

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Protocol for a clinical trial of comprehensive non-invasive prenatal testing for pregnancies with elevated risks of genetic disorders

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053617
Article Type:	Protocol
Date Submitted by the Author:	
Complete List of Authors:	Xu, Chenming; Obstetrics and Gynecology Hospital of Fudan University Cai, Xiaoqiang; Beijing BioBiggen Technology Co., Ltd. Chen, Songchang; Obstetrics and Gynecology Hospital of Fudan University Luo, Qiong ; Women's Hospital, School of Medicine, Zhejiang University Xi, Hui; Hunan Provincial Maternal and Child Health Care Hospital Zhang, Dan; Women's Hospital, School of Medicine, Zhejiang University Wang, Hua; Hunan Provincial Maternal and Child Health Care Hospital Wu, Yanting; Obstetrics and Gynecology Hospital of Fudan University Huang, He-Feng; Obstetrics and Gynecology Hospital of Fudan University Zhang, Jinglan; Obstetrics and Gynecology Hospital of Fudan University,
Keywords:	Antenatal < GENETICS, Reproductive medicine < GYNAECOLOGY, PREVENTIVE MEDICINE, REPRODUCTIVE MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

1

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2		
3 4	1	Protocol for a clinical trial of comprehensive non-invasive prenatal testing for
5 6 7	2	pregnancies with elevated risks of genetic disorders
8 9	3	Chenming Xu ^{1,2,#} , Xiaoqiang Cai ^{3,#} , Songchang Chen ^{1,2,4,#} , Qiong Luo ⁵ , Hui Xi ⁶ , Dan
10 11 12	4	Zhang ⁵ , Hua Wang ⁶ , Yanting Wu ¹ , He-feng Huang ^{1,2,7,8,*} , Jinglan Zhang ^{1,2,3,*}
13 14 15	5	¹ Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University,
15 16	6	Shanghai, China, 200011
17 18	7	² International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong
19	8	University, Shanghai, China, 200030
20 21 22	9	³ Beijing BioBiggen Technology Co., Ltd., Beijing, China, 100176
23	10	⁴ State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene
24 25	11	Technology, School of Life Sciences, Fudan University, Shanghai, China, 200433
26 27	12	⁵ Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 310006
28 29 30	13	⁶ Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China, 410008
30 31 32	14	⁷ Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China, 200030
33	15	⁸ Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,
34 35	16	310058
36 37	17	*These authors equally contribute to this work.
38 39	18	*Correspondence:
40 41	19	Jinglan Zhang (jinglanzhang@foxmail.com)
42 43	20	He-feng Huang (huanghefg@hotmail.com)
44	21	
45 46		
47		
48		
49 50		
51		
52		
53		
54 55		
56		
57		
58 59		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

22 ABSTRACT

23 Introduction

Chromosomal abnormalities and monogenic disorders account for ~15-25% of recognizable birth defects. With very limited treatment options, preconception or prenatal screening was developed to reduce the incidence of such disorders. Currently, non-invasive prenatal screening (NIPS) for common aneuploidies is implemented worldwide with proven clinical utility. However, the clinical validity for screening of frequent chromosome segmental copy number variations (CNVs) and monogenic disorders still awaits to be investigated through a prospective and evidence-based approach. This prospective clinical trial aims to assess the clinical accuracy of a novel NIPS test for concurrent screening of aneuploidies, CNVs and monogenic diseases.

4.04

34 Methods and analysis

This study is a multicenter trial and participants will be recruited from three tertiary hospitals in China. Pregnant women with abnormal prenatal screening results indicated for invasive prenatal diagnosis or those who decided to terminate their pregnancies due to abnormal ultrasound findings will be evaluated and enrolled with informed consent. Genetic counseling will be provided for participants who receive confirmed positive testing results. Plasma specimens will be collected from ~1,000 participating pregnancies which are divided according to their respective indications. Cell-free DNA will be analyzed by an analytically validated NIPS test to generate comprehensive screening results. The diagnostic results from prenatal invasive specimens or postnatal

3 4	44	specimens will be collected to examine the accuracy of the screening results. The
5 6	45	pregnancy outcomes will be evaluated to assess the clinical validity, and the clinical
7 8	46	utility will be evaluated based on the pregnancies impacted by the screening results.
9 10 11	47	The benefits and limitations of this test will also be explored especially for any potential
12 13	48	issues in genetic counseling.
14 15 16	49	
17 18 19 20	50	Ethics and dissemination
21 22	51	This study was approved by the Obstetrics and Gynecology Hospital of Fudan
23 24	52	University (2020-178). Results of this study will be submitted for publication in a peer-
25 26 27	53	reviewed journal.
28 29 30	54	
31 32 33	55	Trial registration number
34 35 36	56	ChiCTR2100045739.
37 38 39	57	
40 41 42	58	Strengths and limitations of this study
43 44 45	59	The first study on an integrated screening of both chromosomal abnormalities
45 46 47	60	and monogenic diseases.
48 49	61	This is a prospective study involving multi-center and stratified samples.
50 51	62	The criteria need to be studied on selection of indications for high-risk
52 53 54	63	pregnancies
55 56 57	64	The potential loss of postnatal follow-up will interfere data completeness.
58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

INTRODUCTION Genetic etiology of birth defects Birth defects are congenital conditions causing structural or functional anomalies at birth. which greatly contribute to infant mortality and disability[1]. Approximately 3-5% of newborns are affected by a birth defect worldwide[2]. Although the causes of most cases are unknown, about 15-25% of birth defects are due to genetic diseases such as chromosomal abnormalities and monogenic disorders[3]. The screening of severe genetic diseases Great efforts have been made to prevent birth defects with underlying genetic etiology. Carrier screening for recessive disorders such as Tay-Sachs disease was proved to be highly effective for the reduction of disease incidence[4]. The first-trimester combined screening for fetal aneuploidies by prenatal ultrasound and maternal serum biochemical testing is able to detect over 85% common trisomies at a false positive rate of \sim 5% which can lead to parental anxiety and sometimes unnecessary invasive diagnostic procedures with the risk of pregnancy loss[5 6]. Since the discovery of circulating fetal cell-free DNA (cfDNA) in the maternal plasma during pregnancy, its biological characteristics and clinical implication have been extensively explored [7 8]. Non-invasive evaluation for fetus' gender and risks for monogenic disorders, aneuploidies, and chromosome segmental CNVs were developed using different molecular or genomic techniques[9-11]. Importantly, the emergence of next-generation sequencing (NGS) technology enabled a practical screening method for Down syndrome [12 13]. In

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

88	the past decade, NGS based non-invasive prenatal screening (NIPS) for trisomy 21, 18,
89	and 13 has become a new standard for prenatal care with proven clinical utility[14].
90	Recently, NIPS was used to detect rare autosome trisomies, sex chromosome
91	aneuploidies, and microdeletion or microduplication syndromes which showed potential
92	clinical utility for the prenatal management of these disorders[15 16]. However,
93	monogenic disorders which represent another major cause of birth defects are beyond
94	the scope of the current screening of chromosomal abnormalities, and the clinical
95	validity and utility for the screening of the monogenic diseases are yet to be
96	demonstrated.
97	demonstrated.
98	The development of NIPS for monogenic disorders
99	Previous studies have shown that the analysis of fetal cfDNA was useful to determine
100	the inheritance of parental alleles associated with autosomal or sex-linked recessive
101	monogenic diseases [17 18]. Additionally, non-invasive prenatal testing was also
102	accurate for the diagnosis or screening of the de novo or paternally inherited variants
103	causing dominant diseases such as achondroplasia and Noonan spectrum disorders[19
104	20]. These studies demonstrated the potential clinical utility of monogenic NIPS (NIPS-
105	M) in pregnancies at moderate risks (e.g., pregnancies with advanced paternal age or
106	ultrasound soft markers). These tests could also be used for the screening of diseases
107	which can only be discovered at late gestational ages (e.g., skeletal disorders).
108	Although the analytical validity of NIPS-M has been well documented, such tests will
109	not be widely accepted without further evidence-based study to prove its clinical validity
110	and utility[21]. Firstly, the clinical validity of NIPS-M has not been supported by large
	5
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 23

60

1 2		
3 4 5 6 7 8 9 10 11	111	prospective studies. The follow-up studies of the pregnancies tested positive or negative
	112	should be evaluated by clinical examination or golden standard diagnostic tests.
	113	Secondly, the clinical utility of NIPS-M has not been thoroughly exploited. Although
	114	isolated cases have demonstrated the benefits of NIPS-M leading to early diagnosis
12 13	115	and better prenatal/postnatal management, the benefits of such tests for appropriate
14 15 16 17 18 19 20 21 22 23 24 25	116	indications are yet to be proven by larger studies[20 22 23]. Thirdly, the limitations of
	117	NIPS-M need to be evaluated. Accurate genetic counselling is critical to the success of
	118	a prenatal screening test which should provide information regarding disease
	119	characteristics, natural history, penetrance, expressivity, genotype-phenotype
	120	correlation, and etc. The benefits and risks of NIPS-M need to be carefully evaluated
26 27	121	when patients are counseled based on current understanding of the disease[24].
28 29 30 31 32 33 34 35 36 37 38 39 40 41	122	This trial is aimed to address above important issues regarding the clinical validity and
	123	utility of an innovative NIPS for the concurrent screening of common aneuploidies,
	124	CNVs and monogenic disorders.
	125	
	126	Aims
42 43	127	1. To assess the clinical validity of a novel NIPS test for concurrent screening of seven
44 45 46	128	common aneuploidies, nine microdeletion and microduplication syndromes (MMS) and
40 47 48 49 50 51 52 53 54	129	155 monogenic disorders (75 genes).
	130	2. To evaluate the clinical utility of this comprehensive NIPS by studying whether the
	131	clinical management of the screened pregnancies are affected.
55 56		
57 58		6
59 60		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

3. To investigate genetic counseling and other pregnancy management issues due to
the limitation of this comprehensive NIPS.

135 METHODS AND ANALYSIS

136 Study design

This prospective cohort study aims to evaluate how comprehensive screening of both chromosomal and monogenic disorders will reveal pregnancies at risk and affect the management of high-risk pregnancies. It is a multicenter trial focusing on pregnant women with indications for prenatal diagnosis, including fetal ultrasound markers, high risk results by maternal serum screening or routine NIPS. Pregnancies with elective abortion due to fetal structural abnormality will also be recruited. After the NIPS test, cases will be followed up to compare the screening results with the prenatal or postnatal diagnostic test results including sequencing, chromosomal CNV testing and/or karyotyping. Clinical follow-up will be pursed regarding the pregnancy outcome up to 6 weeks after birth. The NIPS performance metrics, and the clinical benefits for pregnancies impacted by the comprehensive non-invasive screening results will be evaluated (Figure 1). Consent and eligibility Participants will be recruited from three tertiary hospitals in China including the Obstetrics and Gynecology Hospital of Fudan University (Shanghai), the Hunan

2		
3 4 5 6 7 8 9 10 11	153	Provincial Maternal and Child Health Care Hospital (Changsha), and the Women's
	154	Hospital of Zhejiang University (Hangzhou). The detailed descriptions of inclusion and
	155	exclusion criteria are shown in Table 1. Pre-test genetic counseling will be provided by
	156	the healthcare provider to all participants prior to obtaining the written informed consent
12 13	157	to complete registration. The purpose and process of this study, as well as benefits,
14 15 16 17 18 19 20 21	158	risks, data privacy and rights to withdraw will be discussed during the counseling
	159	session.
	160	
22 23 24	161	Patient and public involvement
25 26 27	162	Patients or the public were not involved in the design, conduct, or dissemination plans
28 29 30	163	of this research.
31 32 33	164	
34 35	165	Sample size
36 37 38	166	This study aims to recruit a total of 1,000 pregnancies undergoing invasive diagnostic
39 40	167	procedures or elected abortions due to abnormal prenatal screening findings suggestive
41 42 43	168	of elevated risks for severe genetic disorders. All eligible samples will be stratified into
44 45	169	different group depending on the indication of high risk (Table 1), and the number of
46 47	170	samples in each group will be approximately allocated as the following: Group 1, fetal
48 49	171	structural anomalies detected by ultrasound (60%); Group 2, high risk by routine NIPS
50 51 52 53 54	172	(20%); Group 3, high risk by maternal serum biochemical testing (10%); Group 4,
	173	suspected genetic causes with other indications (10%). For group 1, further stratification
55 56	174	will be achieved based on the gestational age (Table 1), including 12-16 weeks (60%),
57 58 59		8
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

3 4	175	1
5 6 7	176	е
8 9	177	
10 11 12	178	S
13 14 15	179	т
16 17	180	lio
18 19 20	181	C
20 21 22	182	r
23 24	183	C
25 26	184	C
27 28 29	185	р
30 31	186	С
32 33	187	(
34 35 36	188	p
37 38 39	189	F
40 41	190	r
42 43	191	p
44 45 46	192	р
40 47 48	193	C
49 50	194	k
51 52 53	195	fc
54 55		
56 57		
58 59 60		

1 2

> 7-21 weeks (20%), and 22 weeks and above (20%). The number of samples from ach hospital will be evenly collected given equal participant availability.

creening and reporting

he comprehensive non-invasive prenatal screening test used in this study is based on quid-phase target enrichment followed by high read-depth NGS. This test can oncurrently detect seven common chromosomal aneuploidies, nine MMS, and 155 nonogenic disorders (Table 2). For testing procedure, 10 ml of peripheral blood is ollected from each participant and the plasma is separated through a two-step entrifugation process. Cell-free DNA extraction and NGS library construction are erformed according to the manufacturer protocol (TIANGEN and Nanodigbio, China). Custom-designed hybridization probes are synthesized and used for target enrichment ntegrated DNA Technologies, USA). The final DNA library is sequenced at 2x100 aired-end mode on MGISEQ-2000 sequencer (MGI, China). or both chromosomal and monogenic findings, the pathogenicity of copy number or nonogenic variant is evaluated according to the ACMG guidelines[25 26]. Only athogenic and likely pathogenic variants are deemed positive and reportable to rimary care providers and the results will be reported to the patients after diagnostic onfirmation. For cases with chromosomal abnormalities identified in the NIPS test, aryotyping, chromosomal microarray analysis (CMA), and whole genome sequencing or copy number variation analysis (CNV-seq) are used as diagnostic tests. For cases

1		
2 3 4	196	with screening positive monogenic variants, Sanger sequencing is used as the
5 6 7	197	confirmatory test.
8 9	198	Post-test genetic counseling will be provided to participants by experienced clinical
10 11 12	199	geneticists regarding the interpretation of the screening and/or diagnostic results, the
13 14	200	implications of these positive findings, and potential management options.
15 16 17	201	
18 19 20	202	Pregnancy outcomes follow-up
21 22 23	203	All screening and diagnostic testing results, clinical examination results and images,
24 25	204	and other relevant information are kept in medical records and used for statistical
26 27 28	205	analysis. Pregnancies are followed up with outcomes such as elective abortion,
28 29 30	206	miscarriage, stillbirth, or live born. Results of prenatal invasive diagnostic testing and
31 32	207	testing of products of conception are collected, and those cases without confirmatory
33 34 35	208	genetic testing are excluded from analysis. In addition to their birth records, newborns
36 37	209	will undergo clinical examination or diagnostic testing if needed until 6 weeks after birth,
38 39	210	and newborns with normal clinical examination results are considered to be negative if
40 41 42	211	no genetic testing is performed. Results of fetal and newborn genetic testing are
43 44	212	reviewed and classified according to the type of abnormality by at least two clinical
45 46 47	213	geneticists.
48 49	214	
50 51 52 53 54 55 56	215	Statistical analysis
57 58		10
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 23

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

BMJ Open

The diagnostic testing and pregnancy outcome results of all pregnancies will be used to define true positive and true negative, and compared with the results generated by comprehensive non-invasive screening. The outcome is the area under the receiveroperating-characteristic (ROC) curve (AUC) for detection of each type of abnormalities (aneuploidies, MMS, and monogenic disorders) by comprehensive non-invasive screening in high-risk pregnancies. The ROC curve is generated by computation of test sensitivity and specificity, and confidence intervals are computed using the Clopper-Pearson method. Assay performance metrics will also be demonstrated by false positive rate, false negative rate, positive predictive value (PPV), and negative predictive value (NPV), according to each category of abnormalities (Figure 2). Data will be analyzed with respect to different group of indications for high risk pregnancies, as well as pregnancies at different maternal age or gestational age. Clinical utility will be evaluated based on the pregnancies impacted by the comprehensive non-invasive screening results. Trial conduct In this study, data are collected from test requisition forms filled by participants and healthcare providers, medical records kept in each hospital, and postnatal follow-up results. Site monitoring of source data is performed following the trial monitoring plan. All information collected during the course of the trial will be kept strictly confidential. Information will be held securely on paper and electronically at the Obstetrics and

- 237 Gynecology Hospital of Fudan University. Data safety will be reviewed on a regular
- ²³⁸ basis to identify any safety concerns or trends.

1		
2 3 4	239	
5 6 7	240	ETHICS AND DISSEMINATION
8 9 10	241	This trial is sponsored and approved by the Obstetrics and Gynecology Hospital of
11 12	242	Fudan University (2020-178). All recruited participants provide written informed consent
13 14	243	prior to being enrolled into the trial at each hospital. A manuscript with results of this
15 16 17	244	study will be published in a peer-reviewed journal, and data will be presented at
18 19	245	academic conferences.
20 21 22	246	
23 24 25	247	DISCUSSION
26 27	248	This is the first study to evaluate the clinical validity and utility of an integrated prenatal
28 29 30	249	screening for both chromosomal abnormalities and monogenic disorders. Although
31 32	250	NIPS for common aneuploidies has been accepted by professional societies and widely
33 34 35	251	implemented in general pregnant population, NIPS for monogenic disorders requires
36 37	252	evidence-based investigation to prove its benefits for the improvement of pregnancy-
38 39	253	related health management. To investigate the clinical validity of this new NIPS test,
40 41 42	254	high-risk pregnancies are selected based on the prenatal screening results suggestive
43 44	255	of genetic diseases and stratified into different groups. Additionally, important issues
45 46	256	around the clinical utility of this test will be carefully examined. For instances, the criteria
47 48 49	257	for the selection of diseases, the proper indications for this test, genetic counseling and
50 51	258	pregnancy management options will be evaluated to weigh the benefits and risks when
52 53	259	offering a comprehensive NIPS. Overall, we will generate evidence-based study results
54 55 56		
57 58		12
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	260	from this prospective and multicenter trial to evaluate the clinical utility of the next-
5 6	261	generation NIPS for different categories of genetic diseases.
7 8	262	
9 10	262	
11 12	263	
13 14	264	
15 16		
17 18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56 57		
57 58 59		13
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4 5	265	Author affiliations
6 7	266	1 Obstetrics and Gynecology Hospital, Institute of Reproduction and Development,
8 9 10	267	Fudan University, Shanghai, China, 200011
11 12	268	2 International Peace Maternity and Child Health Hospital, School of Medicine,
13 14 15	269	Shanghai Jiao Tong University, Shanghai, China, 200030
16 17 18	270	3 Beijing BioBiggen Technology Co., Ltd., Beijing, China, 100176
19 20	271	4 State Key Laboratory of Genetic Engineering and MOE Engineering Research Center
21 22 23	272	of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China,
24 25	273	200433
26 27 28	274	5 Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
29 30	275	310006
31 32 33 34	276	6 Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China, 410008
35 36 37	277	7 Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China, 200030
38 39	278	8 Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University,
40 41 42	279	Hangzhou, China, 310058
43 44 45	280	
46 47 48	281	Acknowledgements
49 50	282	The technology development for this work was supported by Beijing BioBiggen
51 52 53	283	Technology Co., Ltd
54 55	284	
56 57		
58 59		14
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 23

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

and

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

BMJ Open

285 Contributors

Funding

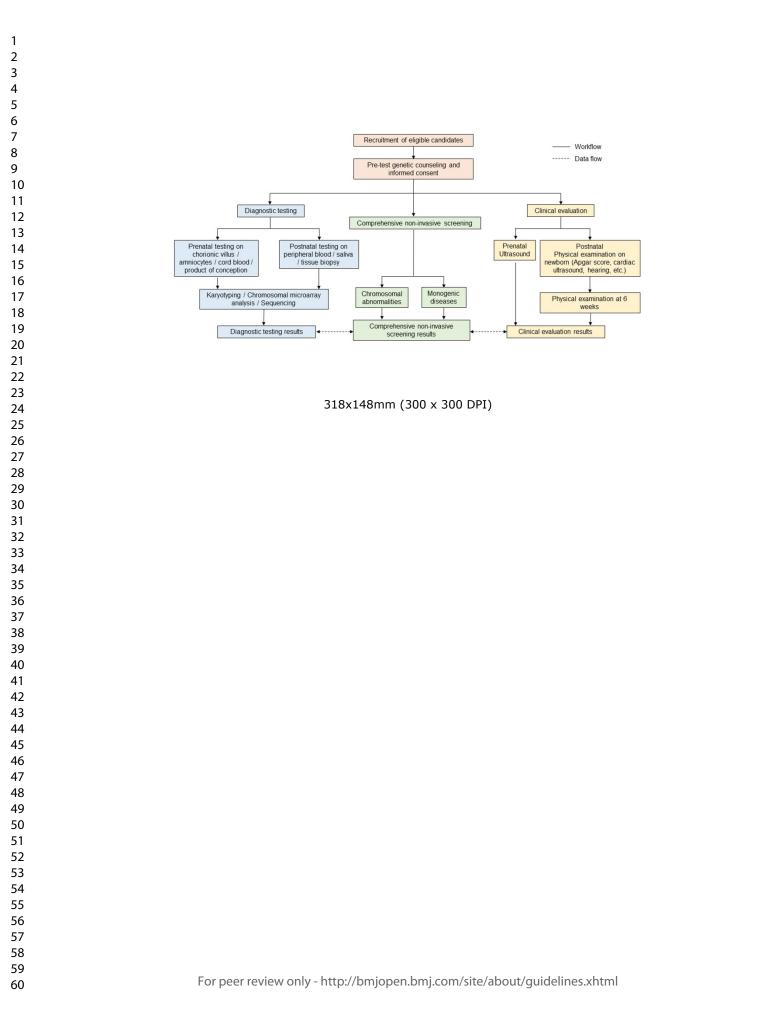
JZ and H-FH conceived the study. JZ, H-FH, YW, CX and XC participated in the design of the study and drafting of the manuscript. CX, SC, QL, HX, DZ and HW participate in recruitment of participants and assessment of clinical outcomes. XC and JZ will design the statistical analysis plan and oversee statistical analysis. All authors critically reviewed and approved the manuscript for submission.

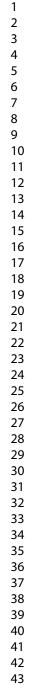
This study was supported by The National Key Research and Development Program of China (2020YFA0804001) and the National Natural Science Foundation of China (82071661). The clinical validation and research work were partially supported by Technology Innovation Project of Shanghai Shenkang Hospital Development Center (SHDC12019107 and SHDC12018X17), the International Science and Technology Collaborative Fund of Shanghai (18410711800), the National Natural Science Foundation of China (81661128010), CAMS Innovation Fund for Medical Sciences (2019-12M-5-064), National Key Research and Development Program of China (2018YFC1002804), Program of Shanghai Academic Research Leader (20XD1424100), Outstanding Youth Medical Talents of Shanghai Rising Stars of Medical Talent Youth Development Program, Clinical Research Plan of Shanghai Shenkang Hospital Development Center (SHDC12018X17), and Clinical Research Project of Shanghai Municipal Health Commission (201840210, 20184Y0349). The cost

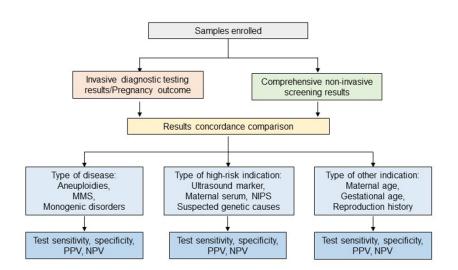
2 3 4	306	of sample processing and high-throughput sequencing was supported by Beijing
4 5 6	307	BioBiggen Technology Co., Ltd
7 8 9 10	308	
10 11 12 13	309	Competing interests
14 15	310	XC, JZ are employees or shareholders of Beijing BioBiggen Technology Co., Ltd The
16 17 18	311	other authors declare no conflict of interest.
19 20 21	312	
22 23 24	313	Patient consent for publication
25 26 27	314	Not required
28 29 30	315	
31 32 33	316	Ethics approval
34 35	317	This trial had been reviewed and approved by the Obstetrics and Gynecology Hospital
36 37 38	318	of Fudan University (2020-178)
39 40 41	319	
42 43 44	320	
45 46 47 48	321	
40 49 50		
51 52		
53 54		
55 56		
57 58 59		16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Inclusion criteria	Exclusion criteria
	➢ Adult pregnant woman (age ≥20 years)	> Age <20 years
	➢ Gestational age ≥12 ⁺⁰ weeks	Gestational age <12 ⁺⁰ weeks
	Singleton pregnancy	 Chromosomal abnormality in either
	High-risk pregnancy as indicated by the	of the couple
	following:	Received allogeneic blood
	 Fetal structural anomalies detected by 	transfusion, organ transplantation,
	ultrasound including but not limited to:	or cell therapy within one year
	12-16 weeks:	With a family history of genetic
	a. Increased nuchal translucency or cystic	disease or suggesting a high risk of
	hygroma	fetal genetic disease
	b. Cardiac structural defects	Maternal malignancy during
	c. Absence or hypoplasia of nasal bone	pregnancy
	17-21 weeks:	
	a. polycystic kidney b. intrauterine growth restriction	
	c. malformation of the digestive tract	
	d. ventriculomegaly	
	e. polyhydramnios	
	f. oligohydramnios	
	g. echogenic bowel	
	h. pyelic separation	
	22 weeks and above:	
	Skeletal abnormalities detected in the	
	following:	
	a. length, shape or mineralization of long	
	bones	
	b. number of fingers and toes	
	c. shape of palms and soles	
	d. circumference of head, abdomen or ches	
	e. mineralization and shape of skull and spin	ne
	f. size and shape of scapula, clavicle,	
	forehead, nasal bone or mandible	
	g. posture of limbs 2. High risk by routine NIPS	
	3. High risk by maternal serum biochemical	
	testing	
	4. Suspected genetic causes such as recurren	t
	miscarriage	·
	 To perform invasive diagnostic procedure duri 	מ
	pregnancy, and will take at least one molecula	
	test on specimens such as amniotic cells, cord	
	blood, product of conception, or newborn's	
	peripheral blood	
323		
224		
324		

	Type of diseases	Diseases and genes
	Aneuploidies (7 diseases)	Trisomy 21 Trisomy 18 Trisomy 13 45, X 47, XXX 47, XXY 47, XYY
	Microdeletion and microduplication syndromes (MMS) (9 diseases)	DiGeorge syndrome 1p36 deletion syndrome 2q33.1 deletion syndrome Angelman syndrome Prader-Willi syndrome Cri du Chat syndrome Wolf-Hirschhorn syndrome Langer-Giedion syndrome Jacobsen syndrome
	Monogenic disorders (155 diseases with related 75 genes)	Representative diseases and genes: Noonan spectrum disorders (<i>PTPN11</i> , <i>SOS1</i> , <i>RIT1</i> , <i>RAF1</i> , etc.) Osteogenesis imperfecta (<i>COL1A1</i> , <i>COL1A2</i> , <i>IFITM5</i>) Achondroplasia (<i>FGFR3</i>) Crouzon syndrome (<i>FGFR2</i> , <i>FGFR3</i>) CHARGE syndrome (<i>CHD7</i>) Rett syndrome (<i>MECP2</i>) Tuberous sclerosis (<i>TSC1</i> , <i>TSC2</i>)
26		24
~~ /		
		18


 Figure 1 Flowchart of trial design. Figure 2 Analysis plan Figure 2	1 2 3 4	328	Figure legends
 330 Figure 1 Flowchart of trial design. 331 Figure 2 Analysis plan 332 333 334 335 335 336 337 338 339 341 353 354 365 377 388 399 390 310 311 312 312 312 313 314 315 315 316 317 318 318 319 320 310 310 311 312 311 312 312 313 314 315 315 316 317 318 318 319 310 310 311 311 312 311 312 311 312 312 313 314 315 315 316 317 318 318 318 	5 6	329	
331 Figure 2 Analysis plan 332 0 333 0 334 0 335 0 336 0 337 0 338 0 339 0 331 0 332 0 333 0 343 0 353 0 363 0 373 0 383 0 394 0 41 0 42 0 43 0 44 0 44 0 45 0 46 0 47 0 48 0 59 10	9 10	330	Figure 1 Flowchart of trial design.
332 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	12 13	331	Figure 2 Analysis plan
59	14 15 16 17 18 19 20 21 22 32 42 52 62 78 29 30 31 22 33 43 53 67 83 940 41 243 44 546 47 48 950 51 52 53 45 56 57	332	
	59		19 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


6 7	335	in fetal & neonatal medicine 2014; 19 (3):153-60 doi: 10.1016/j.siny.2013.11.008[published
8	336	Online First: Epub Date]].
9	337	2. Mai CT, Isenburg JL, Canfield MA, et al. National population-based estimates for major birth defects,
10	338	2010-2014. Birth Defects Res 2019; 111 (18):1420-35 doi: 10.1002/bdr2.1589[published Online
11	339	First: Epub Date] .
12 13	340	3. Brent RL. Environmental causes of human congenital malformations: the pediatrician's role in dealing
13 14	341	with these complex clinical problems caused by a multiplicity of environmental and genetic
15	342	factors. Pediatrics 2004; 113 (4 Suppl):957-68
16	343	4. Antonarakis SE. Carrier screening for recessive disorders. Nat Rev Genet 2019;20(9):549-61 doi:
17	344	10.1038/s41576-019-0134-2[published Online First: Epub Date] .
18 10	345	5. Wapner R, Thom E, Simpson JL, et al. First-trimester screening for trisomies 21 and 18. The New
19 20	346	England journal of medicine 2003; 349 (15):1405-13 doi: 10.1056/NEJMoa025273[published
20	347	Online First: Epub Date] .
22	348	6. Wright D, Syngelaki A, Bradbury I, et al. First-trimester screening for trisomies 21, 18 and 13 by
23	349 350	ultrasound and biochemical testing. Fetal diagnosis and therapy 2014; 35 (2):118-26 doi:
24	350 351	10.1159/000357430[published Online First: Epub Date] . 7. Jiang P, Lo YMD. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular
25 26	352	Diagnostics. Trends in genetics : TIG 2016; 32 (6):360-71 doi: 10.1016/j.tig.2016.03.009[published
26 27	353	Online First: Epub Date]].
28	354	8. Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum.
29	355	Lancet 1997; 350 (9076):485-7 doi: 10.1016/S0140-6736(97)02174-0[published Online First: Epub
30	356	Date] .
31	357	9. Chiu RW, Lau TK, Leung TN, et al. Prenatal exclusion of beta thalassaemia major by examination of
32 33	358	maternal plasma. Lancet 2002; 360 (9338):998-1000 doi: 10.1016/s0140-6736(02)11086-
34	359	5[published Online First: Epub Date] .
35	360	10. Costa JM, Benachi A, Gautier E. New strategy for prenatal diagnosis of X-linked disorders. The New
36	361	England journal of medicine 2002; 346 (19):1502 doi: 10.1056/NEJM200205093461918[published
37	362	Online First: Epub Date] .
38 39	363	11. Lo YM, Lun FM, Chan KC, et al. Digital PCR for the molecular detection of fetal chromosomal
40	364	aneuploidy. Proceedings of the National Academy of Sciences of the United States of America
41	365	2007; 104 (32):13116-21 doi: 10.1073/pnas.0705765104[published Online First: Epub Date]].
42	366 367	12. Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proceedings of the National
43	368	Academy of Sciences of the United States of America 2008; 105 (51):20458-63 doi:
44 45	369	10.1073/pnas.0810641105[published Online First: Epub Date] .
45 46	370	13. Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun
47	371	sequencing DNA from maternal blood. Proceedings of the National Academy of Sciences of the
48	372	United States of America 2008; 105 (42):16266-71 doi: 10.1073/pnas.0808319105[published
49	373	Online First: Epub Date] .
	374	
	375	trisomy. The New England journal of medicine 2015; 372 (17):1589-97 doi:
	376	10.1056/NEJMoa1407349[published Online First: Epub Date]].
54	377	15. Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded
55	378	chromosome disease syndromes. Genetics in medicine : official journal of the American College
56		
56 57		
56		20
	374 375 376 377	 Norton ME, Jacobsson B, Swamy GK, et al. Cell-free DNA analysis for noninvasive examination of trisomy. The New England journal of medicine 2015;372(17):1589-97 doi: 10.1056/NEJMoa1407349[published Online First: Epub Date] . Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded


BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1		
2 3	270	
4	379	of Medical Genetics 2019; 21 (9):1998-2006 doi: 10.1038/s41436-019-0467-4[published Online
5	380	First: Epub Date] .
6	381	16. Srinivasan A, Bianchi DW, Huang H, et al. Noninvasive detection of fetal subchromosome
7	382	abnormalities via deep sequencing of maternal plasma. American journal of human genetics
8	383	2013; 92 (2):167-76 doi: 10.1016/j.ajhg.2012.12.006[published Online First: Epub Date] .
9	384	17. Hudecova I, Jiang P, Davies J, et al. Noninvasive detection of F8 int22h-related inversions and
10	385	sequence variants in maternal plasma of hemophilia carriers. Blood 2017; 130 (3):340-47 doi:
11 12	386	10.1182/blood-2016-12-755017[published Online First: Epub Date] .
13	387	18. Hui WW, Jiang P, Tong YK, et al. Universal Haplotype-Based Noninvasive Prenatal Testing for Single
14	388	Gene Diseases. Clinical chemistry 2017; 63 (2):513-24 doi:
15	389	10.1373/clinchem.2016.268375[published Online First: Epub Date] .
16	390	19. Chitty LS, Mason S, Barrett AN, et al. Non-invasive prenatal diagnosis of achondroplasia and
17	391	thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and
18	392	comprehensive approach. Prenatal diagnosis 2015; 35 (7):656-62 doi: 10.1002/pd.4583[published
19	393	Online First: Epub Date] .
20	394	20. Zhang J, Li J, Saucier JB, et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic
21 22	395	disorders using circulating cell-free fetal DNA. Nature medicine 2019; 25 (3):439-47 doi:
22	396	10.1038/s41591-018-0334-x[published Online First: Epub Date] .
24	397	21. Scotchman E, Chandler NJ, Mellis R, et al. Noninvasive Prenatal Diagnosis of Single-Gene Diseases:
25	398	The Next Frontier. Clinical chemistry 2020; 66 (1):53-60 doi:
26	399	10.1373/clinchem.2019.304238[published Online First: Epub Date] .
27	400	22. Yan H, Zhu X, Chen J, et al. Noninvasive prenatal sequencing for multiple Mendelian monogenic
28	401	disorders among fetuses with skeletal dysplasia or increased nuchal translucency. Prenatal
29	402	diagnosis 2020;40(11):1459-65 doi: 10.1002/pd.5792[published Online First: Epub Date] .
30	403	23. Nwakalor C, Said-Delgado S, Krinshpun S, et al. De novo HRAS gene mutation associated with
31 32	404	Costello syndrome identified by non-invasive cell-free fetal DNA screening. Prenatal diagnosis
33	405	2021; 41 (1):11-14 doi: 10.1002/pd.5798[published Online First: Epub Date] .
34	406	24. Chitty LS, Hui L, Ghidini A, et al. In case you missed it: The Prenatal Diagnosis editors bring you the
35	407	most significant advances of 2019. Prenatal diagnosis 2020;40(3):287-93 doi:
36	408	10.1002/pd.5632[published Online First: Epub Date]].
37	409	25. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants:
38	410	a joint consensus recommendation of the American College of Medical Genetics and Genomics
39 40	411	and the Association for Molecular Pathology. Genetics in medicine : official journal of the
40	412	American College of Medical Genetics 2015; 17 (5):405-24 doi: 10.1038/gim.2015.30[published
42	413	Online First: Epub Date] .
43	414	26. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of
44	415	constitutional copy-number variants: a joint consensus recommendation of the American
45	416	College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen).
46	417	Genetics in medicine : official journal of the American College of Medical Genetics
47	418	2020; 22 (2):245-57 doi: 10.1038/s41436-019-0686-8[published Online First: Epub Date] .
48 49	419	
49 50	115	
51		
52		
53		
54		
55		
56		
57		24
58 59		21
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

239x137mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Comprehensive non-invasive prenatal screening for pregnancies with elevated risks of genetic disorders: protocol for a prospective, multicenter study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053617.R1
Article Type:	Protocol
Date Submitted by the Author:	26-Jul-2021
Complete List of Authors:	Xu, Chenming; Obstetrics and Gynecology Hospital of Fudan University Cai, Xiaoqiang; Beijing BioBiggen Technology Co., Ltd. Chen, Songchang; Obstetrics and Gynecology Hospital of Fudan University Luo, Qiong ; Women's Hospital, School of Medicine, Zhejiang University Xi, Hui; Hunan Provincial Maternal and Child Health Care Hospital Zhang, Dan; Women's Hospital, School of Medicine, Zhejiang University Wang, Hua; Hunan Provincial Maternal and Child Health Care Hospital Wu, Yanting; Obstetrics and Gynecology Hospital of Fudan University Huang, He-Feng; Obstetrics and Gynecology Hospital of Fudan University Zhang, Jinglan; Obstetrics and Gynecology Hospital of Fudan University
Primary Subject Heading :	Diagnostics
Secondary Subject Heading:	Genetics and genomics, Reproductive medicine, Diagnostics
Keywords:	Antenatal < GENETICS, Reproductive medicine < GYNAECOLOGY, PREVENTIVE MEDICINE, REPRODUCTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

2 3	1	Comprehensive non-invasive prenatal screening for pregnancies with elevated
4 5		
6 7	2	risks of genetic disorders: protocol for a prospective, multicenter study
8 9	3	Chenming Xu ^{1,2,#} , Xiaoqiang Cai ^{3,#} , Songchang Chen ^{1,2,4,#} , Qiong Luo ⁵ , Hui Xi ⁶ , Dan
10 11 12	4	Zhang ⁵ , Hua Wang ⁶ , Yanting Wu ¹ , He-feng Huang ^{1,2,7,8,*} , Jinglan Zhang ^{1,2,3,*}
13 14	5	¹ Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University,
15 16	6	Shanghai, China, 200011
17	7	² International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong
18 19 20	8	University, Shanghai, China, 200030
20 21 22	9	³ Beijing BioBiggen Technology Co., Ltd., Beijing, China, 100176
23	10	⁴ State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene
24 25	11	Technology, School of Life Sciences, Fudan University, Shanghai, China, 200433
26 27	12	⁵ Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 310006
28 29 20	13	⁶ Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China, 410008
30 31 32	14	⁷ Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China, 200030
33	15	⁸ Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,
34 35	16	310058
36 37	17	*These authors equally contribute to this work.
38 39	18	*Correspondence:
40 41	19	Jinglan Zhang (jinglanzhang@foxmail.com)
42	20	He-feng Huang (huanghefg@hotmail.com)
43 44	21	
45		
46 47		
48		
49 50		
50 51		
52		
53 54		
54 55		
56		
57		

BMJ Open

22 ABSTRACT

23 Introduction

Chromosomal abnormalities and monogenic disorders account for ~15-25% of
recognizable birth defects. With limited treatment options, preconception and prenatal
screening were developed to reduce the incidence of such disorders. Currently, noninvasive prenatal screening (NIPS) for common aneuploidies is implemented worldwide
with superiority over conventional serum or sonographic screening approaches.
However, the clinical validity for the screening of frequent chromosome segmental copy
number variations (CNVs) and monogenic disorders still awaits to be proved.

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

32 Methods and analysis

This study is a multicenter, prospective study. The participants were recruited from three tertiary hospitals in China starting from April 10th, 2021. The study is expected to conclude before October 10th, 2022. Pregnant women with abnormal prenatal screening results indicated for invasive prenatal diagnosis or those who decide to terminate their pregnancies due to abnormal ultrasound findings will be evaluated for enrollment. Cell-free DNA (cfDNA) extracted from the maternal plasma will be used for an analytically validated comprehensive NIPS test developed by Beijing BioBiggen Technology Co., Ltd. (Beijing, China). The diagnostic results from prenatal or postnatal specimens as well as the pregnancy outcome data will be collected to examine the clinical sensitivity, specificity, positive and negative predictive values of the test.

2 3 4	44	Ethics and dissemination
5 6	45	This study was approved by the Obstetrics and Gynecology Hospital of Fudan
7 8 9	46	University (2020-178). Results of this study will be disseminated to public through
9 10 11	47	scientific conferences and a peer-reviewed journal. Written informed consents will be
12 13	48	obtained from participants.
14 15 16	49	
17	45	
18 19 20	50	Study registration number
21 22 23	51	ChiCTR2100045739.
24		
25 26	52	
27 28 29	53	STRENGTHS AND LIMITATIONS OF THIS STUDY
30 31	54	This is the first prospective, multicenter clinical study for an integrated non-
32 33 34	55	invasive prenatal screening test for both chromosomal abnormalities and
35 36	56	monogenic diseases.
37 38 39	57	This study is focused on a panel of pre-selected diseases which have relatively
40 41	58	high incidence.
42 43	59	The limitation for this study includes population stratification for high-risk
44 45 46	60	pregnancies and potential loss of postnatal follow-up.
47 48	61	
49 50		
51 52	62	
53 54 55	63	
56		
57 58		3
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		ror peer review only intep//onl/open.onl/one/ubout/guidennes/xhtml

INTRODUCTION

BMJ Open

Genetic etiology of birth defects Birth defects are congenital conditions causing structural or functional anomalies at birth, which greatly contribute to infant mortality and disability[1]. Approximately 3–5% of newborns are affected by a birth defect worldwide[2]. Although the causes of most cases are unknown, about 15-25% of birth defects are due to genetic diseases such as chromosomal abnormalities and monogenic disorders[3]. The screening of severe genetic diseases Great efforts have been made to prevent birth defects with an underlying genetic etiology. Carrier screening for recessive disorders such as Tay-Sachs disease was proved to be highly effective for the reduction of its incidence[4]. The first-trimester combined screening for fetal aneuploidies by prenatal ultrasound and maternal serum biochemical testing detects over 85% common trisomies at a false positive rate of ~5% which can lead to parental anxiety and excessive invasive diagnostic procedures for otherwise normal pregnancies imposing a risk for pregnancy loss [5 6]. Since the discovery of circulating fetal cfDNA in the maternal plasma during pregnancy, its biological characteristics and clinical implication have been extensively studied [7 8]. Non-invasive evaluation for fetal gender and risks for monogenic disorders, aneuploidies, and chromosome segmental CNVs were developed using different molecular or genomic techniques[9-11]. Importantly, the emergence of next-generation sequencing (NGS) technology enabled a practical population-based screening method For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 6 of 29

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

for Down syndrome [12 13]. In the past decade, NGS-based NIPS for trisomy 21, 18, and 13 has become a new standard for prenatal care with proven clinical validity [14]. Recently, NIPS was used to detect rare autosome trisomies, sex chromosome aneuploidies, and microdeletion or microduplication syndromes [15 16]. However, monogenic disorders which represent another major cause of birth defects are beyond the scope of the current screening of chromosomal abnormalities, and the clinical validity for the screening of such diseases are yet to be demonstrated. The development of NIPS for monogenic disorders Previous studies have shown that the analysis of fetal cfDNA was useful to determine the inheritance of parental alleles associated with autosomal or sex-linked recessive monogenic diseases [17 18]. Additionally, non-invasive prenatal testing was also accurate for the diagnosis or screening of the *de novo* or paternally inherited variants causing dominant diseases such as achondroplasia and Noonan spectrum disorders[19 20]. These studies showed potential clinical utility for monogenic NIPS (NIPS-M) in pregnancies at moderate risks (e.g., pregnancies with advanced paternal age or ultrasound soft markers). These tests could also be used for the screening of diseases which can only be discovered at late gestational ages (e.g., skeletal disorders). Although the analytical accuracy of NIPS-M has been well demonstrated, such tests will not be widely accepted without further evidence-based clinical study[21]. Firstly, the clinical validity of NIPS-M has not been supported by large prospective studies. The follow-up studies of the pregnancies tested positive or negative should be evaluated by clinical examination or golden standard diagnostic tests. Additionally, although isolated

Page 7 of 29

1

2		
- 3 4	109	cases have demonstrated the benefits of NIPS-M leading to early diagnosis and better
5 6	110	prenatal/postnatal management, the benefits for the management of patients with
7 8 9	111	different indications are yet to be explored by larger studies[20 22 23]. Thirdly, the
9 10 11	112	limitations of NIPS-M need to be evaluated. Accurate genetic counselling is critical to
12 13	113	the success of a prenatal screening test which should provide information regarding
14 15	114	disease characteristics, natural history, penetrance, expressivity, genotype-phenotype
16 17 18	115	correlation, etc. The benefits and risks of NIPS-M need to be carefully evaluated when
19 20	116	patients are counseled based on current understanding of the diseases[24].
21 22 23	117	This study is aimed to address above important issues with a focus on the clinical
24 25	118	validation of an innovative NIPS for concurrent screening of common aneuploidies,
26 27 28	119	CNVs and monogenic disorders. The potential benefits and the limitations of this
29 30	120	screening test will also be explored based on the pregnancy outcome data.
31 32 33	121	Aims
34 35 36	122	Aims
37 38 39	123	1. To assess the clinical validity of a novel NIPS test for concurrent screening of seven
40 41	124	common aneuploidies, nine microdeletion and microduplication syndromes (MMS) and
42 43	125	155 monogenic disorders (75 genes).
44 45 46 47 48 49 50 51 52 53	126	2. To evaluate the pregnancy outcome for the participants of this comprehensive NIPS.
	127	
	128	METHODS AND ANALYSIS
54 55 56	129	Study design
57 58		6
59 60		• For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

ur (ABES) . data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

This prospective cohort study aims to evaluate how a comprehensive NIPS test will reveal pregnancies at risks for both chromosomal and monogenic disorders. It is a prospective, multicenter study focused on pregnant women with indications for prenatal diagnosis, including fetal ultrasound markers, high risk results by maternal serum screening or routine aneuploidy NIPS. Pregnancies with elective abortion due to fetal structural abnormality will also be recruited. To assess the performance metrics of this NIPS test, cases will be followed up to compare the screening results with the prenatal or postnatal diagnostic test results including sequencing, chromosomal CNV testing and/or karyotyping. Clinical follow-up will be pursued regarding the pregnancy outcome up to 6 weeks after birth (Figure 1). Consent and eligibility Participants will be recruited from three tertiary hospitals in China including the Obstetrics and Gynecology Hospital of Fudan University (Shanghai), the Hunan Provincial Maternal and Child Health Care Hospital (Changsha), and the Women's Hospital of Zhejiang University (Hangzhou). The detailed descriptions of inclusion and exclusion criteria are shown in Table 1. Pre-test genetic counseling will be provided by healthcare providers to all participants before obtaining the written informed consent to complete enrollment. The purpose and process of this study, as well as potential benefits, risks, data privacy and rights to withdraw will be discussed during the counseling session.

1 2		
3 4 5	152	Patient and public involvement
6 7	153	Patients or the public were not involved in the design, conduct, or dissemination plans
8 9	154	of this research.
10 11 12 13	155	
14 15 16	156	Sample size
17 18	157	This study aims to recruit at least a total of 1,000 pregnancies undergoing invasive
19 20 21	158	diagnostic procedures or elective abortions due to abnormal prenatal findings
22 23	159	suggestive of severe genetic disorders. All eligible subjects will be stratified into different
24 25	160	indication groups (Table 1), and the number of subjects in each group will be
26 27 28	161	approximately allocated as the following: Group 1, fetal structural anomalies detected
29 30	162	by ultrasound (60%); Group 2, high risk by routine NIPS (20%); Group 3, high risk by
31 32	163	maternal serum biochemical testing (10%); Group 4, suspected genetic causes with
33 34 25	164	other indications (10%). For group 1, further stratification will be achieved based on the
35 36 37	165	gestational age, including 12-16 weeks, 17-21 weeks, and 22 weeks and above (Table
38 39	166	1). The number of subjects from each hospital will be evenly collected given equal
40 41	167	participant availability. In this study, at least 1,000 participants will be enrolled from
42 43 44	168	whom we expect to detect at least 25 cases affected with a targeted monogenic or
44 45 46	169	chromosomal disease each. This estimation is based on the detection rate among
47 48	170	pregnancies with similar indications[25-27]. The sample size in this study allows a
49 50	171	probability of 95% or above to observe a possible measuring error at the case level for
51 52 53 54	172	both the monogenic diseases and chromosomal diseases.
55 56 57	173	
58		8
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 10 of 29

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

2	
3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
10	
18	
19	
20	
20	
21 22 23	
23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

> Screening and reporting 174

The comprehensive non-invasive prenatal screening test used in this study was 175 176 developed by Beijing BioBiggen Technology Co., Ltd. (Beijing, China). This test is 177 based on liquid-phase target enrichment followed by high read-depth NGS which can concurrently detect a panel of pre-selected diseases consisted of seven common 178 179 chromosomal aneuploidies, nine MMS, and 155 monogenic disorders (Table 2 and Table S1). A total of 10 ml peripheral blood is collected from each participant and the 180 plasma is separated through a standard two-step centrifugation process. Manufacturer 181 protocols are used for cfDNA extraction (TIANGEN, China) and NGS library 182 construction (Nanodigbio, China). Custom designed hybridization probes are 183 synthesized and used for target enrichment (Integrated DNA Technologies, USA). The 184 final DNA library is sequenced at 2x100 paired-end mode on MGISEQ-2000 sequencer 185 (MGI, China). 186 The pathogenicity for both chromosomal and monogenic variants is evaluated according 187 to the American College of Medical Genetics guidelines [28 29]. Only pathogenic and 188 189 likely pathogenic variants are deemed positive and reportable to patients after diagnostic confirmation. For cases with chromosomal abnormalities identified in the 190 NIPS test, karyotyping, chromosomal microarray analysis, and whole genome 191 192 sequencing for copy number variation analysis are used as diagnostic tests. For cases with screening positive monogenic variants, Sanger sequencing is used as the 193 confirmatory test. Post-test genetic counseling is provided to participants by 194 195 experienced clinical geneticists regarding the interpretation of the diagnostic results, the implications of these positive findings, and potential management options. 196 9 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 60

1 2		
3 4 5 6 7 8	197	
	198	Pregnancy outcomes follow-up
8 9 10	199	All screening and diagnostic testing results, clinical examination results and images,
11 12	200	and other relevant information available to us will be collected in the participants'
13 14 15	201	medical records and used for statistical analysis. All cases will be followed up for
16 17 18 19 20 21 22	202	pregnancy outcome including elective abortion, miscarriage, stillbirth, or live birth.
	203	Newborns will be followed up for birth records and clinical examination or diagnostic
	204	testing up to 6 weeks of age. Subjects with positive NIPS results who do not have
22 23 24	205	diagnostic genetic test results are excluded from the cohort. Subjects with negative
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	206	diagnostic testing results, normal results in newborn physical examination or a genetic
	207	etiology established for diseases other than those included in our screening panel are
	208	considered as negative cases.
	209	
	210	Statistical analysis
	211	The diagnostic testing and pregnancy outcome results of all pregnancies will be used to
40 41 42	212	compare with the results generated by our NIPS test. The outcome is the area under
43 44	213	the receiver-operating-characteristic (ROC) curve for detection of each type of
45 46	214	abnormalities (aneuploidies, MMS, and monogenic disorders) by NIPS in high-risk
47 48		
49	215	pregnancies. The ROC curve is generated by computation of test sensitivity and
49 50 51	215 216	pregnancies. The ROC curve is generated by computation of test sensitivity and specificity, and confidence intervals are computed using the Clopper–Pearson method.
50 51 52 53		
50 51 52 53 54 55	216	specificity, and confidence intervals are computed using the Clopper–Pearson method.
50 51 52 53 54	216 217	specificity, and confidence intervals are computed using the Clopper–Pearson method. Assay performance metrics will also be demonstrated by false positive rate, false

Page 12 of 29

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES)

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text and

BMJ Open

category of abnormalities (Figure 2). Data will be analyzed with respect to different groups of indications for high-risk pregnancies, as well as pregnancies at different maternal age or gestational age.

Study conduct

In this study, subjects' demographic and clinical exam data are collected from test requisition forms, hospital medical records and postnatal follow-up surveys. Site monitoring of source data is performed following the study monitoring plan. All patents' privacy information collected during the study will be kept strictly confidential. Study data will be held securely on paper or electronically at the Obstetrics and Gynecology Hospital of Fudan University. Data safety will be reviewed on a regular basis to identify ien any safety concerns or trends.

- ETHICS AND DISSEMINATION

This study was approved by the Obstetrics and Gynecology Hospital of Fudan University (2020-178). Results of this study will be disseminated to public through scientific conferences and a peer-reviewed journal. Written informed consents will be obtained from participants. Deidentified participant data such as the screening and diagnostic results along with pregnancy outcome data will be shared at the individual or aggregative level. The assay protocols, clinical study protocol, statistical analysis plan, will be shared for at least 5 years after the clinical study is completed. The data will become available within 1 year after the clinical study is completed. All essential data

supporting the conclusion of the study as well as detailed assay protocols, analytical algorithms, and customized computational codes will be submitted for publication within 1 year after the clinical study is completed. All the disease-causing variants and the key phenotypes found in the subjects will be published or deposited at a public database. Subjects' identifiable information including their genomic sequencing data will be kept in a clinical and privacy-compliant laboratory. Non-identifiable sequencing data (e.g., individual variant data generated by locus-specific sequencing) can be provided upon request from the corresponding author (Dr. Jinglan Zhang, jinglanzhang@foxmail.com) for at least 5 years after the clinical study is completed.

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

251 DISCUSSION

This is the first study to evaluate the clinical validity of an integrated non-invasive prenatal screening for both chromosomal abnormalities and monogenic disorders. Although NIPS for common aneuploidies has been accepted by professional societies and widely implemented around the world, NIPS for frequent chromosomal CNVs and monogenic disorders requires evidence-based investigation to prove its validity and its potential for pregnancy management. To investigate the performance of this new NIPS test, high-risk pregnancies are selected based on the routine prenatal screening results suggestive of genetic diseases and stratified into different groups. Diagnostic testing results together with pregnancy outcome data will be obtained for the clinical validation. Additionally, important practical issues around this test will be explored and discussed. For instances, the criteria for the selection of diseases, the proper indications for this test, genetic counseling and pregnancy management options will be evaluated based

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

Enseignement Superieur (ABES). Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

on the detection rate and pregnancy outcome to weigh the benefits and risks when offering a comprehensive NIPS test for different types of diseases. It should be noted that this study is observational, and all high-risk pregnancies recruited will be counseled by clinicians following current clinical guidelines for prenatal care. Patients' decisions regarding whether to take invasive diagnostic testing or how to proceed with their ongoing pregnancy will not be intervened by the screening results of this test unless it is confirmed by diagnostic testing. Previous studies (Table S2) assessing the clinical validity of an uploidy or chromosomal CNV prenatal screening were also observational although most of these studies were conducted at an early gestational age when different pregnancy managing options are possible [14 15 30 31]. The primary goal for this study is to assess the clinical validity of this new comprehensive NIPS test in a high-risk population in which abnormal prenatal screening results are mostly discovered at a late gestation age. Therefore, redirecting ongoing pregnancy can be challenging when the diagnostic test result is not available in time. Future study on general pregnancy population will be performed to investigate how this test may impact the prenatal or postnatal management at an early gestation age. Overall, in this prospective, multicenter study, we will provide invaluable data to assess the clinical validity of a novel comprehensive NIPS test for the concurrent screening of chromosomal and monogenic disorders. This test has the potential to be offered as an expanded and a next-generation NIPS test for general pregnancy population.

BMJ Open

2		
3 4 5	286	Author affiliations
6 7	287	1 Obstetrics and Gynecology Hospital, Institute of Reproduction and Development,
8 9 10	288	Fudan University, Shanghai, China, 200011
11 12	289	2 International Peace Maternity and Child Health Hospital, School of Medicine,
13 14 15	290	Shanghai Jiao Tong University, Shanghai, China, 200030
16 17 18	291	3 Beijing BioBiggen Technology Co., Ltd., Beijing, China, 100176
19 20 21	292	4 State Key Laboratory of Genetic Engineering and MOE Engineering Research Center
21 22 23	293	of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China,
24 25 26	294	200433
27 28	295	5 Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
29 30 31	296	310006
32 33 34	297	6 Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China, 410008
35 36 37	298	7 Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China, 200030
38 39	299	8 Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University,
40 41 42	300	Hangzhou, China, 310058
42 43 44	301	
45 46	202	Asknowladaamaata
47 48	302	Acknowledgements
49 50 51	303	The technology development for this work was supported by Beijing BioBiggen
52 53	304	Technology Co., Ltd
54 55 56	305	
57 58		14
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 29

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de Enseignement Superieur (ABES) .

and

data mining, Al training, and similar technologies

Protected by copyright, including for uses related to text

BMJ Open

306 Contributors

JZ and H-FH conceived the study. JZ, H-FH, YW, CX and XC participated in the design of the study and drafting of the manuscript. CX, SC, QL, HX, DZ and HW participate in recruitment of participants and assessment of clinical outcomes. XC and JZ will design the statistical analysis plan and oversee statistical analysis. All authors critically reviewed and approved the manuscript for submission.

313 Funding

This study was supported by The National Key Research and Development Program of China (2020YFA0804000) and the National Natural Science Foundation of China (82071661). The clinical validation and research work were partially supported by Technology Innovation Project of Shanghai Shenkang Hospital Development Center (SHDC12019107 and SHDC12018X17), the International Science and Technology Collaborative Fund of Shanghai (18410711800), the National Natural Science Foundation of China (81661128010), CAMS Innovation Fund for Medical Sciences (2019-12M-5-064), National Key Research and Development Program of China (2018YFC1002804), Program of Shanghai Academic Research Leader (20XD1424100), Outstanding Youth Medical Talents of Shanghai Rising Stars of Medical Talent Youth Development Program, Clinical Research Plan of Shanghai Shenkang Hospital Development Center (SHDC12018X17), and Clinical Research Project of Shanghai Municipal Health Commission (201840210, 20184Y0349). The cost

1 2		
3 4	327	of sample processing and high-throughput sequencing was supported by Beijing
5 6 7	328	BioBiggen Technology Co., Ltd
8 9 10	329	
11 12 13	330	Competing interests
14 15	331	XC, JZ are employees or shareholders of Beijing BioBiggen Technology Co., Ltd The
16 17 18	332	other authors declare no conflict of interest.
19 20 21	333	
22 23 24	334	Patient consent for publication
25 26	335	Not required.
27 28 29	336	
30 31 32	337	Ethics approval
33 34 35	338	This study had been reviewed and approved by the Obstetrics and Gynecology Hospital
36 37 38	339	of Fudan University (2020-178).
39 40 41	340	
42 43 44	341	
45 46 47	342	
48 49		
50 51 52		
53 54 55		
56 57 58		16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~		

Ind	clusion criteria	E>	clusion criteria
\triangleright	Adult pregnant woman (age ≥20 years)	\succ	Age <20 years
\triangleright	Gestational age ≥12 ⁺⁰ weeks	\triangleright	Gestational age <12 ⁺⁰ weeks
\succ	Singleton pregnancy	\succ	Chromosomal abnormality in eithe
\triangleright	High-risk pregnancy with following indications		of the couple
	 Fetal structural anomalies detected on 	\succ	
	ultrasound		transfusion, organ transplantation,
	12-16 weeks		or cell therapy within one year
	a. Increased nuchal translucency or cystic		Family history of a genetic disease
	hygroma		indicated for an invasive diagnosti
	b. Cardiac structural defects	~	test
	c. Absence or hypoplasia of nasal bone		Maternal malignancy during
	17-21 weeks		pregnancy
	a. Polycystic kidney		
	b. Intrauterine growth restriction		
	c. Malformation of the digestive tract		
	d. Ventriculomegaly		
	e. Polyhydramnios		
	f. Oligohydramnios		
	g. Echogenic bowel		
	h. Pyelic separation		
	22 weeks and above		
	a. Abnormal length, shape or mineralization		
	of long bones		
	b. Abnormal number of fingers and toes		
	 c. Abnormal shape of palms and soles 		
	d. Abnormal circumference of head, abdomen		
	or chest		
	e. Abnormal mineralization and shape of skull		
	and spine		
	f. Abnormal size and shape of scapula,		
	clavicle, forehead, nasal bone or mandible		
	g. Abnormal posture of limbs		
	2. High rick by routing NIDS		
	2. High risk by routine NIPS		
	3. High risk by maternal serum biochemical		
	testing		
	testing		
	4. Suspected genetic causes such as recurrent		
	miscarriage		
\triangleright	Acceptance for a diagnostic procedure which		
	has leftover specimens such as chorionic villus,		
	amniotic cells, cord blood, product of		
	conception, or newborn's peripheral blood		

Trisomy 21 Trisomy 18 Trisomy 13
45, X 47, XXX 47, XXY 47, XYY
DiGeorge syndrome 1p36 deletion syndrome 2q33.1 deletion syndrome Angelman syndrome
Prader-Willi syndrome Cri du Chat syndrome Wolf-Hirschhorn syndrome Langer-Giedion syndrome Jacobsen syndrome
Representative diseases and genes: Noonan spectrum disorders (<i>PTPN11</i> , <i>SOS1</i> , <i>RIT1</i> , <i>RAF1</i> , etc.) Osteogenesis imperfecta (<i>COL1A1</i> , <i>COL1A2</i> , <i>IFITM5</i>)
Achondroplasia (<i>FGFR3</i>) Crouzon syndrome (<i>FGFR2</i> , <i>FGFR3</i>) CHARGE syndrome (<i>CHD7</i>) Rett syndrome (<i>MECP2</i>) Tuberous sclerosis (<i>TSC1</i> , <i>TSC2</i>)
I list of monogenic disorders.
18

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de l Enseignement Superieur (ABES)

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

1		
1 2 3 4	347	Figure legends
5 6 7	348	Figure 1 The diagram for the clinical validation of a comprehensive non-invasive
8 9	349	prenatal screening test.
10 11 12	350	
13 14 15	351	Figure 2 The diagram for the screening result analyses based on different disease types
16 17	352	and indications. MMS: microdeletion and microduplication syndromes. NIPS: non-
18 19 20	353	invasive prenatal screening. PPV: positive predictive value. NPV: negative predictive
21 22	354	value.
23 24 25 26 27 28 29 30 31 32	355	invasive prenatal screening. PPV: positive predictive value. NPV: negative predictive value.
33 34		
35 36 37		
37 38 39		
40 41		
42 43 44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		10
58 59		19

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		Deferences
4	356	References
5		
6	357	1. Kancherla V, Oakley GP, Jr., Brent RL. Urgent global opportunities to prevent birth defects.
7	358	Seminars in fetal & neonatal medicine 2014; 19 (3):153-60 doi:
8	359	10.1016/j.siny.2013.11.008[published Online First: Epub Date] .
9	360	2. Mai CT, Isenburg JL, Canfield MA, et al. National population-based estimates for major birth
10	361	defects, 2010-2014. Birth Defects Res 2019; 111 (18):1420-35 doi:
11	362	10.1002/bdr2.1589[published Online First: Epub Date]].
12	363	3. Brent RL. Environmental causes of human congenital malformations: the pediatrician's role in
13	364	dealing with these complex clinical problems caused by a multiplicity of environmental
14 15	365	and genetic factors. Pediatrics 2004; 113 (4 Suppl):957-68
16	366	4. Antonarakis SE. Carrier screening for recessive disorders. Nat Rev Genet 2019;20(9):549-61
17	367	doi: 10.1038/s41576-019-0134-2[published Online First: Epub Date] .
18	368 369	 Wapner R, Thom E, Simpson JL, et al. First-trimester screening for trisomies 21 and 18. The New England journal of medicine 2003;349(15):1405-13 doi:
19	369 370	10.1056/NEJMoa025273[published Online First: Epub Date] .
20	370 371	6. Wright D, Syngelaki A, Bradbury I, et al. First-trimester screening for trisomies 21, 18 and 13
21	371	by ultrasound and biochemical testing. Fetal diagnosis and therapy 2014; 35 (2):118-26
22	372	doi: 10.1159/000357430[published Online First: Epub Date]].
23	374	7. Jiang P, Lo YMD. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of
24	375	Molecular Diagnostics. Trends in genetics : TIG 2016; 32 (6):360-71 doi:
25	376	10.1016/j.tig.2016.03.009[published Online First: Epub Date]].
26 27	377	8. Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and
27	378	serum. Lancet 1997; 350 (9076):485-7 doi: 10.1016/S0140-6736(97)02174-0[published
20	379	Online First: Epub Date]].
30	380	9. Chiu RW, Lau TK, Leung TN, et al. Prenatal exclusion of beta thalassaemia major by
31	381	examination of maternal plasma. Lancet 2002;360(9338):998-1000 doi: 10.1016/s0140-
32	382	6736(02)11086-5[published Online First: Epub Date]].
33	383	10. Costa JM, Benachi A, Gautier E. New strategy for prenatal diagnosis of X-linked disorders.
34	384	The New England journal of medicine 2002; 346 (19):1502 doi:
35	385	10.1056/NEJM200205093461918[published Online First: Epub Date] .
36 37	386	11. Lo YM, Lun FM, Chan KC, et al. Digital PCR for the molecular detection of fetal
37	387	chromosomal aneuploidy. Proceedings of the National Academy of Sciences of the
30 39	388	United States of America 2007; 104 (32):13116-21 doi:
40	389	10.1073/pnas.0705765104[published Online First: Epub Date] .
41	390	12. Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal
42	391	aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma.
43	392	Proceedings of the National Academy of Sciences of the United States of America
44	393	2008; 105 (51):20458-63 doi: 10.1073/pnas.0810641105[published Online First: Epub
45	394 205	Date]]. 13. Ean HC, Blumonfold XI, Chitkara II, et al. Noninvasive diagnosis of fotal anounloidy by
46	395 396	13. Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proceedings of the National Academy of
47	396 397	Sciences of the United States of America 2008; 105 (42):16266-71 doi:
48 40	397	10.1073/pnas.0808319105[published Online First: Epub Date]].
49 50	398 399	14. Norton ME, Jacobsson B, Swamy GK, et al. Cell-free DNA analysis for noninvasive
50 51	399 400	examination of trisomy. The New England journal of medicine 2015; 372 (17):1589-97 doi:
52	400	10.1056/NEJMoa1407349[published Online First: Epub Date]].
53	401	15. Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for
54	403	expanded chromosome disease syndromes. Genetics in medicine : official journal of the
55		
56		
57		
58		20
59		

1		
2		
3	404	American College of Medical Genetics 2019;21(9):1998-2006 doi: 10.1038/s41436-019-
4 5	405	0467-4[published Online First: Epub Date]].
6	406	16. Srinivasan A, Bianchi DW, Huang H, et al. Noninvasive detection of fetal subchromosome
7	407	abnormalities via deep sequencing of maternal plasma. American journal of human
8	408	genetics 2013; 92 (2):167-76 doi: 10.1016/j.ajhg.2012.12.006[published Online First:
9	409	Epub Date]].
10	410 411	 Hudecova I, Jiang P, Davies J, et al. Noninvasive detection of F8 int22h-related inversions and sequence variants in maternal plasma of hemophilia carriers. Blood
11	411	2017; 130 (3):340-47 doi: 10.1182/blood-2016-12-755017[published Online First: Epub
12	412	Date]].
13	414	18. Hui WW, Jiang P, Tong YK, et al. Universal Haplotype-Based Noninvasive Prenatal Testing
14 15	415	for Single Gene Diseases. Clinical chemistry 2017; 63 (2):513-24 doi:
16	416	10.1373/clinchem.2016.268375[published Online First: Epub Date]].
17	417	19. Chitty LS, Mason S, Barrett AN, et al. Non-invasive prenatal diagnosis of achondroplasia
18	418	and thanatophoric dysplasia: next-generation sequencing allows for a safer, more
19	419	accurate, and comprehensive approach. Prenatal diagnosis 2015; 35 (7):656-62 doi:
20	420	10.1002/pd.4583[published Online First: Epub Date]].
21	421	20. Zhang J, Li J, Saucier JB, et al. Non-invasive prenatal sequencing for multiple Mendelian
22	422	monogenic disorders using circulating cell-free fetal DNA. Nature medicine
23	423	2019; 25 (3):439-47 doi: 10.1038/s41591-018-0334-x[published Online First: Epub Date]].
24	424	21. Scotchman E, Chandler NJ, Mellis R, et al. Noninvasive Prenatal Diagnosis of Single-Gene
25	425	Diseases: The Next Frontier. Clinical chemistry 2020;66(1):53-60 doi:
26 27	426	10.1373/clinchem.2019.304238[published Online First: Epub Date] .
27	427	22. Yan H, Zhu X, Chen J, et al. Noninvasive prenatal sequencing for multiple Mendelian
29	428	monogenic disorders among fetuses with skeletal dysplasia or increased nuchal
30	429	translucency. Prenatal diagnosis 2020; 40 (11):1459-65 doi: 10.1002/pd.5792[published
31	430	Online First: Epub Date] .
32	431	23. Nwakalor C, Said-Delgado S, Krinshpun S, et al. De novo HRAS gene mutation associated
33	432	with Costello syndrome identified by non-invasive cell-free fetal DNA screening. Prenatal
34	433	diagnosis 2021; 41 (1):11-14 doi: 10.1002/pd.5798[published Online First: Epub Date]].
35	434	24. Chitty LS, Hui L, Ghidini A, et al. In case you missed it: The Prenatal Diagnosis editors bring
36	435	you the most significant advances of 2019. Prenatal diagnosis 2020; 40 (3):287-93 doi:
37 38	436	10.1002/pd.5632[published Online First: Epub Date] . 25. Norton ME, Brar H, Weiss J, et al. Non-Invasive Chromosomal Evaluation (NICE) Study:
39	437 438	results of a multicenter prospective cohort study for detection of fetal trisomy 21 and
40	438 439	trisomy 18. American journal of obstetrics and gynecology 2012; 207 (2):137 e1-8 doi:
41	439	10.1016/j.ajog.2012.05.021[published Online First: Epub Date]].
42	440	26. Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal
43	442	structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet
44	443	2019; 393 (10173):747-57 doi: 10.1016/S0140-6736(18)31940-8[published Online First:
45	444	Epub Date]].
46	445	27. Petrovski S, Aggarwal V, Giordano JL, et al. Whole-exome sequencing in the evaluation of
47	446	fetal structural anomalies: a prospective cohort study. Lancet 2019; 393 (10173):758-67
48 49	447	doi: 10.1016/S0140-6736(18)32042-7[published Online First: Epub Date]].
49 50	448	28. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of
50 51	449	sequence variants: a joint consensus recommendation of the American College of
52	450	Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics
53	451	in medicine : official journal of the American College of Medical Genetics
54	452	2015; 17 (5):405-24 doi: 10.1038/gim.2015.30[published Online First: Epub Date] .
55	453	29. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and
56	454	reporting of constitutional copy-number variants: a joint consensus recommendation of
57		
58		21
50		

1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 7 8 9 0 12 23 24 5 26 7 8 9 30 32 33 4 5 6 7 8 9 0 112 13 14 15 16 7 8 9 0 12 23 24 5 26 7 8 9 30 32 33 4 5 6 7 8 9 0 11 2 34 4 5 6 7 8 9 0 11 2 34 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 3 7 8 9 0 11 2 2 3 4 5 3 7 8 9 0 11 2 2 3 4 5 5 6 7 8 9 0 11 2 2 3 4 5 3 7 8 9 0 11 2 2 3 4 5 8 9 0 11 2 2 3 4 5 3 7 8 9 0 1 2 2 3 4 5 3 7 8 9 0 1 2 2 3 3 4 5 3 7 8 9 0 1 2 2 3 4 5 5 3 7 8 9 0 1 2 2 3 4 5 3 7 8 9 0 1 2 3 3 4 5 3 7 8 9 0 1 2 3 3 4 5 5 5 7 8 9 0 1 2 3 3 4 5 5 7 8 9 0 1 2 3 3 4 5 5 3 7 8 9 0 1 2 3 3 4 5 5 5 7 8 9 0 1 2 3 3 4 5 5 5 7 8 9 0 1 2 3 3 4 5 5 7 8 9 0 1 2 3 3 4 5 5 5 7 8 9 0 1 2 3 3 4 5 5 5 7 8 9 0 1 2 5 3 4 5 5 7 5 7 8 9 0 1 2 5 5 7 5 5 5 5 7 5 5 7 5 7 5 7 5 5 7 5 7 8 9 0 5 7 5 7 5 7 8 9 0 5 7 5 7 8 9 0 5 7 5 7 5 7 8 9 0 5 7 5 7 5 8 9 0 5 7 5 7 8 9 0 5 7 5 7 8 9 0 5 7 5 7 8 9 0 5 7 5 7 8 9 0 5 7 5 7 5 7 8 9 0 5 7 5 7 5 7 8 9 5 7 8 9 0 11 2 8 9 1 5 7 8 9 10 1 2 5 1 2 5 1 2 2 8 1 2 2 3 3 3 3 5 7 8 9 0 1 1 2 8 1 2 1 2 1 8 1 2 3 1 2 8 9 1 2 1 2 2 3 1 2 3 3 3 1 3 3 1 2 3 1 2 2 3 1 2 2 3 3 3 3	455 456 457 458 459 460 461 462 463 464 465 466 467	 the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genetics in medicine : official journal of the American College of Medical Genetics 2020;22(2):245-57 doi: 10.1038/s41438-019-0686-8[published Online First: Epub Date]]. 30. Bianchi DW, Parker RL, Wentworth J, et al. DNA sequencing versus standard prenatal aneuploidy screening. The New England journal of medicine 2014;370(9):799-808 doi: 10.1056/NEJMoat311037[published Online First: Epub Date]]. 31. Lau TK, Chan MK, Lo PS, et al. Clinical utility of noninvasive fetal trisomy (NIFTY) test-early experience. The journal of meternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 2012;25(10):1856-9 doi: 10.3109/14767058.2012.678442[published Online First: Epub Date]].
		22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

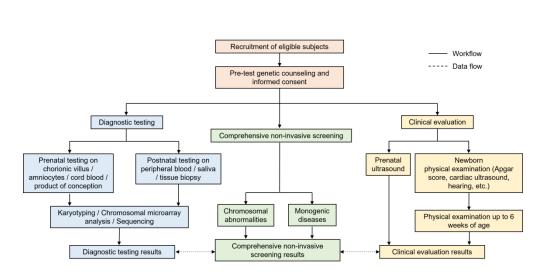


Figure 1 The diagram for the clinical validation of a comprehensive non-invasive prenatal screening test.

1022x484mm (96 x 96 DPI)

Page 25 of 29

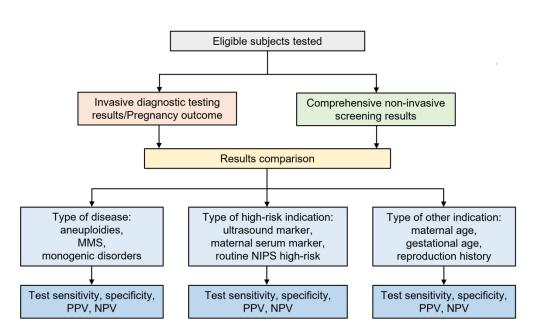


Figure 2 The diagram for the screening result analyses based on different disease types and indications. MMS: microdeletion and microduplication syndromes. NIPS: non-invasive prenatal screening. PPV: positive predictive value. NPV: negative predictive value.

673x401mm (96 x 96 DPI)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Diseases	Phenotype MIM number	Inheritance	Gene
Parietal foramina 2	609597	AD	ALX4
Parietal foramina 1	168500	AD	MSX2
Parietal foramina with cleidocranial dysplasia	168550	AD	MSX2
Craniosynostosis 2	604757	AD	MSX2
Cardiofaciocutaneous syndrome 1	115150	AD	BRAF
LEOPARD syndrome 3	613707	AD	BRAF
Noonan syndrome 7	613706	AD	BRAF
Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia	613563	AD	CBL
Costello syndrome/Congenital myopathy with excess of muscle spindles	218040	AD	HRAS
Cardiofaciocutaneous syndrome 2	615278	AD	KRAS
Noonan syndrome 3	609942	AD	KRAS
RAS-associated autoimmune leukoproliferative disorder	614470	AD	KRAS
cardiofaciocutaneous syndrome 3	615279	AD	MAP2K1
cardiofaciocutaneous syndrome 4	615280	AD	MAP2K2
Noonan syndrome 6	613224	AD	NRAS
LEOPARD syndrome 1	151100	AD	PTPN11
Metachondromatosis	156250	AD	PTPN11
Noonan syndrome 1	163950	AD	PTPN11
Cardiomyopathy, dilated, 1NN	615916	AD	RAF1
Noonan syndrome 5	611553	AD	RAF1
Noonan syndrome 8	615355	AD	RIT1
Noonan syndrome-like with loose anagen hair 1	607721	AD	SHOC2
Noonan syndrome4	610733	AD	SOS1
Noonan syndrome 9	616559	AD	SOS2
Epileptic encephalopathy, early infantile, 2	300672	XLD	CDKL5
CHARGE syndrome	214800	AD	CHD7
Hypogonadotropic hypogonadism 5 with or without anosmia	612370	AD	CHD7
Metaphyseal chondrodysplasia, Schmid type	156500	AD	COL10A1
Marshall syndrome	154780	AD	COL11A1
Stickler syndrome, type II	604841	AD	COL11A1
Achondrogenesis, type II or hypochondrogenesis	200610	AD	COL2A1
Avascular necrosis of the femoral head	608805	AD	COL2A1
Czech dysplasia	609162	AD	COL2A1
Kniest dysplasia	156550	AD	COL2A1
Legg-Calve-Perthes disease	150600	AD	COL2A1
Osteoarthritis with mild chondrodysplasia	604864	AD	COL2A1
Platyspondylic skeletal dysplasia, Torrance type	151210	AD	COL2A1
SED congenita	183900	AD	COL2A1

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

SMED Strudwick type	184250	AD	COL2A1
Spondyloepiphyseal dysplasia, Stanescu type	616583	AD	COL2A1
Spondyloperipheral dysplasia	271700	AD	COL2A1
Stickler sydrome, type I, nonsyndromic ocular	609508	AD	COL2A1
Stickler syndrome, type I	108300	AD	COL2A1
Caffey disease	114000	AD	COL1A1
Ehlers-Danlos syndrome, arthrochalasia type, 1	130060	AD	COL1A1
Osteogenesis imperfecta, type I	166200	AD	COL1A1
Osteogenesis imperfecta, type II	166210	AD	COL1A1;COL1A
Osteogenesis imperfecta, type III	259420	AD	COL1A1;COL1A
Osteogenesis imperfecta, type IV	166220	AD	COL1A1;COL1A
Ehlers-Danlos syndrome, arthrochalasia type, 2	617821	AD	COL1A2
Chondrodysplasia punctata, X-linked dominant	302960	XLD	EBP
Capillary malformation-arteriovenous malformation 2	618196	AD	EPHB4
Lymphatic malformation 7	617300	AD	EPHB4
Craniosynostosis 4	600775	AD	ERF
Chitayat syndrome	617180	AD	ERF
Acromicric dysplasia	102370	AD	FBN1
Ectopia lentis, familial	129600	AD	FBN1
Geleophysic dysplasia 2	614185	AD	FBN1
Marfan lipodystrophy syndrome	616914	AD	FBN1
Marfan syndrome	154700	AD	FBN1
MASS syndrome	604308	AD	FBN1
Stiff skin syndrome	184900	AD	FBN1
Weill-Marchesani syndrome 2, dominant	608328	AD	FBN1
Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis	207410	AD	FGFR2
Apert syndrome	101200	AD	FGFR2
Beare-Stevenson cutis gyrata syndrome	123790	AD	FGFR2
Bent bone dysplasia syndrome	614592	AD	FGFR2
Crouzon syndrome	123500	AD	FGFR2
Jackson-Weiss syndrome	123150	AD	FGFR2;FGFR1
LADD syndrome	149730	AD	FGFR2;FGFR3
Pfeiffer syndrome/Craniofacial-skeletal-dermatologic dysplasia	101600	AD	FGFR2;FGFR1
Saethre-Chotzen syndrome/Saethre-Chotzen syndrome with or without eyelid anomalies	101400	AD	FGFR2
achondroplasia	100800	AD	FGFR3
Crouzon syndrome with acanthosis nigricans	612247	AD	FGFR3
hypochondroplasia	146000	AD	FGFR3
Muenke syndrome	602849	AD	FGFR3
SADDAN	616482	AD	FGFR3
thanatophoric dysplasia type I	187600	AD	FGFR3
thanatophoric dysplasia type II	187601	AD	FGFR3

BMJ Open: first published as 10.1136/bmjopen-2021-053617 on 27 August 2021. Downloaded from http://bmjopen.bmj.com/ on June 8, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Atelosteogenesis, type I	108720	AD	FLNB
Atelosteogenesis, type III	108721	AD	FLNB
Boomerang dysplasia	112310	AD	FLNB
Larsen syndrome	150250	AD	FLNB
Cornelia de Lange syndrome 1	122470	AD	NIPBL
Cornelia de Lange syndrome 2	300590	XLD	SMC1A
Cornelia de Lange syndrome 3	610759	AD	SMC3
Cornelia de Lange syndrome 4	614701	AD	RAD21
Cornelia de Lange syndrome 5	300882	XLD	HDAC8
Au-Kline syndrome	616580	AD	HNRNPK
Osteogenesis imperfecta, type V	610967	AD	IFITM5
Genitopatellar syndrome	606170	AD	КАТ6В
SBBYSS syndrome	603736	AD	КАТ6В
Kabuki syndrome 1	147920	AD	KMT2D
Pelger-Huet anomaly	169400	AD	LBR
Cardiomyopathy, dilated, 1A	115200	AD	LMNA
Emery-Dreifuss muscular dystrophy 2, autosomal dominant	181350	AD	LMNA
Heart-hand syndrome, Slovenian type	610140	AD	LMNA
Lipodystrophy, familial partial, type 2	151660	AD	LMNA
Malouf syndrome	212112	AD	LMNA
Muscular dystrophy, congenital	613205	AD	LMNA
Rett syndrome	312750	XLD	MECP2
Neurofibromatosis-Noonan syndrome	601321	AD	NF1
Neurofibromatosis, familial spinal	162210	AD	NF1
Neurofibromatosis, type 1	162200	AD	NF1
Watson syndrome	193520	AD	NF1
Neurofibromatosis, type 2	101000	AD	NF2
Sotos syndrome 1	117550	AD	NSD1
CHILD syndrome	308050	XLD	NSDHL
Polycystic kidney disease 1	173900	AD	PKD1
Polycystic kidney disease 2	613095	AD	PKD2
Acrodysostosis 1, with or without hormone resistance	101800	AD	PRKAR1A
Carney complex, type 1	160980	AD	PRKAR1A
Myxoma, intracardiac	255960	AD	PRKAR1A
Pigmented nodular adrenocortical disease, primary, 1	610489	AD	PRKAR1A
Failure of tooth eruption, primary	125350	AD	PTH1R
Metaphyseal chondrodysplasia, Murk Jansen type	156400	AD	PTH1R
Neurodevelopmental disorder with or without anomalies of the brain, eye, or heart	616975	AD	RERE
Cleidocranial dysplasia	119600	AD	RUNX2
Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly	156510	AD	RUNX2
King-Denborough syndrome	145600	AD	RYR1

Page	29	of	29
ruge	~ /	U.	~ ~

BMJ Open

Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome	175050	AD	SMAD4
Myhre syndrome	139210	AD	SMAD4
Polyposis, juvenile intestinal	174900	AD	SMAD4
Aortic valve disease 2	614823	AD	SMAD6
Cerebrocostomandibular syndrome	117650	AD	SNRPB
Hyper-IgE recurrent infection syndrome	147060	AD	STAT3
Autoimmune disease, multisystem, infantile-onset, 1	615952	AD	STAT3
Cardiac, facial, and digital anomalies with developmental delay	618164	AD	TRAF7
Tuberous sclerosis-1	191100	AD	TSC1
Tuberous sclerosis-2	613254	AD	TSC2
Structural brain anomalies with impaired intellectual development and craniosynostosis	618736	AD	ZIC1
Acampomelic campomelic dysplasia/Campomelic dysplasia/Campomelic dysplasia with autosomal sex reversal	114290	AD	SOX9
Craniosynostosis 1	123100	AD	TWIST1
Robinow-Sorauf syndrome	180750	AD	TWIST1
Sweeney-Cox syndrome	617746	AD	TWIST1
Brachydactyly, type A1	112500	AD	ІНН
Craniosynostosis 3	615314	AD	TCF12
Loeys-Dietz syndrome 1	609192	AD	TGFBR1
Loeys-Dietz syndrome 2	610168	AD	TGFBR2
Shprintzen-Goldberg syndrome	182212	AD	SKI
Greig cephalopolysyndactyly syndrome	175700	AD	GLI3
Pallister-Hall syndrome	146510	AD	GLI3
Polydactyly, postaxial, types A1 and B	174200	AD	GLI3
Polydactyly, preaxial, type IV	174700	AD	GLI3
C syndrome	211750	AD	CD96
Bohring-Opitz syndrome	605039	AD	ASXL1
Craniofrontonasal dysplasia	304110	XLD	EFNB1
Hartsfield syndrome	615465	AD	FGFR1
Hypogonadotropic hypogonadism 2 with or without anosmia	147950	AD	FGFR1
Osteoglophonic dysplasia	166250	AD	FGFR1
Trigonocephaly 1	190440	AD	FGFR1
Trigonocephaly 2	614485	AD	FREM1
Fontaine progeroid syndrome	612289	AD	SLC25A24
Hypertelorism, Teebi type	145420	AD	SPECC1L
Opitz GBBB syndrome, type II	145410	AD	SPECC1L

Study	PMID	Target diseases	Population studied	Nature of study	Screening method	Sample size	Positivein cases for	Rigethod	Pregnancy outcome follow-up
Norton ME, et al. Am J Obstet Gynecol. 2012	22742782	T21, T18	high risk	multicenter, prospective, observational	chromosome selective sequencing	4,002	119 119	Augustration and the second se	not performed
Nicolaides KH, et al. Am J Obstet Gynecol. 2012	23107079	T21, T18	average risk	single center, retrospective	chromosome selective sequencing	2,049	11 11	Superieur (ABE	newborn examination
Bianchi DW, et al. N Engl J Med. 2014	25099587	T21, T18, T13	average risk	multicenter, prospective, observational	low-depth WGS	1,914	ining, Al trainin 8	ed from http://taryotype	newborn examination
Norton ME, et al. N Engl J Med. 2015	25830321	T21, T18, T13	average risk	multicenter, prospective, observational	targeted sequencing	18,955	Al training, and similar technologi	waryotype, MA	newborn examination
Current study		7 aneuploidies, 9 MMS, 155 monogenic diseases	high risk	multicenter, prospective, observational	targeted sequencing	>1000	>50		newborn examination