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ABSTRACT
Objectives  The aim of this study was to evaluate the 
performance of deep learning-based detection and 
classification of carotid plaque (DL-DCCP) in carotid plaque 
contrast-enhanced ultrasound (CEUS).
Methods and analysis  A prospective multicentre study 
was conducted to assess vulnerability in patients with 
carotid plaque. Data from 547 potentially eligible patients 
were prospectively enrolled from 10 hospitals, and 205 
patients with CEUS video were finally enrolled for analysis. 
The area under the receiver operating characteristic curve 
(AUC) was used to evaluate the effectiveness of DL-DCCP 
and two experienced radiologists who manually examined 
the CEUS video (RA-CEUS) in diagnosing and classifying 
carotid plaque vulnerability. To evaluate the influence of 
dynamic video input on the performance of the algorithm, 
a state-of-the-art deep convolutional neural network (CNN) 
model for static images (Xception) was compared with DL-
DCCP for both training and holdout validation cohorts.
Results  The AUCs of DL-DCCP were significantly better 
than those of the experienced radiologists for both the 
training and holdout validation cohorts (training, DL-DCCP 
vs RA-CEUS, AUC: 0.85 vs 0.69, p<0.01; holdout validation, 
DL-DCCP vs RA-CEUS, AUC: 0.87 vs 0.66, p<0.01), that 
is, also better than the best deep CNN model Xception we 
had performed, for both the training and holdout validation 
cohorts (training, DL-DCCP vs Xception, AUC:0.85 vs 0.82, 
p<0.01; holdout validation, DL-DCCP vs Xception, AUC: 
0.87 vs 0.77, p<0.01).
Conclusion  DL-DCCP shows better overall performance 
in assessing the vulnerability of carotid atherosclerotic 
plaques than RA-CEUS. Moreover, with a more powerful 
network structure and better utilisation of video 
information, DL-DCCP provided greater diagnostic 
accuracy than a state-of-the-art static CNN model.
Trial registration number  ChiCTR1900021846,

INTRODUCTION
Carotid atherosclerotic disease is currently 
a major health problem, accounting for 

approximately 20% of all cases of cerebral isch-
aemia.1 Such cases of cerebral ischaemia are 
likely due to carotid artery stenosis, resulting 
in poor central nervous system perfusion or 
plaque surface thrombosis and artery-artery 
embolisation. In the past few years, there 
has been increasing evidence that plaque 
characteristics are associated with neuro-
logical symptoms, leading to the concept 
of ‘vulnerable plaques’.2 Previous evidence 
has demonstrated that the vulnerability of 
atherosclerotic plaques may be related to 
their neovascularisation.3 Neovascularisation 
in plaques is an independent predictor of 
vulnerable plaque rupture. In addition, the 
number of neovessels in plaques was found 
to be closely related to clinical manifesta-
tions. A higher neovascularisation density was 

Strengths and limitations of this study

►► This study used multicentre carotid plaque 
contrast-enhanced ultrasound (CEUS) to ensure its 
generalisation.

►► Deep learning-based detection and classification of 
carotid plaque (DL-DCCP) shows significantly better 
overall performance than radiologists who manually 
examined the CEUS (CEUS).

►► DL-DCCP used CEUS video to increase diagnostic 
accuracy and better generalisability compared with 
state-of-the-art deep convolutional neural network 
models for static image analysis.

►► DL-DCCP can better use the interframe information 
provided by dynamic CEUS video to generalise from 
training cohort to unseen validation cohort.

►► The study was currently limited to the population 
size, a larger sample size with more patients is re-
quired to better train the deep-learning model.

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 13, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
27 A

u
g

u
st 2021. 

10.1136/b
m

jo
p

en
-2020-047528 o

n
 

B
M

J O
p

en
: first p

u
b

lish
ed

 as 

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-8427-971X
http://dx.doi.org/10.1136/bmjopen-2020-047528
http://dx.doi.org/10.1136/bmjopen-2020-047528
http://dx.doi.org/10.1136/bmjopen-2020-047528
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2020-047528&domain=pdf&date_stamp=2021-08-27
http://bmjopen.bmj.com/


2 Guang Y, et al. BMJ Open 2021;11:e047528. doi:10.1136/bmjopen-2020-047528

Open access�

associated with an increased risk of typical clinical presen-
tation.4–6 Therefore, the detection of neovascularisation 
is of great significance in predicting plaque vulnerability, 
assessing stroke risk and guiding clinical treatment. 
With the rapid development of contrast-enhanced ultra-
sound (CEUS), we now have the ability to assess plaque 
vulnerability by observing the neovascularisation within 
plaques.3 7–9 CEUS has many advantages over conven-
tional ultrasound, but the conventional strategy for 
using CEUS is insufficient for accurately assessing plaque 
vulnerability.

In recent years, an emerging technology named radio-
mics has provided the automated quantification of large 
amounts of imaging features from medical images, which 
has the potential to aid in uncovering disease character-
istics that fail to be appreciated by the naked eye.10 Most 
medical images are static images, such as two-dimensional 
(2D) pictures and three-dimensional (3D) volumes, 
which lack dynamic information. Unlike conventional 
medical images, CEUS video data contain important 
dynamic information. However, traditional neural 
network methods only take separated frames as input for 
classification and ignore the continuity between frames.

We speculate that a distinctive radiomics technique 
might be capable of using more valuable information 
from CEUS. Our study will summarise the contribution 
of established imaging modalities to plaque vulnerability 
assessment and investigate the diagnostic performance 
of a new network structure in carotid plaque evaluation 
with CEUS video, thus potentially improving the diag-
nostic performance in evaluating the vulnerability of 
carotid plaques. The features extracted by the network 
may include not only neovascularisation features but 
also sonographic features of vulnerable plaques (surface, 
thrombus, heterogeneity, etc) and other dynamic 
features that are difficult to capture by eye. By combining 
all these features, the deep learning-based detection and 
classification of carotid plaque (DL-DCCP) may discover 
information that sonographers cannot recognise on sight 
and obtain a more accurate diagnosis than sonographers. 
In this study, we aimed to evaluate the performance of 
DL-DCCP in assessing neovascularisation in carotid 
plaque CEUS.

METHODS
Design and overview
This was a multicentre, prospective study. A new diag-
nostic approach named DL-DCCP was used to assess 
the vulnerability of carotid plaques. Histopathological 
or high-resolution MRI findings were used as the refer-
ence standard, and DL-DCCP was compared with the 
conventional evaluation of CEUS findings. MR scans 
were performed for carotid arteries using a 3.0 T MR 
scanner (Siemens Medical Systems, Erlangen, Germany; 
GE Healthcare, Waukesha, WI; Philips Medical System, 
Best, Netherlands) with an eight-channel carotid coil. 
The imaging protocol included three multicontrast 3D 

blackblood sequences with T1, T2 and heavy T1 weight-
ings. MR images were acquired in the coronal plane and 
covered the whole carotid artery, including the common 
carotid artery, bifurcation, internal carotid artery and 
external carotid artery. All MR images were evaluated on 
axially reformatted images.

From September 2017 to September 2018, patients 
with carotid plaques who provided informed consent to 
participate in this study were enrolled from 10 Chinese 
hospitals in different regions. The overall flow chart of 
this study is shown in figure 1.

Patient enrolments
Operative indications included either symptomatic or 
asymptomatic carotid plaques. Symptomatic carotid 
plaque was defined by the presence of symptoms associ-
ated with previous ischaemic events on the ipsilateral side 
within the preceding 6 months. Patients were classified as 
asymptomatic if they had not experienced any stroke or 
transitory ischaemic attack in the previous 6 months. The 
inclusion criteria were the presence of carotid plaques 
and a maximum plaque thickness ≥2.0 mm on grey scale 
ultrasound. The carotid plaques of all patients were 
imaged by high-resolution MRI or removed by carotid 
endarterectomy within 2 weeks of CEUS. The exclusion 
criteria were non-atherosclerotic disease, shadowing of 
more than 50% due to plaque calcification on grey scale 
ultrasound, previous endarterectomy or intravascular 
stent at the site of the index carotid artery, contraindi-
cations to CEUS, such as unstable angina, acute cardiac 
failure, acute endocarditis, known right-to-left shunts and 
known allergy for microbubble contrast agents, and phys-
ical or mental inability to participate in the study.

CEUS video acquisition
CEUS was performed using LOGIQ E9 (GE Medical 
Systems, Wauwatosa, Wisconsin, USA), Philips iU22 
(Philips US, Bothell, Washington, USA) and Canon Aplio 
500 devices (Canon Medical System Corporation, Tokyo, 
Japan) with a linear probe. Using grey scale images, we 
observed the intraplaque echogenicity (hypoechoic, 
isoechoic or mixed echoic). CEUS was performed on 
plaques whose intima–media thickness was greater than 
2.0 mm to observe the intraplaque neovessels (IPNVs). 
Standard machine settings were used with a mechanical 
index of 0.05–0.08, and the focus was placed deeper than 
the plaque plane to avoid destroying the microbubbles. 
SonoVue (BR1, Bracco Imaging, Milan, Italy) was used 
as the contrast agent, supplied as a sterile, lyophilised 
powder contained in a septum-sealed vial. A suspension of 
the contrast agent was obtained by adding 5 mL of phys-
iological saline to the powder (25 mg). A contrast bolus 
of 2.4 mL was injected manually at a flow rate of approx-
imately 1 mL/s, followed by a 5 mL saline solution flush 
through a 20-gauge intravenous cannula placed in an 
antecubital vein by a nurse. Using a time-triggered acqui-
sition over a period of 180 s, the imaging data obtained 
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from CEUS were continuously stored on an integrated 
magnetic optical drive in the ultrasound machine.

Deep learning-based detection and classification of carotid 
plaques
Because of the dynamic characteristics of CEUS video, it is 
difficult to achieve good results by using traditional convo-
lutional neural networks (CNNs) for static image analysis. 
The method used in this study (DL-DCCP) is a specially 
designed CNN combined with video information aggre-
gation that can extract rich dynamic features from CEUS 
video. As shown in figure 2, the first step (A) (figure 2A) 
is to preprocess the video to remove measurements or 
other annotated markers from the image. In step (B) 
(figure 2B), we blend the CEUS image and B-mode image 
into a dual channel image and then determine the size 
and location of the region of interest (ROI) containing 
the plaque through a CNN in step (C) (figure  2C). In 
the next step (D) (figure  2D), the ROI information is 
used to crop every frame in the CEUS video, and then 
we employ the Xception11 network to extract the features 
of each cropped frame. To select better features and 
reduce the number of subsequent calculations, in step E 
(figure 2E), we compress the feature dimensions of each 
frame from 2048 to 1024. Thus far, we have only dealt 

with each frame independently. To make full use of the 
rich dynamic information contained in the CEUS video, 
in step F (figure 2F), we further aggregate all the frame 
features of the video. Finally, these fused features are fed 
into a classifier in step G (figure 2G) to obtain the type of 
plaque (stable or vulnerable).

There are often some measurement marks or other 
annotation information left by ultrasound physicians in 
ultrasound images, which can make subsequent auto-
matic image processing and analysis difficult. To solve this 
problem, we designed a CNN as a preprocessing (step A) 
to remove these markers. As shown in figure 3, from the 
raw image (with unwanted markers as indicated by yellow 
arrow) and the mask image (generated manually), an 
initial rough predicted image (coarse result) is generated 
first by using a CNN called Coarse Network. Then, we 
use a second CNN called Refinement Network to obtain 
a refined and cleaned image (inpainting result). Dilated 
convolutions are used to use the contextual information 
around the masked area and reconstruct the missing 
pixels. With this method, we can obtain clean and usable 
images for subsequent processing.

ROI detection and blending of CEUS image and 
B-mode image are important steps (step B and step C) 

Figure 1  The overall flow chart of this study.
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in the carotid plaque classification system. The ROI 
containing the plaque is only a small part of the entire 
image, which makes the precise detection and locali-
sation of the plaque very difficult. Instead of detecting 

the plaque, we detect the adventitia of the carotids by 
combining two state-of-the-art methods: ResNet5012 is 
used to extract features, and RetinaNet13 is used to detect 
a rectangular region around the adventitia. The workflow 

Figure 2  Overall algorithm diagram for deep learning-based detection and classification of carotid plaque (DL-DCCP). CEUS, 
contrast-enhanced ultrasound; MOE, mixture of experts; ROI, region of interest;

Figure 3  Network architecture for preprocessing ultrasound images to remove markers.
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of RetinaNet is shown in figure 4. To improve the robust-
ness of the detection algorithm, the B-mode (grey scale) 
and CEUS images (figure  2B) are used as the input 
simultaneously.

In this study, the method of assessing the vulnera-
bility of carotid plaque was dependent on CEUS video. 
To reduce the storage space required and accelerate the 
calculation, the videos are resampled to a fixed frame 
rate (frames per second, FPS) while maintaining the 
original spatial resolution. According to the length of 
the video, the number of frames (N, figure  2D) of the 
resampled video ranges from 70 to 120. After video resa-
mpling, each frame is cropped using the detected ROI 
information and then input to the Xception network 
to calculate the frame features (step D). The shallow 
layers of the Xception network extract detailed features 
such as edges and textures, and the deep layers extract 
abstract features such as shapes and contours. Finally, 
the Xception network outputs a 1D feature vector with a 
fixed length of 2048 that integrates the shallow-layer and 
deep-layer features. To select better features and reduce 
the number of subsequent calculations, we applied the 
commonly used principal component analysis algorithm 
to compress the feature dimensions from 2048 to 1024 
(step E). Since the number of frames (N) can be different 
for different videos, we aggregate the video features 
(N×1024) to the fixed-length features (K×1024, K<N) by 
a learnable pooling layer (step F). As shown in figure 5, 
a Generalized Vector of Locally Aggregated Descriptors 
layer (NetVLAD)14 is one of the implementations of the 
learnable pooling layer. It can learn to extract the motion 
dynamic features of multiple frames. After these steps, 
one feature vector (VLAD) with a fixed length (K×D, 
D=1024) for each video is obtained. In the last step (step 
G), a classifier named mixture of experts, as shown in 
figure 6, is applied to make the prediction for each video. 

Given the input feature vector VLAD (represented by x), 
k expert networks generate k outputs O1, O2.,…, Ok. At 
the same time, the gating network with learnable parame-
ters v also generates k weighting vectors g1, g2,…, gk using 
the following formula:

‍
gi =

exp
(
dot

(
x,vi

))
∑k

j=1 exp
(
dot

(
x,vj

)) , i from 1 to k
‍
, dot is the dot 

product of two vectors and vs is the sth row of v.
The output vector Y is calculated by mixing the output 

of the k experts: ‍Y =
∑

giOi, i = 1, . . . , k ‍. Y is a 1-D vector 
with length 2. The first number of Y (Y0) represents the 
probability that the plaque is stable, and the second 
number of Y (Y1) represents the probability that the 
plaque is vulnerable. The final classified result (stable 
or vulnerable plaque) is obtained from the following 
equation:

	﻿‍
Classfied result= {

Stable plaque, Y0 > Y1

Vulnerable plaque, otherwise ‍�

Training and validation of DL-DCCP
Two-thirds of the enrolled patients were randomly 
selected, and their corresponding CEUS videos were 
used as the training cohort for DL-DCCP. The CEUS 
videos of the remaining patients were used as the holdout 
validation cohort to evaluate the diagnostic accuracy of 
DL-DCCP. In the training stage, threefold cross-validation 
was used to iteratively adjust the network architecture 
(hyperparameters, number of iterations, regularisation 
method and class weights). For each fold, one model 
was trained with a subset of 2/3 of the patients, and the 
remaining 1/3 of the patients were used for validation. 
After cross-validation, the best performing model was 
selected for the final evaluation with the holdout valida-
tion cohort. We directly used the original architecture 
for all the networks. Transfer learning was used to finely 

Figure 4  Network architecture for ROI detection.

Figure 5  Network architecture for feature extraction and NetVLAD layer. VLAD, Vector of Locally Aggregated Descriptors layer.
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tune the parameters of Xception,11 ResNet5012and Reti-
naNet,13 while the other network parameters were learnt 
from scratch. We used the Adam optimizer to fine tune 
the entire network end-to-end. The initial learning rate 
was set to 0.001, and the learning rate was reduced 50% 
when the validation loss on 10 consecutive epochs did not 
decrease. The minimum learning rate was set to 0.00001. 
A total of 500 periods were trained and the batch size was 
set to 16.

We also separately trained an Xception11 model to clas-
sify each frame of CEUS video and obtained the video 
level result by majority voting. The training and validation 
protocol was the same as with DL-DCCP.

Assessing the diagnostic accuracy of radiologists-CEUS
Using CEUS images, we observed the location, number 
and enhanced intensity of IPNVs. We classified the 
enhanced intensity of the IPNVs into four grades 
according to the report of Shah et al.3 Grade 0 indicated 
no appearance of neovessels within the plaque. Grade 1 
indicated a limited appearance of neovessels within the 
plaque, and grade 2 was considered to represent the 
moderate appearance of neovessels within the plaque. 
Grade 3 was used to indicate the presence of a pulsating 
arterial vessel within the plaque. Grade 2 and Grade 3 
plaques were classified as vulnerability plaques. Radiolo-
gists who had performed more than 100 carotid plaque 
CEUS scans or more than 50 supervised carotid plaque 
CEUS examinations were enrolled in this multicentre 

study, and they were all strictly trained on carotid plaque 
CEUS using a uniform procedure. Two carotid plaque 
CEUS operators with more than 10 years of ultrasound 
operating experience were employed as quality control-
lers for reviewing all carotid plaque CEUS images and 
excluding unqualified acquisitions.

Carotid plaque CEUS images were independently 
reviewed offline by two radiologists with more than 
10 years of experience with carotid plaque CEUS. 
Plaque echogenicity, thickness and IPNV grading were 
performed by two independent investigators blinded to 
the patients’ characteristics and a clinical research fellow 
after the CEUS examination. Intraobserver and interob-
server agreements were evaluated (table 1).

Statistical analysis
Patient age is summarised using the mean±SD. Student’s 
t-test was used to compare patient age between the training 
and holdout validation groups. The χ2 test was applied to 
compare the differences in other characteristics between 
the two groups. The area under the receiver operating 
characteristic (ROC) curve (AUC), sensitivity, specificity, 
positive/negative predictive values and positive/nega-
tive diagnostic likelihood ratios were all calculated to 
assess the accuracy of the classification of carotid plaque 
vulnerability. The DeLong test was used to compare the 
differences between AUCs. The probability threshold of 
DL-DCCP was determined based on the Youden index, 
which indicates the point at which the sensitivity and 

Table 1  Intraobserver and interobserver agreement assessment of the carotid plaques

ICC (95% CI)

Plaque echogenicity Plaque thickness IPNV grading

Intraobserver 1 0.912 (0.846 to 0.952) 0.897 (0.804 to 0.921) 0.895 (0.783 to 0.925)

Intraobserver 2 0.892 (0.796 to 0.962) 0.901 (0.811 to 0.943) 0.906 (0.835 to 0.947)

Interobserver 0.903 (0.804 to 0.934) 0.894 (0.801 to 0.937) 0.863 (0.793 to 0.921)

ICC, intraclass correlation coefficient; IPNV, intraplaque neovessels.

Figure 6  The mixture-of-experts classifier.
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specificity are maximised. All statistical tests were two 
sided, and p values less than 0.05 were considered statis-
tically significant. All statistical analyses procedures were 
carried out using STATA V.15 software (StataCorp).

RESULTS
Baseline characters
From September 2017 to September 2018, up to 547 
potentially eligible patients from 10 Chinese hospitals 
were prospectively enrolled in this study. According to the 
inclusion and exclusion criteria, 205 patients with CEUS 
videos were finally enrolled for analysis. No significant 
adverse events occurred as a result of CEUS. After patient 
randomisation, 136 patients were assigned to the training 
cohort, and the remaining 69 patients were assigned to 
the holdout validation cohort. Their characteristics are 
summarised in table 2. Between the training and valida-
tion cohorts, there were no significant differences in any 
baseline characteristics (p>0.05).

Comparison of the diagnostic accuracy of DL-DCCP, Xception 
and radiologists-CEUS
We compared the diagnostic performance of the 
proposed model (DL-DCCP) with that of experienced 
radiologists (RA-CEUS) independently for the training 
and holdout validation cohorts. The AUCs of DL-DCCP 

were significantly better than those of RA-CEUS for both 
the training and holdout validation cohorts (training, 
DL-DCCP vs RA-CEUS, AUC: 0.85 vs 0.69, p<0.01; holdout 
validation, DL-DCCP vs RA-CEUS, AUC: 0.87 vs 0.66, 
p<0.01, table  3). Xception, one of the best deep CNN 
models for static image analysis, also performed better 
than RA-CEUS for both the training and holdout valida-
tion cohorts (training, Xception vs RA-CEUS, AUC: 0.82 
vs 0.69, p<0.01; holdout validation, Xception vs RA-CEUS, 
AUC: 0.77 vs 0.66, p<0.01, table 3).

For DL-DCCP and Xception, threefold cross-validation 
was performed to evaluate their robustness. The ROC 
curves for the training and holdout validation cohorts are 
shown in figure 7. The DeLong tests showed that there 
were no significant differences among the threefold 
models (all p>0.05) for both DL-DCCP and Xception. 
The ROC curves of all threefold models were within a 
reasonable deviation of the respective mean ROC curves 
for the two networks (figure 7A–D). However, DL-DCCP 
performed significantly better than Xception for both 
the training and holdout validation cohorts (training, 
DL-DCCP vs Xception, AUC: 0.85 vs 0.82, p<0.01; holdout 
validation, DL-DCCP vs Xception, AUC: 0.87 vs 0.77, 
p<0.01, table  3, figure  7E–F). Interestingly, the differ-
ence between the AUCs for the validation cohort was 
much higher than that for the training cohort. This fully 

Table 2  Baseline characteristics of patients (n=205)

Variables All patients Training cohort Validation cohort P value

Clinical characteristics

 � No of patients, n (%) 205 136 (66.3) 69 (33.7) —

 � Age (years) 61.6±8.4 61.2±8.7 62.3±7.6 0.340

 � Gender (male) 166 (80.9) 113 (83.0) 53 (76.8) 0.279

 � Symptomatic patients, n (%)* 67 (32.7) 48 (35.3) 19 (27.5) 0.263

Cardiovascular risk factors

 � Family history, n (%) 20 (9.8) 11 (8.1) 9 (13.0) 0.259

 � Overweight/obesity, n (%) 84 (41.0) 55 (40.4) 29 (42.0) 0.827

 � Dyslipidaemia, n (%) 88 (42.9) 61 (44.9) 27 (39.1) 0.434

 � Hypertension, n (%) 115 (56.1) 71 (52.2) 44 (63.8) 0.115

 � Diabetes mellitus, n (%) 47 (22.9) 34 (25.0) 13 (18.8) 0.322

 � Smoking, current, n (%) 120 (58.5) 76 (55.9) 44 (63.8) 0.279

Plaque echogenicity, n (%) 0.329

 � Hypoechoic 59 (28.8) 42 (30.9) 17 (24.6)

 � Isoechoic 51 (24.9) 36 (26.5) 15 (21.7)

 � Mixed echoic 95 (46.3) 58 (42.6) 37 (53.6)

 � Plaque thickness, n (%) 0.263

 � <3 mm 55 (26.8) 36 (26.5) 19 (27.5)

 � 3–5 mm 85 (41.5) 52 (38.2) 33 (47.8)

Note: Values are given as mean ± SD and the percentage of patients.

*Neurological symptoms within 6 months.
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demonstrates that although a deep CNN that considers 
only static image information could achieve good results 
with the training cohort, it had great difficulty in gener-
alising well to the holdout validation cohort that had not 
been seen before.

DISCUSSION
Previous studies have applied computer-assisted ultra-
sound images to evaluate the vulnerability of carotid 
plaques.15 16 Traditional neural networks are usually 
formed from the superposition of multiple convolution 
layer networks and directly predict their outputs.17 18 
Due to the complexity, dynamics and low signal-to-noise 
ratio of carotid plaque images, traditional methods might 
make incorrect predictions when they depend only on 
separated frames, while doctors often use contextual and 
dynamic information from images for diagnosis. There-
fore, the neural networks described in this study take 
dynamic video as input and finally fuse the features from 
all the frames to assess the vulnerability of carotid plaques. 
To our knowledge, this study was the first to present a 
novel neural network approach for automatically charac-
terising the vulnerability of carotid plaques in dynamic 
carotid CEUS video.

In this multicentre prospective study, we presented a 
deep learning approach for automatically characterising 
the vulnerability of carotid plaque in CEUS video. The 
diagnostic accuracy of DL-DCCP and the conventional 
manual evaluation of CEUS (RA-CEUS) in assessing the 
vulnerability of carotid plaque were compared against 
histopathological or high-resolution MRI findings. In 
assessing the vulnerability of carotid plaque, DL-DCCP 
demonstrated significant improvements over RA-CEUS. 
With the training cohort, the AUC of DL-DCCP reached 
0.85, and with the holdout validation cohort, it was 0.87, 
which indicated that DL-DCCP provided good diagnostic 
efficacy and generalisability simultaneously. RA-CEUS 
showed lower diagnostic accuracy, with an AUC of 0.69 
with the training cohort and 0.66 with the holdout vali-
dation cohort. The diagnostic accuracy of DL-DCCP was 
significantly better than that of RA-CEUS. This means 
that DL-DCCP can be a potential breakthrough in 
making clinical predictions on the vulnerability of carotid 
plaques.

To investigate whether directly using CEUS video as 
input affected the performance of DL-DCCP, a sepa-
rate deep CNN (Xception) for static image analysis was 
trained. To ensure a fair comparison, both DL-DCCP and 
Xception used the same backbone network and the same 
training and validation protocol. Each frame of the CEUS 
video was processed separately by Xception, and then the 
video-level classification result was obtained by majority 
voting. The results revealed that DL-DCCP significantly 
outperformed Xception, especially with the holdout vali-
dation cohort (training, DL-DCCP vs Xception, AUC: 
0.85 vs 0.82; holdout validation, DL-DCCP vs Xception, 
AUC: 0.87 vs 0.77). These findings suggest that DL-DCCP Ta
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Figure 7  Comparison of diagnostic performance with ROC analysis. AUC, area under the curve; DL-DCCP, deep learning-
based detection and classification of carotid plaque; RA-CEUS, radiologists who manually examined the contrast-enhanced 
ultrasound; ROC, receiver operating characteristic curve.
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can better use the interframe information provided by 
dynamic CEUS video to generalise the diagnostic ability 
learnt from the training cohort to the unseen validation 
cohort, while the traditional static CNN, which analyses 
only intraframe information, has a risk of overfitting to 
the training cohort.

This present study has some limitations that are 
important to mention. First, the major limitation of 
our study was the limited population size. With the 
holdout validation group, the sensitivity and specificity 
of DL-DCCP of CEUS video were 79.2% and 84.4%, 
respectively. The diagnostic accuracy of DL-DCCP still 
needs to be improved for clinical application. Future 
studies should involve more patients with carotid plaque 
in a larger sample size to better train the deep-learning 
model. Second, in the present study, all ultrasound videos 
were manually trimmed by a radiologist. The video of the 
whole carotid angiography process consisted of contrast 
agent fill-in, diffusion and wash-out. However, only the 
portion of the videos that contained contrast agent diffu-
sion was used in this study. In future studies, the fill-in 
and wash-out processes for the contrast agents should 
also be considered and distinguished automatically. 
Furthermore, in addition to grey scale ultrasound and 
CEUS images, elastography and superb microvascular 
imaging (SMI) are also applied in carotid plaque assess-
ment.19–22 However, elastography and SMI were not taken 
into consideration in this study. The area of interest may 
capture different sections in different imaging modes, 
which can lead to temporal and spatial differences in 
these areas; thus, it would be very difficult to fuse elas-
tography and SMI images into CEUS videos. Therefore, 
we applied only CEUS videos of carotid plaque in this 
study. To improve the diagnostic accuracy of our model, 
multimode ultrasound diagnosis that includes elastog-
raphy and SMI would be worthy of further study in the 
future. In addition, clinically relevant analyses comparing 
the application value of DL-DCCP versus RA-CEUS for 
patients and their related risk of recurrent stroke are 
needed for long-term follow-up study.

CONCLUSION
This study demonstrated that DL-DCCP was more accu-
rate than RA-CEUS in assessing the vulnerability of 
carotid plaques. Compared with a state-of-the-art deep 
CNN model for static image analysis, DL-DCCP provided 
increased diagnostic accuracy and better generalisability. 
All of these results suggest the promising clinical poten-
tial of DL-DCCP for the accurate non-invasive assessment 
of carotid plaque vulnerability.
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