

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac surgery recovery unit: a large retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060258
Article Type:	Original research
Date Submitted by the Author:	15-Dec-2021
Complete List of Authors:	Huang, Tucheng; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province He, Wanbing; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Xie, Yong; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Lv, Wenyu; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Lv, Wenyu; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Li, Yuewei; Sun Yat-Sen University, Department of Respiratory Medicine Li, Hongwei; Sun Yat-Sen University Sun Yat-Sen Memorial Hospital, Department of Cardiology Huang, Jingjing; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Huang, Jieping; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Chen, Yangxin; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease Guo, Qi; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease Wang, Jingfeng; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease
Keywords:	Acute renal failure < NEPHROLOGY, Cardiac surgery < SURGERY, Adult intensive & critical care < ANAESTHETICS
	•

1	
2	
3	
4	SCHOLAR ONE [™]
5	Manuscripts
6	
7	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
22	
23	
24	
25	
26	
27	
28	
30	
31	
32	
33	
34	
35	
36	
3/	
30 30	
40	
41	
42	
43	
44	
45	
46 47	
47	
49	
50	
51	
52	
53	
54	
55 56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez onz

A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac

surgery recovery unit: a large retrospective cohort study

Tucheng Huang^{1,2,3#}, Wanbing He^{1,2,3#}, Yong Xie^{1,2,3}, Wenyu Lv^{1,2,3}, Yuewei Li⁴, Hongwei Li^{1,2,3}, Jingjing Huang^{1,2,3}, Jieping Huang^{1,2,3}, Yangxin Chen^{1,2,3*}, Qi Guo^{1,2,3*}, Jingfeng Wang^{1,2,3*}

¹Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

²Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, China

³Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

⁴Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

[#]These authors contributed equally to this work.

***Correspondence to:** Jingfeng Wang, Qi Guo, Yangxin Chen. Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou 510120, China. E-mail: wjingf@mail.sysu.edu.cn, guoq69@mail.sysu.edu.cn, chenyx39@mail.sysu.edu.cn. to peer teriew only

 Objectives We aimed to develop an effective tool for predicting severe acute kidney injury (AKI) in patients admitted to the cardiac surgery recovery unit (CSRU).

Design A retrospective cohort study.

Setting Data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III database, consisting of critically ill participants between 2001 and 2012 in the USA.

Participants A total of 6271 patients admitted to the CSRU were enrolled from the MIMIC-III database.

Primary and secondary outcome Stage 2 to 3 AKI.

Result As identified by least absolute shrinkage and selection operator (LASSO) and logistic regression, risk factors for AKI included age, sex, weight, respiratory rate, systolic blood pressure, diastolic blood pressure, central venous pressure, urine output, partial pressure of oxygen, sedative use, furosemide use, atrial fibrillation, congestive heart failure, and left heart catheterization, all of which were used to establish a clinical score. The areas under the receiver operating characteristic curve of the model were 0.779 for the primary cohort and 0.778 for the validation cohort. The calibration curves showed good agreement between the predictions and observations. Decision curve analysis demonstrated that the model could achieve a net benefit. **Conclusion** A clinical score built by using LASSO regression and logistic regression to screen multiple clinical risk factors was established to estimate the probability of severe AKI in CSRU patients. This may be a portable and practical tool for severe AKI prediction in the CSRU. **Key words:** acute kidney injury, LASSO, clinical score, cardiac surgery recovery unit,

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Strengths and limitations of this study

This is the first study to develop and validate a prognostic clinical score for predicting severe AKI in CSRU patients.

The performance of this novel nomogram model in both the primary cohort and validation cohort was evaluated with the area under the receiver operating characteristic curve, calibration curves, decision curve analysis and survival curves.

Because only patients without existing renal failure were included in this study, this novel nomogram model might not be suitable for those with a renal failure history.

We did not compare the performance of the nomogram model with that of existing models.

Introduction

Acute kidney injury (AKI), a common complication in patients admitted to the intensive care unit worldwide^{1 2}, is associated with adverse short- and long-term prognoses³. It has been reported that more than half of patients in the cardiac surgery recovery unit (CSRU) suffer from AKI of some stage⁴, which is associated with high mortality and rehospitalization rates⁵. Early rapid diagnosis and treatment of AKI may help reduce mortality and rehospitalization rates. Although several biomarkers have been used for early diagnostic and prognostic prediction of AKI^{6 7}, the clinical utilization of these biomarkers has been limited. When the levels of these biomarkers increase, renal injury occurs. Thus, identifying critically ill patients at high risk of AKI is an important part of the overall management of CSRU patients.

A nomogram is a popular graphical calculation device that incorporates possible risk factors to make clinical prognostic predictions, which are presented as a scale or score. It has been

extensively used to predict oncological prognosis8. Recently, researchers established a nomogram for forecasting the occurrence of AKI in patients undergoing cardiac surgery⁹. However, their small, single-center study did not exclude patients with chronic kidney disease, so it probably overestimated the occurrence of AKI; additionally, only logistic regression for variable selection was used. While least absolute shrinkage and selection operator (LASSO) regression is of great strength for variable selection because it can efficiently address the potential association between covariates, such as collinearity¹⁰.

Accordingly, in this study, we performed LASSO regression to select variables and built a logistic regression model to identify independent risk factors for severe AKI in patients admitted to the CSRU. We aimed to determine the risk factors for severe AKI and develop a clinical score for evaluating the probability that patients undergoing critical cardiac care will ilen acquire severe AKI.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Method

Data source and ethics approval

The data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III dataset. As a large and publicly available database, MIMIC-III comprises the clinical information for 61532 ICU stay cases between 2001 and 2012. The use of the MIMIC-III database was approved by the review boards of the Massachusetts Institute of Technology and Beth Israel Deaconess Medical Center¹¹. Since the information used in the study was from a publicly deidentified database, informed consent was waived.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Study population

Adult ICU stays longer than 1 day were included. When a patient had multiple ICU admissions, only the first medical record was selected in the study. The exclusion criteria were as follows: patients in units other than the CSRU (n = 24074, 77.8%), patients with no urine output records (n = 105, 0.3%), patients with no creatinine data (n = 439, 1.4%), and patients with existing renal failure (n = 39, 0.1%) (Figure 1). During the CSRU stay, all creatinine and urine output records were extracted and AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines¹². In this study, severe AKI was defined as stage 2 or stage 3 AKI under the KDIGO criteria. Patients in the CSRU were screened, and a total of 6271 patients were included. Chronologically, the first 70% of patients were allocated to the primary cohort, and the last 30% were allocated to the validation cohort. Subsequently, we established a clinical score model by using the primary cohort data and validated the model by using the validation cohort.

Variables extraction

The following variables were extracted.

Demographics: age (years), sex, height (cm), and weight (kg).

Vital signs: heart rate (/min), respiratory rate (/min), temperature (°C), saturation of peripheral oxygen (%), blood glucose level (mg/dL), systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, mmHg), central venous pressure (CVP, mmHg), and mean artery pressure (mmHg). The mean value of vital signs in the 24 hours after admission was enrolled for analysis.

BMJ Open

Laboratory tests: white blood cell count (×10^9/L), hemoglobin (g/dL), platelets (×10^9/L), chloride (mmol/L), sodium (mmol/L), blood urea nitrogen (BUN, mg/dL), bicarbonate (mmol/L), pH, partial pressure of oxygen (pO₂, mmHg), partial pressure of carbon dioxide (pCO₂, mmHg), creatinine (md/dL), and potassium (mmol/L). The values of laboratory tests in the first 24 hours after admission were used for the analysis. In addition, 24-hour urine output was extracted.

Procedures: administration of furosemide, use of sedative, ventilation, vasopressor, cardiopulmonary bypass, coronary artery bypass grafting, left heart catheterization. The sedative drugs in this study included midazolam, fentanyl, propofol, and midazolam.

Comorbidities: coronary artery disease, congestive heart failure, atrial fibrillation, stroke, diabetes, renal disease, liver disease, chronic obstructive pulmonary disease, and malignancy.

All the variables were collected in the initial 24 hours after admission aiming to predict severe AKI as early as possible. The frequency of missing values of each variable was less than 15%. The missing values were filled in by the random forest method using R software.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Statistical analysis

Continuous variables are denoted as the mean \pm SD or the median (interquartile range), whereas categorical variables are expressed as number (percentage). Continuous data were compared with Student's t-test or the rank-sum test, while categorical data were compared using the chi-square test.

In this study, LASSO was performed for variable selection. LASSO regression is a compression estimation used to address the collinearity between covariates. When there are

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

several collinear predictors, LASSO selects only one and ignores the others or zeroes out some regression coefficients. Odds ratios (ORs) with 95% confidence intervals (95% CIs), statistics describing the strength of the association between disease and exposure, were calculated by logistic regression, thus estimating the association of independent risk factors with AKI. Finally, a clinical score model was established based on the above analysis, which was further validated with C-indices, receiver operating characteristic (ROC) curves, the areas under the ROC curves (AUCs), calibration curves, and decision curve analysis.

SPSS software (version 23.0, IBM, New York, USA) and R software (version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria) were used for statistical analysis. A two-sided P<0.05 was considered statistically significant.

Patient and public involvement

Patients and/or the public were not directly involved in this study.

Results

Patients with severe AKI comprised 55.9% (2452/4388) and 54.2% (1020/1883) of the primary and validation cohorts, respectively. No significant difference in the severe AKI rate was observed between the two cohorts (P=0.213). Except for SBP (primary cohort 113.3 mmHg vs. validation cohort 132.4 mmHg, P=0.040), no clinical characteristics showed a significant difference between the primary and validation cohorts (Table 1).

In the primary cohort, patients with severe AKI were older, had higher weights and had higher levels of blood glucose than those without severe AKI (P < 0.001). SBP and DBP were

 significantly lower (112.7 mmHg vs. 114.0 mmHg and 56.6 mmHg vs. 57.9 mmHg) while CVP was significantly higher (11.2 mmHg vs. 9.8 mmHg) in the severe AKI group (P<0.001). Urine output and pO₂ were lower in the severe AKI group (P<0.01). Drug administration was also different, namely, severe AKI patients received sedatives, ventilation, and furosemide significantly more often (P<0.001). The stroke prevalences were the same, but a higher prevalence of atrial fibrillation, congestive heart failure and left heart catheterization was observed in severe AKI patients (P<0.05) (Table 2).

To confirm the possible risk factors for severe AKI, we performed LASSO regression to select variables. A total of 18 variables were enrolled for further analysis according to the 1 – standard error criteria (Figure 2). Then we conducted logistic regression analysis based on the LASSO results. Age (OR: 1.017, 95% CI: 1.010-1.023), male sex (OR: 0.667, 95% CI: 0.568-0.7844), weight (OR: 1.032, 95% CI: 1.027-1.037), respiratory rate (OR: 0.959, 95% CI: 0.936-0.982), SBP (OR: 0.990, 95% CI: 0.983-0.997), DBP (OR: 0.985, 95% CI: 0.974-0.997), CVP (OR: 1.075, 95% CI: 1.051-1.099), urine output (OR: 0.999, 95% CI: 0.999-0.999), pO₂ (OR: 0.999, 95% CI: 0.998-1.000), sedative use (OR: 1.405, 95% CI: 1.032-1.912), use of furosemide (OR: 0.469, 95% CI: 0.387-0.569), atrial fibrillation (OR: 1.322, 95% CI: 1.139-1.536), congestive heart failure (OR: 1.357, 95% CI: 1.143-1.611), and left heart catheterization (OR: 1.181, 95% CI: 1.014-1.376) were associated with severe AKI (Table 3).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Next, we included the above significant factors to build a clinical score based on the logistic regression model (Figure 3). Each level of every variable was assigned a score. By adding the scores for all of the selected variables, the total score was obtained. By checking the number corresponding to the total scores, the probability of severe AKI can be estimated for a given

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

patient. Another nomogram version with scales instead of numbers is supplied as well (Supplementary Figure 1).

The C-indices were 0.779 for the primary cohort and 0.778 for the validation cohort. The ROC curves demonstrated that the model had good discriminative ability in both the primary cohort (AUC: 0.779, 95% CI: 0.766-0.793) and the validation cohort (AUC: 0.778, 95% CI: 0.757-0.799). Calibration plots showed that the apparent curves were adjacent to the ideal curves in both the primary and validation groups. Finally, decision curve analysis was performed to compare the clinical usability and benefits of the model. The decision curves showed acceptable net benefits across a range of high risks of severe AKI in the primary and validation cohorts (Figure 4).

We also evaluated the model performance after excluding the variable of urine output. Without urine output information, the model also showed acceptable discriminative ability in both the primary cohort (AUC: 0.713, 95% CI: 0.698-0.728) and the validation cohort (AUC: 0.718, 95% CI: 0.695-0.741) (Supplementary Figure 2).

Discussion

AKI is a complicated clinical syndrome characterized by reduced urine production and/or rapid increases in serum creatinine¹³. AKI has been reported to be positively associated with short-term mortality in CSRU populations^{5 14}. Delayed diagnosis of AKI is an independent risk factor for nosocomial death¹⁵. Therefore, early identification of patients at risk for AKI might help to reduce short-term mortality, improve prognosis, and reduce the health care burden.

In this study, we extracted the clinical information for 6271 patients from the MIMIC-III

BMJ Open

database. We identified the following 14 possible risk factors for severe AKI by LASSO regression and logistical regression: age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative use, furosemide, atrial fibrillation, congestive heart failure, and left heart catheterization. Subsequently, a clinical score model was constructed by quantifying the weight of the aforementioned variables. The clinical score model was well fitted, as evaluated by the AUC, calibration curves and decision curve analysis in both the primary and validation cohorts. The model could calculate a severe AKI probability immediately after the initial 24 hours and might help clinicians perform early intervention.

Several scoring systems and prognostic models have been built to predict AKI. Scoring systems such as the Cleveland Clinic Score¹⁶ and the Mehta Score¹⁷ only consider AKI patients requiring dialysis, so they might miss patients with subclinical AKI. Additionally, nomograms have been used to forecast AKI in patients undergoing cardiac surgery⁹ or coronary angiography¹⁸. These studies enrolled both mild and severe AKI patients. Our model was generated from the MIMIC-III database, with a larger sample size and more variables. This study predicted only severe AKI, which might be more attractive for clinical practice. Moreover, the primary cohort and validation cohort were assigned by admission time. According to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement, nonrandom assignment by time is a stronger design feature for evaluating model performance than random assignment¹⁹.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

LASSO regression is a popular variable selection algorithm for multicollinear data or highdimensional data²⁰. LASSO has been widely used for clinical prediction. For example, via LASSO, researchers have built a nomogram to predict the diagnosis and prognosis of colon

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

cancer²¹. A radiomics signature using LASSO has been developed to evaluate survival in patients with non-small-cell lung cancer²². LASSO has been used to predict AKI in patients with hematologic tumors, patients suffering from cardiac surgery or patients hospitalized in the neurosurgical intensive care unit^{10 20 23}. In the present study, based on clinical profiles, LASSO was performed to select relevant coefficients from a multitude of variables, simultaneously removing all unrelated variables. Through dimensionality reduction using LASSO, 42 clinical variables were screened down to 14 risk factors, according to the 1 – standard error criteria.

Among those 14 variables, older age and obesity were independent risk factors for AKI, as indicated by previous investigations²⁴²⁵. Additionally, hypotension has been reported to be associated with new-onset AKI in ICU patients with shock²⁶. High CVP, indicating fluid overload, was another factor affecting AKI²⁷. Consistent with previous studies, these risk factors were included in the nomogram and given a weighted score. Reduced urine output is a clinical manifestation of AKI and is also an important factor underlying the poor prognosis of AKI. In this study, decreased urine output was one of the most important predictors of AKI in CSRU patients. Overall, the nomogram contained 14 variables, more than half of which have been reported to be associated with AKI. In addition, ROC curves, calibration curves, and decision curve analysis showed consistent results in both the primary and validation cohorts, showing that the clinical score model could be an effective and reliable tool for predicting the risk of severe AKI.

Several limitations of our study must be noted. First, this study was based on the MIMIC-III database, whose data were collected between 2001 and 2012. Some therapies might not meet the latest guidelines and some newer medicines might not be covered here. Because of the

single-center nature of the data, the performance of our model might be influenced when applied to other regions. The potential residual confounding by variables not recorded in this database could not be evaluated. Second, only patients without existing renal failure were included in this study. Thus, this novel nomogram model might not be suitable for those with a renal failure history. Third, missing values were filled by the random forest method, which might lead to biased regression coefficient estimates²⁸. Therefore, further studies are needed to verify our model. Fourth, our model was designed to be used immediately after the initial 24 hours of admission, and it could not work for patients who suffer AKI within those initial 24 hours.

Conclusion

In conclusion, this study established and validated a novel clinical score by using LASSO regression and logistic regression to screen for multiple clinical risk factors to estimate the probability of severe AKI in CSRU patients. This clinical score model can be a portable and reliable predictive tool that might help in individualized clinical decision-making and risk management for severe AKI.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Acknowledgements We would like to thank the participants, developers and investigators associated with the Medical Information Mart for Intensive Care (MIMIC)-III database.

Contributors TH: Conceptualization, data analysis, writing original draft, writing review and editing. WH: Conceptualization, writing original draft, writing review and editing. YX, WL and YL Writing original draft and data curation. HL: Literature search

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

and data interpretation. JH: Data collection and data curation. JH: Data collection and data curation. YZ: Literature search and data interpretation. QG: Conceptualization, writing review and editing, and data curation. JW: Conceptualization, writing review and editing, and data curation.

Funding: This study was supported by grants from the National Natural Science Foundation of China (Nos. 82070237, 81870170, 81770229, 81970200), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110313), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (No. 2019GZR110406004), Guangzhou Science and Technology Bureau (Nos. 201803040010, 201707010206, 202102010007), and Yat-sen Start-up Foundation (No. YXQH202014).

Disclaimer The funders had no roles in the study design, data collection, data analysis, interpretation or writing of the report. ier

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer-reviewed.

Data availability statement The dataset analyzed to generate the findings for this study is available from the corresponding author on reasonable request.

ORCID iD Qi Guo http://orcid.org/0000-0003-3145-1309

References

- 1. Rossaint J, Zarbock A. Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol Nefrol 2016;68(1):49-57.
- 2. Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 2015;41(8):1411-23.

BMJ Open

 Abd ElHafeez S, Tripepi G, Quinn R, <i>et al.</i> Risk, Predictors, and Outcomes of Acute Kidney Injury in Patients Admitted to Intensive Care Units in Egypt. <i>Sci Rep</i> 2017;7(1):17163. Jentzer JC, Breen T, Sidhu M, <i>et al.</i> Epidemiology and outcomes of acute kidney injury in 	
 cardiac intensive care unit patients. <i>J Crit Care</i> 2020;60:127-34. 5. Holland EM, Moss TJ. Acute Noncardiovascular Illness in the Cardiac Intensive Care Unit. <i>J Am Coll Cardiol</i> 2017;69(16):1999-2007. 	
6. Greenberg JH, Zappitelli M, Jia Y, et al. Biomarkers of AKI Progression after Pediatric Cardiac Surgery. J Am Soc Nephrol 2018;29(5):1549-56.	
 Chang CH, Yang CH, Yang HY, et al. Urinary Biomarkers Improve the Diagnosis of Intrinsic Acute Kidney Injury in Coronary Care Units. Medicine (Baltimore) 2015;94(40):e1703. 	•
8. Iasonos A, Schrag D, Raj GV, <i>et al.</i> How to build and interpret a nomogram for cancer prognosis. <i>J Clin Oncol</i> 2008;26(8):1364-70.	
 Guan C, Li C, Xu L, <i>et al.</i> Risk factors of cardiac surgery-associated acute kidney injury: development and validation of a perioperative predictive nomogram. <i>J Nephrol</i> 2019;32(6):937-45. 	l
 An S, Luo H, Wang J, et al. An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. Ann Transl Med 2020;8(5):194. 	
11. Johnson AE, Pollard TJ, Shen L, <i>et al.</i> MIMIC-III, a freely accessible critical care database. Sci Data 2016;3:160035.	
 Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012;120(4):c179-84. 	
13. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019;394(10212):1949-64.	
14. Jentzer JC, Bennett C, Wiley BM, <i>et al.</i> Predictive Value of the Sequential Organ Failure Assessment Score for Mortality in a Contemporary Cardiac Intensive Care Unit Population J Am Heart Assoc 2018:7(6):1-11	
 Yang L, Xing G, Wang L, <i>et al.</i> Acute kidney injury in China: a cross-sectional survey. <i>Lancet</i> 2015;386(10002):1465-71. 	
16. Thakar CV, Arrigain S, Worley S, <i>et al.</i> A clinical score to predict acute renal failure after cardiac surgery. <i>J Am Soc Nephrol</i> 2005;16(1):162-8.	
17. Mehta RH, Grab JD, O'Brien SM, <i>et al.</i> Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. <i>Circulation</i> 2006;114(21):2208-16.	
 Zhou X, Sun Z, Zhuang Y, et al. Development and Validation of Nomogram to Predict Acute Kidney Injury in Patients with Acute Myocardial Infarction Treated Invasively. Sci Rep 2018;8(1):9769. 	
 Collins GS, Reitsma JB, Altman DG, <i>et al.</i> Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. <i>Bmj</i> 2015;350:g7594. 	1
20. Li Y, Chen X, Wang Y, et al. Application of group LASSO regression based Bayesian networks in risk factors exploration and disease prediction for acute kidney injury in hospitalized patients with hematologic malignancies. BMC Nephrol 2020;21(1):162.	
21. Zhou R, Zhang J, Zeng D, <i>et al.</i> Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I-III colon cancer. <i>Cancer Immunol Immunother</i> 2019;68(3):433-42.	•
15	

- 22. Huang Y, Liu Z, He L, et al. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016;281(3):947-57.
- 23. Coulson T, Bailey M, Pilcher D, *et al.* Predicting Acute Kidney Injury After Cardiac Surgery Using a Simpler Model. *J Cardiothorac Vasc Anesth* 2021;35(3):866-73.
- 24. Sovik S, Isachsen MS, Nordhuus KM, *et al.* Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis. *Intensive Care Med* 2019;45(4):407-19.
- 25. Sengthavisouk N, Lumlertgul N, Keomany C, *et al.* Epidemiology and short-term outcomes of acute kidney injury among patients in the intensive care unit in Laos: a nationwide multicenter, prospective, and observational study. *BMC Med* 2020;18(1):180.
- 26. Panwar R, Tarvade S, Lanyon N, et al. Relative Hypotension and Adverse Kidney-related Outcomes among Critically Ill Patients with Shock. A Multicenter, Prospective Cohort Study. Am J Respir Crit Care Med 2020;202(10):1407-18.
- 27. Bouchard J, Soroko SB, Chertow GM, *et al.* Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. *Kidney Int* 2009;76(4):422-7.
- 28. Hong S, Lynn HS. Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. *BMC Med Res Methodol* 2020;20(1):199.

terez ony

Table 1 Baseline characteristics of the enrolled subjects in the primary and validation

cohorts.

	Primary cohort	Validation cohort	Р
n	4388	1883	
Age, years	66.0±12.8	65.9±13.3	0.715
Male	2921 (66.6)	1229 (65.3)	0.332
Weight, kg	83.0±19.1	83.2±20.0	0.785
Heart rate, /min	84.9±10.7	84.6±10.8	0.357
Respiratory rate, /min	17.2±3.1	17.2±3.0	0.914
Glucose, mg/dL	131.2±23.2	132.4±23.2	0.060
SBP, mmHg	113.3±10.7	113.9±10.8	0.040
DBP, mmHg	57.1±6.9	57.3±7.0	0.244
CVP, mmHg	10.6±3.5	10.7±3.6	0.191
Urine output, mL	2075.0 (1480.0-2880.0)	2080.0 (1457.0-2900.0)	0.949
pO ₂ , mmHg	314.0 (211.0-383.0)	308.0 (206.0-386.0)	0.168
Sedative	3707 (84.5)	1593 (84.6)	0.905
Ventilation	3836 (87.4)	1642 (87.2)	0.811
Furosemide	675 (15.4)	292 (15.5)	0.901
Atrial fibrillation	1695 (38.6)	754 (40.0)	0.293
Congestive heart failure	1018 (23.2)	442 (23.5)	0.814
Stroke	258 (5.9)	108 (5.7)	0.823
Left heart catheterization	1288 (29.4)	551 (29.3)	0.942
Severe AKI	2452 (55.9)	1020 (54.2)	0.213

Data are depicted as the mean \pm standard deviation, the median (interquartile range) or a number (percentage). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen; AKI, acute kidney injury.

	Severe AKI	Non-severe AKI	Р
n	2452	1936	
Age, years	67.4±12.2	64.3±13.3	< 0.001
Male	1606 (65.5)	1315 (67.9)	0.094
Weight, kg	86.7±20.2	78.4±16.5	< 0.001
Heart rate, /min	85.0±10.8	84.7±10.6	0.475
Respiratory rate, /min	17.2±3.1	17.2±3.0	0.999
Glucose, mg/dL	133.4±23.6	128.6±22.2	< 0.001
SBP, mmHg	112.7±10.5	114.0±10.8	< 0.001
DBP, mmHg	56.5±6.9	57.9±6.9	< 0.001
CVP, mmHg	11.2±3.7	9.8±3.1	< 0.001
Urine output, mL	1735.5 (1245.0-2384.3)	2550.0 (1930.0-3355.0)	< 0.001
pO ₂ , mmHg	309.0 (204.0-379.0)	323.0 (224.0-389.0)	0.009
Sedative	2116 (86.3)	1591 (82.2)	< 0.001
Ventilation	2183 (89.0)	1653 (85.4)	< 0.001
Furosemide	341 (13.9)	334 (17.3)	0.002
Atrial fibrillation	1074 (43.8)	621 (32.1)	< 0.001
Congestive heart failure	673 (27.4)	345 (17.8)	< 0.001
Stroke	132 (5.4)	126 (6.5)	0.121
Left heart catheterization	762 (31.1)	526 (27.2)	0.005

 Table 2 Baseline characteristics of the severe AKI and nonsevere AKI groups in the

 primary cohort.

Data are depicted as the mean \pm standard deviation, the median (interquartile range) or a number (percentage). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen; AKI, acute kidney injury.

1	
2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
לו סר	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	
5/	
58	
59	

Variables	LASSO	Logistic	Logistic			
	β	β	OR (95% CI)	Р		
Age	0.011221	0.017	1.017 (1.010-1.023)	< 0.001		
Male	-0.165641	-0.404	0.667 (0.568-0.784)	< 0.001		
Weight	0.023091	0.031	1.032 (1.027-1.037)	< 0.001		
Heart rate	0.000058	0.007	1.007 (1.000-1.014)	0.055		
Respiratory rate	-0.006347	-0.042	0.959 (0.936-0.982)	0.001		
Glucose	0.000846	0.002	1.002 (0.999-1.005)	0.181		
SBP	-0.004721	-0.010	0.990 (0.983-0.997)	0.007		
DBP	-0.009688	-0.015	0.985 (0.974-0.997)	0.011		
CVP	0.063826	0.072	1.075 (1.051-1.099)	< 0.001		
Urine output	-0.000603	-0.001	0.999 (0.999-0.999)	< 0.001		
pO ₂	-0.000127	-0.001	0.999 (0.998-1.000)	0.001		
Sedative	0.173715	0.340	1.405 (1.032-1.912)	0.031		
Ventilation	0.093818	0.189	1.209 (0.862-1.694)	0.272		
Furosemide	-0.484207	-0.757	0.469 (0.387-0.569)	< 0.001		
Atrial fibrillation	0.193466	0.279	1.322 (1.139-1.536)	< 0.001		
Congestive heart failure	0.207495	0.305	1.357 (1.143-1.611)	< 0.001		
Stroke	-0.021989	-0.254	0.776 (0.580-1.038)	0.087		
Left heart catheterization	0.043483	0.166	1.181 (1.014-1.376)	0.033		

Table 3 Variables in the LASSO regression and multivariate logistic regression models

LASSO, least absolute shrinkage and selection operator; OR, odds ratio; CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Figure legends

Figure 1 Flow chart of enrolled subjects.

A total of 6271 CSRU stay records were enrolled in this study. ICU, intensive care unit; CSRU, cardiac surgery recovery unit.

Figure 2 LASSO coefficient profiles of variables and misclassification errors for different models.

The upper panel presents the associations between the coefficients of variables and the log lambda value. Each line corresponds to one distinct variable. With increasing log lambda, the coefficient of the variable tended toward 0. The lower panel presents the selection of the applicable model. Vertical lines were drawn at the optimal values by adopting the minimum criteria (dashed line) and the SE of the minimum criteria (dotted line, the 1 - SE criteria). In our study, the lambda value was chosen according to the 1 - SE criteria. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Figure 3 Clinical score for the prediction of severe AKI in CSRU patients.

All 14 selected variables, including age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Figure 4 Performance evaluation of the severe AKI prediction model.

ROC curves in the primary cohort (A) and validation cohort (B). The AUCs of the model in the primary and validation cohorts were 0.779 and 0.778, respectively. Calibration curves in the primary cohort (C) and validation cohort (D). The observed values were close to the ideal values, indicating a satisfactory forecasting performance of the clinical score model. Decision curve analyses in the primary cohort (E) and validation cohort (F), showing the net benefit from the model. AKI, acute kidney failure; ROC, receiver operator characteristic curve; AUC, area under the receiver operating characteristic curve.

Supplementary Figure 1 Nomogram for prediction of severe AKI in CSRU patients.

All 14 selected variables, namely, age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU patients. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Supplementary Figure 2 Performance evaluation of the model without urine output.

ROC curves in the primary cohort (A) and validation cohort (B). After excluding urine output from the model, the AUCs of the model in the primary and validation cohorts were 0.713 and 0.718, respectively. ROC, receiver operator characteristic curve; AUC, area under the receiver

operating characteristic curve.

to occurrences

BMJ Open: first published as 10.1136/bmjopen-2021-060258 on 2 June 2022. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Figure 2 LASSO coefficient profiles of variables and misclassification errors for different models. The upper panel presents the associations between the coefficients of variables and the log lambda value. Each line corresponds to one distinct variable. With increasing log lambda, the coefficient of the variable tended toward 0. The lower panel presents the selection of the applicable model. Vertical lines were drawn at the optimal values by adopting the minimum criteria (dashed line) and the SE of the minimum criteria (dotted line, the 1 – SE criteria). In our study, the lambda value was chosen according to the 1 – SE criteria. LASSO, least absolute shrinkage and selection operator; SE, standard error.

162x107mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Age, years Score	10 0	20 2	30 4	40 6	50 8	60 10	70 12	80 14	90 16				
Sex Score	Male 0	Female 5											
Weight, kg	20	40	60	80	100	120	140	160	180	200	220	240	260
Score	0	8	15	23	31	38	46	54	62	69	77	85	92
Respiratory rate, /min	5	10	15	20	25	30	35						
Score	14	11	9	7	5	2	0						
SBP, mmHg	70	80	90	100	110	120	130	140	150	160	170	180	
Score	15	14	13	11	10	8	7	6	4	3	1	0	
DBP, mmHg	20	30	40	50	60	70	80	90	100	110			
Score	15	13	11	10	8	6	5	3	2	0			
CVP, mmHg	0	5	10	15	20	25	30	35					
Score	5	9	14	18	23	27	32	36					
Urine output, mL	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000		
Score	84	76	67	59	51	42	34	25	17	8	0		
pO2, mmHg	0	100	200	300	400	500	600	700	800				
Score	10	9	8	7	5	4	3	1	0				
Sedative	No	Yes											
Score	0	6											
Furosemide	No	Yes											
Score	10	0											
Atrial fibrillation	No	Yes		Total so	cores		125	135	151	161	171	188	197
Score	0	3		Probab	ility of se	evere AKI	0.05	0.10	0.30	0.50	0.70	0.90	0.95
Congestive heart failure	No	Yes											
Score	0	4											
Left heart catheterization	No	Yes											
Score	0	2											

Figure 3 Clinical score for the prediction of severe AKI in CSRU patients.

All 14 selected variables, including age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO2, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

227x125mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-060258 on 2 June 2022. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

r		
2		
3		
4		
6		
7	Points	0 10 20 30 40 50 60 70 80 90 100
8		
9	Age, years	10 50 90
10	Sex	Male Female
11	Weight ka	20 60 100 140 180 220 260
12		
14	Respiratory rate, /min	
15	SBP, mmHg	180 120 60
16	DBP, mmHg	110 70 30
17	CVP, mmHg	0 10 15 30
10		10000 8000 6000 4000 2000 0
20		
21	pO ₂ , mmHg	
22	Sedative	No Yes
23	Furosemide	Yes No
24 25	Atrial fibrillation	No Yes
26		No Yoo
27	Congestive heart failure	
20	Left heart catheterization	No Yes
28		
28 29	Total Points	0 20 40 60 80 100 120 140 160 180 200 220 240
28 29 30	Total Points	0 20 40 60 80 100 120 140 160 180 200 220 240
28 29 30 31 32	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90%
28 29 30 31 32 33	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90%
28 29 30 31 32 33 34	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90%
28 29 30 31 32 33 34 35	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176×148mm (300 × 300 DPI)
28 29 30 31 32 33 34 35 36	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176×148mm (300 × 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 × 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 52	Total Points Probability of severe AKI	0 20 40 60 80 100 120 140 160 180 200 220 240 30% 70% 10% 50% 90% 176x148mm (300 x 300 DPI)

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic Title and abstract	Item		Checklist Item	Page
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2-3
Introduction	1		· · · · · · · · · · · · · · · · · · ·	
Background	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	3
and objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both	4
Methods	1			
O sum a state	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	4
Source of data	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	4
5 4 4 4	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	4
Participants	5b	D;V	Describe eligibility criteria for participants.	5
	5c	D;V	Give details of treatments received, if relevant.	5
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	5
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	5
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	5-6
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other	5-6
Sample size	8	D:V	Explain how the study size was arrived at.	5
Missing data	0		Describe how missing data were handled (e.g., complete-case analysis, single	6
wissing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	0
	10a	D	Describe how predictors were handled in the analyses.	6
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation	6
analysis	10c	V	For validation describe how the predictions were calculated	6
methods	10d		Specify all measures used to assess model performance and, if relevant, to compare	6
	100	D, V	multiple models.	0
Diele energie	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	6
Development		D,V	For validation, identify any differences from the development data in setting, eligibility	0
vs. validation	12	V	criteria, outcome, and predictors.	6
Results	•	-		
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	7
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	7
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	7
Madal	14a	D	Specify the number of participants and outcome events in each analysis.	7
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	8
Model	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	8
specification	15b	D	Explain how to the use the prediction model.	8
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	8
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	8
Discussion				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	11
Internetation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	10
merpretation	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	9-1
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	9
Other information			Devide information devides as 200220 and a second second	
Supplementary information	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	12
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	12

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac surgery recovery unit: A large retrospective cohort study using the MIMIC database

L-	
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060258.R1
Article Type:	Original research
Date Submitted by the Author:	20-Apr-2022
Complete List of Authors:	Huang, Tucheng; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province He, Wanbing; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Xie, Yong; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Lv, Wenyu; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Lv, Wenyu; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Li, Yuewei; Sun Yat-Sen University, Department of Respiratory Medicine Li, Hongwei; Sun Yat-Sen University Sun Yat-Sen Memorial Hospital, Department of Cardiology Huang, Jingjing; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Huang, Jieping; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Chen, Yangxin; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease Guo, Qi; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease Wang, Jingfeng; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine, Renal medicine
Keywords:	Acute renal failure < NEPHROLOGY, Cardiac surgery < SURGERY, Adult intensive & critical care < ANAESTHETICS

1		BMJ
2 3 4		Open: fi
5 6 7 8 9 10	SCHOLARONE™ Manuscripts	rst published as [,] Pi
11 12 13 14 15 16		0.1136/bmjoper otected by copy
17 18 19 20 21		rright, including
22 23 24 25 26 27		n 2 June 2022. E Enseigner for uses relatec
28 29 30 31 32		bownloaded from hent Superieur (to text and dat
33 34 35 36 37 38		n http://bmjope ABES) . a mining, Al tra
39 40 41 42 43		in.bmj.com/ on iining, and simi
44 45 46 47 48		June 13, 2025 <i>;</i> lar technologie
49 50 51 52 53 54		at Agence Bibli s.
55 56 57 58 59		iographique de
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	<u> </u>

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni
A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac surgery recovery unit: A large retrospective cohort study using the MIMIC database Tucheng Huang^{1,2,3#}, Wanbing He^{1,2,3#}, Yong Xie^{1,2,3}, Wenyu Lv^{1,2,3}, Yuewei Li⁴, Hongwei Li^{1,2,3}, Jingjing Huang^{1,2,3}, Jieping Huang^{1,2,3}, Yangxin Chen^{1,2,3*}, Qi Guo^{1,2,3*}, Jingfeng Wang^{1,2,3*}

¹Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

²Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, China

³Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

⁴Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

[#]These authors contributed equally to this work.

***Correspondence to:** Jingfeng Wang, Qi Guo, Yangxin Chen. Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou 510120, China. E-mail: wjingf@mail.sysu.edu.cn, guoq69@mail.sysu.edu.cn, chenyx39@mail.sysu.edu.cn.

Abstract

 Objectives We aimed to develop an effective tool for predicting severe acute kidney injury (AKI) in patients admitted to the cardiac surgery recovery unit (CSRU).

Design A retrospective cohort study.

Setting Data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III database, consisting of critically ill participants between 2001 and 2012 in the USA.
Participants A total of 6271 patients admitted to the CSRU were enrolled from the MIMIC-III database.

III database.

Primary and secondary outcome Stage 2 to 3 AKI.

Result As identified by least absolute shrinkage and selection operator (LASSO) and logistic regression, risk factors for AKI included age, sex, weight, respiratory rate, systolic blood pressure, diastolic blood pressure, central venous pressure, urine output, partial pressure of oxygen, sedative use, furosemide use, atrial fibrillation, congestive heart failure, and left heart catheterization, all of which were used to establish a clinical score. The areas under the receiver operating characteristic curve of the model were 0.779 (95% confidence interval: 0.766-0.793) for the primary cohort and 0.778 (95% confidence interval: 0.757-0.799) for the validation cohort. The calibration curves showed good agreement between the predictions and observations. Decision curve analysis demonstrated that the model could achieve a net benefit. **Conclusion** A clinical score built by using LASSO regression and logistic regression to screen multiple clinical risk factors was established to estimate the probability of severe AKI in CSRU patients. This may be an intuitive and practical tool for severe AKI prediction in the CSRU.

BMJ Open

Key words: acute kidney injury, LASSO, clinical score, cardiac surgery recovery unit, prediction

Strengths and limitations of this study

Least absolute shrinkage and selection operator regression and multivariable logistic regression were used to establish a clinical score model.

The performance of this novel clinical score model in both the primary cohort and validation cohort was evaluated using the area under the receiver operating characteristic curve, calibration curves, and decision curve analysis.

This novel clinical score model might not be suitable for those with a renal failure history. External validation of this novel clinical score model was lacking.

Introduction

Acute kidney injury (AKI), a common complication in patients admitted to the intensive care unit worldwide^{1 2}, is associated with adverse short- and long-term prognoses³. It has been reported that more than half of patients in the cardiac surgery recovery unit (CSRU) suffer from AKI of some stage⁴, which is associated with high mortality and rehospitalization rates⁵. The early and rapid diagnosis and treatment of AKI may help reduce mortality and rehospitalization rates. Although several biomarkers have been used for the early diagnostic and prognostic prediction of AKI^{6 7}, the clinical utilization of these biomarkers has been limited. When the levels of these biomarkers increase, renal injury occurs. Thus, identifying critically ill patients at high risk of AKI is an important part of the overall management of CSRU patients. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Graphical calculation devices, which are presented as a scale or score that incorporate possible risk factors to make clinical prognostic predictions, have become increasingly popular.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

It has been extensively used to predict the probability of death or recurrence events for a patient with cancer⁸. Recently, some researchers established a clinical prediction model for forecasting the occurrence of AKI in patients undergoing cardiac surgery⁹. However, that small, single-center study did not exclude patients with chronic kidney disease and thus probably overestimated the occurrence of AKI; additionally, only logistic regression for variable selection was used. By machine learning, a model was established to predict cardiac surgery–associated AKI, although the sample was small and urine output was neglected¹⁰. Another study used a convolutional neural network model to predict severe AKI in the intensive care unit (ICU), while patients with a previous diagnosis of chronic kidney disease were not excluded¹¹.

Least absolute shrinkage and selection operator (LASSO) regression is of great strength for variable selection because it can efficiently address the potential association between covariates, such as collinearity¹². Accordingly, in this study, we performed LASSO regression to select variables and built a logistic regression model to identify independent risk factors for severe AKI in patients admitted to the CSRU. We aimed to determine the risk factors for severe AKI and develop a clinical score for evaluating the probability that patients undergoing critical cardiac care will acquire severe AKI.

Methods

Data source and ethics approval

The data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III dataset. As a large and publicly available database, MIMIC-III comprises the clinical information for 61532 ICU stay cases between 2001 and 2012. The use of the MIMIC-III

BMJ Open

database was approved by the review boards of the Massachusetts Institute of Technology and Beth Israel Deaconess Medical Center¹³. Because the information used in the study was from a publicly deidentified database, the informed consent requirement was waived.

Study population

Adult ICU stays longer than 1 day were included. When a patient had multiple ICU admissions, only the first medical record was selected for the study. The exclusion criteria were as follows: patients in units other than the CSRU (n = 24074, 77.8%); patients with no urine output records (n = 105, 0.3%); patients with no creatinine data (n = 439, 1.4%); and patients with existing renal failure (n = 39, 0.1%) (Figure 1). During the CSRU stay, all creatinine and urine output records were extracted, and AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines¹⁴. Baseline serum creatinine was defined as the lowest creatinine in the past 7 days. Both urine output and serum creatinine criteria were used to identify AKI. Information about renal replacement therapy was not considered in this study. Severe AKI was defined as stage 2 or stage 3 AKI under the KDIGO criteria. Patients in the CSRU were screened, and a total of 6271 patients were included. Chronologically, the first 70% of patients were allocated to the primary cohort, and the last 30% were allocated to the validation cohort.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Variable extraction

The following variables were extracted.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Demographics: age (years), sex, height (cm), and weight (kg).

Vital signs: heart rate (/min), respiratory rate (/min), temperature (°C), saturation of peripheral oxygen (%), blood glucose level (mg/dL), systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, mmHg), central venous pressure (CVP, mmHg), and mean artery pressure (mmHg). The mean value of vital signs in the 24 hours after admission was included for analysis.

Laboratory tests: white blood cell count (×10^9/L), hemoglobin (g/dL), platelets (×10^9/L), chloride (mmol/L), sodium (mmol/L), blood urea nitrogen (BUN, mg/dL), bicarbonate (mmol/L), pH, partial pressure of oxygen (pO₂, mmHg), partial pressure of carbon dioxide (pCO₂, mmHg), creatinine (mg/dL), and potassium (mmol/L). The values of laboratory tests in the first 24 hours after admission were used for the analysis. In addition, 24-hour urine output was extracted.

Procedures: administration of furosemide, use of sedative, ventilation, vasopressor, cardiopulmonary bypass, coronary artery bypass grafting, left heart catheterization. The sedative drugs in this study included midazolam, fentanyl, propofol, and midazolam.

Comorbidities: coronary artery disease, congestive heart failure, atrial fibrillation, stroke, diabetes, renal disease, liver disease, chronic obstructive pulmonary disease, and malignancy.

All variables were collected in the initial 24 hours after admission to predict severe AKI as early as possible. The frequency of missing values for each variable was less than 15%. The missing values were filled in by the random forest method using R software.

Statistical analysis

BMJ Open

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Continuous variables are denoted as the mean \pm SD or the median (interquartile range), whereas categorical variables are expressed as numbers (percentages). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test.

In this study, LASSO was performed for variable selection. LASSO regression is a compression estimation used to address the collinearity between covariates. When there are several collinear predictors, LASSO selects only one and ignores the others or zeroes out some regression coefficients. Cross-validation was used during LASSO regression, and 1 - standard error criterion was used to select lambda. Namely, the value of lambda was identified when the cross-validated error was within one standard error of the minimum. Odds ratios (ORs) with 95% confidence intervals (95% CIs), statistics describing the strength of the association between disease and exposure, were calculated by logistic regression, thus estimating the association of independent risk factors with AKI. Finally, a clinical score model was established based on the above analysis, which was further validated with C-indices, accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curves, the areas under the ROC curves (AUCs), calibration curves, and decision curve analysis. We used 10-fold cross validation to identify the optimal clinical score model. Briefly, the primary cohort was randomly divided into 10 roughly equal-sized groups. One group was taken as a test dataset, and the remaining groups were used as a training dataset. The model was fitted on the training dataset and evaluated on the test dataset. After repeating the process 10 times, the optimal model with the best performance was identified.

SPSS software (version 23.0, IBM, NY, USA) and R software (version 3.6.3, R

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Foundation for Statistical Computing, Vienna, Austria) were used for statistical analysis. The packages used in this study included *missForest*, *glmnet*, *rms*, *pROC*, *caret*, and *rmda*. A two-sided *P*<0.05 was considered statistically significant.

Patient and public involvement

Patients and/or the public were not directly involved in this study.

Results

Patients with severe AKI comprised 55.9% (2452/4388) and 54.2% (1020/1883) of the primary and validation cohorts, respectively. No significant difference in the severe AKI rate was observed between the two cohorts (P=0.213). Except for SBP (primary cohort, 113.3 mmHg vs. validation cohort, 132.4 mmHg, P=0.040), no clinical characteristics showed a significant difference between the primary and validation cohorts (Table 1).

In the primary cohort, patients with severe AKI were older, had higher weights and had higher blood glucose level than those without severe AKI (P < 0.001). SBP and DBP were significantly lower (112.7 mmHg vs. 114.0 mmHg and 56.6 mmHg vs. 57.9 mmHg, respectively), while CVP was significantly higher (11.2 mmHg vs. 9.8 mmHg) in the severe AKI group (P<0.001). Urine output and pO₂ were lower in the severe AKI group (P < 0.01). Drug administration was also different, namely, severe AKI patients received sedatives, ventilation, and furosemide significantly more often (P<0.001). The stroke prevalence rates were the same, but a higher prevalence of atrial fibrillation, congestive heart failure and left heart catheterization was observed in severe AKI patients (P<0.05) (Table 2).

BMJ Open

To confirm the possible risk factors for severe AKI, we performed LASSO regression to select variables. A total of 18 variables were enrolled for further analysis according to the 1 - standard error criterion (Figure 2). Then, we conducted logistic regression analysis based on the LASSO results. A total of 14 variables were shown to be associated with severe AKI (Table 3).

Next, we included the above significant factors to build a clinical score based on the logistic regression model (Figure 3). Each level of every variable was assigned a score. By adding the scores for all of the selected variables, the total score was obtained. By checking the number corresponding to the total scores, the probability of severe AKI can be estimated for a given patient. Another nomogram version with scales instead of numbers is supplied as well (Supplementary Figure 1).

The C-indices were 0.779 for the primary cohort and 0.778 for the validation cohort. The ROC curves demonstrated that the model had good discriminative ability in both the primary cohort (AUC: 0.779, 95% CI: 0.766-0.793) and the validation cohort (AUC: 0.778, 95% CI: 0.757-0.799) (Table 4). Calibration plots showed that the apparent curves were adjacent to the ideal curves in both the primary and validation groups. Finally, decision curve analysis was performed to compare the clinical usability and benefits of the model. The decision curves showed acceptable net benefits across a range of high risks of severe AKI in the primary and validation cohorts (Figure 4).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

We also evaluated the model performance after excluding the variable of urine output. Without urine output information, the model also showed acceptable discriminative ability in both the primary cohort (AUC: 0.713, 95% CI: 0.698-0.728) and the validation cohort (AUC: 0.718, 95% CI: 0.695-0.741) (Supplementary Table 1). For patients without suffering AKI in the initial 24 hours after admission, the model performed with an AUC of 0.680 (95% CI: 0.651-0.709) in the primary cohort and an AUC of 0.673 (95% CI: 0.630-0.715) (Supplementary Table 2).

Discussion

 AKI is a complicated clinical syndrome characterized by reduced urine production and/or rapid increases in serum creatinine¹⁵. AKI has been reported to be positively associated with short-term mortality in CSRU populations^{5 16}. Delayed diagnosis of AKI is an independent risk factor for nosocomial death¹⁷. Therefore, the early identification of patients at risk for AKI might help to reduce short-term mortality, improve prognosis, and reduce the health care burden.

In this study, we extracted the clinical information of 6271 patients from the MIMIC-III database. We identified the following 14 possible risk factors for severe AKI by LASSO regression and logistical regression: age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative use, furosemide, atrial fibrillation, congestive heart failure, and left heart catheterization. Subsequently, a clinical score model was constructed by quantifying the weight of the aforementioned variables. The clinical score model was well fitted, as evaluated by the AUC, calibration curves and decision curve analysis in both the primary and validation cohorts. The model could calculate a severe AKI probability immediately after the initial 24 hours and might help clinicians perform early intervention.

Several scoring systems and prognostic models have been built to predict AKI. Scoring systems such as the Cleveland Clinic Score¹⁸ and the Mehta Score¹⁹ only consider AKI patients

requiring dialysis and thus might miss patients with subclinical AKI. Additionally, clinical prediction models have been used to forecast AKI in patients undergoing cardiac surgery⁹ or coronary angiography²⁰. These studies enrolled both mild and severe AKI patients. Our model was generated from the MIMIC-III database, with a larger sample size and more variables. This study predicted only severe AKI, which might be more attractive for clinical practice. Moreover, the primary cohort and validation cohort were assigned by admission time. According to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement, nonrandom assignment by time is a stronger design feature for evaluating model performance than random assignment²¹.

LASSO regression is a popular variable selection algorithm for multicollinear data or highdimensional data²². LASSO has been widely used for clinical prediction. For example, via LASSO, researchers have built a clinical model to predict the diagnosis and prognosis of colon cancer²³. A radiomics signature using LASSO has been developed to evaluate survival in patients with non-small-cell lung cancer²⁴. LASSO has been used to predict AKI in patients with hematologic tumors, patients suffering from cardiac surgery or patients hospitalized in the neurosurgical intensive care unit¹² ²² ²⁵. In the present study, based on clinical profiles, LASSO was performed to select relevant coefficients from a multitude of variables, simultaneously removing all unrelated variables. Through dimensionality reduction using LASSO, 42 clinical variables were screened down to 14 risk factors, according to the 1 – standard error criterion. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Among those 14 variables, older age and obesity were independent risk factors for AKI, as indicated by previous investigations^{26 27}. Additionally, hypotension has been reported to be associated with new-onset AKI in ICU patients with shock²⁸. High CVP, indicating fluid

overload, is another factor affecting AKI²⁹. Consistent with previous studies, these risk factors were included in the clinical score model and given a weighted score. Reduced urine output is a clinical manifestation of AKI and is also an important factor underlying the poor prognosis of AKI. In this study, decreased urine output was one of the most important predictors of AKI in CSRU patients. Overall, the clinical score model contained 14 variables, more than half of which have been reported to be associated with AKI. In addition, ROC curves, calibration curves, and decision curve analysis showed consistent results in both the primary and validation cohorts, showing that the clinical score model could be an effective and reliable tool for predicting the risk of severe AKI.

Several limitations of our study must be noted. First, this study was based on the MIMIC-III database, whose data were collected between 2001 and 2012. Some therapies might not meet the latest guidelines and some newer medicines might not be included. Because of the singlecenter nature of the data, the performance of our model might vary when applied to other regions. The potential residual confounding by variables not recorded in this database could not be evaluated. Second, only patients without existing renal failure were included in this study. Thus, this novel score model might not be suitable for those with a renal failure history. Third, missing values were filled by the random forest method, which might lead to biased regression coefficient estimates³⁰. Therefore, further studies are needed to verify our model. Fourth, our model was designed to be used immediately after the initial 24 hours of admission, and it may not work for patients who suffer AKI within those initial 24 hours.

Conclusion

BMJ Open

In conclusion, this study established and validated a novel clinical score by using LASSO regression and logistic regression to screen for multiple clinical risk factors to estimate the probability of severe AKI in CSRU patients. This clinical score model can be an intuitive and reliable predictive tool that might help in individualized clinical decision-making and risk management for severe AKI.

Acknowledgement We would like to thank the participants, developers and investigators associated with the Medical Information Mart for Intensive Care (MIMIC)-III database.

Contributors TH: Conceptualization, data analysis, writing original draft, writing review and editing. WH: Conceptualization, writing original draft, writing review and editing. YX, WL and YL: Writing original draft and data curation. HL, JJH and JPH: Literature search and data interpretation. YC: Literature search and data interpretation. QG: Conceptualization, writing review and editing, and data curation. JW: Conceptualization, writing review and editing, and data curation.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Funding: This study was supported by grants from the National Natural Science Foundation of China (Nos. 82070237, 81870170, 81770229, 81970200), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110313), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (No. 2019GZR110406004), Guangzhou Science and Technology Bureau (Nos. 201803040010, 201707010206, 202102010007), and Yat-sen Start-up Foundation (No. YXQH202014).

Disclaimer The funders had no roles in the study design, data collection, data analysis, interpretation or writing of the report.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer-reviewed.

Data availability statement The dataset analyzed to generate the findings for this study is

available from the corresponding author on reasonable request.

ORCID iD Qi Guo http://orcid.org/0000-0003-3145-1309

References

- 1. Rossaint J, Zarbock A. Acute kidney injury: definition, diagnosis and epidemiology. *Minerva* Urol Nefrol 2016;68(1):49-57.
- 2. Hoste EA, Bagshaw SM, Bellomo R, *et al.* Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. *Intensive Care Med* 2015;41(8):1411-23.
- 3. Abd ElHafeez S, Tripepi G, Quinn R, *et al.* Risk, Predictors, and Outcomes of Acute Kidney Injury in Patients Admitted to Intensive Care Units in Egypt. *Sci Rep* 2017;7(1):17163.
- 4. Jentzer JC, Breen T, Sidhu M, *et al.* Epidemiology and outcomes of acute kidney injury in cardiac intensive care unit patients. *J Crit Care* 2020;60:127-34.
- 5. Holland EM, Moss TJ. Acute Noncardiovascular Illness in the Cardiac Intensive Care Unit. *J Am Coll Cardiol* 2017;69(16):1999-2007.
- 6. Greenberg JH, Zappitelli M, Jia Y, *et al.* Biomarkers of AKI Progression after Pediatric Cardiac Surgery. *J Am Soc Nephrol* 2018;29(5):1549-56.
- Chang CH, Yang CH, Yang HY, et al. Urinary Biomarkers Improve the Diagnosis of Intrinsic Acute Kidney Injury in Coronary Care Units. *Medicine (Baltimore)* 2015;94(40):e1703.
- 8. Iasonos A, Schrag D, Raj GV, *et al.* How to build and interpret a nomogram for cancer prognosis. *J Clin Oncol* 2008;26(8):1364-70.
- Guan C, Li C, Xu L, *et al.* Risk factors of cardiac surgery-associated acute kidney injury: development and validation of a perioperative predictive nomogram. *J Nephrol* 2019;32(6):937-45.
- 10. Tseng PY, Chen YT, Wang CH, *et al.* Prediction of the development of acute kidney injury following cardiac surgery by machine learning. *Crit Care* 2020;24(1):478.
- 11. Le S, Allen A, Calvert J, *et al.* Convolutional Neural Network Model for Intensive Care Unit Acute Kidney Injury Prediction. *Kidney Int Rep* 2021;6(5):1289-98.
- 12. An S, Luo H, Wang J, *et al.* An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. *Ann Transl Med* 2020;8(5):194.
- 13. Johnson AE, Pollard TJ, Shen L, *et al.* MIMIC-III, a freely accessible critical care database. *Sci Data* 2016;3:160035.

14. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. <i>Nephron Clin Pract</i> 2012;120(4):c179-84.
15. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019;394(10212):1949-64.
16. Jentzer JC, Bennett C, Wiley BM, et al. Predictive Value of the Sequential Organ Failure
Assessment Score for Mortality in a Contemporary Cardiac Intensive Care Unit Population 1 4m Haart 4ssoc 2018:7(6):1 11
17 Vong L. Ving C. Wong L. et al. A outo kidnow injury in Chine: a gross socional survey
<i>Lancet</i> 2015;386(10002):1465-71.
18. Thakar CV, Arrigain S, Worley S, <i>et al.</i> A clinical score to predict acute renal failure after cardiac surgery. <i>J Am Soc Nephrol</i> 2005;16(1):162-8.
19. Mehta RH, Grab JD, O'Brien SM, <i>et al.</i> Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. <i>Circulation</i> 2006;114(21):2208, 16
20. Zhou X. Sun Z. Zhuang V. et al. Development and Validation of Non-gram to Predict.
Acute Kidney Injury in Patients with Acute Myocardial Infarction Treated Invasively.
21 Collins GS Reitsma IB Altman DG <i>et al</i> Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement <i>Bmi</i> 2015:350:97594
22 Li V Chen X Wang V <i>et al</i> Application of group LASSO regression based Bayesian
networks in risk factors exploration and disease prediction for acute kidney injury in
hospitalized nations with hematologic malignancies <i>BMC Nenhrol</i> 2020:21(1):162
23 Zhou R. Zhang I. Zeng D. <i>et al.</i> Immune cell infiltration as a biomarker for the diagnosis
and prognosis of stage L-III colon cancer <i>Cancer</i> Immunol Immunother
2010-68(3)-433-42
2017,00(5).+55-+2. 24 Huang Y Liu Z He L <i>et al</i> Radiomics Signature: A Potential Biomarker for the Prediction
of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. <i>Radiology</i> 2016:281(3):947-57
25 Coulson T Bailey M Pilcher D <i>et al</i> Predicting Acute Kidney Injury After Cardiac
Surgery Using a Simpler Model I Cardiothorac Vasc Anesth 2021:35(3):866-73
26 Sovik S. Isachsen MS. Nordhuus KM. <i>et al.</i> Acute kidney injury in trauma natients admitted
to the ICU: a systematic review and meta-analysis Intensive Care Med
$2019\cdot45(4)\cdot407.19$
2017, 40(4), 40(4).
of acute kidney injury among patients in the intensive care unit in Laos: a nationwide multicenter, prospective, and observational study. <i>BMC Med</i> 2020;18(1):180
28 Panwar R. Tarvade S. Lanvon N. <i>et al.</i> Relative Hypotension and Adverse Kidney-related
Outcomes among Critically III Patients with Shock A Multicenter, Prospective Cohort
Study Am L Respir Crit Care Med 2020:202(10):1407-18
29 Bouchard I. Soroko SB. Chertow GM. et al. Eluid accumulation, survival and recovery of
kidney function in critically ill patients with acute kidney injury <i>Kidney</i> Int
Refinely function in critically in patients with acute Kidney injury. Kinney int 2000.76(A).422.7
30 Hong S I van HS Accuracy of random forest based imputation of missing data in the
presence of non-normality, non-linearity, and interaction. <i>BMC Med Res Methodol</i>
2020,20(1).199.
15

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 1	Baseline	characteristics	of the	enrolled	subjects	in the	primary	and	validation
cohorts									

	Primary cohort	Validation cohort	Р
n	4388	1883	
Age, years	66.0±12.8	65.9±13.3	0.715
Male	2921 (66.6)	1229 (65.3)	0.332
Weight, kg	83.0±19.1	83.2±20.0	0.785
Heart rate, /min	84.9±10.7	84.6±10.8	0.357
Respiratory rate, /min	17.2±3.1	17.2±3.0	0.914
Glucose, mg/dL	131.2±23.2	132.4±23.2	0.060
SBP, mmHg	113.3±10.7	113.9±10.8	0.040
DBP, mmHg	57.1±6.9	57.3±7.0	0.244
CVP, mmHg	10.6±3.5	10.7±3.6	0.191
Urine output, mL	2075.0 (1480.0-2880.0)	2080.0 (1457.0-2900.0)	0.949
pO ₂ , mmHg	314.0 (211.0-383.0)	308.0 (206.0-386.0)	0.168
Sedative	3707 (84.5)	1593 (84.6)	0.905
Ventilation	3836 (87.4)	1642 (87.2)	0.811
Furosemide	675 (15.4)	292 (15.5)	0.901
Atrial fibrillation	1695 (38.6)	754 (40.0)	0.293
Congestive heart failure	1018 (23.2)	442 (23.5)	0.814
Stroke	258 (5.9)	108 (5.7)	0.823
Left heart catheterization	1288 (29.4)	551 (29.3)	0.942
Severe AKI	2452 (55.9)	1020 (54.2)	0.213

The data are depicted as the mean \pm standard deviation, the median (interquartile range) or a number (percentage). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test. SBP, systolic blood pressure;

DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen; AKI, acute kidney injury.

Table 2 Baseline characteristics of the severe AKI and non-severe AKI groups in the

primary cohort.

	Severe AKI	Non-severe AKI	Р
n	2452	1936	
Age, years	67.4±12.2	64.3±13.3	< 0.001
Male	1606 (65.5)	1315 (67.9)	0.094
Weight, kg	86.7±20.2	78.4±16.5	< 0.001
Heart rate, /min	85.0±10.8	84.7±10.6	0.475
Respiratory rate, /min	17.2±3.1	17.2±3.0	0.999
Glucose, mg/dL	133.4±23.6	128.6±22.2	< 0.001
SBP, mmHg	112.7±10.5	114.0±10.8	< 0.001
DBP, mmHg	56.5±6.9	57.9±6.9	< 0.001
CVP, mmHg	11.2±3.7	9.8±3.1	< 0.001
Urine output, mL	1735.5 (1245.0-2384.3)	2550.0 (1930.0-3355.0)	< 0.001
pO ₂ , mmHg	309.0 (204.0-379.0)	323.0 (224.0-389.0)	0.009
Sedative	2116 (86.3)	1591 (82.2)	< 0.001
Ventilation	2183 (89.0)	1653 (85.4)	< 0.001
Furosemide	341 (13.9)	334 (17.3)	0.002
Atrial fibrillation	1074 (43.8)	621 (32.1)	< 0.001
Congestive heart failure	673 (27.4)	345 (17.8)	< 0.001
Stroke	132 (5.4)	126 (6.5)	0.121
Left heart catheterization	762 (31.1)	526 (27.2)	0.005

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The data are depicted as the mean \pm standard deviation, the median (interquartile range) or a number (percentage). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test. SBP, systolic blood pressure;

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen;

AKI, acute kidney injury.

Variables	LASSO	Logistic		
	β	β	OR (95% CI)	Р
Age	0.011221	0.017	1.017 (1.010-1.023)	< 0.001
Male	-0.165641	-0.404	0.667 (0.568-0.784)	< 0.001
Weight	0.023091	0.031	1.032 (1.027-1.037)	< 0.001
Heart rate	0.000058	0.007	1.007 (1.000-1.014)	0.055
Respiratory rate	-0.006347	-0.042	0.959 (0.936-0.982)	0.001
Glucose	0.000846	0.002	1.002 (0.999-1.005)	0.181
SBP	-0.004721	-0.010	0.990 (0.983-0.997)	0.007
DBP	-0.009688	-0.015	0.985 (0.974-0.997)	0.011
CVP	0.063826	0.072	1.075 (1.051-1.099)	< 0.001
Urine output	-0.000603	-0.001	0.999 (0.999-0.999)	< 0.001
pO ₂	-0.000127	-0.001	0.999 (0.998-1.000)	0.001
Sedative	0.173715	0.340	1.405 (1.032-1.912)	0.031
Ventilation	0.093818	0.189	1.209 (0.862-1.694)	0.272
Furosemide	-0.484207	-0.757	0.469 (0.387-0.569)	< 0.001
Atrial fibrillation	0.193466	0.279	1.322 (1.139-1.536)	< 0.001
Congestive heart failure	0.207495	0.305	1.357 (1.143-1.611)	< 0.001
Stroke	-0.021989	-0.254	0.776 (0.580-1.038)	0.087
Left heart catheterization	0.043483	0.166	1.181 (1.014-1.376)	0.033

LASSO, least absolute shrinkage and selection operator; OR, odds ratio; CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen.

60

Table 4 Model performance in the primary and validation cohorts.

	AUC	Accuracy	Sensitivity	Specificity	Positive	Negative	Cutoff
	(95% CI)	(95% CI)			predictive	predictive	value
					value	value	
Primary	0.779	0.702	0.609	0.820	0.811	0.623	0.566
cohort	(0.766-	(0.688-					
	0.793)	0.715)					
Validatio	0.778	0.715	0.781	0.637	0.718	0.722	0.065
n cohort	(0.757-	(0.694-					
	0.799)	0.735)					
AUC, are	a under the r	eceiver opera	ting character	istic curve; CI,	confidence i	nterval.	

Figure legends

Figure 1 Flow chart of enrolled subjects.

A total of 6271 CSRU stay records were enrolled in this study. ICU, intensive care unit; CSRU, cardiac surgery recovery unit.

Figure 2 LASSO coefficient profiles of variables and misclassification errors for different models.

The upper panel presents the associations between the coefficients of variables and the log lambda value. Each line corresponds to one distinct variable. With increasing log lambda, the coefficient of the variable tended toward 0. The lower panel presents the selection of the applicable model. Vertical lines were drawn at the optimal values by adopting the minimum criteria (dashed line) and the SE of the minimum criteria (dotted line, the 1 - SE criteria). In our study, the lambda value was chosen according to the 1 - SE criteria. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Figure 3 Clinical score for the prediction of severe AKI in CSRU patients.

All 14 selected variables, including age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU. SBP, systolic

BMJ Open

blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Figure 4 Performance evaluation of the severe AKI prediction model.

ROC curves in the primary cohort (A) and validation cohort (B). The AUCs of the model in the primary and validation cohorts were 0.779 and 0.778, respectively. Calibration curves in the primary cohort (C) and validation cohort (D). The observed values were close to the ideal values, indicating a satisfactory forecasting performance of the clinical score model. Decision curve analyses in the primary cohort (E) and validation cohort (F), showing the net benefit from the model. AKI, acute kidney failure; ROC, receiver operator characteristic curve; AUC, area under the receiver operating characteristic curve.

Supplementary Figure 1 Nomogram for the prediction of severe AKI in CSRU patients.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

All 14 selected variables, namely, age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU patients. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

ICU stay records n = 61532 Age ≥ 18 years and not censored Length of ICU stay > 1 day Only included the first ICU admission for each patient ICU stay records n = 30928 In other units rather than CSRU (n = 24074, 77.8%) With no urine output records (n = 105, 0.3%) With no creatinine records (n = 439, 1.4%) With existing renal failure (n = 39, 0.1%)CSRU stay records n = 6271 Primary cohort Validation cohort n = 1883 n = 4388

Figure 1 Flow chart of enrolled subjects. A total of 6271 CSRU stay records were enrolled in this study. ICU, intensive care unit; CSRU, cardiac

surgery recovery unit.

Figure 2 LASSO coefficient profiles of variables and misclassification errors for different models. The upper panel presents the associations between the coefficients of variables and the log lambda value. Each line corresponds to one distinct variable. With increasing log lambda, the coefficient of the variable tended toward 0. The lower panel presents the selection of the applicable model. Vertical lines were drawn at the optimal values by adopting the minimum criteria (dashed line) and the SE of the minimum criteria (dotted line, the 1 – SE criteria). In our study, the lambda value was chosen according to the 1 – SE criteria. LASSO, least absolute shrinkage and selection operator; SE, standard error.

BMJ Open: first published as 10.1136/bmjopen-2021-060258 on 2 June 2022. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2021-060258 on 2 June 2022. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

ו ר	
2	
2 1	
-+ 5	
5	
7	
/ 0	
0	
10	
11	
12	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

Age , years Score	10 0	20 2	30 4	40 6	50 8	60 10	70 12	80 14	90 16				
Score	Male 0	Female 5		-	-								
Weight , kg Score	20 0	40 8	60 15	80 23	100 31	120 38	140 46	160 54	180 62	200 69	220 77	240 85	260 92
Respiratory rate , /min Score	5 14	10 11	15 9	20 7	25 5	30 2	35 0						
SBP , mmHg Score	70 15	80 14	90 13	100 11	110 10	120 8	130 7	140 6	150 4	160 3	170 1	180 0	
DBP , mmHg Score	20 15	30 13	40 11	50 10	60 8	70 6	80 5	90 3	100 2	110 0			
C VP , mmHg Score	0 5	5 9	10 14	15 18	20 23	25 27	30 32	35 36					
Urine output, mL Score	0 84	1000 76	2000 67	3000 59	4000 51	5000 42	6000 34	7000 25	8000 17	9000 8	10000 0		
pO2 , mmHg Score	0 10	100 9	200 8	300 7	400 5	500 4	600 3	700 1	800 0				
Sedative Score	No 0	Yes 6											
Furosemide Score	No 10	Yes 0											
Atrial fibrillation Score	No 0	Yes 3		Total so Probab	cores ility of se	evere AKI	125 0.05	135 0.10	151 0.30	161 0.50	171 0.70	188 0.90	197 0.95
Congestive heart failure Score	No 0	Yes 4											
Left heart catheterization	No 0	Yes 2											

Figure 3 Clinical score for the prediction of severe AKI in CSRU patients.

All 14 selected variables, including age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO2, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Page 27 of 28

Supplementary figure and tables

Points	0 10 20 30 40 50 60 70 80 90 100
Age, years	10 50 90
Sex	Male Female
Weight, kg	20 60 100 140 180 220 260
Respiratory rate, /min	35 20 5
SBP, mmHg	180 120 60
DBP, mmHg	110 70 30
CVP, mmHg	0 10 15 30
Urine output, mL	10000 8000 6000 4000 2000 0
pO ₂ , mmHg	800 100
Sedative	No Yes
Furosemide	Yes No
Atrial fibrillation	No Yes
Congestive heart failure	No Yes
Left heart catheterization	No Yes
Total Points	0 20 40 60 80 100 120 140 160 180 200 220 240
	30% 70%
Probability of severe AKI	10% 50% 90%

Supplementary Figure 1 Nomogram for the prediction of severe AKI in CSRU patients.

All 14 selected variables, namely, age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO_2 , sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU patients. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Supplementary Table 1 Performance evaluation of the model without urine output.									
	AUC	Accuracy	Sensitivity	Specificity	Positive	Negative	Cutoff		
	(95% CI)	(95% CI)			predictive	predictive	value		
					value	value			
Primary	0.713	0.658	0.594	0.739	0.743	0.590	0.363		
cohort	(0.698-	(0.644-							
(n=4388)	0.728)	0.672)							
Validation	0.718	0.666	0.712	0.610	0.683	0.642	0.095		
cohort	(0.695-	(0.644-							
(n=1883)	0.741)	0.687)							

AUC, area under the receiver operating characteristic curve; CI, confidence interval.

Supplementary Table 2 Model performance in patients without suffering AKI in the initial 24 hours.

	AUC	Accuracy	Sensitivity	Specificity	Positive	Negative	Cutoff
	(95% CI)	(95% CI)			predictive	predictive	value
					value	value	
Primary	0.680	0.704	0.538	0.757	0.412	0.838	-0.943
cohort	(0.651-	(0.682-					
(n=1800)	0.709)	0.725)					
Validation	0.673	0.637	0.624	0.641	0.343	0.850	-1.124
cohort	(0.630-	(0.603-					
(n=820)	0.715)	0.670)					

AUC, area under the receiver operating characteristic curve; CI, confidence interval.

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic	ltem		Checklist Item	Page	
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.		
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2-3	
Introduction		-			
Background	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.		
and objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.		
Methods					
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.		
	4b	D;V	end of follow-up.		
Participants	5a	D;V	population) including number and location of centres.	4	
	50 50	D;V	Give details of treatments received, if relevant	5	
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.		
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	5	
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.		
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	5-6	
Sample size	8	D;V	Explain how the study size was arrived at.	5	
Missing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	6	
	10a	D	Specify type of model, all model, building procedures (including any predictor selection)	0	
Statistical	10b	D	and method for internal validation.	6	
methods	100		Specify all measures used to assess model performance and if relevant to compare	0	
	10d	D;V	multiple models.	6	
Diele energe	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	6	
Development	11	D;v	For validation, identify any differences from the development data in setting, eligibility	0	
vs. validation	12	V	criteria, outcome, and predictors.	6	
Results			Describe the flow of a sticious to the set of a study, including the symples of a sticious sta		
	13a	D;V	bescribe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	7	
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome	7	
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome)	7	
	14a	D	Specify the number of participants and outcome events in each analysis.	7	
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	8	
Model	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	8	
specification	15b	D	Explain how to the use the prediction model.	8	
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	8	
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	8	
Discussion	1				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	11	
Interpretation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	10	
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	9-10	
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	9	
Supplementary		- · · ·	Provide information about the availability of supplementary resources, such as study	10	
information	21 22	D;V	protocol, Web calculator, and data sets.	12	
i ululuu	~~	L.V.		1 1 /	

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac surgery recovery unit: A large retrospective cohort study using the MIMIC database

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060258.R2
Article Type:	Original research
Date Submitted by the Author:	08-May-2022
Complete List of Authors:	Huang, Tucheng; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province He, Wanbing; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Xie, Yong; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Lv, Wenyu; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Lv, Wenyu; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Li, Yuewei; Sun Yat-Sen University, Department of Respiratory Medicine Li, Hongwei; Sun Yat-Sen University Sun Yat-Sen Memorial Hospital, Department of Cardiology Huang, Jingjing; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province Huang, Jieping; Sun Yat-Sen University, Department of Cardiology; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Chen, Yangxin; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease Guo, Qi; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease Wang, Jingfeng; Sun Yat-Sen University, Department of Cardiology; Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine, Renal medicine
Keywords:	Acute renal failure < NEPHROLOGY, Cardiac surgery < SURGERY, Adult intensive & critical care < ANAESTHETICS

1		BMJ
2 3		Open:
4 5		first p
7 8 9	SCHOLARONE [™] Manuscripts	ublished
10 11		as 10. Prot
12 13		.1136/ .ected
14 15		bmjop by cc
16 17		oen-20 opyrig
18 19)21-06 ht, inc
20 21		0258 cludin
22 23		on 2 . g for
24 25		lune 2 Ense uses I
26 27		022. [relate
28 29		Downl d to te
30 31		oader Superi ext an
32		d from eur (<i>L</i> d data
34 35		i http: (BES) i minii
36 37		,//bmj ng, Al
38 39		open.l traini
40 41		ng, a
42		om/ or nd sin
44		n Junt 1ilar te
46		∍ 13, 2 ∋chno
48		logie:
50 51		t Age s.
52		nce B
55 54		ibliog
55 56		J raphi
57 58		que d
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	le l

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez ony

A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac surgery recovery unit: A large retrospective cohort study using the MIMIC database Tucheng Huang^{1,2,3#}, Wanbing He^{1,2,3#}, Yong Xie^{1,2,3}, Wenyu Lv^{1,2,3}, Yuewei Li⁴, Hongwei Li^{1,2,3}, Jingjing Huang^{1,2,3}, Jieping Huang^{1,2,3}, Yangxin Chen^{1,2,3*}, Qi Guo^{1,2,3*}, Jingfeng Wang^{1,2,3*}

¹Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

²Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, China

³Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

⁴Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

[#]These authors contributed equally to this work.

***Correspondence to:** Jingfeng Wang, Qi Guo, Yangxin Chen. Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou 510120, China. E-mail: wjingf@mail.sysu.edu.cn, guoq69@mail.sysu.edu.cn, chenyx39@mail.sysu.edu.cn.

Abstract

 Objectives We aimed to develop an effective tool for predicting severe acute kidney injury (AKI) in patients admitted to the cardiac surgery recovery unit (CSRU).

Design A retrospective cohort study.

Setting Data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III database, consisting of critically ill participants between 2001 and 2012 in the USA.
Participants A total of 6271 patients admitted to the CSRU were enrolled from the MIMIC-III database.

III database.

Primary and secondary outcome Stage 2 to 3 AKI.

Result As identified by least absolute shrinkage and selection operator (LASSO) and logistic regression, risk factors for AKI included age, sex, weight, respiratory rate, systolic blood pressure, diastolic blood pressure, central venous pressure, urine output, partial pressure of oxygen, sedative use, furosemide use, atrial fibrillation, congestive heart failure, and left heart catheterization, all of which were used to establish a clinical score. The areas under the receiver operating characteristic curve of the model were 0.779 (95% confidence interval: 0.766-0.793) for the primary cohort and 0.778 (95% confidence interval: 0.757-0.799) for the validation cohort. The calibration curves showed good agreement between the predictions and observations. Decision curve analysis demonstrated that the model could achieve a net benefit. **Conclusion** A clinical score built by using LASSO regression and logistic regression to screen multiple clinical risk factors was established to estimate the probability of severe AKI in CSRU patients. This may be an intuitive and practical tool for severe AKI prediction in the CSRU.

BMJ Open

Key words: acute kidney injury, LASSO, clinical score, cardiac surgery recovery unit, prediction

Strengths and limitations of this study

Least absolute shrinkage and selection operator regression and multivariable logistic regression were used to establish a clinical score model.

The performance of this novel clinical score model in both the primary cohort and validation cohort was evaluated using the area under the receiver operating characteristic curve, calibration curves, and decision curve analysis.

This novel clinical score model might not be suitable for those with a renal failure history. External validation of this novel clinical score model was lacking.

Introduction

Acute kidney injury (AKI), a common complication in patients admitted to the intensive care unit worldwide^{1 2}, is associated with adverse short- and long-term prognoses³. It has been reported that more than half of patients in the cardiac surgery recovery unit (CSRU) suffer from AKI of some stage⁴, which is associated with high mortality and rehospitalization rates⁵. The early and rapid diagnosis and treatment of AKI may help reduce mortality and rehospitalization rates. Although several biomarkers have been used for the early diagnostic and prognostic prediction of AKI^{6 7}, the clinical utilization of these biomarkers has been limited. When the levels of these biomarkers increase, renal injury occurs. Thus, identifying critically ill patients at high risk of AKI is an important part of the overall management of CSRU patients. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Graphical calculation devices, which are presented as a scale or score that incorporate possible risk factors to make clinical prognostic predictions, have become increasingly popular.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

It has been extensively used to predict the probability of death or recurrence events for a patient with cancer⁸. Recently, some researchers established a clinical prediction model for forecasting the occurrence of AKI in patients undergoing cardiac surgery⁹. However, that small, single-center study did not exclude patients with chronic kidney disease and thus probably overestimated the occurrence of AKI; additionally, only logistic regression for variable selection was used. By machine learning, a model was established to predict cardiac surgery–associated AKI, although the sample was small and urine output was neglected¹⁰. Another study used a convolutional neural network model to predict severe AKI in the intensive care unit (ICU), while patients with a previous diagnosis of chronic kidney disease were not excluded¹¹.

Least absolute shrinkage and selection operator (LASSO) regression is of great strength for variable selection because it can efficiently address the potential association between covariates, such as collinearity¹². Accordingly, in this study, we performed LASSO regression to select variables and built a logistic regression model to identify independent risk factors for severe AKI in patients admitted to the CSRU. We aimed to determine the risk factors for severe AKI and develop a clinical score for evaluating the probability that patients undergoing critical cardiac care will acquire severe AKI.

Methods

Data source and ethics approval

The data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III dataset. As a large and publicly available database, MIMIC-III comprises the clinical information for 61532 ICU stay cases between 2001 and 2012. The use of the MIMIC-III

BMJ Open

database was approved by the review boards of the Massachusetts Institute of Technology and Beth Israel Deaconess Medical Center¹³. Because the information used in the study was from a publicly deidentified database, the informed consent requirement was waived.

Study population

Adult ICU stays longer than 1 day were included. When a patient had multiple ICU admissions, only the first medical record was selected for the study. The exclusion criteria were as follows: patients in units other than the CSRU (n = 24074, 77.8%); patients with no urine output records (n = 105, 0.3%); patients with no creatinine data (n = 439, 1.4%); and patients with existing renal failure (n = 39, 0.1%) (Figure 1). During the CSRU stay, all creatinine and urine output records were extracted, and AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines¹⁴. Baseline serum creatinine was defined as the lowest creatinine in the past 7 days. Both urine output and serum creatinine criteria were used to identify AKI. Information about renal replacement therapy was not considered in this study. Severe AKI was defined as stage 2 or stage 3 AKI under the KDIGO criteria. Patients in the CSRU were screened, and a total of 6271 patients were included. Chronologically, the first 70% of patients were allocated to the primary cohort, and the last 30% were allocated to the validation cohort. Subsequently, we established a clinical score model by using the primary cohort data and validated the model by using the validation cohort.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Variable extraction

The following variables were extracted.
Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Demographics: age (years), sex, height (cm), and weight (kg).

Vital signs: heart rate (/min), respiratory rate (/min), temperature (°C), saturation of peripheral oxygen (%), blood glucose level (mg/dL), systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, mmHg), central venous pressure (CVP, mmHg), and mean artery pressure (mmHg). The mean value of vital signs in the 24 hours after admission was included for analysis.

Laboratory tests: white blood cell count (×10^9/L), hemoglobin (g/dL), platelets (×10^9/L), chloride (mmol/L), sodium (mmol/L), blood urea nitrogen (BUN, mg/dL), bicarbonate (mmol/L), pH, partial pressure of oxygen (pO₂, mmHg), partial pressure of carbon dioxide (pCO₂, mmHg), creatinine (mg/dL), and potassium (mmol/L). The values of laboratory tests in the first 24 hours after admission were used for the analysis. In addition, 24-hour urine output was extracted.

Procedures: administration of furosemide, use of sedative, ventilation, vasopressor, cardiopulmonary bypass, coronary artery bypass grafting, left heart catheterization. The sedative drugs in this study included midazolam, fentanyl, propofol, and midazolam.

Comorbidities: coronary artery disease, congestive heart failure, atrial fibrillation, stroke, diabetes, renal disease, liver disease, chronic obstructive pulmonary disease, and malignancy.

All variables were collected in the initial 24 hours after admission to predict severe AKI as early as possible. The frequency of missing values for each variable was less than 15%. The missing values were filled in by the random forest method using R software.

Statistical analysis

BMJ Open

Continuous variables are denoted as the mean \pm SD or the median (interquartile range), whereas categorical variables are expressed as numbers (percentages). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test.

In this study, LASSO was performed for variable selection. LASSO regression is a compression estimation used to address the collinearity between covariates. When there are several collinear predictors, LASSO selects only one and ignores the others or zeroes out some regression coefficients. Cross-validation was used during LASSO regression, and 1 - standard error criterion was used to select lambda. Namely, the value of lambda was identified when the cross-validated error was within one standard error of the minimum. Odds ratios (ORs) with 95% confidence intervals (95% CIs), statistics describing the strength of the association between disease and exposure, were calculated by logistic regression, thus estimating the association of independent risk factors with AKI. Finally, a clinical score model was established based on the above analysis, which was further validated with C-indices, accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curves, the areas under the ROC curves (AUCs), calibration curves, and decision curve analysis. We used 10-fold cross validation to identify the optimal clinical score model. Briefly, the primary cohort was randomly divided into 10 roughly equal-sized groups. One group was taken as a test dataset, and the remaining groups were used as a training dataset. The model was fitted on the training dataset and evaluated on the test dataset. After repeating the process 10 times, the optimal model with the best performance was identified.

SPSS software (version 23.0, IBM, NY, USA) and R software (version 3.6.3, R

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Foundation for Statistical Computing, Vienna, Austria) were used for statistical analysis. The packages used in this study included *missForest*, *glmnet*, *rms*, *pROC*, *caret*, and *rmda*. A two-sided *P*<0.05 was considered statistically significant.

Patient and public involvement

Patients and/or the public were not directly involved in this study.

Results

Patients with severe AKI comprised 55.9% (2452/4388) and 54.2% (1020/1883) of the primary and validation cohorts, respectively. No significant difference in the severe AKI rate was observed between the two cohorts (P=0.213). Except for SBP (primary cohort, 113.3 mmHg vs. validation cohort, 132.4 mmHg, P=0.040), no clinical characteristics showed a significant difference between the primary and validation cohorts (Table 1).

In the primary cohort, patients with severe AKI were older, had higher weights and had higher blood glucose level than those without severe AKI (P < 0.001). SBP and DBP were significantly lower (112.7 mmHg vs. 114.0 mmHg and 56.6 mmHg vs. 57.9 mmHg, respectively), while CVP was significantly higher (11.2 mmHg vs. 9.8 mmHg) in the severe AKI group (P<0.001). Urine output and pO₂ were lower in the severe AKI group (P < 0.01). Drug administration was also different, namely, severe AKI patients received sedatives, ventilation, and furosemide significantly more often (P<0.001). The stroke prevalence rates were the same, but a higher prevalence of atrial fibrillation, congestive heart failure and left heart catheterization was observed in severe AKI patients (P<0.05) (Table 2).

BMJ Open

To confirm the possible risk factors for severe AKI, we performed LASSO regression to select variables. A total of 18 variables were enrolled for further analysis according to the 1 - standard error criterion (Figure 2). Then, we conducted logistic regression analysis based on the LASSO results. A total of 14 variables were shown to be associated with severe AKI (Table 3).

Next, we included the above significant factors to build a clinical score based on the logistic regression model (Figure 3). Each level of every variable was assigned a score. By adding the scores for all of the selected variables, the total score was obtained. By checking the number corresponding to the total scores, the probability of severe AKI can be estimated for a given patient.

The C-indices were 0.779 for the primary cohort and 0.778 for the validation cohort. The ROC curves demonstrated that the model had good discriminative ability in both the primary cohort (AUC: 0.779, 95% CI: 0.766-0.793) and the validation cohort (AUC: 0.778, 95% CI: 0.757-0.799) (Table 4). Calibration plots showed that the apparent curves were adjacent to the ideal curves in both the primary and validation groups. Finally, decision curve analysis was performed to compare the clinical usability and benefits of the model. The decision curves showed acceptable net benefits across a range of high risks of severe AKI in the primary and validation cohorts (Figure 4).

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

We also evaluated the model performance after excluding the variable of urine output. Without urine output information, the model also showed acceptable discriminative ability in both the primary cohort (AUC: 0.713, 95% CI: 0.698-0.728) and the validation cohort (AUC: 0.718, 95% CI: 0.695-0.741) (Supplementary Table 1). For patients without suffering AKI in

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

the initial 24 hours after admission, the model performed with an AUC of 0.680 (95% CI: 0.651-0.709) in the primary cohort and an AUC of 0.673 (95% CI: 0.630-0.715) (Supplementary Table 2).

Discussion

 AKI is a complicated clinical syndrome characterized by reduced urine production and/or rapid increases in serum creatinine¹⁵. AKI has been reported to be positively associated with short-term mortality in CSRU populations^{5 16}. Delayed diagnosis of AKI is an independent risk factor for nosocomial death¹⁷. Therefore, the early identification of patients at risk for AKI might help to reduce short-term mortality, improve prognosis, and reduce the health care burden.

In this study, we extracted the clinical information of 6271 patients from the MIMIC-III database. We identified the following 14 possible risk factors for severe AKI by LASSO regression and logistical regression: age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO₂, sedative use, furosemide, atrial fibrillation, congestive heart failure, and left heart catheterization. Subsequently, a clinical score model was constructed by quantifying the weight of the aforementioned variables. The clinical score model was well fitted, as evaluated by the AUC, calibration curves and decision curve analysis in both the primary and validation cohorts. The model could calculate a severe AKI probability immediately after the initial 24 hours and might help clinicians perform early intervention.

Several scoring systems and prognostic models have been built to predict AKI. Scoring systems such as the Cleveland Clinic Score¹⁸ and the Mehta Score¹⁹ only consider AKI patients requiring dialysis and thus might miss patients with subclinical AKI. Additionally, clinical

BMJ Open

prediction models have been used to forecast AKI in patients undergoing cardiac surgery⁹ or coronary angiography²⁰. These studies enrolled both mild and severe AKI patients. Our model was generated from the MIMIC-III database, with a larger sample size and more variables. This study predicted only severe AKI, which might be more attractive for clinical practice. Moreover, the primary cohort and validation cohort were assigned by admission time. According to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement, nonrandom assignment by time is a stronger design feature for evaluating model performance than random assignment²¹.

LASSO regression is a popular variable selection algorithm for multicollinear data or highdimensional data²². LASSO has been widely used for clinical prediction. For example, via LASSO, researchers have built a clinical model to predict the diagnosis and prognosis of colon cancer²³. A radiomics signature using LASSO has been developed to evaluate survival in patients with non-small-cell lung cancer²⁴. LASSO has been used to predict AKI in patients with hematologic tumors, patients suffering from cardiac surgery or patients hospitalized in the neurosurgical intensive care unit¹² ²² ²⁵. In the present study, based on clinical profiles, LASSO was performed to select relevant coefficients from a multitude of variables, simultaneously removing all unrelated variables. Through dimensionality reduction using LASSO, 42 clinical variables were screened down to 14 risk factors, according to the 1 – standard error criterion. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Among those 14 variables, older age and obesity were independent risk factors for AKI, as indicated by previous investigations^{26 27}. Additionally, hypotension has been reported to be associated with new-onset AKI in ICU patients with shock²⁸. High CVP, indicating fluid overload, is another factor affecting AKI²⁹. Consistent with previous studies, these risk factors

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

were included in the clinical score model and given a weighted score. Reduced urine output is a clinical manifestation of AKI and is also an important factor underlying the poor prognosis of AKI. In this study, decreased urine output was one of the most important predictors of AKI in CSRU patients. Overall, the clinical score model contained 14 variables, more than half of which have been reported to be associated with AKI. In addition, ROC curves, calibration curves, and decision curve analysis showed consistent results in both the primary and validation cohorts, showing that the clinical score model could be an effective and reliable tool for predicting the risk of severe AKI.

Several limitations of our study must be noted. First, this study was based on the MIMIC-III database, whose data were collected between 2001 and 2012. Some therapies might not meet the latest guidelines and some newer medicines might not be included. Because of the singlecenter nature of the data, the performance of our model might vary when applied to other regions. The potential residual confounding by variables not recorded in this database could not be evaluated. Second, only patients without existing renal failure were included in this study. Thus, this novel score model might not be suitable for those with a renal failure history. Third, missing values were filled by the random forest method, which might lead to biased regression coefficient estimates³⁰. Therefore, further studies are needed to verify our model. Fourth, our model was designed to be used immediately after the initial 24 hours of admission, and it may not work for patients who suffer AKI within those initial 24 hours.

Conclusion

In conclusion, this study established and validated a novel clinical score by using LASSO

BMJ Open

regression and logistic regression to screen for multiple clinical risk factors to estimate the probability of severe AKI in CSRU patients. This clinical score model can be an intuitive and reliable predictive tool that might help in individualized clinical decision-making and risk management for severe AKI.

Acknowledgement We would like to thank the participants, developers and investigators associated with the Medical Information Mart for Intensive Care (MIMIC)-III database.

Contributors TH: Conceptualization, data analysis, writing original draft, writing review and editing. WH: Conceptualization, writing original draft, writing review and editing. YX, WL and YL: Writing original draft and data curation. HL, JJH and JPH: Literature search and data interpretation. YC: Literature search and data interpretation. QG: Conceptualization, writing review and editing, and data curation. JW: Conceptualization, writing review and editing, and data curation.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Funding: This study was supported by grants from the National Natural Science Foundation of China (Nos. 82070237, 81870170, 81770229, 81970200), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110313), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (No. 2019GZR110406004), Guangzhou Science and Technology Bureau (Nos. 201803040010, 201707010206, 202102010007), and Yat-sen Start-up Foundation (No. YXQH202014).

Disclaimer The funders had no roles in the study design, data collection, data analysis, interpretation or writing of the report.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer-reviewed.

Data availability statement The dataset analyzed to generate the findings for this study is

available from the corresponding author on reasonable request.

ORCID iD Qi Guo http://orcid.org/0000-0003-3145-1309

References

- 1. Rossaint J, Zarbock A. Acute kidney injury: definition, diagnosis and epidemiology. *Minerva* Urol Nefrol 2016;68(1):49-57.
- 2. Hoste EA, Bagshaw SM, Bellomo R, *et al.* Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. *Intensive Care Med* 2015;41(8):1411-23.
- 3. Abd ElHafeez S, Tripepi G, Quinn R, *et al.* Risk, Predictors, and Outcomes of Acute Kidney Injury in Patients Admitted to Intensive Care Units in Egypt. *Sci Rep* 2017;7(1):17163.
- 4. Jentzer JC, Breen T, Sidhu M, *et al.* Epidemiology and outcomes of acute kidney injury in cardiac intensive care unit patients. *J Crit Care* 2020;60:127-34.
- 5. Holland EM, Moss TJ. Acute Noncardiovascular Illness in the Cardiac Intensive Care Unit. J Am Coll Cardiol 2017;69(16):1999-2007.
- 6. Greenberg JH, Zappitelli M, Jia Y, *et al.* Biomarkers of AKI Progression after Pediatric Cardiac Surgery. *J Am Soc Nephrol* 2018;29(5):1549-56.
- Chang CH, Yang CH, Yang HY, et al. Urinary Biomarkers Improve the Diagnosis of Intrinsic Acute Kidney Injury in Coronary Care Units. *Medicine (Baltimore)* 2015;94(40):e1703.
- 8. Iasonos A, Schrag D, Raj GV, *et al.* How to build and interpret a nomogram for cancer prognosis. *J Clin Oncol* 2008;26(8):1364-70.
- Guan C, Li C, Xu L, *et al.* Risk factors of cardiac surgery-associated acute kidney injury: development and validation of a perioperative predictive nomogram. *J Nephrol* 2019;32(6):937-45.
- 10. Tseng PY, Chen YT, Wang CH, *et al.* Prediction of the development of acute kidney injury following cardiac surgery by machine learning. *Crit Care* 2020;24(1):478.
- Le S, Allen A, Calvert J, et al. Convolutional Neural Network Model for Intensive Care Unit Acute Kidney Injury Prediction. *Kidney Int Rep* 2021;6(5):1289-98.
- 12. An S, Luo H, Wang J, *et al.* An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. *Ann Transl Med* 2020;8(5):194.
- 13. Johnson AE, Pollard TJ, Shen L, *et al.* MIMIC-III, a freely accessible critical care database. *Sci Data* 2016;3:160035.
- Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. *Nephron Clin Pract* 2012;120(4):c179-84.

- 15. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019;394(10212):1949-64.
- 16. Jentzer JC, Bennett C, Wiley BM, et al. Predictive Value of the Sequential Organ Failure Assessment Score for Mortality in a Contemporary Cardiac Intensive Care Unit Population. J Am Heart Assoc 2018;7(6):1-11.
- 17. Yang L, Xing G, Wang L, *et al.* Acute kidney injury in China: a cross-sectional survey. *Lancet* 2015;386(10002):1465-71.
- 18. Thakar CV, Arrigain S, Worley S, *et al.* A clinical score to predict acute renal failure after cardiac surgery. *J Am Soc Nephrol* 2005;16(1):162-8.
- 19. Mehta RH, Grab JD, O'Brien SM, *et al.* Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. *Circulation* 2006;114(21):2208-16.
- 20. Zhou X, Sun Z, Zhuang Y, et al. Development and Validation of Nomogram to Predict Acute Kidney Injury in Patients with Acute Myocardial Infarction Treated Invasively. *Sci Rep* 2018;8(1):9769.
- 21. Collins GS, Reitsma JB, Altman DG, *et al.* Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. *Bmj* 2015;350:g7594.
- 22. Li Y, Chen X, Wang Y, et al. Application of group LASSO regression based Bayesian networks in risk factors exploration and disease prediction for acute kidney injury in hospitalized patients with hematologic malignancies. *BMC Nephrol* 2020;21(1):162.
- Zhou R, Zhang J, Zeng D, *et al.* Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I-III colon cancer. *Cancer Immunol Immunother* 2019;68(3):433-42.
- 24. Huang Y, Liu Z, He L, et al. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016;281(3):947-57.
- 25. Coulson T, Bailey M, Pilcher D, *et al.* Predicting Acute Kidney Injury After Cardiac Surgery Using a Simpler Model. *J Cardiothorac Vasc Anesth* 2021;35(3):866-73.
- 26. Sovik S, Isachsen MS, Nordhuus KM, *et al.* Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis. *Intensive Care Med* 2019;45(4):407-19.
- 27. Sengthavisouk N, Lumlertgul N, Keomany C, *et al.* Epidemiology and short-term outcomes of acute kidney injury among patients in the intensive care unit in Laos: a nationwide multicenter, prospective, and observational study. *BMC Med* 2020;18(1):180.
- 28. Panwar R, Tarvade S, Lanyon N, et al. Relative Hypotension and Adverse Kidney-related Outcomes among Critically Ill Patients with Shock. A Multicenter, Prospective Cohort Study. Am J Respir Crit Care Med 2020;202(10):1407-18.
- 29. Bouchard J, Soroko SB, Chertow GM, *et al.* Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. *Kidney Int* 2009;76(4):422-7.
- 30. Hong S, Lynn HS. Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. *BMC Med Res Methodol* 2020;20(1):199.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 1 Baseline characteristics of the enrolled subjects in the primary and validation

cohorts.

	Primary cohort	Validation cohort	Р
n	4388	1883	
Age, years	66.0±12.8	65.9±13.3	0.715
Male	2921 (66.6)	1229 (65.3)	0.332
Weight, kg	83.0±19.1	83.2±20.0	0.785
Heart rate, /min	84.9±10.7	84.6±10.8	0.357
Respiratory rate, /min	17.2±3.1	17.2±3.0	0.914
Glucose, mg/dL	131.2±23.2	132.4±23.2	0.060
SBP, mmHg	113.3±10.7	113.9±10.8	0.040
DBP, mmHg	57.1±6.9	57.3±7.0	0.244
CVP, mmHg	10.6±3.5	10.7±3.6	0.191
Urine output, mL	2075.0 (1480.0-2880.0)	2080.0 (1457.0-2900.0)	0.949
pO ₂ , mmHg	314.0 (211.0-383.0)	308.0 (206.0-386.0)	0.168
Sedative	3707 (84.5)	1593 (84.6)	0.905
Ventilation	3836 (87.4)	1642 (87.2)	0.811
Furosemide	675 (15.4)	292 (15.5)	0.901
Atrial fibrillation	1695 (38.6)	754 (40.0)	0.293
Congestive heart failure	1018 (23.2)	442 (23.5)	0.814
Stroke	258 (5.9)	108 (5.7)	0.823
Left heart catheterization	1288 (29.4)	551 (29.3)	0.942
Severe AKI	2452 (55.9)	1020 (54.2)	0.213

The data are depicted as the mean \pm standard deviation, the median (interquartile range) or a number (percentage). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen;

 AKI, acute kidney injury.

Table 2 Baseline characteristics of the severe AKI and non-severe AKI groups in the

•	1 4
primarv	cohort.
prinner y	conor co

	Severe AKI	Non-severe AKI	Р
n	2452	1936	
Age, years	67.4±12.2	64.3±13.3	< 0.001
Male	1606 (65.5)	1315 (67.9)	0.094
Weight, kg	86.7±20.2	78.4±16.5	< 0.001
Heart rate, /min	85.0±10.8	84.7±10.6	0.475
Respiratory rate, /min	17.2±3.1	17.2±3.0	0.999
Glucose, mg/dL	133.4±23.6	128.6±22.2	< 0.001
SBP, mmHg	112.7±10.5	114.0±10.8	< 0.001
DBP, mmHg	56.5±6.9	57.9±6.9	< 0.001
CVP, mmHg	11.2±3.7	9.8±3.1	< 0.001
Urine output, mL	1735.5 (1245.0-2384.3)	2550.0 (1930.0-3355.0)	< 0.001
pO ₂ , mmHg	309.0 (204.0-379.0)	323.0 (224.0-389.0)	0.009
Sedative	2116 (86.3)	1591 (82.2)	< 0.001
Ventilation	2183 (89.0)	1653 (85.4)	< 0.001
Furosemide	341 (13.9)	334 (17.3)	0.002
Atrial fibrillation	1074 (43.8)	621 (32.1)	< 0.001
Congestive heart failure	673 (27.4)	345 (17.8)	< 0.001
Stroke	132 (5.4)	126 (6.5)	0.121
Left heart catheterization	762 (31.1)	526 (27.2)	0.005

The data are depicted as the mean \pm standard deviation, the median (interquartile range) or a number (percentage). Continuous data were compared with Student's t test or the rank-sum test, while categorical data were compared using the chi-square test. SBP, systolic blood pressure;

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen;

AKI, acute kidney injury.

Variables	LASSO	Logistic				
	β	β	OR (95% CI)	Р		
Age	0.011221	0.017	1.017 (1.010-1.023)	< 0.001		
Male	-0.165641	-0.404	0.667 (0.568-0.784)	< 0.001		
Weight	0.023091	0.031	1.032 (1.027-1.037)	< 0.001		
Heart rate	0.000058	0.007	1.007 (1.000-1.014)	0.055		
Respiratory rate	-0.006347	-0.042	0.959 (0.936-0.982)	0.001		
Glucose	0.000846	0.002	1.002 (0.999-1.005)	0.181		
SBP	-0.004721	-0.010	0.990 (0.983-0.997)	0.007		
DBP	-0.009688	-0.015	0.985 (0.974-0.997)	0.011		
CVP	0.063826	0.072	1.075 (1.051-1.099)	< 0.001		
Urine output	-0.000603	-0.001	0.999 (0.999-0.999)	< 0.001		
pO ₂	-0.000127	-0.001	0.999 (0.998-1.000)	0.001		
Sedative	0.173715	0.340	1.405 (1.032-1.912)	0.031		
Ventilation	0.093818	0.189	1.209 (0.862-1.694)	0.272		
Furosemide	-0.484207	-0.757	0.469 (0.387-0.569)	< 0.001		
Atrial fibrillation	0.193466	0.279	1.322 (1.139-1.536)	< 0.001		
Congestive heart failure	0.207495	0.305	1.357 (1.143-1.611)	< 0.001		
Stroke	-0.021989	-0.254	0.776 (0.580-1.038)	0.087		
Left heart catheterization	0.043483	0.166	1.181 (1.014-1.376)	0.033		

LASSO, least absolute shrinkage and selection operator; OR, odds ratio; CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; pO₂, partial pressure of oxygen.

Table 4 Model performance	e in the primary a	nd validation cohorts.
----------------------------------	--------------------	------------------------

	AUC	Accuracy	Sensitivity	Specificity	Positive	Negative	Cutoff	Cutoff
	(95% CI)	(95% CI)			predictive	predictive	value	score
					value	value		
Primary	0.779	0.702	0.609	0.820	0.811	0.623	0.566	167.9
cohort	(0.766-	(0.688-						
	0.793)	0.715)						
Validatio	0.778	0.715	0.781	0.637	0.718	0.722	0.065	161.8
n cohort	(0.757-	(0.694-						
	0.799)	0.735)						

AUC, area under the receiver operating characteristic curve; CI, confidence interval.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Figure legends

Figure 1 Flow chart of enrolled subjects.

A total of 6271 CSRU stay records were enrolled in this study. ICU, intensive care unit; CSRU, cardiac surgery recovery unit.

Figure 2 LASSO coefficient profiles of variables and misclassification errors for different models.

The upper panel presents the associations between the coefficients of variables and the log lambda value. Each line corresponds to one distinct variable. With increasing log lambda, the coefficient of the variable tended toward 0. The lower panel presents the selection of the applicable model. Vertical lines were drawn at the optimal values by adopting the minimum criteria (dashed line) and the SE of the minimum criteria (dotted line, the 1 - SE criteria). In our study, the lambda value was chosen according to the 1 - SE criteria. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Figure 3 Clinical score for the prediction of severe AKI in CSRU patients.

All 14 selected variables, including age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO_2 , sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU. SBP, systolic

BMJ Open

blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Figure 4 Performance evaluation of the severe AKI prediction model.

ROC curves in the primary cohort (A) and validation cohort (B). The AUCs of the model in the primary and validation cohorts were 0.779 and 0.778, respectively. Calibration curves in the primary cohort (C) and validation cohort (D). The observed values were close to the ideal values, indicating a satisfactory forecasting performance of the clinical score model. Decision curve analyses in the primary cohort (E) and validation cohort (F), showing the net benefit from the model. AKI, acute kidney failure; ROC, receiver operator characteristic curve; AUC, area under the receiver operating characteristic curve.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

BMJ Open

A total of 6271 CSRU stay records were enrolled in this study. ICU, intensive care unit; CSRU, cardiac surgery recovery unit.

Figure 2 LASSO coefficient profiles of variables and misclassification errors for different models. The upper panel presents the associations between the coefficients of variables and the log lambda value. Each line corresponds to one distinct variable. With increasing log lambda, the coefficient of the variable tended toward 0. The lower panel presents the selection of the applicable model. Vertical lines were drawn at the optimal values by adopting the minimum criteria (dashed line) and the SE of the minimum criteria (dotted line, the 1 – SE criteria). In our study, the lambda value was chosen according to the 1 – SE criteria. LASSO, least absolute shrinkage and selection operator; SE, standard error.

BMJ Open: first published as 10.1136/bmjopen-2021-060258 on 2 June 2022. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2021-060258 on 2 June 2022. Downloaded from http://bmjopen.bmj.com/ on June 13, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
رد 40	
 ⊿1	
 ⊿ว	
72 12	
45 11	
44 1	
45	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

Age , years Score	10 0	20 2	30 4	40 6	50 8	60 10	70 12	80 14	90 16				
Sex Score	Male 0	Female 5											
Weight , kg Score	20 0	40 8	60 15	80 23	100 31	120 38	140 46	160 54	180 62	200 69	220 77	240 85	260 92
Respiratory rate , /min Score	5 14	10 11	15 9	20 7	25 5	30 2	35 0						
SBP , mmHg Score	70 15	80 14	90 13	100 11	110 10	120 8	130 7	140 6	150 4	160 3	170 1	180 0	
DBP , mmHg Score	20 15	30 13	40 11	50 10	60 8	70 6	80 5	90 3	100 2	110 0			
CVP, mmHg Score	0 5	5 9	10 14	15 18	20 23	25 27	30 32	35 36					
Urine output, mL Score	0 84	1000 76	2000 67	3000 59	4000 51	5000 42	6000 34	7000 25	8000 17	9000 8	10000 0		
p O2 , mmHg Score	0 10	100 9	200 8	300 7	400 5	500 4	600 3	700 1	800 0				
Sedative Score	No 0	Yes 6											
F urosemide Score	No 10	Yes 0											
Atrial fibrillation Score	No 0	Yes 3		Total so Probabi	cores ility of se	evere AKI	125 0.05	135 0.10	151 0.30	161 0.50	171 0.70	188 0.90	197 0.95
Congestive heart failure Score	No 0	Yes 4											
Left heart catheterization Score	No 0	Yes 2											

Figure 3 Clinical score for the prediction of severe AKI in CSRU patients.

All 14 selected variables, including age, sex, weight, respiratory rate, SBP, DBP, CVP, urine output, pO2, sedative usage, furosemide, atrial fibrillation, congestive heart failure and left heart catheterization, were given corresponding points based on their values. The total points of these variables corresponded to the predicted probability of severe AKI in the CSRU. SBP, systolic blood pressure; DBP, diastolic blood pressure; CVP, central venous pressure; AKI, acute kidney injury; CSRU, cardiac surgery recovery unit.

Page 27 of 27

59

60

BMJ Open

Supplementary tables

Supplementary Tabl	e 1 Performance	e evaluation of th	e model without	t urine output.
--------------------	-----------------	--------------------	-----------------	-----------------

	AUC (95% CI)	Accuracy (95% CI)	Sensitivity	Specificity	Positive predictive value	Negative predictive value	Cutoff value	Cutoff score
Primary	0.713	0.658	0.594	0.739	0.743	0.590	0.363	97.2
cohort	(0.698-	(0.644-						
(n=4388)	0.728)	0.672)						-
Validation	0.718	0.666	0.712	0.610	0.683	0.642	0.095	94.1
cohort	(0.695-	(0.644-						
(n=1883)	0.741)	0.687)						2

Supplementary Table 2 Model performance in patients without suffering AKI in the initial 24 hours.

(n=4388)	0.728)	0.672)							P
Validation	0.718	0.666	0.712	0.610	0.683	0.642	0.095	94.1	ote
cohort	(0.695-	(0.644-							ctec
(n=1883)	0.741)	0.687)							by
AUC, ar	ea under the 1	receiver opera	ating character	ristic curve; CI	, confidence i	nterval.			cop ·
									oyriç
Supplementary Table 2 Model performance in patients without suffering AKI in the									
initial 24	4 hours.								inc
	AUC	Accuracy	Sensitivity	Specificity	Positive	Negative	Cutoff	Cutoff	udii
	(95% CI)	(95% CI)			predictive	predictive	value	score	ng fi
					value	value			or u
Primary	0.680	0.704	0.538	0.757	0.412	0.838	-0.943	149.6	Ens
cohort	(0.651-	(0.682-							eigr rela
(n=1800)	0.709)	0.725)							nem
Validation	0.673	0.637	0.624	0.641	0.343	0.850	-1.124	147.4	to f
cohort	(0.630-	(0.603-							:ext Sup
(n=820)	0.715)	0.670)							and
AUC, ar	ea under the 1	receiver opera	ating character	ristic curve; CI	, confidence i	nterval.			bur (dat
									a m
									inin
									ıg, ∕
									aini
									ng,
									and
									sin
									nilar
									tec
									hno
									log
									ies.

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic	Item		Checklist Item	Page
Title and abstract	1			
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2-3
ntroduction	Ι	Π		
Background and objectives	_		Explain the medical context (including whether diagnostic or prognostic) and rationale	
	3a	D;V	for developing or validating the multivariable prediction model, including references to	3
			existing models.	<u> </u>
	3b	D;V	validation of the model or both	4
lethods	I	I		1
Source of data	4-	D.1/	Describe the study design or source of data (e.g., randomized trial, cohort, or registry	4
	4a	D;V	data), separately for the development and validation data sets, if applicable.	4
	4b	D·V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable,	4
	.~	_,.	end of follow-up.	4
Participants	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres	4
	5h	D·V	Describe eligibility criteria for participants	5
	5c	D;V	Give details of treatments received, if relevant.	5
Outcome	0-	-,-	Clearly define the outcome that is predicted by the prediction model, including how and	5
	6a	D;V	when assessed.	5
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	5
Predictors	7a	D·V	Clearly define all predictors used in developing or validating the multivariable prediction	5-6
		_,.	model, including how and when they were measured.	50
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other	5-6
Sample size	8	D·V	Explain how the study size was arrived at	5
Sample Size	0	D, v	Describe how missing data were handled (e.g. complete-case analysis single	5
Missing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	6
Statistical analysis methods	10a	D	Describe how predictors were handled in the analyses.	6
	10h	П	Specify type of model, all model-building procedures (including any predictor selection),	6
	100	D	and method for internal validation.	0
	10c	V	For validation, describe how the predictions were calculated.	6
	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare	6
	100	V	Describe any model undating (e.g., recalibration) arising from the validation, if done	6
Risk groups	11	v D·V	Provide details on how risk groups were created if done	6
Development	10	,.	For validation, identify any differences from the development data in setting, eligibility	6
vs. validation	12	V	criteria, outcome, and predictors.	6
lesults				
Participants	10	5.14	Describe the flow of participants through the study, including the number of participants	7
	13a	D;v	with and without the outcome and, if applicable, a summary of the follow-up time. A	/
	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features	+
			available predictors), including the number of participants with missing data for	7
			predictors and outcome.	
	130	V	For validation, show a comparison with the development data of the distribution of	7
	100	•	important variables (demographics, predictors and outcome).	/
Model development	14a	D	Specify the number of participants and outcome events in each analysis.	7
	14b	D	If done, report the unadjusted association between each candidate predictor and	8
Model specification			Present the full prediction model to allow predictions for individuals (i.e., all regression	
	15a	D	coefficients, and model intercept or baseline survival at a given time point).	8
	15b	D	Explain how to the use the prediction model.	8
Model	16	D·V	Report performance measures (with CIs) for the prediction model	8
performance	10	D, V		0
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model	8
Necucion			performance).	
ISCUSSION			Discuss any limitations of the study (such as nonrepresentative sample, few events per	
Limitations	18	D;V	predictor, missing data).	11
Interpretation	10		For validation, discuss the results with reference to performance in the development	10
	19a	V	data, and any other validation data.	10
	19h	D·V	Give an overall interpretation of the results, considering objectives, limitations, results	9_10
	150	,v	from similar studies, and other relevant evidence.	
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	9
Supplementary			Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol, Web calculator, and data sets.	12
Funding	22	D:V	Give the source of funding and the role of the funders for the present study.	12

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.