bone mineral density, have suggested increased risk of the primary outcome: (1) two studies showed more fractures using vitamin D 12,500 µg yearly³⁸ or using 7,500 μ g yearly³⁹; (2) five studies showed more falls using vitamin D 12,500 μ g yearly³⁸, or using daily dose of 100 µg vitamin D daily ⁴⁰, or using 1500 µg vitamin D monthly⁴¹, or using μ g vitamin D monthly, or using a range of daily vitamin D doses from 50 μ g to 100 μ g⁴²; (3) and one study showed lower bone mineral density using 100 μ g or 250 μ g vitamin D daily⁴³. A recent meta-analysis of RCTs showed that vitamin D did not have a beneficial effect on muscle but may have adverse effects on muscle health⁴⁴. An RCT investigating distal radius

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

fracture healing with vitamin D bolus doses (placebo, 750 μg, or 1875 μg twice 6 weeks apart)
showed no benefit of the lower dose compared to control dose but adverse effects of the
highest dose compared to controls⁴⁵. Most participants in these trials did not have 250HD
below 30 nmol/L; also, intermittent boluses have a different pharmacokinetic profile to daily
dosing, thus limiting dose comparisons²⁹.

During the Covid-19 pandemic, some groups have advocated the need for mass vitamin D supplementation in order to enhance immune response to SARS-Co-V2 infection ⁷ ^{9 10 46 47}. EFSA permits stating that benefit from vitamin D supplementation covers the normal functioning of the immune system without specifying a vitamin D intake for this benefit⁴⁸. The is some evidence of benefit from vitamin D randomised controlled trials (RCTs) that have been conducted during the pandemic but there is wide variation in vitamin D doses⁴⁹⁻⁵⁴. Further studies should provide clarity about benefit and optimal vitamin D schedules. These studies might provide cogent evidence for higher vitamin D intake requirements that could forming part of population-based or case-based recommendations. Meanwhile, the likely effect of advocating for mass supplementation is that individuals, who are best able to selfmedicate, are the ones who are least likely to need supplementation. Frail older adults, lower socioeconomic groups and minority ethnic groups are more likely to have lower 25OHD and are less likely to afford the means for supplementation^{55 56}. It is better to have a targeted approach to vitamin D supplementation such as the frail older adult¹³¹⁴. Mandatory fortification of foodstuffs with vitamin D, which has been shown to be effective in Finland⁵⁷, poses many challenges⁵⁸. Voluntary fortification, while less satisfactory than mandatory fortification, is effective at ameliorating seasonal decline in 25OHD as has been shown in Ireland²². Fortification with any nutrient (whether mandatory or voluntary) in addition to supplementation (whether mandatory or voluntary), can result in total nutrient intakes that

BMJ Open

are higher than requirement and may even exceed the UL, especially if nutrient intake targets
the RDA and not the average requirement⁵⁹.

Our trend analysis has many limitations. First and foremost, it is not a representative sample because samples are not collected as part of a population-based survey. We do not have information on the clinical indication for the test nor do we know whether patients were on vitamin D supplements or had an underlying condition that predisposed to vitamin D deficiency. We only had limited information on calcium status and parathyroid status (not shown). The 12-month trend analysis is too short to declare with any certainty that the pandemic has contributed to a shift upwards in the yearly average 250HD increase.

In conclusion, we report in Ireland a laboratory-based trend analysis of 25OHD showing that the yearly average 25OHD has increased about 3-fold during the first year of Covid-19 pandemic compared to prior trend analysis. This trend reflects benefit for those with low 25OHD. Public health efforts should be redoubled at maximising the provision of specified daily vitamin D supplements in at-risk groups and clinically vulnerable patients. There should be a precautionary approach to population-based blanket recommendations for vitamin D supplementation to healthy adults. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

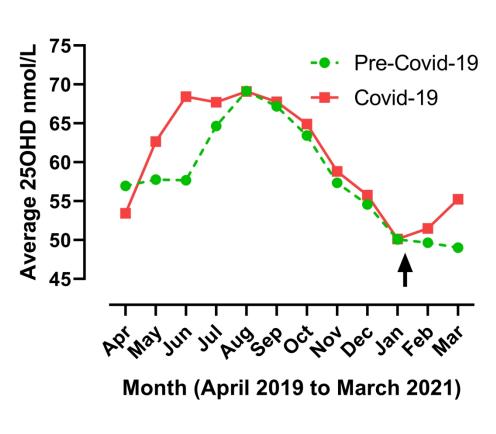
296 Acknowledgements:

For data mining, we thank John Hill, Department of Pathology, St Vincent's UniversityHospital. We did not receive financial support from any source.

- 5 299 Author Contributions:
- [']₃ 300 All authors read, edited, and approved the submitted manuscript. Conception and design:
- MMcK. Laboratory analysis: PT and MK. Statistical analysis and data interpretation: MMcK.

BMJ Open

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.


2		
3 4	302	Drafting manuscript: MMcK. Critical review and revising manuscript: all authors. MMcK
5 6 7	303	takes responsibility for the integrity of the data analysis.
8 9	304	
10 11 12	305	Funding:
13 14	306	There was no financial support provided for this study.
15 16 17	307	Competing Interests:
18 19 20	308	All authors declare that they have no competing interests.
21 22 23	309	Data sharing statement:
24 25 26	310	Data described in the manuscript, code book, and analytic code will be made available upon
27 28 29	311	request pending application to and approval by the corresponding author.
29 30 31	312	
32 33 34	313	
35	314	REFERENCES
36	315	1. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Institute of Medicine.
37	316	Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National
38	317	Academies Press 2011.
39 40	318	2. Secretary of the Nordic Council of Ministers, Nordic Council of Ministers. Nordic Nutrition
40 41	319	Rcommendations: Integrating nutrition and physical activity. 2014.
42	320	3. EFSA Panel on Dietetic Products NaAN. Dietary reference values for vitamin D. 2016.
43	321	4. Scientific Advisory Committee on Nutrition. Vitamin D and Health. 2016; 2016.
44	322	5. Jolliffe DA, Camargo CA, Jr., Sluyter JD, et al. Vitamin D supplementation to prevent acute
45 46	323	respiratory infections: a systematic review and meta-analysis of aggregate data from
40 47	324 225	randomised controlled trials. <i>Lancet Diabetes Endocrinol</i> 2021;9(5):276-92. doi:
48	325 326	10.1016/S2213-8587(21)00051-6 [published Online First: 2021/04/03] 6. Martineau AR, Forouhi NG. Vitamin D for COVID-19: a case to answer? <i>Lancet Diabetes Endocrinol</i>
49	320	2020;8(9):735-36. doi: 10.1016/S2213-8587(20)30268-0 [published Online First:
50	327	2020/08/08]
51	329	7. McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection
52 53	330	Against Covid-19. <i>Ir Med J</i> 2020;113(4):58. [published Online First: 2020/04/09]
54	331	8. Griffin G, Hewison M, Hopkin J, et al. Vitamin D and COVID-19: evidence and recommendations for
55	332	supplementation. R Soc Open Sci 2020;7(12):201912. doi: 10.1098/rsos.201912 [published
56	333	Online First: 2021/01/26]
57 58 59	334 335	9. McCartney DM, O'Shea PM, Faul JL, et al. Vitamin D and SARS-CoV-2 infection-evolution of evidence supporting clinical practice and policy development : A position statement from
60		

1		
2		
3	336	the Covit-D Consortium. <i>Ir J Med Sci</i> 2021;190(3):1253-65. doi: 10.1007/s11845-020-02427-9
4	337	[published Online First: 2020/11/22]
5 6	338	10. Griffin G, Hewison M, Hopkin J, et al. Preventing vitamin D deficiency during the COVID-19
7	339	pandemic: UK definitions of vitamin D sufficiency and recommended supplement dose are
8	340	set too low. <i>Clin Med (Lond)</i> 2021;21(1):e48-e51. doi: 10.7861/clinmed.2020-0858
9	341	[published Online First: 2020/11/08]
10	342	11. McKenna MJ, Flynn MAT. Covid-19, Cocooning and Vitamin D Intake Requirements <i>Ir J Med</i>
11	343	2020;113(5):79.
12	344	12. Lanham-New SA, Webb AR, Cashman KD, et al. Vitamin D and SARS-CoV-2 virus/COVID-19
13	345	disease. BMJ Nutr Prev Health 2020;3(1):106-10. doi: 10.1136/bmjnph-2020-000089
14	346	[published Online First: 2020/11/25]
15	347	13. NICE. COVID-19 rapid guideline: vitamin D. 2020.
16	348	https://www.nice.org.uk/guidance/ng187/resources/covid19-rapid-guideline-vitamin-d-pdf-
17 18	349	66142026720709.
10 19	350	14. Report of the Scientific Committe of the Food Safety Authority of Ireland. Vitamin D Scientific
20	351	Recommendations for Food-Based Dietary Guidelines for Older Adults in Ireland. 2020.
21	352	Vitamin%20D%20Scientific%20Recommendations%20for%20Food%20Based%20Dietary%20
22	353	Guidelines%20for%20Older%20Adults%20in%20Ireland.pdf.
23	353 354	15. Cashman KD, Dowling KG, Skrabakova Z, et al. Vitamin D deficiency in Europe: pandemic? <i>Am J</i>
24		
25	355	<i>Clin Nutr</i> 2016;103(4):1033-44. doi: 10.3945/ajcn.115.120873 [published Online First:
26	356	2016/02/13]
27	357	16. Pilz S, Zittermann A, Trummer C, et al. Vitamin D testing and treatment: a narrative review of
28	358	current evidence. <i>Endocr Connect</i> 2019;8(2):R27-R43. doi: 10.1530/EC-18-0432 [published
29	359	Online First: 2019/01/17]
30 31	360	17. Murray B, Freaney R. Serum 25-hydroxy vitamin D in normal and osteomalacic subjects: a
32	361	comparison of two assay techniques. <i>Ir J Med Sci</i> 1979;148(1):15-9. [published Online First:
33	362	1979/01/01]
34	363	18. McKenna M, Freaney R, Keating D, et al. The prevalence and management of vitamin D
35	364	deficiency in an acute geriatric unit. <i>Ir Med J</i> 1981;74(11):336-8. [published Online First:
36	365	1981/11/01]
37	366	19. McKenna MJ, Freaney R, Meade A, et al. Hypovitaminosis D and elevated serum alkaline
38	367	phosphatase in elderly Irish people. Am J Clin Nutr 1985;41(1):101-9. [published Online First:
39	368	1985/01/01]
40	369	20. McKenna MJ, Freaney R, Meade A, et al. Prevention of hypovitaminosis D in the elderly. Calcif
41	370	Tissue Int 1985;37:112-16.
42 43	371	21. McKenna MJ. Differences in vitamin D status between countries in young adults and the elderly.
43 44	372	<i>Am J Med</i> 1992;93(1):69-77. doi: 0002-9343(92)90682-2 [pii] [published Online First:
45	373	1992/07/01]
46	374	22. McKenna MJ, Freaney R, Byrne P, et al. Safety and efficacy of increasing wintertime vitamin D
47	375	and calcium intake by milk fortification. QJM 1995;88(12):895-8. [published Online First:
48	376	1995/12/01]
49	377	23. Kilbane MT, O'Keane M, Morrin M, et al. The double-edged sword of vitamin D in Ireland: the
50	378	need for public health awareness about too much as well as too little. Irish journal of
51	379	medical science 2014;183(3):485-87. doi: 10.1007/s11845-014-1147-7
52	380	24. McKenna MJ, Murray BF, O'Keane M, et al. Rising trend in vitamin D status from 1993 to 2013:
53	381	dual concerns for the future. <i>Endocr Connect</i> 2015;4(3):163-71. doi: 10.1530/EC-15-0037
54 55	382	[published Online First: 2015/06/03]
55 56	383	25. McKenna MJ, Murray B, Crowley RK, et al. Laboratory trend in vitamin D status in Ireland: Dual
57	384	concerns about low and high 250HD. J Steroid Biochem Mol Biol 2019;186:105-09. doi:
58	385	10.1016/j.jsbmb.2018.10.001 [published Online First: 2018/10/09]
59	505	
60		

2		
3	386	26. Kilbane MT, O'Keane M, Morrin M, et al. The double-edged sword of vitamin D in Ireland: the
4	387	need for public health awareness about too much as well as too little. <i>Ir J Med Sci</i>
5	388	2014;183(3):485-7. doi: 10.1007/s11845-014-1147-7 [published Online First: 2014/05/27]
6		
7	389	27. Carter GD, Berry J, Durazo-Arvizu R, et al. Quality assessment of vitamin D metabolite assays
8	390	used by clinical and research laboratories. <i>J Steroid Biochem Mol Biol</i> 2017;173:100-04. doi:
9	391	10.1016/j.jsbmb.2017.03.010 [published Online First: 2017/03/21]
10	392	28. Mineva EM, Schleicher RL, Chaudhary-Webb M, et al. A candidate reference measurement
11	393	procedure for quantifying serum concentrations of 25-hydroxyvitamin D(3) and 25-
12	394	hydroxyvitamin D(2) using isotope-dilution liquid chromatography-tandem mass
13	395	spectrometry. Anal Bioanal Chem 2015;407(19):5615-24. doi: 10.1007/s00216-015-8733-z
14	396	[published Online First: 2015/05/15]
15 16	397	29. Lips P, Cashman KD, Lamberg-Allardt C, et al. Current vitamin D status in European and Middle
17	398	East countries and strategies to prevent vitamin D deficiency: a position statement of the
17	399	European Calcified Tissue Society. Eur J Endocrinol 2019;180(4):P23-P54. doi: 10.1530/EJE-
19	400	18-0736 [published Online First: 2019/02/06]
20	400	30. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, Treatment, and Prevention of
21	401	
22		Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol
23	403	Metab 2011;96(7):1191-930. doi: 10.1210/jc.2011-0385 [published Online First: 2011/06/08]
24	404	31. Taylor CL, Carriquiry AL, Bailey RL, et al. Appropriateness of the probability approach with a
25	405	nutrient status biomarker to assess population inadequacy: a study using vitamin D. Am J
26	406	<i>Clin Nutr</i> 2013;97(1):72-8. doi: 10.3945/ajcn.112.046094 ajcn.112.046094 [pii] [published
27	407	Online First: 2012/10/26]
28	408	32. Lyons OC, Kerr MA, McNulty H, et al. Addressing nutrient shortfalls in 1- to 5-year-old Irish
29	409	children using diet modeling: development of a protocol for use in country-specific
30	410	population health. Am J Clin Nutr 2021 doi: 10.1093/ajcn/nqab311 [published Online First:
31	411	2021/11/01]
32	412	33. Rosen CJ, Abrams SA, Aloia JF, et al. IOM Committee Members Respond to Endocrine Society
33	413	Vitamin D Guideline. J Clin Endocrinol Metabol 2012;97:1146-52. doi: 10.1210/jc.2011-2218
34		
	414	34 McKenna ML Murray BE Vitamin D dose response is underestimated by Endocrine Society's
35	414 415	34. McKenna MJ, Murray BF. Vitamin D dose response is underestimated by Endocrine Society's
35 36	415	Clinical Practice Guideline. Endocrine Connections 2013;2(2):87-95. doi: 10.1530/ec-13-0008
35 36 37	415 416	Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and
35 36 37 38	415 416 417	Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944
35 36 37 38 39	415 416 417 418	Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13]
35 36 37 38 39 40	415 416 417 418 419	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of
35 36 37 38 39 40 41	415 416 417 418 419 420	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813
35 36 37 38 39 40 41 42	415 416 417 418 419 420 421	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium
35 36 37 38 39 40 41 42 43	415 416 417 418 419 420	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813
35 36 37 38 39 40 41 42 43 44	415 416 417 418 419 420 421	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium
35 36 37 38 39 40 41 42 43	415 416 417 418 419 420 421 422	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol</i>
35 36 37 38 39 40 41 42 43 44 45	415 416 417 418 419 420 421 422 423	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02]
35 36 37 38 39 40 41 42 43 44 45 46	415 416 417 418 419 420 421 422 423 424	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and
35 36 37 38 39 40 41 42 43 44 45 46 47	415 416 417 418 419 420 421 422 423 424 425 426	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii]
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	415 416 417 418 419 420 421 422 423 424 425	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13]
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	415 416 417 418 419 420 421 422 423 424 425 426	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii]
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	415 416 417 418 419 420 421 422 423 424 425 426 427	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13]
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	415 416 417 418 419 420 421 422 423 424 425 426 427 428	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	415 416 417 418 419 420 421 422 423 424 425 426 427 428 429	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebo-
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebo-controlled trial. <i>Rheumatology</i> 2007;46(12):1852-57. doi: 10.1093/rheumatology/kem240 40. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebocontrolled trial. <i>Rheumatology</i> 2007;46(12):1852-57. doi: 10.1093/rheumatology/kem240 40. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial. <i>J Steroid Biochem Mol</i>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebocontrolled trial. <i>Rheumatology</i> 2007;46(12):1852-57. doi: 10.1093/rheumatology/kem240 40. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial. <i>J Steroid Biochem Mol Biol</i> 2017;173:317-22. doi: 10.1016/j.jsbmb.2017.03.015 [published Online First:
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebocontrolled trial. <i>Rheumatology</i> 2007;46(12):1852-57. doi: 10.1093/rheumatology/kem240 40. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial. <i>J Steroid Biochem Mol Biol</i> 2017;173:317-22. doi: 10.1016/j.jsbmb.2017.03.015 [published Online First: 2017/03/23]
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433	 Clinical Practice Guideline. <i>Endocrine Connections</i> 2013;2(2):87-95. doi: 10.1530/ec-13-0008 35. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. <i>N Engl J Med</i> 2019;380(1):33-44. doi: 10.1056/NEJMoa1809944 [published Online First: 2018/11/13] 36. EFSA Panel on Dietetic Products NaAN. Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. <i>EFSA Journal</i> 2012;10(7):2813. doi: 10.2903/j.efsa.2012.2813 37. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. <i>J Clin Endocrinol Metab</i> 2011;96(1):53-8. doi: 10.1210/jc.2010-2704 [published Online First: 2010/12/02] 38. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. <i>JAMA</i> 2010;303(18):1815-22. doi: 303/18/1815 [pii] 10.1001/jama.2010.594 [published Online First: 2010/05/13] 39. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebocontrolled trial. <i>Rheumatology</i> 2007;46(12):1852-57. doi: 10.1093/rheumatology/kem240 40. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial. <i>J Steroid Biochem Mol Biol</i> 2017;173:317-22. doi: 10.1016/j.jsbmb.2017.03.015 [published Online First:

1 2		
2	427	2016,176(2),175,02, doi: 10.1001/jamainterrand 2015,7140 [nublished Online First
4	437	2016;176(2):175-83. doi: 10.1001/jamainternmed.2015.7148 [published Online First:
5	438	2016/01/10] 42. Appel LJ, Michos ED, Mitchell CM, et al. The Effects of Four Doses of Vitamin D Supplements on
6	439	
7	440	Falls in Older Adults : A Response-Adaptive, Randomized Clinical Trial. Ann Intern Med
8	441	2020;0(0):null. doi: 10.7326/M20-3812 [published Online First: 2020/12/08]
9	442	43. Burt LA, Billington EO, Rose MS, et al. Effect of High-Dose Vitamin D Supplementation on
10	443	Volumetric Bone Density and Bone Strength: A Randomized Clinical Trial. JAMA
11 12	444	2019;322(8):736-45. doi: 10.1001/jama.2019.11889 [published Online First: 2019/08/28]
12	445	44. Bislev LS, Grove-Laugesen D, Rejnmark L. Vitamin D and muscle health: A systematic review and
14	446	meta-analysis of randomized placebo-controlled trials. <i>J Bone Miner Res</i> 2021;36(9):1651-60.
15	447	doi: 10.1002/jbmr.4412 [published Online First: 2021/08/19]
16	448	45. Heyer FL, de Jong JJ, Willems PC, et al. The Effect of Bolus Vitamin D3 Supplementation on Distal
17	449	Radius Fracture Healing: A Randomized Controlled Trial Using HR-pQCT. J Bone Miner Res
18	450	2021;36(8):1492-501. doi: 10.1002/jbmr.4311 [published Online First: 2021/04/21]
19	451	46. Rhodes JM, Subramanian S, Laird E, et al. Perspective: Vitamin D deficiency and COVID-19
20	452	severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis.
21	453	<i>J Intern Med</i> 2021;289(1):97-115. doi: 10.1111/joim.13149 [published Online First:
22 23	454	2020/07/03]
23 24	455	47. Rhodes J, Dunstan F, Laird E, et al. COVID-19 mortality increases with northerly latitude after
25	456	adjustment for age suggesting a link with ultraviolet and vitamin D. BMJ Nutr Prev Health
26	457	2020;3(1):118-20. doi: 10.1136/bmjnph-2020-000110 [published Online First: 2020/11/26]
27	458	48. EFSA Panel on Dietetic Products N, Allergies. Scientific Opinion on the substantiation of health
28	459	claims related to vitamin D and normal function of the immune system and inflammatory
29	460	response (ID 154, 159), maintenance of normal muscle function (ID 155) and maintenance of
30	461	normal cardiovascular function (ID 159) pursuant to Article 13(1) of Regulation (EC) No
31	462	1924/2006. EFSA Journal 2010;8(2):1468. doi: https://doi.org/10.2903/j.efsa.2010.1468
32	463	49. Pal R, Banerjee M, Bhadada SK, et al. Vitamin D supplementation and clinical outcomes in COVID-
33 34	464	19: a systematic review and meta-analysis. J Endocrinol Invest 2021 doi: 10.1007/s40618-
35	465	021-01614-4 [published Online First: 2021/06/25]
36	466	50. Zmitek K, Hribar M, Lavrisa Z, et al. Socio-Demographic and Knowledge-Related Determinants of
37	467	Vitamin D Supplementation in the Context of the COVID-19 Pandemic: Assessment of an
38	468	Educational Intervention. Front Nutr 2021;8:648450. doi: 10.3389/fnut.2021.648450
39	469	[published Online First: 2021/06/22]
40	470	51. Annweiler C, Beaudenon M, Simon R, et al. Vitamin D supplementation prior to or during COVID-
41	471	19 associated with better 3-month survival in geriatric patients: Extension phase of the
42	472	GERIA-COVID study. J Steroid Biochem Mol Biol 2021;213:105958. doi:
43 44	473	10.1016/j.jsbmb.2021.105958 [published Online First: 2021/08/01]
45	474	52. Sabico S, Enani MA, Sheshah E, et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3
46	475	Supplementation on Recovery of Symptoms in Patients with Mild to Moderate Covid-19: A
47	476	Randomized Clinical Trial. Nutrients 2021;13(7) doi: 10.3390/nu13072170 [published Online
48	477	First: 2021/07/03]
49	478	53. Murai IH, Fernandes AL, Sales LP, et al. Effect of a Single High Dose of Vitamin D3 on Hospital
50	479	Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial.
51	480	JAMA 2021;325(11):1053-60. doi: 10.1001/jama.2020.26848 [published Online First:
52	481	2021/02/18]
53 54	482	54. Alcala-Diaz JF, Limia-Perez L, Gomez-Huelgas R, et al. Calcifediol Treatment and Hospital
54 55	483	Mortality Due to COVID-19: A Cohort Study. Nutrients 2021;13(6) doi: 10.3390/nu13061760
56	484	[published Online First: 2021/06/03]
57	485	55. Laird E, Walsh JB, Lanham-New S, et al. A high prevalence of vitamin D deficiency observed in an
58	486	Irish south east asian population: A cross-sectional observation study. <i>Nutrients</i> 2020;12(12)
59	487	doi: 10.3390/nu12123674 [published Online First: 2020/12/03]
60		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	488 490 491 492 493 494 495 496 497 498	 56. Scully H, Laird E, Healy M, et al. Geomapping Vitamin D Status in a Large City and Surrounding Population-Exploring the Impact of Location and Demographics. <i>Nutrients</i> 2020;12(9) doi: 10.3390/nu12092663 [published Online First: 2020/09/04] 57. Jaaskelainen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. <i>Am J Clin Nutr</i> 2017;105(6):1512-20. doi: 10.3945/ajcn.116.151415 [published Online First: 2017/05/12] 58. Buttriss JL, Lanham-New SA. Is a vitamin D fortification strategy needed? <i>Nutr Bull</i> 2020;45(2):115-22. doi: 10.1111/nbu.12430 [published Online First: 2020/06/17] 59. Kurpad AV, Ghosh S, Thomas T, et al. Perspective: When the cure might become the malady: the layering of multiple interventions with mandatory micronutrient fortification of foods in
16	499 500	India. <i>Am J Clin Nutr</i> 2021;114(4):1261-66. doi: 10.1093/ajcn/nqab245 [published Online First: 2021/07/29]
17 18	500	
19 20		
21 22	502	
23 24		
25 26		
27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42		
43 44		
45 46		
47 48		
49		
50 51		
52 53		
54 55		
56 57		
58		
59 60		

Seasonal variation in monthly average 250HD over 1 year for both pre-Covid-19 group (green circles) and Covid-19 group (red squares). Yearly average 250HD was higher in Covid-19 group compared to pre-Covid-19 group (p <.001). The time of highest infection rate and admission rate to intensive care was in early January 2021 (black arrow).

98x80mm (600 x 600 DPI)

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

STROBE Statement for bmjopen-2021-059477

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found. Done
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported.
		Done
Objectives	3	State specific objectives, including any prespecified hypotheses. Done
Methods		
Study design	4	Present key elements of study design early in the paper Done
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection Done
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up Consecutive laboratory-
		based samples formed the cohort, as described
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable Done
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group Done
Bias	9	Describe any efforts to address potential sources of bias. Bias explained in
		Methods
Study size	10	Explain how the study size was arrived at Sample size was determined by number
5		of laboratory samples during the 2-year time period.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why. Done
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		Done
		(b) Describe any methods used to examine subgroups and interactions Done
		(c) Explain how missing data were addressed. Not pertinent
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Not
		pertinent
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was

eport numbers of individuals at each stage of study—eg numbers potentially eligible, ined for eligibility, confirmed eligible, included in the study, completing follow-up, at sed. Done ive reasons for non-participation at each stage Not pertinent onsider use of a flow diagram Not pertinent ive characteristics of study participants (eg demographic, clinical, social) and informat posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent <i>ohort study</i> —Summarise follow-up time (eg, average and total amount) Not pertinent <i>rt study</i> —Report numbers of outcome events or summary measures over time Done <i>control study</i> —Report numbers in each exposure category, or summary measures of sure <i>sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent eport category boundaries when continuous variables were categorized Done
ined for eligibility, confirmed eligible, included in the study, completing follow-up, and sed. Done ive reasons for non-participation at each stage Not pertinent ive characteristics of study participants (eg demographic, clinical, social) and informat posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent ohort study—Summarise follow-up time (eg, average and total amount) Not pertinen rt study—Report numbers of outcome events or summary measures over time Done <i>control study</i> —Report numbers in each exposure category, or summary measures of sure <i>sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
sed. Done ive reasons for non-participation at each stage Not pertinent onsider use of a flow diagram Not pertinent ive characteristics of study participants (eg demographic, clinical, social) and informate posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent ohort study—Summarise follow-up time (eg, average and total amount) Not pertinent rt study—Report numbers of outcome events or summary measures over time Done control study—Report numbers in each exposure category, or summary measures of sure <i>i-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
ive reasons for non-participation at each stage Not pertinent onsider use of a flow diagram Not pertinent ive characteristics of study participants (eg demographic, clinical, social) and informat posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent ohort study—Summarise follow-up time (eg, average and total amount) Not pertinen rt study—Report numbers of outcome events or summary measures over time Done control study—Report numbers in each exposure category, or summary measures of sure <i>s-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
bonsider use of a flow diagram Not pertinent ive characteristics of study participants (eg demographic, clinical, social) and informat posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent bohort study—Summarise follow-up time (eg, average and total amount) Not pertinent to study—Report numbers of outcome events or summary measures over time Done control study—Report numbers in each exposure category, or summary measures of sure <i>x-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
ive characteristics of study participants (eg demographic, clinical, social) and informat posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent <i>ohort study</i> —Summarise follow-up time (eg, average and total amount) Not pertinent <i>rt study</i> —Report numbers of outcome events or summary measures over time Done <i>control study</i> —Report numbers in each exposure category, or summary measures of sure <i>s-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
posures and potential confounders Done dicate number of participants with missing data for each variable of interest Not nent ohort study—Summarise follow-up time (eg, average and total amount) Not pertinen rt study—Report numbers of outcome events or summary measures over time Done control study—Report numbers in each exposure category, or summary measures of sure <i>c-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
dicate number of participants with missing data for each variable of interest Not nent phort study—Summarise follow-up time (eg, average and total amount) Not pertinent rt study—Report numbers of outcome events or summary measures over time Done control study—Report numbers in each exposure category, or summary measures of sure <i>sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
hent bhort study—Summarise follow-up time (eg, average and total amount) Not pertinent rt study—Report numbers of outcome events or summary measures over time Done control study—Report numbers in each exposure category, or summary measures of sure <i>c-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
<i>cohort study</i> —Summarise follow-up time (eg, average and total amount) Not pertinen <i>rt study</i> —Report numbers of outcome events or summary measures over time Done <i>control study</i> —Report numbers in each exposure category, or summary measures of <i>sure</i> <i>c-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
<i>rt study</i> —Report numbers of outcome events or summary measures over time Done <i>control study</i> —Report numbers in each exposure category, or summary measures of sure <i>c-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
<i>control study</i> —Report numbers in each exposure category, or summary measures of sure <i>-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
sure <i>x-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
<i>s-sectional study</i> —Report numbers of outcome events or summary measures ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
ive unadjusted estimates and, if applicable, confounder-adjusted estimates and their sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
sion (eg, 95% confidence interval). Make clear which confounders were adjusted for a hey were included Not pertinent
hey were included Not pertinent
eport category boundaries when continuous variables were categorized Done
relevant, consider translating estimates of relative risk into absolute risk for a meaning
period Not pertinent
rt other analyses done—eg analyses of subgroups and interactions, and sensitivity
ses Done
4
narise key results with reference to study objectives Done
iss limitations of the study, taking into account sources of potential bias or imprecision
iss both direction and magnitude of any potential bias Done
a cautious overall interpretation of results considering objectives, limitations, multipli
alyses, results from similar studies, and other relevant evidence Done
ss the generalisability (external validity) of the study results Done
the source of funding and the role of the funders for the present study and, if applicab
e original study on which the present article is based No funding for study is stated
1

BMJ Open

BMJ Open

The COVID-19 pandemic and vitamin D: rising trends in status and in daily amounts of vitamin D provided by supplements

Journal:	mal: BMJ Open	
Manuscript ID bmjopen-2021-059477.R1		
Article Type:	Article Type: Original research	
Date Submitted by the Author:	1 /4-IIID-/II//	
Complete List of Authors:	: McKenna, Malachi; St Vincent's University Hospital Lyons, Oonagh; Ulster University - Coleraine Campus, Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences Flynn, Mary; Ulster University - Coleraine Campus, Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences Crowley, Rachel ; St Vincent's University Hospital Twomey, Patrick; St Vincent's University Hospital Kilbane, Mark; St Vincent's University Hospital	
Primary Subject Heading :		
Secondary Subject Heading: Public health		
Keywords: COVID-19, NUTRITION & DIETETICS, Calcium & bone < DIABE ENDOCRINOLOGY		

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

2		
3	1	The COVID-19 pandemic and vitamin D: rising trends in status and in daily amounts of
4		
5 6	2	vitamin D provided by supplements
7	-	
8		
9	3	
10		
11	4	Malachi J. McKenna, M.D. ^{1,2}
12		
13	5	Oonagh C. Lyons, M.Sc. ³
14 15		
16	6	Mary A. T. Flynn, Ph.D., R.D. ³
17		
18	7	Rachel K Crowley, M.D. ^{1,2}
19	,	ndener k erowiey, wi.b.
20	0	Datrick L Twomov E B C Dath 12
21	8	Patrick J. Twomey, F.R.C.Path. ^{1,2}
22	-	
23 24	9	Mark T. Kilbane, Ph.D. ^{1,2}
24		
26	10	
27		
28	11	¹ Department of Clinical Chemistry, St. Vincent's University Hospital, Dublin, Ireland
29		
30		
31	12	² UCD School of Medicine, University College Dublin, Dublin, Ireland
32 33		
34	13	³ Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster
35		
36	14	University, Coleraine, Northern Ireland, UK
37		
38		
39 40	15	
40 41		
42	16	Corresponding author: Professor Malachi McKenna, St. Vincent's Healthcare Group, Dublin
43	10	corresponding author. Professor Malachi McKenna, St. Wheenes realthcare Group, Dubin
44	4 7	A baland must watacht ad anna O ad ta
45	17	4, Ireland. email: <u>malachi.mckenna@ucd.ie</u>
46		
47	18	
48 49	10	
49 50		
51	19	
52		
53		
54	20	Keywords: COVID-19, 25OHD, vitamin D supplements
55		
56 57	21	Word County 242E
57 58	21	Word Count: 3435
59		
60		

1 2				
2 3 4	22	ABSTRACT		
5 6	23	Objectives: Since the onset of the COVID-19 pandemic in 2020, there have been plausible		
7 8 9	24	suggestions about the need to augment vitamin D intake by supplementation in order to		
10 11	25	prevent SARS-Co-V2 infection and reduce mortality. Some groups have advocated		
12 13 14	26	supplementations for all adults, but governmental agencies have advocated targeted		
14 15 16	27	supplementation. We sought to explore the effect of COVID-19 pandemic on both vitamin D		
17 18	28	status and on the dose of new-to-market vitamin D supplements.		
19 20 21 22	29	Setting: University hospital, Dublin, Ireland.		
23 24 25	30	Participants: Laboratory-based samples of circulating 25-hydroxyvitamin D (250HD) (<i>n</i> =		
26 27	31	100,505)		
28 29 30	32	Primary and secondary outcome measures: Primary outcomes: comparing yearly average		
31 32 33	33	250HD prior to the pandemic (April 2019 to March 2020) with during the pandemic (April		
34 35	34	2020 to March 2021) and comparing the dose of new-to-market vitamin D supplements		
36 37 38	35	between 2017 and 2021. Secondary outcome: comparing prevalence of vitamin D deficiency		
39 40	36	and vitamin D excess during the two time periods.		
41 42 43	37	Results: The average yearly serum 250HD measurement increased by 2.8 nmol/L (61.4,		
44 45	38	95%Cl 61.5 – 61.7 vs 58.6, 95% Cl 58.4-58.9, <i>p</i> <.001), which was almost 3-fold higher than		
46 47 48	39	two similar trend analyses that we conducted between 1993 and 2016. There was a lower		
49 50	40	prevalence of low 250HD and a higher prevalence of high 250HD. The dose of new-to-		
51 52 53	41	market vitamin D supplements was higher in the years 2020-2021 compared to the years		
54 55 56	42	2017-2019 (<i>p</i> <.001).		
57 58	43	Conclusions: We showed significant increases in serum 25OHD and in the dose of new-to-		
60 44 market vitamin D supplements. The frequency of low vitamin D status reduced indicat				

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

benefit, but the frequency of vitamin D excess increased indicating risk of harm. Rather than a blanket recommendation about vitamin D supplementation for all adults, we recommend a targeted approach of supplementation within current governmental guidelines to at-risk groups and cautioning consumers about adverse effects of high dose supplements on the market. Strengths and limitations This is a laboratory-based 250HD trend analysis that includes a large sample size. This trend analysis is compared to with two prior trend analyses dating back to 1993. This is not a population-based representative sample and is subject to selection bias. There is no clinical information about reason for 250HD testing or about vitamin D Liezoni supplementation.

57	INTRODUCTION
57	

Vitamin D is an essential micronutrient in all age groups for bone and muscle health[1-4]. Vitamin D may have a role in extraskeletal health such as the immune response to acute respiratory illnesses[5], which is pertinent during the COVID-19 pandemic[6]. Following the onset of the pandemic, some reports advocated blanket oral supplementation to entire populations with doses ranging from 20 µg to 50 µg daily[7-10], which are in excess of vitamin D intake requirement as specified by governmental agencies in Europe and North America [1-4]. By contrast, other groups have countered this blanket recommendation, favouring a targeted approach based on modelling of total vitamin D intakes[11, 12].

Governmental reports, which have been issued over the past decade prior to the
pandemic, are based on similar health outcomes such as musculoskeletal health, falls and
total risk of mortality, but not on immune response to infection[1, 3, 4]. Subsequently,
governmental agencies from England and Ireland issued advice about vitamin D
supplementation during the pandemic[13, 14]. This advice targeting at-risk populations
included measures to facilitate supplementation[13, 14](Table 1) given the ongoing
concerns about vitamin D inadequacy across Europe[15, 16].

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3
4
5
6
4 5 7 8 9 10
8
9
10
11
12
13
14 15 16 17
15
16
1/
18
19 20
20
∠ I 22
20 21 22 23 24 25 26 27 28
25 24
24
25
20
27
20 29
30
31
32
33
34
35
36
37
34 35 36 37 38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

78

1 2

73 Table 1 Vitamin D intake recommendations

Region	Year	Vitamin D Intake	Population Reference Intake μg/day (age group)
USA & Canada[1]	2011	Total intake	15 (<70 у)
			20 (≥70 y)
Nordic Countries[2]	2014	Total intake	10 (<75 y)
			20 (≥75 y)
European Union[3]	2016	Total intake	15 (≥18)
United Kingdom[4]	2016	Total intake	10 (all adults)
COVID-19 vitamin D	2020	Supplemental	20-50 (all adults, all year)
advocates[7-10]		intake	
Post COVID-19 United	2020	Supplemental	10 (October to March for healthy
Kingdom[13]		intake	adults)
			10 (all year for those with limited
			sunlight exposure)
Post COVID-19	2020	Supplemental	10 (October to March >65 y)
Ireland[14]		intake	15 (all year for housebound >65 y)

Total intake refers to vitamin D intake from all sources: skin production and oral intake
(natural foods, fortified foods, supplements). Population reference intakes for governmental
agencies refers to intake that meets the needs of 97.5% on the population; these intakes are
based on health outcomes such as musculoskeletal health, falls and total risk of mortality,

79 Ensuring adequate vitamin D intake across all age groups is a challenging population health task. Vitamin D intake requirements must be modelled to cover total intake because 80 vitamin D supply has various sources: skin production on exposure to ultra-violet light, natural 81 foods, fortified foods, and supplements. There is almost complete unanimity about total 82 vitamin D intake population requirements across governmental agencies for North America 83 84 and for Europe[1-4]. In circumstances of minimal or no sunlight exposure, the total oral intake requirement varies between 10 µg and 20 µg daily (400 IU to 800 IU daily)[1-4]. The pre-85 eminent measure of vitamin D status is the measurement of the circulating vitamin D 86 metabolite, 25-hydroxyvitamin D (250HD). 87

Page 7 of 27

BMJ Open

We have been engaged in clinical research on 250HD since the 1970s[17]. We have noted substantial improvement in vitamin D status over the past 5 decades. In our early studies in Ireland, we noted the primacy of oral intake over sunlight exposure for both the prevention and correction of vitamin D deficiency [18-21]. Following the advent of voluntary milk fortification in Ireland in the 1980s at 1 μ g/100 ml (but more recently some milk products fortify at 2 μ g/100 ml) and the ready availability of low-dose vitamin D supplements, vitamin D status has improved substantially[22]. In more recent years, we reported instances of hypervitaminosis D raising concerns about excessive oral intake of vitamin D[23].

We have published two trend analyses of laboratory-based 250HD results: the first trend study reported 250HD from 1993 to 2013 that incorporated a time series analysis to predict 250HD trend from 2014 to 2016[24]; the second trend study reported 250HD from 2014 to 2016 that confirmed the forecast analysis from the first study[25]. We reported that over 24 years in Ireland from 1993 to 2016 that the yearly average 25OHD concentration increased by about 1 nmol/L/year. As early as 2014, we recognized a dual concern about vitamin D status in Ireland: hypovitaminosis D in at-risk groups; and hypervitaminosis D due to high supplemental intake, especially from over-the-counter preparations in individuals who already have adequate vitamin D status[23]. One of the consequences of raising public awareness, whether it be from governmental agencies or from professional bodies, is the increased supply of vitamin D supplements, which are available for over-the-counter purchase.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

We sought to explore the effect of COVID-19 pandemic on vitamin D status from April 2020 to March 2021 given the conflicting advice: governmental agencies promoting vitamin D supplementation in at-risk groups, and groups advocating blanket

Page 8 of 27

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

recommendations for vitamin D supplementation to all adults. We examined vitamin D
status before and during the first year of the pandemic when public debate and temporary
emergency legislative measures (such as social distancing and mask wearing) were focused
on how people could protect themselves against COVID-19. We also assessed the Food
Safety Authority of Ireland (FSAI) notification database for new-to-market vitamin D
supplements notified between 2017 and 2021 ; all food supplements placed on the Irish
market must be notified to FSAI.[26]

118 METHODS

119 Data mining

Our laboratory data system was mined to identify all 250HD samples over a 24-month period from April 2019 to March 2021: pre-COVID-19 era being represented by 12 months from April 2019 to March 2020, and the COVID-19 era being represented by April 2020 to March 2021. In order to identify duplicate samples, the following identifiers were extracted: date of birth and medical record number. Additional data included age, sex, referral source (either hospital consultant or general practitioner), and date of 250HD test. The sample size for the 24 months from April 2019 to March 2021 was 137,963; after excluding those with more than one sample during the 2 years (n = 37,458) the final sample was trimmed to 100,505. Regarding those cases with more than one 250HD sample, the analysis was based on the 250HD being the first sample, which hereafter is termed the first in sequence. A secondary analysis was performed, whereby the selected 25OHD of those cases with more than one sample was the final sample, which hereafter is termed the last in sequence.

To enable closer monitoring of food supplements, Ireland took up the option within the
 To enable closer monitoring of food supplements, Ireland took up the option within the
 EU Directive regulating food supplements of mandating food businesses placing food
 supplements on the Irish market to notify all details on the products to the FSAI. We mined

BMJ Open

2 3 4	135	this FSAI notification database about new-to-market vitamin D supplements that were
5 6	136	notified between January 2017 and December 2021 ($n = 2688$).
7 8 9 10 11 12 13 14	137	Research Ethics Approval
	138	The Clinical Audit Committee, St Vincent's Healthcare Group, approved the extraction
	139	and audit of the data from our hospital laboratory system (reference number: 3174). Audits
15 16 17	140	reviewed and approved in Ireland by an institutional clinical audit committee are neither
18 19	141	subject to Research Ethics Committee approval nor require individual consent, as per Irish
20 21 22	142	Health Research Regulations 2018.
23 24	143	Public and Patient Involvement
25 26 27 28	144	It was not appropriate or possible to involve patients or the public in the design, or
29 30	145	conduct, or reporting, or dissemination plans of our research.
31 32 33	146	Study design
34 35 36	147	The primary analysis entailed a comparison of serum 250HD concentration in the pre-
37 38	148	COVID-19 era, hereafter referred to as group 1, with 250HD in the COVID-19 era, hereafter
39 40 41 42 43	149	referred to as group 2. The prevalence estimates for categories of 250HD in the two groups
	150	were calculated according to the following thresholds: <30 nmol/L; 30-50 nmol/L; 50.1-125
44 45 46	151	nmol/L; and >125 nmol/L. In addition, a composite analysis of the entire group over the 2
47 48	152	years was performed in order to assess vitamin D status according to age, sex, and different
49 50 51	153	age groups.
52 53 54	154	The list of vitamin D supplements that were notified to the FSAI between 2017 and
55 56	155	2020 was collated with respect to the total dose of vitamin D. Vitamin D supplements were
57 58 59 60	156	categorised as high dose according to two different standards: firstly, if they exceeded the

Page 10 of 27

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

tolerable upper intake level (UL) of 100 μg, which is defined as is the highest level of longterm daily intake of a nutrient, from all sources, judged to be unlikely to pose a risk of adverse
health effects to humans[27]; and secondly, if they exceeded the maximum safe level (MSL)
of 75 μg, which is defined as maximum amount of vitamin D that can safely be added to food
supplements targeting teenagers and adults in Ireland. The MSL is calculated using a risk
assessment approach: it is equal to the UL minus the estimated intake of vitamin D intake in
the highest consumers (95th percentile of intake from both base diet and fortified foods)[28].

164 Analytical Methods

Serum 250HD concentrations were quantified using the Elecsys Vitamin D Total (Roche Diagnostics GmbH, Mannheim, Germany) automated competitive binding protein assay, which measures total vitamin D, including isomers in the form of the C3 epimer as well as 24,250HD metabolites. This is not specifically corrected for; rather, an assumption is made that there is a non-statistically significant difference in the percent concentration of vitamin D metabolites relative to the measured concentration in patient samples tested over the three-year period. The average inter-assay coefficients of variation (CV) for the 25OHD assay determined over the period studied were as follows: 14.6% at a mean concentration of 37.7 nmol/L, 8.7% at a mean concentration of 74.6 nmol/L, and 7.6% at a mean concentration of 112.1 nmol/L. Functional sensitivity was verified at 15 nmol/L (%CV <20%). To ensure a high standard of analysis for serum 250HD concentrations, the laboratory participates in an external quality assurance scheme: the Vitamin D External Quality Assessment Scheme (DEQAS)[29]. During the 2-year period 2019 to 2021, our assay displayed a mean bias of 1.12 % from target values provided by the Centers for Disease Control and Prevention (Atlanta, Georgia, USA) using their isotope dilution LC-MS/MS Reference Measurement Procedure[30].

BMJ Open

3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

Assay performance also met DEQAS defined quality assurance performance criteria. For samples with undetectable 25OHD (<15 nmol/L), the result was censored at 14.9 pmol/L. For samples with high 25OHD (>175 mol/L), the result was censored at 175.1 nmol/L.

183 Statistical analysis

Descriptive statistics are presented as number and percent for categorical variables 184 and as mean (95% confidence intervals) or median (interquartile range) for continuous 185 variables. Differences in independent categorical variables were tested by chi-square. 186 187 Differences between two means for 250HD (both yearly and monthly) were tested by 188 independent-samples t test using Levene's test for equality of variances. To account for 189 multiple testing of monthly mean 250HD, the Benjamini-Hochberg correction method was applied with a false discovery rate of 0.05; p values were converted to corresponding q values 190 for the determination of true significance. A one-way analysis of variance (ANOVA) was 191 conducted to explore the impact of year on dose of newly notified vitamin D supplements; 192 193 post-hoc comparisons were made using Tukey HSD test. Statistics were considered significant 194 if p value <.05. Analyses were performed using IBM SPSS Statistics version 25 (Armonk, NY, USA). 195

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

196 RESULTS

47
48197Group 1 and group 2 were similar with respect to age, sex, and source of referral (Table49
501981). Mean 25OHD was 2.8 nmol/L higher in group 2 compared to group 1 (61.4, 95%CI 61.5,52
5319961.7 nmol/L vs 58.6, 95% CI 58.4, 58.9 nmol/L, p < .001) (Table 1). If the 25OHD duplicate result53
54
55200was selected as last in sequence, then mean 25OHD was 5.1 nmol/L higher in group 256
57
50
50201compared to group 1 (63.3, 95%CI 63.2, 63.6 nmol/L vs 58.2, 95% CI 58.0, 58.5 nmol/L, p59
60202<.001). In group 2 compared to group 1, there was a lower percent (12.0% vs 13.4%) of low</td>

1 2		
3 4	203	vitamin D status (250HD <30 nmol/L) but a higher percent (2.1% vs 1.7%) of high vitamin D
5 6	204	status (250HD >125 nmol/L) (p <.001) (Table 2).
7 8 9		
9 10 11		
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48 49		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		
		11

	Variable	Group 1	Group 2				
		(<i>n</i> = 58,642)	(<i>n</i> = 41,863)				
	Age, years	52.5 (52.3, 52.7)	52.3 (52.1, 52.5)				
	Women : Men, %	66.4 : 33.6	64.3 : 35.7				
	Hospital : Primary Care, %	30.0 : 70.0	25.5 : 74.5				
	25OHD status, %						
	<30 nmol/L	13.4	12.0				
	30-50 nmol/L	28.4	25.1				
	51-125 nmol/L	56.6	60.7				
	>125 nmol/L	1.7	2.1				
	25OHD, nmol/L	58.6 (58.4-58.9)	61.4 (61.5 – 61.7)				
206	Results are presented as % for cates	gorical variables and as mean	(95%CI) for continuous				
207	variables						
208	The monthly 250HD trimmed values for both groups are plotted showing the seasonal						
	·	a values for both groups are p	lotted showing the seas				
209	variation (Figure 1). The average se		-				
209 210	variation (Figure 1). The average se identical for both at 20.2 nmol/L in	easonal change in 250HD from	n nadir to peak was alr				
		easonal change in 25OHD fror group 1 and 20.1 nmol/L in gr	n nadir to peak was alr oup 2. Starting the mor				
210	identical for both at 20.2 nmol/L in	easonal change in 25OHD from group 1 and 20.1 nmol/L in gr y mean 25OHD in group 2 con	n nadir to peak was alr oup 2. Starting the mor npared to group 1 follor				
210 211	identical for both at 20.2 nmol/L in sequence in April 2020, the monthly	easonal change in 25OHD from group 1 and 20.1 nmol/L in gr y mean 25OHD in group 2 con r multiple comparisons was	n nadir to peak was alr oup 2. Starting the mor npared to group 1 follow significantly higher in				
210 211 212	identical for both at 20.2 nmol/L in sequence in April 2020, the monthly Benjamini-Hochberg correction for	easonal change in 25OHD from group 1 and 20.1 nmol/L in gr y mean 25OHD in group 2 con r multiple comparisons was one ($q < .001$), July ($q < .001$), Ou	n nadir to peak was alr oup 2. Starting the mor npared to group 1 follor significantly higher in ctober (q =.012), Nover				
210 211 212 213	identical for both at 20.2 nmol/L in sequence in April 2020, the monthly Benjamini-Hochberg correction for following months: May (q <.001), Ju	easonal change in 25OHD from group 1 and 20.1 nmol/L in gr y mean 25OHD in group 2 con r multiple comparisons was one ($q < .001$), July ($q < .001$), Ou	n nadir to peak was alr oup 2. Starting the mor npared to group 1 follor significantly higher in ctober (q =.012), Nover				

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> higher in May, June, July, October, November, December, February, and March (see results). For the composite analysis, mean 250HD was higher in women compared to men (61.3, 95%CI 61.1 – 61.5 nmol/L vs 56.9, 95% CI 56.7-57.3 nmol/L, p <.001), and in those sourced from primary care compared to hospital care (60.7, 95%CI 60.5 - 60.9 nmol/L vs 57.4, 95% CI 57.0-57.7 nmol/L, p <.001). Vitamin D status according to age categories showed that infants and toddlers had the lowest prevalence of 25OHD <30 nmol/L and the highest prevalence for 25OHD >125 nmol/L (Table 3). Regarding vitamin D status according to age categories and sex, adult females had better vitamin D status than males, but in infants a greater percent of females compared to males had both the lowest and the highest prevalence of vitamin D status, but the numbers were small (Table 3).

Table 3. Crosstabulation	n of vitamin D status a	according to age	categories and sex
--------------------------	-------------------------	------------------	--------------------

Age Categories	Vitamin D Status, nmol/L				
		<30	30 - 50	50.1 -125	>125
Infants	Female (<i>n</i> =87)	8.0	6.9	67.8	17.2
	Male (<i>n</i> =128)	4.7	10.2	76.6	8.6
	Total (<i>n</i> =215)	6.0	8.8	73.0	12.1
Toddlers	Female (<i>n</i> =250)	3.6	17.6	74.4	4.4
	Male (<i>n</i> =288)	6.3	15.6	73.3	4.8
	Total (<i>n</i> =538)	5.0	16.5	73.8	4.6
Children &	Female (<i>n</i> =3,253)	16.5	33.4	49.5	0.7
adolescents	Male (<i>n</i> =2,271)	13.7	30.8	54.3	1.2
	Total (<i>n</i> =5,524)	15.4	32.3	51.4	0.8
Young adults	Female (<i>n</i> =42,757)	12.0	28.4	57.8	1.9
	Male (<i>n</i> =20,533)	15.9	31.0	51.7	1.4
	Total (<i>n</i> =63,290)	13.3	29.2	55.8	1.7
Older adults	Female (<i>n</i> =19,493)	10.0	19.1	68.3	2.7
	Male (<i>n</i> =11,415)	14.1	26.5	57.7	1.6
	Total (<i>n</i> =30,908)	11.6	21.8	64.3	2.3
Total	Female (<i>n</i> =65,840)	11.6	25.8	60.5	2.1
	Male (<i>n</i> =34,635)	15.1	29.3	54.1	1.5
	Total (<i>n</i> =100,475)	12.8	27.0	58.3	1.9

227 Results are presented as %

BMJ Open

3	
4	
5	
6	
/	
8	
9	
	0
1	1
1	2
1	3
1	
	5
	6
1	7
	, 8
1	
	0
	1
2	
2	3
2	4
2	5
2	6
2	7
2	8
2	9
	0
	1
3	
3	
3	3 4
	4 5
-	6
3	-
	8
	9
	0
4	
4	
4	3
4	4
4	5
4	
4	
4	
4	
	0
5	
5 5	
5 5	
5	
5	5
5	6
5	7
E	0

58 59 60

	228	Regarding the analysis of the FSAI notification database of new-to-market vitamin D
	229	supplements notified between 2017 and 2021, there was a significant difference in mean
	230	vitamin D doses over the 5 years ($p < .001$). Post-hoc comparisons showed no differences
)	231	between 2017, 2018, and 2019, but higher in 2020 compared to the 2017, 2108, and 2019
: ; ;	232	(respectively, $p = .002 p = .021 p = .001$) and higher in 2021 compared to 2020 ($p < .002$)
; ;	233	(Figure 2). Regarding the proportion of food supplement products notified that provide
, ;)	234	daily amounts of vitamin D exceeding the UL of 100 μ g (1%, n = 9) and the MSL of 75 μ g (3%,
)	235	n = 80), the majority were notified during the COVID-19 pandemic ($n = 3$ in 2017–2019 vs. $n =$
<u>}</u> }	236	6 in 2020–2021 above the UL; <i>n</i> = 18 in 2017–2019 <i>vs</i> . <i>n</i> = 62 in 2020–2021 above the MSL)
, , ,	237	(Table 4).
,		

238 Table 4

Year	Number of	Mean	SD	IQR	Median	25 th centile	75 th centile	Min.	Max.	Number	Number
	supplements	amount						amount	amount	above	above
	notified	of						of	of	UL (100	MSL (75
		vitamin						vitamin	vitamin	ug)	ug)
		D (ug)						D (ug)	D (ug)		
2017	491	10.6	14.3	5.0	5.0	5.0	10.0	0.08	100	0	4 (0.8%)
2018	383	11.3	16.5	5.7	5.0	4.3	10.0	0.002	200	1 (0.3%)	3 (0.8%)
2019	442	11.1	18.1	6.8	5.0	3.2	10.0	0.63	125	2 (0.5%)	11
											(2.5%)
2020	554	16.2	22.2	15.0	10.0	5.0	20.0	0.34	200	1 (0.2%)	17
											(3.1%)
2021	819	21.3	34.5	20.0	10.0	5.0	25.0	0.13	500	5 (0.6%)	45
											(5.5%)

239 UL = upper tolerable intake level: MSL = maximum safe level

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

DISCUSSION

In a trend analysis of laboratory-based 25OHD samples comparing yearly average 250HD in the 12 months before onset of the COVID-19 pandemic (April 2019 to March 2020) with the first 12 months of the COVID-19 pandemic in Ireland (April 2020 to March 2021), we showed the average yearly 250HD increased by 2.8 nmol/L/year. This yearly trend was nearly 3-fold higher than the average yearly increase in 25OHD of 1 nmol/L/year that we recorded in two prior trend analyses of laboratory-based samples from 1993 to 2016[24, 25]. If the 25OHD duplicate was selected as last in sequence for the trend analysis, then average 25OHD increase during the pandemic was even higher at 5.1 nmol/L/year. We observed benefit with respect to their being lower prevalence of 25OHD <30 nmol/L, but to a lesser extent there was a higher prevalence of 250HD >125 nmol/L. Higher average monthly 250HD was noted in nearly all months except at the end of summer, suggesting an increase in the prevalence of vitamin D supplementation. The dose of new-to-market vitamin D supplements increased significantly during the pandemic with an increase in the frequency of supplements exceeding the UL and MSL.

The 250HD threshold for diagnosis of vitamin D deficiency depends on the approach: whether is it viewed as being population-based[1, 4] or as being case-based[31]. For a population-based approach, the Institute of Medicine (IOM) for the USA and Canada in 2011 used a statistical probability method to determine the prevalence of nutrient inadequacy[32]. The IOM set a 250HD threshold of 30 nmol/L. IOM referred to 250HD as a "biomarker of exposure" but not as a "biomarker of effect", which means that 250HD is the preeminent measure of total vitamin D intake, but it only estimates risk of disease. Thus, 250HD below 30 nmol/L was defined by IOM as "risk of deficiency". Similarly, the Scientific Advisory

BMJ Open

D	th
int	ak
fal	l ir
se	d a
n	in
e S	ос
ce	at
y a	apı
taı	miı
) µ	lg (
qui	ire
r h	ar
	un
	a
U	L.
she	ed
dd	led
tak	e f
um	S
er	nt a
ay	foi

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Committee on Nutrition (SACN) for the UK set a 25OH reshold of 25 nmol/L[4]. Governmental agencies set their specifications for vitamin D e based on total vitamin D intake. Modelling intake from all sources estimates the short n vitamin D intake that can be bridged by supplemental intake[33]. Whereas, a case-ba pproach, which is guiding clinicians about the need for supplemental vitamin D on a dividual basis, sets higher 25OHD thresholds – for example the European Calcified Tissue iety set a 250HD threshold at 50 nmol/L[31]. Case-based approaches tend to give guidant oout 250HD monitoring.

Governmental agencies have adopted a precautionar proach to vitamin D harm. The tolerable upper intake level (UL) from all oral sources of vit n D (natural foods, fortified foods, and supplement) in those with minimal sunlight is 100 (4000 IU) daily [1, 34]. The UL is 10-fold higher than the average total vitamin D intake rec ment for healthy adults[1]. The UL is not intended as a target intake; rather, the risk for m begins to increase once vitamin D intake surpasses this level[35]. In Ireland, over-theter vitamin D products are regulated by the FSAI. The UL determines the maximum dose vitamin D product that can be marketed. Labelling requires that the dose not exceed the

In addition to the UL, in Ireland the FSAI has also publis guidance for food business operators regarding the MSL of vitamin D that can be a to food supplements in Ireland[28]. Since the UL encompasses daily oral vitamin D int rom all sources (base diet, fortified foods, and food supplements), then the maximu afe dose of a vitamin D supplement should be less than the UL. Following risk assessm pproach, the FSAI deemed that the MSL for vitamin D in food supplements is 75 µg per da r teenagers and adults[28]. In our analysis of new-to-market vitamin D supplements, we noted that the frequency of supplements exceeding the MSL had increased from 0.8% to 6.1% between 2017 and 2021.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

> During the COVID-19 pandemic, some groups have advocated the need for mass vitamin D supplementation in order to enhance immune response to SARS-Co-V2 infection [7, 9, 10, 36, 37]. The European Food Safety Authority permits stating that benefit from vitamin D supplementation covers the normal functioning of the immune system without specifying a vitamin D intake for this benefit[38]. There is some evidence of benefit from vitamin D in randomised controlled trials (RCTs) that have been conducted during the pandemic but there is wide variation in vitamin D doses[39-44]. A Mendelian randomization study did not support an association between 250HD and COVID-19 susceptibility, severity[45], or hospitalization; similar findings have been reported in a UK biobank study [46]. Further studies should provide clarity about benefit and optimal vitamin D schedules. These studies might provide cogent evidence for higher vitamin D intake requirements that could form part of population-based or case-based recommendations. Meanwhile, the likely effect of advocating for mass supplementation is that individuals, who are best able to self-medicate, are the ones who are least likely to need supplementation. Frail older adults, lower socioeconomic groups and minority ethnic groups are more likely to have lower 250HD and are less likely to afford the means for supplementation[47, 48]. It is better to have a targeted approach to vitamin D supplementation such as the frail older adult[13, 14].

Mandatory fortification of foodstuffs with vitamin D, which has been shown to be
 Mandatory fortification of foodstuffs with vitamin D, which has been shown to be
 effective in Finland[49], poses many challenges[50], but has the major advantage of reaching
 lower socio-economic groups excluded from the benefits of foods voluntarily fortified with
 vitamin D due to the significantly higher prices of such foods. Voluntary fortification, while
 less satisfactory than mandatory fortification, is effective at ameliorating seasonal decline in
 250HD, as has been shown in Ireland[22]. Fortification with any nutrient (whether mandatory
 or voluntary) in addition to supplementation (whether mandatory or voluntary), can result in

BMJ Open

total nutrient intakes that are higher than requirement and may even exceed the UL, especially if nutrient intake targets the RDA and not the average requirement[51].

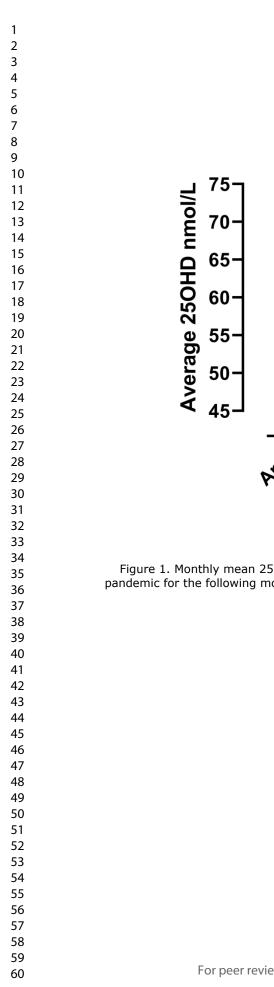
Our trend analysis has many limitations. First and foremost, it is not a representative sample because samples are not collected as part of a population-based survey. We do not have information on the clinical indication for the test nor do we know whether patients were on vitamin D supplements or had an underlying condition that predisposed to vitamin D deficiency. The plot of the seasonal variation of 250HD is open to many interpretations, such as: more outdoor activity during the first lockdown accounting for the increased in 25OHD early in the pandemic from May 2020 to July 2020, coupled with higher supplemental intake during the winter months accounting for higher 25OHD from October 2020 to March 2021 (excepting January 2021). The 12-month trend analysis is too short to declare with any certainty that the COVID-19 pandemic has contributed to a shift upwards in the yearly average 25OHD increase or if it just a transient trend upwards due to the unique circumstances of living through legislatively enforced measures implemented globally to protect people from a pandemic while the search for solutions - such as the potential benefit of vitamin D - was the highest profile news story.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

In conclusion, we report in Ireland a laboratory-based trend analysis of 25OHD showing that the yearly average 25OHD has increased about 3-fold during the first year of COVID-19 pandemic compared to prior trend analysis. This trend reflects benefit for those with low vitamin D status but risk for those with high vitamin D status, especially since there is a trend for greater availability of high dose supplements. Public health efforts should be redoubled at maximising the provision of specified daily vitamin D supplements in at-risk groups and clinically vulnerable patients and should advise about safe vitamin D supplement

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open


There should be a precautionary approach to population-based blanket use. recommendations for vitamin D supplementation to healthy adults, as well as a caution to consumers about adverse effects of high dose vitamin D supplements on the market. Acknowledgements: For 25OHD data mining, we thank John Hill, Department of Pathology, St Vincent's University Hospital. For data mining of new-to-market vitamin D supplements, we thank Paul Devlin (Freelance Excel Consultant). We did not receive financial support from any source. **Author Contributions:** All authors read, edited, and approved the submitted manuscript. Conception and design: MMcK, OL, MF, RC, PT, MK. Laboratory analysis: PT and MK. FSAI supplement analysis: OL and MF. Statistical analysis and data interpretation: MMcK. Drafting manuscript: MMcK. Critical review and revising manuscript: all authors. MMcK takes responsibility for the integrity of the data analysis. Funding: There was no financial support provided for this study. **Competing Interests:** All authors declare that they have no competing interests. Data sharing statement: Data described in the manuscript, code book, and analytic code will be made available upon request pending application to and approval by the corresponding author. **Research Ethics Approval Statement:**

2			
3	354		The Clinical Audit Committee, St Vincent's Healthcare Group, approved the extraction
4			······································
5 6	355	and a	udit of the data from our hospital laboratory system (reference number: 3174). Audits
0 7	333	una a	
8	356	rovio	wed and approved in Ireland by an institutional clinical audit committee are neither
9	550	TEVIE	wed and approved in relation by an institutional clinical dual committee are related
10	357	subio	ct to Research Ethics Committee approval nor require individual consent, as per Irish
11 12	337	Subje	et to Research Ethics committee approval nor require individual consent, as per insh
12 13	358	Hoolt	h Research Regulations 2018
14	520	пеан	h Research Regulations 2018.
15	250		
16	359		
17			
18	360		RENCES
19 20	361	1.	Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Institute of
20 21	362		Medicine: Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The
22	363		National Academies Press; 2011.
23	364	2.	Secretary of the Nordic Council of Ministers, Nordic Council of Ministers: Nordic Nutrition
24	365		Rcommendations: Integrating nutrition and physical activity. In.; 2014.
25	366	3.	EFSA Panel on Dietetic Products NaAN: Dietary reference values for vitamin D. In.; 2016.
26	367	4.	Scientific Advisory Committee on Nutrition: Vitamin D and Health. In., vol. 2016: Crown;
27	368		2016.
28	369	5.	Jolliffe DA, Camargo CA, Jr., Sluyter JD, Aglipay M, Aloia JF, Ganmaa D, Bergman P, Bischoff-
29	370		Ferrari HA, Borzutzky A, Damsgaard CT et al: Vitamin D supplementation to prevent acute
30 31	371		respiratory infections: a systematic review and meta-analysis of aggregate data from
32	372		randomised controlled trials. Lancet Diabetes Endocrinol 2021, 9(5):276-292.
33	373	6.	Martineau AR, Forouhi NG: Vitamin D for COVID-19: a case to answer? Lancet Diabetes
34	374		Endocrinol 2020, 8 (9):735-736.
35	375	7.	McCartney DM, Byrne DG: Optimisation of vitamin D status for enhanced immuno-
36	376		protection against Covid-19. Ir Med J 2020, 113(4):58.
37	377	8.	Griffin G, Hewison M, Hopkin J, Kenny R, Quinton R, Rhodes J, Subramanian S, Thickett D:
38	378		Vitamin D and COVID-19: evidence and recommendations for supplementation. R Soc
39	379		Open Sci 2020, 7 (12):201912.
40	380	9.	McCartney DM, O'Shea PM, Faul JL, Healy MJ, Byrne G, Griffin TP, Walsh JB, Byrne DG, Kenny
41 42	381		RA: Vitamin D and SARS-CoV-2 infection-evolution of evidence supporting clinical practice
43	382		and policy development : A position statement from the Covit-D Consortium. Ir J Med Sci
44	383		2021, 190 (3):1253-1265.
45	384	10.	Griffin G, Hewison M, Hopkin J, Kenny RA, Quinton R, Rhodes J, Subramanian S, Thickett D:
46	385		Preventing vitamin D deficiency during the COVID-19 pandemic: UK definitions of vitamin
47	386		D sufficiency and recommended supplement dose are set too low. Clin Med (Lond) 2021,
48	387		21 (1):e48-e51.
49	388	11.	McKenna MJ, Flynn MAT: Covid-19, Cocooning and Vitamin D Intake Requirements Ir J Med
50 51	389		2020, 113 (5):79.
51 52	390	12.	Lanham-New SA, Webb AR, Cashman KD, Buttriss JL, Fallowfield JL, Masud T, Hewison M,
53	391		Mathers JC, Kiely M, Welch AA et al: Vitamin D and SARS-CoV-2 virus/COVID-19 disease.
54	392		BMJ Nutr Prev Health 2020, 3 (1):106-110.
55	393	13.	NICE: COVID-19 rapid guideline: vitamin D. In.; 2020.
56	394	14.	Food Safety Authority of Ireland: Vitamin D Scientific Recommendations for Food-Based
57	395		Dietary Guidelines for Older Adults in Ireland. In.; 2020.
58			
59			
60			

1 2			
2	200	15	Cochman KD, Douding KC, Skrahokova Z, Conzolas Crass M, Valturas L, Do Hanovuu S
4	396	15.	Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Valtuena J, De Henauw S,
5 6	397		Moreno L, Damsgaard CT, Michaelsen KF, Molgaard C <i>et al</i> : Vitamin D deficiency in Europe :
	398 399	16.	pandemic? <i>Am J Clin Nutr</i> 2016, 103 (4):1033-1044. Pilz S, Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, Keppel MH, Grubler MR,
7	399 400	10.	Marz W, Pandis M: Vitamin D testing and treatment: a narrative review of current
8	400 401		evidence. Endocr Connect 2019, 8(2):R27-R43.
9 10	401	17.	Murray B, Freaney R: Serum 25-hydroxy vitamin D in normal and osteomalacic subjects: a
11	402	17.	comparison of two assay techniques. Ir J Med Sci 1979, 148 (1):15-19.
12	403	18.	McKenna M, Freaney R, Keating D, Muldowney FP: The prevalence and management of
13	404	10.	vitamin D deficiency in an acute geriatric unit. Ir Med J 1981, 74 (11):336-338.
14	406	19.	McKenna MJ, Freaney R, Meade A, Muldowney FP: Hypovitaminosis D and elevated serum
15	407	19.	alkaline phosphatase in elderly Irish people. Am J Clin Nutr 1985, 41 (1):101-109.
16	408	20.	McKenna MJ, Freaney R, Meade A, Muldowney FP: Prevention of hypovitaminosis D in the
17 18	409	20.	elderly. Calcif Tissue Int 1985, 37 :112-116.
19	410	21.	McKenna MJ: Differences in vitamin D status between countries in young adults and the
20	411		elderly. Am J Med 1992, 93(1):69-77.
21	412	22.	McKenna MJ, Freaney R, Byrne P, McBrinn Y, Murray B, Kelly M, Donne B, O'Brien M: Safety
22	413		and efficacy of increasing wintertime vitamin D and calcium intake by milk fortification.
23	414		<i>QJM</i> 1995, 88 (12):895-898.
24	415	23.	Kilbane MT, O'Keane M, Morrin M, Flynn M, McKenna MJ: The double-edged sword of
25 26	416		vitamin D in Ireland: the need for public health awareness about too much as well as too
20	417		little. Ir J Med Sci 2014, 183 (3):485-487.
28	418	24.	McKenna MJ, Murray BF, O'Keane M, Kilbane MT: Rising trend in vitamin D status from
29	419		1993 to 2013: dual concerns for the future. Endocr Connect 2015, 4(3):163-171.
30	420	25.	McKenna MJ, Murray B, Crowley RK, Twomey PJ, Kilbane MT: Laboratory trend in vitamin D
31	421		status in Ireland: Dual concerns about low and high 250HD. J Steroid Biochem Mol Biol
32 33	422		2019, 186 :105-109.
33 34	423	26.	Electronic Irish Statute Book: S.I. No. 506/2007 - European Communities (Food
35	424		Supplements) Regulations 2007. In.; 2007.
36	425	27.	European Food Safety Authority: Scientific Opinion on principles for deriving and applying
37	426		Dietary Reference Values. In. EFSA Journal; 2010.
38	427	28.	Food Safety Authority of Ireland: Guidance for Food Businesses: The Safety of Vitamins and
39	428		Minerals in Food Supplements. Establishing Maximum Safe Levels and Risk Assessment
40 41	429		Approach for Products Marketed in Ireland. In.; 2020.
41	430	29.	Carter GD, Berry J, Durazo-Arvizu R, Gunter E, Jones G, Jones J, Makin HLJ, Pattni P, Phinney
43	431		KW, Sempos CT et al: Quality assessment of vitamin D metabolite assays used by clinical
44	432		and research laboratories. J Steroid Biochem Mol Biol 2017, 173 :100-104.
45	433	30.	Mineva EM, Schleicher RL, Chaudhary-Webb M, Maw KL, Botelho JC, Vesper HW, Pfeiffer
46	434		CM: A candidate reference measurement procedure for quantifying serum concentrations
47	435		of 25-hydroxyvitamin D(3) and 25-hydroxyvitamin D(2) using isotope-dilution liquid
48 49	436	24	chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015, 407 (19):5615-5624.
49 50	437	31.	Lips P, Cashman KD, Lamberg-Allardt C, Bischoff-Ferrari HA, Obermayer-Pietsch B, Bianchi
51	438		ML, Stepan J, El-Hajj Fuleihan G, Bouillon R: Current vitamin D status in European and
52	439		Middle East countries and strategies to prevent vitamin D deficiency: a position statement
53	440 441	27	of the European Calcified Tissue Society. Eur J Endocrinol 2019, 180 (4):P23-P54.
54	441	32.	Taylor CL, Carriquiry AL, Bailey RL, Sempos CT, Yetley EA: Appropriateness of the probability
55 56	442 442		approach with a nutrient status biomarker to assess population inadequacy: a study using vitamin D. Am J Clin Nutr 2013, 97(1):72-78.
56 57	443 444	33.	Lyons OC, Kerr MA, McNulty H, Ward F, Walton J, Livingstone MBE, McNulty BA, Kehoe L,
57	444 445	55.	Byrne PA, Saul I <i>et al</i> : Addressing nutrient shortfalls in 1- to 5-year-old Irish children using
59	C++		By the Fry Saurrer on Audressing nutrient shortrails in 1- to 3-year-old hish children using
60			

1			
2			
3	446		diet modeling: development of a protocol for use in country-specific population health.
4 5	447		Am J Clin Nutr 2021.
6	448	34.	EFSA Panel on Dietetic Products NaAN: Scientific Opinion on the Tolerable Upper Intake
7	449		Level of vitamin D. EFSA Journal 2012, 10(7):2813.
8	450	35.	Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA,
9	451		Gallagher JC, Gallo RL, Jones G et al: The 2011 report on dietary reference intakes for
10	452		calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin
11	453		Endocrinol Metab 2011, 96 (1):53-58.
12	454	36.	Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA: Perspective: Vitamin D deficiency
13 14	455		and COVID-19 severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2
15	456		and thrombosis. J Intern Med 2021, 289(1):97-115.
16	457	37.	Rhodes J, Dunstan F, Laird E, Subramanian S, Kenny RA: COVID-19 mortality increases with
17	458		northerly latitude after adjustment for age suggesting a link with ultraviolet and vitamin D.
18	459		BMJ Nutr Prev Health 2020, 3 (1):118-120.
19	460	38.	EFSA Panel on Dietetic Products N, Allergies: Scientific opinion on the substantiation of
20	461		health claims related to vitamin D and normal function of the immune system and
21	462		inflammatory response (ID 154, 159), maintenance of normal muscle function (ID 155) and
22 23	463		maintenance of normal cardiovascular function (ID 159) pursuant to Article 13(1) of
24	464		Regulation (EC) No 1924/2006. EFSA Journal 2010, 8(2):1468.
25	465	39.	Pal R, Banerjee M, Bhadada SK, Shetty AJ, Singh B, Vyas A: Vitamin D supplementation and
26	466		clinical outcomes in COVID-19: a systematic review and meta-analysis. J Endocrinol Invest
27	467		2021.
28	468	40.	Zmitek K, Hribar M, Lavrisa Z, Hristov H, Kusar A, Pravst I: Socio-demographic and
29	469		knowledge-related determinants of vitamin D supplementation in the context of the
30	470		COVID-19 pandemic: assessment of an educational intervention. Front Nutr 2021,
31 32	471		8 :648450.
33	472	41.	Annweiler C, Beaudenon M, Simon R, Guenet M, Otekpo M, Celarier T, Gautier J, group G-Cs:
34	473		Vitamin D supplementation prior to or during COVID-19 associated with better 3-month
35	474		survival in geriatric patients: Extension phase of the GERIA-COVID study. J Steroid Biochem
36	475		Mol Biol 2021, 213 :105958.
37	476	42.	Sabico S, Enani MA, Sheshah E, Aljohani NJ, Aldisi DA, Alotaibi NH, Alshingetti N, Alomar SY,
38	477		Alnaami AM, Amer OE et al: Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3
39 40	478		Supplementation on Recovery of Symptoms in Patients with Mild to Moderate Covid-19: A
40	479	40	Randomized Clinical Trial. Nutrients 2021, 13 (7).
42	480	43.	Murai IH, Fernandes AL, Sales LP, Pinto AJ, Goessler KF, Duran CSC, Silva CBR, Franco AS,
43	481		Macedo MB, Dalmolin HHH et al: Effect of a single high dose of vitamin D3 on hospital
44	482		length of stay in patients with moderate to severe COVID-19: A randomized clinical trial.
45	483	<u>л</u> л	JAMA 2021, 325 (11):1053-1060.
46	484 495	44.	Alcala-Diaz JF, Limia-Perez L, Gomez-Huelgas R, Martin-Escalante MD, Cortes-Rodriguez B,
47	485		Zambrana-Garcia JL, Entrenas-Castillo M, Perez-Caballero AI, Lopez-Carmona MD, Garcia-
48 49	486		Alegria J et al: Calcifediol treatment and hospital mortality due to COVID-19: A cohort
50	487	45	study. Nutrients 2021, 13 (6).
51	488 489	45.	Butler-Laporte G, Nakanishi T, Mooser V, Morrison DR, Abdullah T, Adeleye O, Mamlouk N,
52	489 490		Kimchi N, Afrasiabi Z, Rezk N et al: Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study. PLoS Med 2021,
53	490 491		18 (6):e1003605.
54	491 492	46.	Lin L-Y, Mulick A, Mathur R, Smeeth L, Warren-Gash C, Langan SM: The association between
55 56	492 493	40.	vitamin D status and COVID-19 in England: A cohort study using UK Biobank. PLOS ONE
56 57	493 494		2022, 17 (6):e0269064.
58	494		
59			
60			

2			
3	495	47.	Laird E, Walsh JB, Lanham-New S, O'Sullivan M, Kenny RA, Scully H, Crowley V, Healy M: A
4	496		high prevalence of vitamin D deficiency observed in an Irish south east asian population: A
5	497		cross-sectional observation study. Nutrients 2020, 12 (12).
6	498	48.	Scully H, Laird E, Healy M, Walsh JB, Crowley V, McCarroll K: Geomapping vitamin D status
7	499	40.	in a large city and surrounding population-exploring the impact of location and
8			
9	500		demographics. Nutrients 2020, 12(9).
10	501	49.	Jaaskelainen T, Itkonen ST, Lundqvist A, Erkkola M, Koskela T, Lakkala K, Dowling KG, Hull GL,
11	502		Kroger H, Karppinen J et al: The positive impact of general vitamin D food fortification
12	503		policy on vitamin D status in a representative adult Finnish population: evidence from an
13	504		11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr 2017,
14 15	505		105 (6):1512-1520.
16	506	50.	Buttriss JL, Lanham-New SA: Is a vitamin D fortification strategy needed? Nutr Bull 2020,
17	507		45 (2):115-122.
18	508	51.	Kurpad AV, Ghosh S, Thomas T, Bandyopadhyay S, Goswami R, Gupta A, Gupta P, John AT,
19	509	-	Kapil U, Kulkarni B <i>et al</i> : Perspective: When the cure might become the malady: the
20	510		layering of multiple interventions with mandatory micronutrient fortification of foods in
21	511		India. Am J Clin Nutr 2021, 114 (4):1261-1266.
22	511		India : Ant J Chin Nuti 2021, 114 (4).1201-1200.
23	512		
24	-		
25	513	Legen	ds to Figures:
26		•	
27			
28	514	Figure	1. Monthly mean 250HD during COVID-19 pandemic was significantly higher than
29		U	
30	515	nrior t	o the pandemic for the following months: May, June, July, October, November,
31	212	ρποιτ	o the pandemic for the following months. May, Julie, July, October, November,
32			
33	516	Decen	nber, February, and March (see results).
34			
35			
36	517		
37			
38			
39 40	518	Figure	2. Yearly mean (95% confidence intervals) vitamin D supplement doses.
40			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58 50			
59 60			
60			

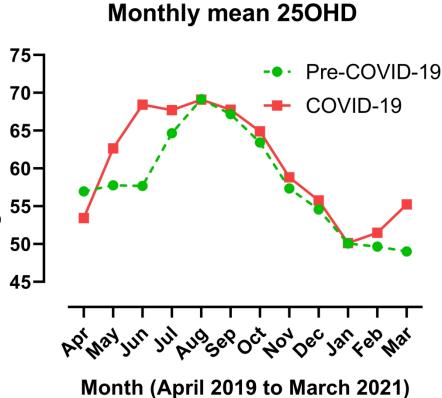
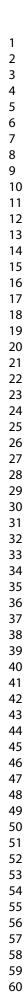



Figure 1. Monthly mean 25OHD during COVID-19 pandemic was significantly higher than prior to the pandemic for the following months: May, June, July, October, November, December, February, and March (see results).

100x87mm (600 x 600 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-059477 on 4 August 2022. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

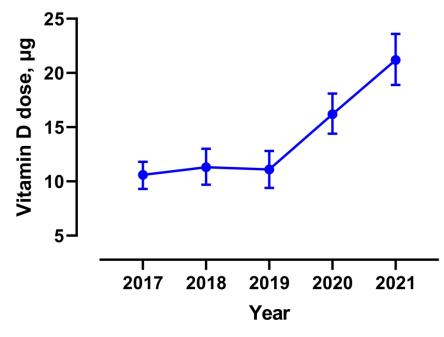


Figure 2. Yearly mean (95% confidence intervals) vitamin D supplement doses

105x82mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement for bmjopen-2021-059477

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found. Done
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported.
C		Done
Objectives	3	State specific objectives, including any prespecified hypotheses. Done
Methods		
Study design	4	Present key elements of study design early in the paper Done
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection Done
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up Consecutive laboratory-
		based samples formed the cohort, as described
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study-For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable Done
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group Done
Bias	9	Describe any efforts to address potential sources of bias. Bias explained in
		Methods
Study size	10	Explain how the study size was arrived at Sample size was determined by number
		of laboratory samples during the 2-year time period.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why. Done
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding.
		Done
		(b) Describe any methods used to examine subgroups and interactions Done
		(c) Explain how missing data were addressed. Not pertinent
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Not
		pertinent
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed

		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account sampling strategy
		(\underline{e}) Describe any sensitivity analyses Not performed
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible examined for eligibility, confirmed eligible, included in the study, completing follow-up, analysed. Done
		(b) Give reasons for non-participation at each stage Not pertinent
		(c) Consider use of a flow diagram Not pertinent
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and inform on exposures and potential confounders Done
		(b) Indicate number of participants with missing data for each variable of interest Not pertinent
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) Not pertine
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time Done Case-control study—Report numbers in each exposure category, or summary measures or exposure
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for why they were included Not pertinent
		(b) Report category boundaries when continuous variables were categorized Done(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning
		time period Not pertinent
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses Done
Discussion		
Key results	18	Summarise key results with reference to study objectives Done
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecisi Discuss both direction and magnitude of any potential bias Done
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multip of analyses, results from similar studies, and other relevant evidence Done
Generalisability	21	Discuss the generalisability (external validity) of the study results Done
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applica for the original study on which the present article is based No funding for study is state