

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

## Predicting mortalities among patients with acute aortic dissection: a methodological survey of published studies

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2020-042435                                                                                                                                                                                                                                                                                                            |
| Article Type:                    | Original research                                                                                                                                                                                                                                                                                                              |
| Date Submitted by the<br>Author: | 04-Jul-2020                                                                                                                                                                                                                                                                                                                    |
| Complete List of Authors:        | Ren, Yan; Sichuan University West China Hospital,<br>Huang, Shiyao<br>Li, Qianrui<br>Liu, Chunrong<br>Li, Ling; West China Hospital, Sichuan University, Chinese Evidence-<br>based Medicine Center<br>Tan, Jing; West China Hospital, Sichuan University, Chinese Evidence-<br>based Medicine Center<br>Zou, Kang<br>Sun, Xin |
| Keywords:                        | CARDIOLOGY, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY                                                                                                                                                                                                                                                                    |
|                                  |                                                                                                                                                                                                                                                                                                                                |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Predicting mortalities among patients with acute aortic dissection: a methodological survey of published studies

Yan Ren<sup>1</sup>, Shiyao Huang<sup>1</sup>, Qianrui Li<sup>1,2</sup>, Chunrong Liu<sup>1</sup>, Ling Li<sup>1</sup>, Jing Tan<sup>1</sup>, Kang Zou<sup>1</sup>, Xin Sun<sup>1</sup>\*

### Affiliations

1 Chinese Evidence-based Medicine Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China;

2 Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China

\* Correspondence: Xin Sun

Xin Sun, Chinese Evidence-based Medicine Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China;

E-mail: sunxin@wchscu.cn

### Abstract

**Objective** Limited efforts were available to systematically assess whether the published studies adequately addressed the prediction of mortality among patients with acute aortic dissection (AAD). Our study aimed to systematically review the methodological characteristics of studies that identified prognostic factors or developed or validated models for predicting mortalities among AAD patients, which would inform future work.

Design/setting a methodological survey of published studies.

**Data source** We searched PubMed and EMBASE for studies about prognostic factors or prediction models on mortality among AAD patients. Two reviewers independently collected the information about methodological characteristics. We also documented the information about the performance of the prognostic factors or prediction models.

**Primary and secondary outcome measures** Primary outcomes were all information about methodological characteristics. Secondary outcomes included the performance of the prognostic factors or prediction models.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

**Methods** We searched PubMed and EMBASE for studies about prognostic factors or prediction models on mortality among AAD patients. Two reviewers independently collected the information about methodological characteristics. We also documented the information about the performance of the prognostic factors or prediction models.

**Results** Thirty-two studies were included, of which 18 evaluated the performance of prognostic factors, and 14 developed or validated prediction models. Of the 32 studies, 23 (72%) were single-center studies, 22 (69%) used data from electronic medical records, 19 (59%) chose retrospective cohort study design; 26 (81%) did not report missing predictor data, and five (16%) that reported missing predictor data used complete-case analysis. For the 14 prediction model studies, only three (21%) had the event per variable over 20, and only five (36%) reported both discrimination and calibration statistics. For model development studies, three (27%) did not report

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

statistical methods, three (27%) exclusively used statistical significance threshold for selecting predictors, and seven (64%) did not report the methods for handling continuous predictors. The performance of prognostic factors showed varying discrimination (AUC 0.58 to 0.95), and the performance of prediction models also varied substantially (AUC 0.49 to 0.91). Only six studies reported calibration statistic.

**Conclusions** The methods used for prognostic studies on mortality among AAD patients -including prediction models or prognostic factor studies – were suboptimal, and the model performance highly varied. Substantial efforts are warranted to improve the use of the methods in this population.

### Strengths and limitations of this study

- This systematic survey study is the first to identify methodological gaps among all studies addressing individual prognostic factors or developing or validating prediction models on mortality among AAD patients.
- This review is important that the methodological quality of models designed to support medical decision for AAD patients.
- It highlights substantial efforts are warranted to improve the use of the methods for better care of this population.
- Our survey about the methodological characteristics was primarily based on reporting.

### Introduction

Acute aortic dissection (AAD) is a life-threatening cardiovascular disease with high mortality, characterized with acute onset and rapid progression. The mortality of untreated AAD was approximately 1%-2% per hour early following the onset of symptoms, and the overall in-hospital mortality was approximately 27%.<sup>12</sup> Treatment options for AAD include medical intervention, surgery or endovascular repair, the selection of which mainly depends on complications and prognosis of patients.<sup>3</sup> Better understanding of the disease prognosis, ideally predicting the risk of a serious outcome, is highly desirable for medical decision making and patient communication, among which mortality has the highest priority.

Several published systematic reviews assessed the association of inflammatory biomarkers (e.g. C-reactive protein) and marker of cardiac injury (i.e. troponin) with increased morality in patients with AAD.<sup>4-6</sup> A few studies also developed or validated prediction models for mortality in AAD,<sup>7-9</sup> in which a combination of biomarkers, demographic and clinical characteristics were included.<sup>8 10-14</sup> As a result, they have received increasing use in clinical practice.

However, limited efforts have been made to systematically examine the performance of the prognostic factors or prediction models. In particular, a comprehensive assessment is strongly needed to investigate whether the published studies – either individual prognostic factor studies or prediction models – meet the desirable methodological rigors for clinical use, since suboptimal methods can compromise the accuracy and reliability of the risk estimation. This is particularly the case for AAD, a disease condition, whereby predictability of an adverse outcome has paramount importance. Therefore, we conducted a systematic survey study to identify methodological gaps among all studies addressing individual prognostic factors or developing or validating prediction models on mortality among AAD patients.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

### 

### Methods

### **Eligibility criteria**

We developed the eligibility criteria under the PICOTS guidance.<sup>15</sup> A study was eligible for inclusion if it included patients diagnosed with AAD; and aimed to identify or assess any prognostic factors for morality, or develop or validate a prognostic model for mortality in AAD patients. We excluded a study if it was prediction model for AAD diagnosis only; or the report was a review, comment, letter or editorial, case report, protocol or conference abstract.

Predictors measured at any time point in the course of AAD were eligible. No restriction on study setting was applied; patients with AAD who visited any healthcare facilities were eligible. We defined a prognostic prediction model as a multivariable model, predicting risk of specific outcomes occurring in future by selected predictors.<sup>16</sup>

### Literature search and screening

We searched PubMed and EMBASE from inception to June 2020 for relevant reports published in English language. We conducted the search using the MeSH terms and free texts to identify reports about AAD, including "aortic dissecting aneurysm", "aortic aneurysm", "aortic dissection\*", and "aortic dissecting hematoma". We applied a validate search strategy for searching prediction models, which proved to have high sensitivity and specificity.<sup>17</sup> The full search strategy was presented as Appendix A. Two investigators (YR and SH) independently screened all searched reports, and resolved any disagreements through discussion with a third investigator (CL). We also manually searched for additional articles from the reference lists of all selected articles.

### **Data Extraction**

We collected the following general information from each eligible study, including first author, year of publication, study aim, region of study, type of aortic dissection, age, sex ratio. We carefully collected information about performance of identified

### **BMJ** Open

prognostic factors or prediction models, including their names and results about discrimination, calibration, sensitivity and specificity. Discrimination and calibration are the two key measures for evaluating the predictive performance of the prognostic factors or prediction models.<sup>18</sup>

In order to examine the methods used among these prognoses studies, a team of methods-trained, experienced methodologists expertise with prognostic studies and prediction models convened to develop a questionnaire through a consensus process. They firstly consulted items from the published statements and tools (e.g., PROBAST, CHARMS checklist) about prognoses studies,<sup>19,20</sup> and brainstormed for additional items. Subsequently, they discussed the identified items about their relevance for methods, and dropped items that were deemed irrelevant. Finally, they achieved consensus about the items through group discussion and agreement.

Generally, this questionnaire consists of five domains: (1) **study design** (number of centres, sample size, number of events, data sources, epidemiological design), (2) **participants** (definition and selection of participants); (3) **predictors** (definition and measurement of predictors); (4) **outcome** (definition and measurement of outcomes); (5) **analysis** (were all enrolled participants included in the analysis, the number of events per variable (EPV), statistical method for selecting and handling predictors, missing data, model structure used in the study, and relevant model performance measures evaluated for addressing prognostic factors or prediction models).

### Statistical analysis

Categorical variables were expressed as the number of frequencies and proportion. For quantitative variables, data were summarized by mean and standard deviation or median with interquartile range according to normality tests.

### Results

In total, 13555 records were identified, among which 155 were selected for full-text screening, and 32 studies were eligible and included in the final analysis (Figure 1).

### [Figure 1 here]

### General characteristics of included studies

 The 32 eligible studies were published between 2002 and 2019 (Appendix table 1). Five (15%) were multinational studies, and 21 (66%) were conducted in the USA, China, and Europe. The dissection type of AAD patients were mostly Type-A (n = 21, 66%), followed by a mixture of Type-A and Type-B (n = 8, 25%). In-hospital mortality was the most frequently used outcome (n = 24, 75%, Table 1).

Eighteen (56%) studies aimed to evaluate the performance of prognostic factors. The most commonly investigated prognostic factors were D-dimer (n = 8), NLR (n = 4) and CRP (n = 3). Fourteen (44%) studies aimed to develop or validate a prediction model, of which nine developed a new prediction model without any validation, two developed a new prediction model without any validation, two developed a new prediction model without any validation, two developed a new prediction model without and three conducted external validation with or without updating a prediction model (Table 1).

### [Table 1 here]

### **Model performance**

The performance of prognostic factors showed poor to strong discrimination (AUC 0.58 to 0.95). The AUC of single prognostic factor ranged from 0.58 to 0.92, and the one for combined prognostic factors ranged from 0.77 to 0.95 (DD and CRP: 0.95; NT-proBNP and aortic diameter: 0.83; TNC and D-dimer: 0.95; TNC and CRP: 0.91; cystatin C and hs-CRP:0.88; UA, D-dimer, and age: 0.77) (Table 2).

The developed or validated models from eleven studies showed poor to strong discrimination (AUC 0.49 to 0.91), only six reported calibrations, and of which five reported good calibrations. Rampoldi et al developed a prediction model and reported

### **BMJ** Open

moderate discrimination (AUC 0.76). But through external validation, scoring systems developed by Rampoldi et al showed poor discrimination (30-day mortality: AUC 0.56, Operative mortality: AUC 0.62). Mehta et al (P value for the H-L test. =0.75) developed a prediction model using International Registry of Acute Aortic Dissection (IRAD) from multinational data and reported good calibration. Through external validation, IRAD score showed moderate discrimination (AUC 0.74), addition of CRP to IRAD score notably improved discrimination (AUC 0.89) (Table 2). [Table 2 here] **Methodological characteristics** 

Among the 32 studies, most were single-center studies (n = 23, 72%). The sample size varied from 35 to 1034 (median 165, interguartile range, 103–348), and the median number of events was 35 (23–72). Thirteen (41%) studies used prospective cohort study design, and the rest 19 (59%) used retrospective cohort study design; 22 (69%) used data from electronic medical records (EMR), five (16%) from cohort studies, and five (16%) from registries.

Thirty-one (97%) studies clearly described inclusion and exclusion criteria. All studies used consistent criteria and measurement of the studied population. For the outcome, all but one study<sup>13</sup> used consistent criteria and measurement. For the analysis, 22 (69%) studies included all enrolled participants.

In the handling of missing data, 30 (94%) studies reported no missing outcome data; 26 (81%) did not report missing predictor data, and 5 (16%) reported that there were some predictors with missing data, and used complete-case analysis to handle missing predictors.

In 18 prognostic factor studies, nine (50%) had the events per variables (EPV) more than 20, eight (44%) between 10 and 20, and one (6%) less than 10; fifteen (83%)

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

reported discrimination, sensitivity and specificity, other three (17%) only reported discrimination, or sensitivity and specificity; and 11 (61%) chose logistic regression model for the analysis, 5 (28%) used cox regression, 2 (11%) only used ROC analysis.

In the 14 prediction model studies, only three (21%) had the EPV more than 20, eight (57%) between 10 and 20, and three (21%) less than 10; 10 (71%) chose logistic regression model for the analysis, other four studies used cox regression, support vector machines, neural networks and ROC analysis respectively. The performance measures were poorly reported: only five (36%) reported both discrimination and calibration statistics. Eleven (64%) studies reported discrimination, measured as AUC of the receiver operated curve, and six (43%) reported calibration, measured as P value for the H-L test. For developing a prediction model, three (27%) did not report any statistical methods and three (27%) simply used statistical significance for selecting predictors; seven (64%) did not report how to handle continuous predictors, four (36%) reported continuous predictor was transformed into categories.

### Discussion

 In this systematic survey, we identified 32 studies addressing prognostic factors or prediction models for mortality among AAD patients. As noticed in this survey, the performance of prognostic factors or prediction models was most commonly evaluated by the AUC and H-L test. Most assessment of prognostic factors demonstrated moderate discrimination. The factors using combined TNC and D-dimer, or combined D-dimer and CRP showed strong discrimination (AUC 0.95). The prediction models showed poor to strong discrimination (AUC 0.49 to 0.91). The prediction model EuroSCORE II showed poor discriminative ability (AUC 0.49) and poor calibration (P value for the H-L test. <0.001). One explanation may be that EuroSCORE II is a risk model which allows the calculation of the risk of death after a heart surgery, and is not related to prognosis of patients with AAD, because not all patients with aortic dissection

Page 11 of 34

### **BMJ** Open

undergo surgical treatment, and some of them undergo endovascular treatment. Mehta et al.<sup>7</sup> model showed better discrimination (0.74) than the EuroSCORE II. Meanwhile, Mehta et al used IRAD from multinational data reported good calibration. Through external validation, IRAD score showed moderate discrimination (AUC 0.74), addition of CRP to IRAD score notably improved discrimination (AUC 0.89). Hence, the prediction model for mortality in AAD should consider including biomarkers as predictors to improve discrimination.

In this systematic survey, we found that most studies had small number of sample sizes and events, were derived from a single-center study, and a relatively large proportion of studies chose to use retrospective data. Most studies did not describe information on missing data nor accounted for appropriate statistical methods for handle missing data.

For developing or validating prediction models, we found that the number of EPV in most studies was relatively small, which result in prediction performance of models being possibly biased;<sup>21 22</sup> most studies did not evaluate both discrimination and calibration. Almost all studies reported discriminative ability of prediction models, while only six studies reported calibration. For developing prediction models, we found that some studies based on statistical significance for selecting variable may lead to suboptimal models; most studies did not report how to handle the continuous variable, and linear assumption may be inappropriate;

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Although some studies showed good discrimination and calibration. Our findings highlighted important methodological limitations among those studies. Then it is possible that the result is not accurate and reliable. So in the future, studies about prognostic factors or prediction models for mortality in AAD should enroll large patient population from multicenter setting, meanwhile consider cohort designs, the imputation of missing data. Multiple imputation techniques to deal with missing data are important when evaluating model performance. Excluding cases with missing data may lead to biased results.<sup>23</sup>

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Studies about prediction models for mortality in AAD should consider appropriate methods for selecting variable and handling the continuous variable, and evaluating both discrimination and calibration. The number of participants and events should be planned, and the number of EPV should be at least 10. If the number of events is low relative to the number of predictors, penalized regression may be better than the standard regression. Stability selection and subsampling have demonstrated to yield more stable models based on a consistent selection of variables, so they should be used in future studies for prediction model.<sup>24</sup> Discrimination should not be reported in isolation because a poorly calibrated model can present the same discriminative capacity as a perfectly calibrated one.<sup>25</sup> Reporting both discrimination and calibration is highly recommended for evaluating performance measures. Validating the predictions models should be considered, as both model development and validation are essential processes for establishing a useful prediction model.<sup>26</sup>

To our knowledge, no systematic survey looking at the methodology characteristics and performance of prognostic factors or predictive models for mortality in AAD has been published. Whether these existing prognostic factors or prediction models may be used to guide or improve clinical practice remains underexplored. Should we seek better prognostic factors or prediction models? Should we continue using and validating these prognostic factors or prediction models? There is consensus on this issue among commentators. We should seek better prognostic factors or prediction models? Substantial efforts are warranted to strengthen the use of rigorous methods for the accuracy and reliability of the performance in the future research.

A limitation of the present study is that our survey about the methodological characteristics was primarily based on reporting. There might be cases that the researchers had considered the methodological issues but did not clearly report. This situation also emphasized the importance of complete reporting.

### Conclusions

In conclusion, D-dimer, NLR, and CRP predictors were the most commonly used biomarkers, the performance of prognostic factors showed a poor to strong discrimination, the prediction models varied substantially, only six studies reported the calibration, and of which five reported good calibration. Meanwhile, many of these prognostic factors or predictive models are weak methodologically, several important issues are needed to consider for strengthening for predicting mortality in AAD, such as the sample size, the methods for handling missing data, appropriate statistical analysis methods, and reporting both calibration and discrimination for prediction models. Substantial efforts are warranted to improve the use of the methods for better care of this population.

### Contributors

Study concept and design: Yan Ren. Screening the articles: Yan Ren and Shiyao Huang. Acquisition of data: Yan Ren, Shiyao Huang and Chunrong Liu. Analysis of data: Yan Ren and Shiyao Huang. Drafting of the manuscript: Yan Ren. Writing - review & editing: Qianrui Li, Ling Li, Jing Tan, Kang Zou, and Xin Sun. Study supervision: Xin Sun.

### **Funding Information**

This study was supported by National Key R&D Program of China (Grant No. 2017YFC1700406 and 2019YFC1709804) and 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. ZYYC08003).

### **Competing Interests**

The authors declare no competing interests.

### Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

### 

### Patient consent for publication

Not required.

### Provenance and peer review

Not commissioned; externally peer reviewed.

### Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information. The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

### **Ethics approval**

The current study is a secondary analysis of the research data. No ethical approval was required for our study.

(elie

### Reference

- Nienaber CA, Eagle KA. Aortic dissection: new frontiers in diagnosis and management: Part I: from etiology to diagnostic strategies. *Circulation* 2003;108:628-35.
- Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. *Jama* 2000;283:897-903.
- Nienaber CA, Clough RE. Management of acute aortic dissection. *The Lancet* 2015;385:800-11.
- Vrsalovic M. Prognostic effect of cardiac troponin elevation in acute aortic dissection: A meta-analysis. *Int J Cardiol* 2016;214:277-8.
- 5. Hsieh WC, Henry BM, Hsieh CC, Maruna P, Omara M, Lindner J. Prognostic Role of

6.

7.

8.

9.

10.

11.

### BMJ Open

| Admission C-Reactive Protein Level as a Predictor of In-Hospital Mortality in Type-A       |                                                                                                                                                       |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acute Aortic Dissection: A Meta-Analysis. Vasc Endovascular Surg 2019;53:547-57.           | -                                                                                                                                                     |
| Vrsalović M, Vrsalović Presečki A. Admission C-reactive protein and outcomes in acute      | -                                                                                                                                                     |
| aortic dissection: a systematic review. Croatian Medical Journal 2019;60:309-15.           |                                                                                                                                                       |
| Mehta RH, Suzuki T, Hagan PG, et al. Predicting death in patients with acute type a        | Prote                                                                                                                                                 |
| aortic dissection. <i>Circulation</i> 2002;106:e224.                                       | cted by                                                                                                                                               |
| Tolenaar JL, Froehlich W, Jonker FH, et al. Predicting in-hospital mortality in acute type | , copyri                                                                                                                                              |
| b aortic dissection: Evidences from IRAD. <i>Circulation</i> 2013;128(22 SUPPL. 1).        | Enseignement Superieur (ABES) .<br>Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. |
| Vrsalovic M, Zeljkovic I, Presecki AV, Pintaric H, Kruslin B. C-reactive protein, not      | luding                                                                                                                                                |
| cardiac troponin T, improves risk prediction in hypertensives with type A aortic           | En:<br>for use:                                                                                                                                       |
| dissection. <i>Blood Pressure</i> 2015;24:212-6.                                           | seignen<br>s related                                                                                                                                  |
| Guo T, Zhou X, Zhu A, Peng W, Zhong Y, Chai X. The Role of Serum Tenascin-C in             | nent Su<br>d to text                                                                                                                                  |
| Predicting In-Hospital Death in Acute Aortic Dissection Int Heart J. 2019.                 | and da                                                                                                                                                |
| Li G, Wu XW, Lu WH, et al. High-sensitivity cardiac troponin T: A biomarker for the        | (ABES)<br>Ita mini                                                                                                                                    |
| early risk stratification of type-A acute aortic dissection? Archives of Cardiovascular    | ng, Al t                                                                                                                                              |
| <i>Diseases</i> 2016;109:163-70.                                                           | raining,                                                                                                                                              |
| Ohlmann P, Faure A, Morel O, et al. Diagnostic and prognostic value of circulating D-      | and sir                                                                                                                                               |
| Dimers in patients with acute aortic dissection. <i>Crit Care Med</i> 2006;34:1358-64.     | nilar teo                                                                                                                                             |
| Wen D, Du X, Dong JZ, Zhou XL, Ma CS. Value of D-dimer and C reactive protein in           | chnolog                                                                                                                                               |
| predicting inhospital death in acute aortic dissection. <i>Heart</i> 2013;99:1192-7.       | jies.                                                                                                                                                 |
| Wen D, Jia P, Du X, Dong JZ, Ma CS. Value of N-terminal pro-brain natriuretic peptide      | c                                                                                                                                                     |
| and aortic diameter in predicting in-hospital mortality in acute aortic dissection.        | c                                                                                                                                                     |
| 14                                                                                         | -                                                                                                                                                     |

Cytokine 2019;119:90-4.

- 15. Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. *BMJ* 2017;356:i6460.
- Hemingway H, Croft P, Perel P, et al. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. *BMJ* 2013;346:e5595.
- Geersing GJ, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons KG. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews. *PLoS One* 2012;7:e32844.
- Pencina MJ, D'Agostino RB, Sr. Evaluating Discrimination of Risk Prediction Models: The C Statistic. *Jama* 2015;314:1063-4.
- Moons KGM, Wolff RF, Riley RD, et al. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. *Ann Intern Med* 2019;170:W1-33.
- 20. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. *Ann Intern Med* 2019;170:51-8.
- 21. Tan J, Qi Y, Liu C, et al. The use of rigorous methods was strongly warranted among prognostic prediction models for obstetric care. *J Clin Epidemiol* 2019;115:98-105.
- 22. Sahle BW, Owen AJ, Chin KL, Reid CM. Risk Prediction Models for Incident Heart Failure: A Systematic Review of Methodology and Model Performance. *J Card Fail* 2017;23:680-7.
- 23. Janssen KJ, Donders AR, Harrell FE, Jr., et al. Missing covariate data in medical research: to impute is better than to ignore. *J Clin Epidemiol* 2010;63:721-7.

| 24.        | Meinshausen N, Buhlmann P. Stability selection. <i>J R Statist Soc B</i> 2010;72:417–73.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25.        | Vickers AJ, Cronin AM. Traditional statistical methods for evaluating prediction models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | are uninformative as to clinical value: towards a decision analytic framework. Semin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | <i>Oncol</i> 2010;37:31-8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26.        | Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | model when there are few events. <i>BMJ</i> 2015;351:h3868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27.        | Liu J, Sun LL, Wang J, Ji G. The relationship between fibrinogen and in-hospital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | mortality in patients with type A acute aortic dissection. American Journal of Emergency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <i>Medicine</i> 2018;36:741-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28.        | Zindovic I, Luts C, Bjursten H, et al. Perioperative Hyperlactemia Is a Poor Predictor of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Outcome in Patients Undergoing Surgery for Acute Type-A Aortic Dissection. Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | of Cardiothoracic and Vascular Anesthesia 2018;32:2479-84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 29.        | <i>of Cardiothoracic and Vascular Anesthesia</i> 2018;32:2479-84.<br>Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 29.        | Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29.<br>30. | Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i><br><i>heart surgery forum</i> 2017;20:E119-23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i><br><i>heart surgery forum</i> 2017;20:E119-23.<br>Feng WZ, Zhou JQ, Yu GM, Zeng Y, Xu P. Association of serum cystatin C levels with                                                                                                                                                                                                                                                                                                                                                                                            |
| 30.        | Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i><br><i>heart surgery forum</i> 2017;20:E119-23.<br>Feng WZ, Zhou JQ, Yu GM, Zeng Y, Xu P. Association of serum cystatin C levels with<br>mortality in patients with acute type A aortic dissection. <i>Oncotarget</i> 2017;8:101103-11.                                                                                                                                                                                                                                                                                          |
| 30.        | Oz K, lyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i><br><i>heart surgery forum</i> 2017;20:E119-23.<br>Feng WZ, Zhou JQ, Yu GM, Zeng Y, Xu P. Association of serum cystatin C levels with<br>mortality in patients with acute type A aortic dissection. <i>Oncotarget</i> 2017;8:101103-11.<br>Karakoyun S, Gursoy MO, Akgun T, et al. Neutrophil-lymphocyte ratio may predict in-                                                                                                                                                                                                   |
| 30.<br>31. | Oz K, lyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i><br><i>heart surgery forum</i> 2017;20:E119-23.<br>Feng WZ, Zhou JQ, Yu GM, Zeng Y, Xu P. Association of serum cystatin C levels with<br>mortality in patients with acute type A aortic dissection. <i>Oncotarget</i> 2017;8:101103-11.<br>Karakoyun S, Gursoy MO, Akgun T, et al. Neutrophil-lymphocyte ratio may predict in-<br>hospital mortality in patients with acute type A aortic dissection. <i>Herz</i> 2015;40:716-21.                                                                                                |
| 30.<br>31. | Oz K, lyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio<br>and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. <i>The</i><br><i>heart surgery forum</i> 2017;20:E119-23.<br>Feng WZ, Zhou JQ, Yu GM, Zeng Y, Xu P. Association of serum cystatin C levels with<br>mortality in patients with acute type A aortic dissection. <i>Oncotarget</i> 2017;8:101103-11.<br>Karakoyun S, Gursoy MO, Akgun T, et al. Neutrophil-lymphocyte ratio may predict in-<br>hospital mortality in patients with acute type A aortic dissection. <i>Herz</i> 2015;40:716-21.<br>Liu J, Sun LL, Wang J, Ji G. Blood urea nitrogen in the prediction of in-hospital mortality |

Surgical Mortality in Patients Presenting With Acute Stanford Type-A Aortic Dissection.

J Cardiothorac Vasc Anesth 2017;31:54-60.

- 34. Lafci G, Cicek OF, Uzun HA, et al. Relationship of admission neutrophil-to-lymphocyte ratio with in-hospital mortality in patients with acute type i aortic dissection. *Turkish Journal of Medical Sciences* 2014;44:186-92.
- 35. Zhang R, Chen S, Zhang H, et al. Biomarkers investigation for in-hospital death in patients with stanford type A acute aortic dissection. *International Heart Journal* 2016;57:622-6.
- 36. Li G, Zhao L, Ma Y, et al. Platelet count to lymphocyte count ratio may predict mortality in stanford type B acute aortic dissection. *International Journal of Clinical and Experimental Medicine* 2019;12:1922-8.
- 37. Zhang Y, Xu X, Lu Y, Guo L, Ma L. Preoperative uric acid predicts in-hospital death in patients with acute type a aortic dissection. *J Cardiothorac Surg* 2020;15:21.
- 38. Bedel C, Selvi F. Association of Platelet to Lymphocyte and Neutrophil to Lymphocyte Ratios with In-Hospital Mortality in Patients with Type A Acute Aortic Dissection. *Braz J Cardiovasc Surg* 2020;34:694-8.
- Gong M, Wu Z, Guan X, Jiang W, Zhang H. Comparison of prognostic ability of perioperative myocardial biomarkers in acute type A aortic dissection. *Medicine* (*Baltimore*) 2019;98:e17023.
- 40. Zhang J, Jiang Y, Gao C, Feng J, Wang A. Risk factors for hospital death in patients with acute aortic dissection. *Heart Lung and Circulation* 2015;24:348-53.
- 41. Ghoreishi M, Wise ES, Croal-Abrahams L, et al. A Novel Risk Score Predicts Operative

| 1<br>2<br>3<br>4           |     |
|----------------------------|-----|
| 4<br>5<br>6<br>7           |     |
| 7<br>8<br>9<br>10<br>11    | 42. |
| 12<br>13<br>14<br>15       | 43. |
| 16<br>17<br>18<br>19<br>20 |     |
| 21<br>22<br>23<br>24       |     |
| 25<br>26<br>27<br>28       | 44. |
| 29<br>30<br>31<br>32<br>33 | 45. |
| 34<br>35<br>36<br>37       |     |
| 38<br>39<br>40<br>41       | 46. |
| 42<br>43<br>44<br>45       | 47. |
| 46<br>47<br>48<br>49<br>50 |     |
| 51<br>52<br>53<br>54       | 48. |
| 55<br>56<br>57<br>58       |     |
| 59<br>60                   |     |

Mortality After Acute Type A Aortic Dissection Repair. *Annals of Thoracic Surgery* 2018;106:1759-66.

- 42. Centofanti P, Flocco R, Ceresa F, et al. Is Surgery Always Mandatory for Type A Aortic Dissection? *Annals of Thoracic Surgery* 2006;82:1658-64.
- 43. Santini F, Montalbano G, Casali G, et al. Clinical presentation is the main predictor of in-hospital death for patients with acute type a aortic dissection admitted for surgical treatment: A 25 years experience. *International Journal of Cardiology* 2007;115:305-11.
- 44. Rampoldi V, Trimarchi S, Eagle KA, et al. Simple Risk Models to Predict Surgical Mortality in Acute Type A Aortic Dissection: The International Registry of Acute Aortic Dissection Score. *Annals of Thoracic Surgery* 2007;83:55-61.
- 45. Leontyev S, Legare JF, Borger MA, et al. Creation of a Scorecard to Predict In-Hospital Death in Patients Undergoing Operations for Acute Type A Aortic Dissection. *Annals of Thoracic Surgery* 2016;101:1700-6.
- 46. Zhang J, Cheng B, Yang M, Pan J, Feng J, Cheng Z. Predicting in-hospital death in patients with type B acute aortic dissection. *Medicine (Baltimore)* 2019;98:e16462.
- 47. Macrina F, Puddu PE, Sciangula A, et al. Long-term mortality prediction after operations for type A ascending aortic dissection. *Journal of cardiothoracic surgery* 2010;5:42.
- 48. Macrina F, Puddu PE, Sciangula A, et al. Artificial neural networks versus multiple logistic regression to predict 30-day mortality after operations for type A ascending aortic dissection. *Open Cardiovascular Medicine Journal* 2009;3:81-95.

- 49. Ge Y, Sun L, Zhu J, et al. Can EuroSCORE II predict the mortality and length of intensive care unit stay after total aortic arch replacement with stented elephant trunk implantation for DeBakey type i aortic dissection? *Thoracic and Cardiovascular Surgeon* 2013;61:564-68.
- et. . A Aortie Di. . J:39-43. 50. Yu PJ, Cassiere HA, Kohn N, et al. Utility of Established Risk Models to Predict Surgical Mortality in Acute Type-A Aortic Dissection. Journal of Cardiothoracic and Vascular Anesthesia 2016;30:39-43.

| Characteristics                                    | Number (%) |
|----------------------------------------------------|------------|
| Study region                                       |            |
| One country                                        | 27 (84.4)  |
| China                                              | 14 (43.8)  |
| USA                                                | 3 (9.4)    |
| Europe                                             | 4 (12.5)   |
| Other                                              | 5 (15.6)   |
| Multinational                                      | 5 (15.6)   |
| Multicenter study                                  |            |
| Yes                                                | 9 (28.1)   |
| No                                                 | 23 (71.9)  |
| The most commonly reported prognostic              |            |
| biomarkers (n=18)                                  |            |
| D-dimer                                            | 8 (44.4)   |
| NLR                                                | 4 (22.2)   |
| CRP                                                | 3 (16.7)   |
| Study purpose                                      |            |
| Identification or assessment of prognostic factors | 18 (56.2)  |
| Development or validation of a prediction models   | 14 (43.8)  |
| Develop a model without validation                 | 9 (28.1)   |
| Develop a model internal validation                | 2 (6.3)    |
| External validation                                | 3 (9.4)    |
| Dissection type                                    |            |
| A                                                  | 21 (65.6)  |
| В                                                  | 3 (9.4)    |
| A/B                                                | 8 (25.0)   |
| Dutcome (some studies have more than one           |            |
| outcome, such as in-hospital mortality and 1-year  |            |
| nortality)                                         |            |
| In-hospital mortality                              | 24 (75.0)  |
| Operative mortality                                | 2 (6.25)   |
| 30-Day mortality                                   | 4 (12.5)   |
| Long term mortality (included 1-year mortality)    | 5 (15.6)   |

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 1. General characteristics about design and conduct of studies

| BMJ Open 8                                                                                           |     | nioner               |
|------------------------------------------------------------------------------------------------------|-----|----------------------|
| Þý rigi                                                                                              |     |                      |
| بج<br>Table 2. Reported discrimination and calibration of prognostic factors or prediction models fo | acu | be aortic dissection |

3 4

| Study ID                                | Dissection<br>type | Predictor                        | Outcome               | AUC(95%CI)          | Iuding Value of<br>ng Hosmer-<br>for Eemeshow<br>us Bran<br>gest                                                                                                            | Sensitivity | Specificity |
|-----------------------------------------|--------------------|----------------------------------|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Prognostic factors                      |                    |                                  |                       |                     | ary 20<br>seigr<br>s rela                                                                                                                                                   |             |             |
| Liu et al (2018a) <sup>27</sup>         | А                  | Fibrinogen                       | In-hospital mortality | 0.686 (0.585-0.787) | )21.<br>nem                                                                                                                                                                 | 71.90%      | 60.40%      |
| Zindovic et al (2018) <sup>28</sup>     | А                  | Preoperative lactic acid levels  | In-hospital mortality | 0.684               | to t                                                                                                                                                                        | 56.00%      | 72.00%      |
|                                         |                    |                                  | 1-year mortality      | 0.673               | wnl<br>Sur<br>text                                                                                                                                                          | 48.00%      | 74.00%      |
|                                         |                    | Postoperative lactic acid levels | In-hospital mortality | 0.582               | oad<br>oeric                                                                                                                                                                |             |             |
|                                         |                    |                                  | 1-year mortality      | 0.498               | ed f<br>eur                                                                                                                                                                 |             |             |
| Oz et al (2017) <sup>29</sup>           | А                  | NLR                              | In-hospital mortality | 0.919 (0.832-1.00)  | rom<br>(AB                                                                                                                                                                  | 86.00%      | 91.00%      |
| Feng et al (2017) <sup>30</sup>         | А                  | serum cystatin C                 | Long-term mortality   | 0.772 (0.692–0.839) | htt<br>ES)                                                                                                                                                                  | 78.53%      | 69.23%      |
|                                         |                    | hs-CRP                           | (followed up for 909  | 0.640 (0.574–0.739) | p://t                                                                                                                                                                       | 86.72%      | 46.51%      |
|                                         |                    | cystatin C, hs-CRP               | days)                 | 0.883 (0.826-0.935) | omj<br>Al tr                                                                                                                                                                | 97.44%      | 65.92%      |
| Li et al (2016) <sup>11</sup>           | А                  | hs-TnT                           | Long-term mortality   | 0.719 (0.621-0.803) | aini                                                                                                                                                                        | 70.80%      | 76.40%      |
|                                         |                    | hs-CRP                           | (followed up for 3.5  | 0.700 (0.599-0.789) | n.br                                                                                                                                                                        | 48.90%      | 94.30%      |
|                                         |                    | D-dimer                          | years)                | 0.818 (0.724-0.891) | and nj.c                                                                                                                                                                    | 86.10%      | 71.40%      |
| Karakoyun et al<br>(2015) <sup>31</sup> | А                  | NLR                              | In-hospital mortality | 0.829 (0.674-0.984) | ry 2021. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025<br>eignement Superieur (ABES) .<br>related to text and data mining, Al training, and similar technologies | 77.00%      | 74.00%      |
| Wen et al (2019) <sup>14</sup>          | A/B                | NT-proBNP                        | In-hospital mortality | 0.799 (0.707-0.891) | Jun<br>r tec                                                                                                                                                                | 55.20%      | 95.70%      |
|                                         |                    | Aortic diameter                  |                       | 0.724 (0.607-0.841) | le 12<br>chno                                                                                                                                                               | 58.60%      | 88.20%      |
|                                         |                    | NT-proBNP and aortic diameter    |                       | 0.832 (0.735-0.929) |                                                                                                                                                                             | 79.30%      | 84.90%      |
| Liu et al (2018b) <sup>32</sup>         | A/B                | BUN                              | In-hospital mortality | 0.785 (0.662-0.909) | )25<br>jies.                                                                                                                                                                | 78.90%      | 72.20%      |
| Bennett et al $(2017)^{33}$             | А                  | Serum lactic acid level          | In-hospital mortality | 0.88                | at A                                                                                                                                                                        | 85.00%      | 77.00%      |
|                                         |                    |                                  | 1-year mortality      | 0.81                | gen                                                                                                                                                                         | 67.00%      | 84.00%      |
| LAFÇI et al (2014) <sup>34</sup>        | A/B                | NLR                              | In-hospital mortality | 0.634 (0.516-0.753) | ice I                                                                                                                                                                       | 70.00%      | 53.00%      |
| Wen et al (2013) <sup>13</sup>          | A/B                | D-dimer                          | In-hospital mortality | 0.917 (0.85-0.96)   | Biblii                                                                                                                                                                      | 90.30%      | 75.90%      |
|                                         |                    |                                  | 21                    |                     | 2025 at Agence Biblibgraphique de<br>ogies.                                                                                                                                 |             |             |
|                                         |                    |                                  |                       |                     | ique                                                                                                                                                                        |             |             |

| Page     | 23 of 34                         |               |                                    | BMJ Open              |                           | njopen-2020-<br>1 by copyrigh                                                                                                                                                                |         |        |
|----------|----------------------------------|---------------|------------------------------------|-----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 1        |                                  |               |                                    |                       |                           |                                                                                                                                                                                              |         |        |
| 2<br>3   |                                  |               | CRP                                |                       | 0.822 (0.74-0.89)         | 424;<br>inc                                                                                                                                                                                  | 100.00% | 54.20% |
| 4        |                                  |               | D-dimer + CRP                      |                       | 0.948 (0.89-0.98)         | 42435 on 5<br>including 1                                                                                                                                                                    | 81.90%  | 96.80% |
| 5        | Guo et al (2019) <sup>10</sup>   | A/B           | TNC                                | In-hospital mortality |                           | ng f                                                                                                                                                                                         | 83.87%  | 83.33% |
| 6<br>7   |                                  |               | TNC + D-dimer                      |                       | 0.946 (0.885-0.980)       | 5 Feb                                                                                                                                                                                        | 90.30%  | 88.46% |
| 8        |                                  |               | D-dimer                            |                       | 0.787 (0.698-0.859)       | ises                                                                                                                                                                                         | 87.19%  | 64.10% |
| 9        |                                  |               | CRP                                |                       | 0.758 (0.667-0.835)       | ry 2<br>seig                                                                                                                                                                                 | 90.32%  | 55.13% |
| 10       |                                  |               | TNC + CRP                          |                       | 0.909 (0.839-0.956)       | 021<br>ate                                                                                                                                                                                   | 90.32%  | 74.92% |
| 11<br>12 | Ohlmann et al $(2006)^{12}$      | A/B           | D-dimer                            | In-hospital mortality | 0.650 (0.584-0.716)       | nen:<br>to                                                                                                                                                                                   |         |        |
| 13       | Zhang et al (2016) <sup>35</sup> | А             | WBC                                | In-hospital mortality |                           | t Su<br>tex                                                                                                                                                                                  | 84.60%  | 65.90% |
| 14       |                                  |               | SBP                                |                       |                           | load<br>Iper<br>t an                                                                                                                                                                         | 65.90%  | 69.20% |
| 15<br>16 |                                  |               | NT-proBNP                          |                       |                           | ded<br>d da                                                                                                                                                                                  | 80.80%  | 51.20% |
| 16<br>17 |                                  |               | WBC<br>SBP<br>NT-proBNP<br>D-dimer |                       |                           | fror<br>(Al                                                                                                                                                                                  | 84.60%  | 70.70% |
| 18       | Li et al (2019) <sup>36</sup>    | В             | PLR                                | In-hospital mortality | 0.711 (0.580-0.840)       | February 2021. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025<br>Enseignement Superieur (ABES).<br>for uses related to text and data mining, Al training, and similar technologies | 63.00%  | 88.00% |
| 19       | Zhang et al (2020)37             | А             | UA                                 | In-hospital mortality | 0.678 (0.579-0.777)       | ))))))))))))))))))))))))))))))))))))))                                                                                                                                                       | 65.00%  | 67.10% |
| 20<br>21 |                                  |               | D-dimer                            |                       | 0.689 (0.589-0.790)       | Alt                                                                                                                                                                                          | 44.70%  | 88.80% |
| 22       |                                  |               | age                                |                       | 0.616 (0.507-0.724)       | jop.                                                                                                                                                                                         | 37.50%  | 90.40% |
| 23       |                                  |               | UA, D-dimer, age                   |                       | 0.771                     | en.b                                                                                                                                                                                         |         |        |
| 24<br>25 | Bedel et al (2019) <sup>38</sup> | А             | NLR                                | In-hospital mortality | 0.746 (0.623-0.870)       | , mj.                                                                                                                                                                                        | 70.60%  | 76.80% |
| 25<br>26 |                                  |               | PLR                                |                       | 0.750 (0.638-0.882)       | d si                                                                                                                                                                                         | 76.50%  | 78.10% |
| 27       | Gong et al (2019) <sup>39</sup>  | А             | Postoperative TnI                  | 30-Day mortality      | 0.711                     | mila                                                                                                                                                                                         |         |        |
| 28       |                                  |               | Postoperative Mb                   |                       | 0.699                     | ar te                                                                                                                                                                                        |         |        |
| 29<br>30 |                                  |               | Preoperative CK-MB                 |                       | 0.694                     | ne 1<br>ichr                                                                                                                                                                                 |         |        |
| 31       |                                  |               | Postoperative CK-MB                |                       | 0.678                     | 12, 2<br>10lo                                                                                                                                                                                |         |        |
| 32       |                                  |               | Preoperative Creatinine            |                       | 0.668                     | 2025<br>gie:                                                                                                                                                                                 |         |        |
| 33<br>24 |                                  |               | Preoperative Mb                    |                       | 0.644                     | · at                                                                                                                                                                                         |         |        |
| 34<br>35 |                                  |               | Preoperative D-Dimer               |                       | 0.621                     | Age                                                                                                                                                                                          |         |        |
| 36       |                                  |               | Preoperative TnI                   |                       | 0.618                     | Agence                                                                                                                                                                                       |         |        |
| 37       | Prediction models                |               |                                    |                       |                           | Bib                                                                                                                                                                                          |         |        |
| 38<br>39 | Develop a model withou           | ıt validation |                                    |                       |                           | Bibliog                                                                                                                                                                                      |         |        |
| 40       |                                  |               |                                    | 22                    |                           | grap                                                                                                                                                                                         |         |        |
| 41       |                                  |               |                                    |                       |                           | raphique de                                                                                                                                                                                  |         |        |
| 42<br>43 |                                  |               |                                    |                       |                           | Le d                                                                                                                                                                                         |         |        |
|          |                                  |               | For peer review only - htt         | p://bmjopen.bmj.com/s | ite/about/guidelines.xhtm | e                                                                                                                                                                                            |         |        |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                       |     |                                                                                                 | BMJ Open              |                          | njopen-2020-<br>1 by copyrigh                                              |                          | Ра     |
|---------------------------------------|-----|-------------------------------------------------------------------------------------------------|-----------------------|--------------------------|----------------------------------------------------------------------------|--------------------------|--------|
| Zhang et al (2015) <sup>40</sup>      | A/B | Hypotension, syncope, ischaemic complications, renal dysfunction, type A, neutrophil percentage | In-hospital mortality | 0.650                    | 20- <b>0</b> 42435 on t<br>ight, including                                 | 60                       |        |
|                                       |     | $\geq$ 80%, surgery                                                                             |                       |                          | on                                                                         |                          |        |
| Tolenaar et al (2014) <sup>8</sup>    | В   | Female, age, hypotension/ shock, periaortic                                                     | In-hospital mortality |                          | 5 February 2021. I<br>Enseigneme<br>y for uses related t                   | 0.314                    |        |
|                                       |     | hematoma, aortic diameter ≥5.5 cm, mesenteric                                                   |                       |                          | brua<br>En<br>use                                                          |                          |        |
|                                       |     | ischemia, acute renal failure, limb ischemia                                                    |                       |                          | ary 2<br>seiç<br>s re                                                      |                          |        |
| Mehta et al (2002) <sup>7</sup>       | А   | Age, female, abrupt onset pain, abnormal ECG,                                                   | In-hospital mortality | 0.740                    | 2021<br>Jnen<br>later                                                      | 0.750                    |        |
|                                       |     | any pulse deficit, kidney failure,                                                              |                       |                          | nent<br>d to                                                               |                          |        |
|                                       |     | hypotension/shock/tamponade                                                                     |                       |                          | text                                                                       |                          |        |
| Ghoreishi et al (2018) <sup>41</sup>  | А   | Lactic acid, creatinine, liver malperfusion                                                     | Operative mortality   | 0.750                    | oad<br>peri                                                                | y and observed mortality |        |
| Centofanti et al (2006) <sup>42</sup> | А   | Age, coma, acute renal failure, shock, and redo                                                 | 30-Day mortality      | Only reported the expect | ted Bog taity                                                              | y and observed mortality |        |
|                                       |     | operation                                                                                       |                       |                          | r (ABI<br>ata m                                                            |                          |        |
| Santini et al (2007) <sup>43</sup>    | А   | Age, cardiac tamponade, hypotension, acute                                                      | In-hospital mortality | 0.763 (0.802-0.723)      | i <mark>htt</mark><br>Ninir                                                | 55.60%                   | 82.90% |
|                                       |     | myocardial ischemia, mesenteric ischemia, acute                                                 |                       |                          | ng, /                                                                      |                          |        |
|                                       |     | renal failure, neurologic injury                                                                |                       |                          |                                                                            |                          |        |
| Rampoldi et al (2007) <sup>44</sup>   | Α   | Age > 70, history of aortic valve replacement,                                                  | In-hospital mortality | 0.760                    | ainir                                                                      | 0.230                    |        |
|                                       |     |                                                                                                 |                       |                          | າg, ະ                                                                      |                          |        |
|                                       |     | hypotension (systolic blood pressure < 100 mm                                                   |                       |                          | bmjopen.bmj.com/ on June 12, 2025<br>Al training, and similar technologies |                          |        |
|                                       |     | Hg) or shock at presentation, migrating chest                                                   |                       |                          | simi                                                                       |                          |        |
|                                       |     | pain, preoperative cardiac tamponade, any pulse                                                 |                       |                          | ilar t                                                                     |                          |        |
|                                       |     | deficit, electrocardiogram with findings of                                                     |                       |                          | une<br>:ech                                                                |                          |        |
|                                       |     | myocardial ischemia or infarction                                                               |                       |                          | 12,<br>Inolo                                                               |                          |        |
|                                       |     |                                                                                                 |                       | 0.810                    | 20⊉<br>⊃gie                                                                | 0.380                    |        |
|                                       |     | Age > 70, history of aortic valve replacement,                                                  |                       |                          | s. 5 at                                                                    |                          |        |
|                                       |     |                                                                                                 |                       |                          | Age                                                                        |                          |        |
|                                       |     | hypotension (systolic blood pressure < 100 mm                                                   |                       |                          | nce                                                                        |                          |        |
|                                       |     | Hg) or shock at presentation, migrating chest                                                   |                       |                          | Bib                                                                        |                          |        |
|                                       |     | pain, preoperative cardiac tamponade, any pulse                                                 |                       |                          | Agence Bibliog                                                             |                          |        |
|                                       |     |                                                                                                 | 23                    |                          |                                                                            |                          |        |
|                                       |     |                                                                                                 |                       |                          | raphique de l                                                              |                          |        |
|                                       |     | For peer review only - htt                                                                      | n://hmionen.hmi.com   | /site/about/quidelines v | ntmol C                                                                    |                          |        |

| Page                                                                                                                 | 25 of 34                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BMJ Open                             |                                                                                                                                                                                                              | mjopen-2020-<br>1 by copyrigh                                             |                                     |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|
| 1<br>2<br>3<br>4<br>5                                                                                                |                                     |              | deficit, intraoperative hypotension, right ventricle<br>dysfunction at surgery, a necessity to perform a<br>coronary artery bypass graft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                                                                                                                              | 0-042435 on 5 Februar<br>Ens                                              |                                     |
| 6<br>7                                                                                                               | Leontyev et al (2016) <sup>45</sup> | А            | Age, Critical preoperative state, Malperfusion syndrome, Coronary artery disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In-hospital mortality                | 0.767 (0.715-0.819)                                                                                                                                                                                          | for use                                                                   |                                     |
| 8<br>9<br>10                                                                                                         | Zhang et al (2019) <sup>46</sup>    | В            | Hypotension, Ischemic complications, Renal<br>dysfunction, Neutrophil percentage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In-hospital mortality                |                                                                                                                                                                                                              | ary 202<br>ıseigne<br>ss relate                                           | 86%(risk score≥4) 78%(risk score≥4) |
| 11                                                                                                                   | Develop a model with in             | iternal vali |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                                                                                                              | ed t                                                                      |                                     |
| 12<br>13<br>14<br>15<br>16<br>17<br>18                                                                               | Macrina et al (2010) <sup>47</sup>  | Α            | immediate post-operative chronic renal failure,<br>circulatory arrest time, the type of surgery on<br>ascending aorta plus hemi-arch, extracorporeal<br>circulation time and the presence of Marfan<br>habitus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Long-term mortality<br>(564±48 days) | Support vector<br>machines:0.821,<br>Neural networks: 0.870                                                                                                                                                  | bownloaded from h<br>nt Superieur (ABE:<br>o text and data mit            |                                     |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | Macrina et al (2009) <sup>48</sup>  | Α            | <ul> <li>immediate post-operative presence of dialysis in continuous, renal complications, chronic renal failure, coded operative brain protection</li> <li>(anterograde better than retrograde perfusion), pre-operative neurological symptoms, age, previous cardiac surgery, the length of extracorporeal circulation, the operative presence of hemopericardium and postoperative enterological complications immediate post-operative presence of chronic renal failure, coded operative brain protection (anterograde better than retrograde perfusion), post-operative presence of dialysis in continuous, pre-operative neurological symptoms, post-operative neurological symptoms, post-operative neurological symptoms, post-operative renal complications, the length of extracorporeal circulation, age, the operative</li> </ul> | 30-Day mortality                     | First Centre: multiple logis<br>regression 0.879 (0.807-0.<br>932)<br>Second Centre: multiple<br>logistic regression 0.857 (C<br>0.785- 0.911)<br>Second Centre: neural<br>networks 0.905 (0.838 -<br>0.951) | //bmjopen.bmj.com/ on June 12, 20<br>, Al training, and similar technolog |                                     |
| 39<br>40                                                                                                             |                                     |              | extracorporear encaration, age, the operative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4                                  |                                                                                                                                                                                                              |                                                                           |                                     |
| 41<br>42<br>43<br>44<br>45                                                                                           |                                     |              | For peer review only - htt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>p://bmjopen.bmj.com/s          | ite/about/guidelines.xhtm                                                                                                                                                                                    | aphique de l                                                              |                                     |

|                               |             |                                                                                                                                                                      | BMJ Open                   |                          | njopen-2020-<br>I by copyrigh                                  |          | Page 26                   |
|-------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|----------------------------------------------------------------|----------|---------------------------|
|                               |             | presence of hemopericardium, pre-operative presence of intubation, post-operative limb                                                                               |                            |                          | 20-042435 on t<br>ight, including                              |          |                           |
|                               |             | ischemia and enterological complications and the                                                                                                                     |                            |                          | 5 on<br>Iding                                                  |          |                           |
|                               |             | year of surgery                                                                                                                                                      |                            |                          | 5 Fe<br>g for                                                  |          |                           |
| External validation           |             | ,                                                                                                                                                                    |                            |                          | r us                                                           |          |                           |
| Ge et al (2013) <sup>49</sup> | A/B         | EuroSCORE II                                                                                                                                                         | In-hospital mortality      | 0.490 (0.390-0.590)      | 5 February 20.001<br>Enseignement \$<br>for uses related to to |          |                           |
| Yu et al (2016) <sup>50</sup> | А           | Scoring systems developed by Rampoldi et al                                                                                                                          | Operative mortality        | 0.62                     | 202<br>elat                                                    |          |                           |
|                               |             |                                                                                                                                                                      | 30-day mortality           | 0.56                     | ed t                                                           |          |                           |
|                               |             | Scoring systems developed by Centofanti et al                                                                                                                        | Operative mortality        | 0.66                     |                                                                |          |                           |
|                               |             |                                                                                                                                                                      | 30-day mortality           | 0.58                     | ownloade<br>t Superie<br>text and                              |          |                           |
|                               |             | Age                                                                                                                                                                  | Operative mortality        | 0.67                     |                                                                |          |                           |
| Vrsalovic et al (2015)9       | А           | CRP                                                                                                                                                                  | In-hospital mortality      | 0.790 (0.784-0.796)      | ıd fro<br>ur (A<br>data                                        | 83.00%   | 80.00%                    |
|                               |             | IRAD score                                                                                                                                                           |                            | 0.740 (0.733-0.747)      | miin t                                                         |          |                           |
|                               |             | IRAD score + CRP                                                                                                                                                     |                            | 0.890 (0.886-0.894)      | ning                                                           |          |                           |
| Rampoldi et al were ca        | lculated fo | atio; CK-MB = creatine kinase MB isoenzyme; Mb= m<br>for each patient as $-3.20 + (0.68 \times age > 70) + (1)$<br>e cardiac tamponade) + (0.56 × any pulse deficit) | .44 × history of aortic va |                          | mi o                                                           | -        | $(0.88 \times migrating)$ |
| - / / -                       | •           | for each patient as: $-2.986 + (0.771 \times \text{shock}) + (0.771 \times \text{shock})$                                                                            | · -                        |                          |                                                                | <i>,</i> |                           |
|                               |             |                                                                                                                                                                      | 25                         |                          | 12, 2025 at Agence Bibliographique<br>mologies.                |          |                           |
|                               |             | For peer review only - ht                                                                                                                                            | tp://bmjopen.bmj.com/      | ˈsite/about/guidelines.x |                                                                |          |                           |

| Characteristics                                         | Number (%) or media   |
|---------------------------------------------------------|-----------------------|
|                                                         | (interquartile range) |
| Sample size(n)                                          | 165 (103, 348)        |
| Death events(n)                                         | 35 (23, 72)           |
| Multicenter study                                       |                       |
| Yes                                                     | 9 (28.1)              |
| No                                                      | 23 (71.9)             |
| Epidemiological design                                  | 25 (71.5)             |
|                                                         | 12(40.6)              |
| Prospective cohort                                      | 13 (40.6)             |
| Retrospective cohort                                    | 19 (59.4)             |
| Data sources                                            |                       |
| Cohort study                                            | 5 (15.6)              |
| EMR data                                                | 22 (68.8)             |
| Registry                                                | 5 (15.6)              |
| Whether did the study clearly describe inclusion/       |                       |
| exclusion criteria for participants                     |                       |
| Yes                                                     | 31 (96.9)             |
|                                                         |                       |
| No                                                      | 1 (3.1)               |
| Consistent definition/diagnostic criteria of predictors |                       |
| used in all participants                                |                       |
| Yes                                                     | 32 (100.0)            |
| No                                                      | 0 (0)                 |
| Consistent measurement of predictors used in all        |                       |
| participants                                            |                       |
| Yes                                                     | 32 (100.0)            |
| No                                                      | 0 (0)                 |
|                                                         | 0(0)                  |
| Consistent definition/diagnostic criteria of outcomes   |                       |
| used in all participants                                |                       |
| Yes                                                     | 31 (96.9)             |
| No                                                      | 1 (3.1)               |
| Consistent measurement of outcomes used in all          |                       |
| participants                                            |                       |
| Yes                                                     | 31 (96.9)             |
| No                                                      | 1 (3.1)               |
| Were all enrolled participants included in the          | - ()                  |
| analysis?                                               |                       |
| -                                                       | <b>22</b> ((0,0))     |
| Yes                                                     | 22 (68.8)             |

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>7<br>8<br>9<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>8<br>9<br>30<br>31<br>23<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37 |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 19<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 24<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 28<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 33<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 37<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 30<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 47<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 51<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 52<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 56<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

60

1

| N-                                                    | 10 (21 2) |
|-------------------------------------------------------|-----------|
| No<br>Was missing outcome data reported, and the      | 10 (31.2) |
| methods handling missing outcome                      |           |
|                                                       | 1 (2 1)   |
| Yes, complete-case analysis                           | 1 (3.1)   |
| No                                                    | 30 (93.8) |
| Not reported                                          | 1 (3.1)   |
| Was any missing predictor data reported, and the      |           |
| methods handling missing predictor                    |           |
| Yes, complete-case analysis                           | 5 (15.6)  |
| No                                                    | 1 (3.1)   |
| Not reported                                          | 26 (81.3) |
| Prognostic factors (n=18) prediction models           |           |
| Number of outcomes/events in relation to the          |           |
| number of predictors for assessing prognostic factors |           |
| (Events Per Variable: EPVs)                           |           |
| <10                                                   | 1 (5.6)   |
| 10-20                                                 | 8 (44.4)  |
| ≥20                                                   | 9 (50.0)  |
| Model structure used in the study                     |           |
| Logistic regression                                   | 11 (61.1) |
| Cox regression                                        | 5 (27.8)  |
| ROC analyses (Not report regression)                  | 2 (11.1)  |
| Relevant model performance measures evaluated for     |           |
| addressing prognostic factors                         |           |
| AUC                                                   | 2 (11.1)  |
| AUC, sensitivity, specificity                         | 15 (83.3) |
| Sensitivity, specificity                              | 1 (5.6)   |
| Prediction models (n=14)                              |           |
| Number of outcomes/events in relation to the          |           |
| number of predictors in multivariable analysis        |           |
| (Events Per Variable: EPVs)                           |           |
| <10                                                   | 3 (21.4)  |
| 10-20                                                 | 8 (57.1)  |
| ≥20                                                   | 3 (21.4)  |
| Model structure used in the study                     |           |
| Logistic regression                                   | 10 (71.4) |
| Cox regression                                        | 1 (7.1)   |
| ROC analyses (Not report regression)                  | 1 (7.1)   |

| Logistic regression and support vector machines    | 1 (7.1)  |
|----------------------------------------------------|----------|
| Logistic regression and neural networks            | 1 (7.1)  |
| Relevant model performance measures evaluated for  |          |
| addressing prediction models                       |          |
| AUC, P value of Hosmer-Lemeshow test               | 5 (35.7) |
| AUC                                                | 4 (28.6) |
| AUC, sensitivity, specificity                      | 2 (14.3) |
| P value of Hosmer-Lemeshow test                    | 1 (7.1)  |
| Expected and observed                              | 1 (7.1)  |
| Sensitivity, specificity                           | 1 (7.1)  |
| Develop prediction models (n=11)                   |          |
| Statistical method for selecting predictors during |          |
| addressing prediction models                       |          |
| Univariate analysis of predictors by P value       | 3 (27.3) |
| Univariate analysis of predictors by P value and   | 3 (27.3) |
| other specific predictors                          |          |
| Stepwise selection                                 | 2 (18.1) |
| Not reported                                       | 3 (27.3) |
| Handling the predictors for addressing prediction  |          |
| models                                             |          |
| Continuous predictor was transformed into          | 4 (36.4) |
| categories                                         |          |
| Not reported                                       | 7 (63.6) |
| Tot lepoited                                       |          |

Figure 1. Flow chart of study selection

BMJ Open: first published as 10.1136/bmjopen-2020-042435 on 5 February 2021. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025 at Agence Bibliographique de I Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.





Figure 1. Flow chart of study selection

| Appendix A Search strategies         Database: PubMed (until June, 2020)                                        |
|-----------------------------------------------------------------------------------------------------------------|
| #1 (aortic dissecting aneurysm[MeSH Terms]) OR aortic dissecting aneurysm                                       |
|                                                                                                                 |
| #2 (aortic aneurysm[MeSH Terms]) OR aortic aneurysm                                                             |
| #3 (aortic dissection*[MeSH Terms]) OR aortic dissection*                                                       |
| #4 (aortic dissecting hematoma) OR aortic dissecting hematoma[MeSH Terms]                                       |
| #5 #1 OR #2 OR #3 OR #4                                                                                         |
| #6 (validat* OR predict*[tiab] OR rule*) OR (predict* AND (outcome* OR risk* OR model*)) OR                     |
| ((history OR variable* OR criteria OR scor* OR characteristic* OR finding* OR factor*) AND                      |
| (predict* OR model* OR decision* OR identif* OR prognos*)) OR (decision* AND (model* OR                         |
| clinical* OR logistic models)) OR (prognostic AND (history OR variable* OR criteria OR scor* OR                 |
| characteristic* OR finding* OR factor* OR model*)) OR "stratification" OR "ROC Curve"[MeSH]                     |
| OR "discrimination" OR "discriminate" OR "c statistic" OR "area under the curve" OR "AUC" OR                    |
| "Calibration" OR "Indices" OR "algorithm" OR "Multivariable")                                                   |
| #7 ((cohort[MeSH Terms]) OR cohort) OR (observational[MeSH Terms]) OR observational) OR                         |
| ((prospective[MeSH Terms]) OR prospective) OR((trial[MeSH Terms]) OR trial) OR                                  |
| ((epidemiology[MeSH Terms]) OR epidemiology) OR ((longitudinal[MeSH Terms]) OR                                  |
|                                                                                                                 |
|                                                                                                                 |
| #8 #5 AND #6 AND #7                                                                                             |
| #9 (Animals[MeSH] NOT Humans[MeSH])                                                                             |
| #10 #8 NOT #9                                                                                                   |
| #11 English[Language]                                                                                           |
| #12 #10 AND #11                                                                                                 |
| Database: EMBASE (until June, 2020)                                                                             |
| #1 aortic dissecting aneurysm.mp. or exp dissecting aortic aneurysm/                                            |
| #2 aortic aneurysm.mp. or exp aortic aneurysm/                                                                  |
| #3 aortic dissection\$.mp. or exp aortic dissection/                                                            |
| #4 exp aortic dissection/ or aortic dissecting hematoma.mp.                                                     |
| #5 #1 or #2 or #3 or #4                                                                                         |
| #6 exp cohort analysis/ or cohort.mp.                                                                           |
| #7 exp observational study/ or observational.mp.                                                                |
| #8 prospective.mp. or exp prospective study/                                                                    |
|                                                                                                                 |
| #9 exp controlled clinical trial/ or exp "clinical trial (topic)"/ or exp "randomized controlled tria           |
| (topic)"/ or trial.mp. or exp pragmatic trial/ or exp "controlled clinical trial (topic)"/ or exp clinical tria |
| or exp adaptive clinical trial/ or exp randomized controlled trial/                                             |
| #10 exp epidemiology/ or epidemiology.mp.                                                                       |
| #11 exp longitudinal study/ or longitudinal.mp.                                                                 |
| #12 #6 or #7 or #8 or #9 or #10                                                                                 |
| #13 (validat* or predict* or rule* or (predict* and (outcome* or risk* or model*)) or ((history o               |
| variable* or criteria or scor* or characteristic* or finding* or factor*) and (predict* or model* or            |
| decision* or identif* or prognos*)) or (decision* and (model* or clinical* or logistic models)) or              |
| (prognostic and (history or variable* or criteria or scor* or characteristic* or finding* or factor* or         |
| model*)) or ('stratification' or 'ROC Curve' or 'discrimination' or 'discriminate' or 'c statistic' or 'are     |
| under the curve' or 'AUC' or 'Calibration' or 'Indices' or 'algorithm' or 'Multivariable')).af.                 |

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

#14 #5 and #12 and #13#15 limit #14 to (human and english language)

to peet eview only

Page 33 of 34

| BMJ Open<br>BMJ Open<br>Appendix Table 1. General characteristics of studies included in the systematic |         |                              |                |                                       |       |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                  |
|---------------------------------------------------------------------------------------------------------|---------|------------------------------|----------------|---------------------------------------|-------|----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|
| Study ID                                                                                                | Region  | Period of Data<br>Collection | Centers<br>(n) | Sample<br>size for<br>analysis<br>(n) | Event | Study design         | Data sources | Age (Maan±SD or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Male (%) | Study p                          |
| Liu et al<br>(2018a)                                                                                    | China   | 2006.01-<br>2017.01          | 1              | 143                                   | 32    | Retrospective cohort | EMR data     | user regiments (years)<br>terms end (years)<br>terms e | 72.00%   | Prediction<br>perform<br>prognos |
| Zindovic et al (2018)                                                                                   | Sweden  | 2005.01-<br>2017.02          | 1              | 277                                   | 37    | Retrospective cohort | EMR data     | nloa±11.4<br>xt and da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.86%   | Prediction<br>perform<br>prognos |
| Oz et al<br>(2017)                                                                                      | Turkey  |                              | 1              | 57                                    | 15    | Retrospective cohort | EMR data     | fror∰10.5<br>(ABES)<br>ta minin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.80%   | Prediction<br>perform<br>prognos |
| Li et al<br>(2016)                                                                                      | China   | 2010.05-<br>2014.06          | 4              | 103                                   | 36    | Prospective cohort   | EMR data     | <b>ġ</b> . <b>3</b> .4<br><b>A</b> 54. <b>9</b> ±13.4<br><b>t</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.93%   | Prediction<br>perform<br>prognos |
| Vrsalovic et al (2015)                                                                                  | Croatia | 2006.01-<br>2013.12          | 1              | 54                                    | 24    | Retrospective cohort | EMR data     | raining,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.00%   | External<br>validatio            |
| Karakoyun et al<br>(2015)                                                                               | Turkey  | 2009-2013                    | 1              | 35                                    | 9     | Retrospective cohort | EMR data     | and <u>55.</u> 9±7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80.00%   | Prediction<br>perform<br>prognos |
| Wen et al (2019)                                                                                        | China   | 2008.03-<br>2012.01          | 1              | 122                                   | 29    | Prospective cohort   | Cohort       | llar tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.43%   | Prediction<br>perform<br>prognos |
| Liu et al<br>(2018b)                                                                                    | China   | 2012.12-<br>2016.06          | 1              | 192                                   | 19    | Retrospective cohort | EMR data     | 12, 43.0, 62.0)<br>10 0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.60%   | Prediction<br>perform<br>prognos |
| Bennett et al (2017)                                                                                    | USA     | 2000-2014                    | 1              | 144                                   | 38    | Retrospective cohort | EMR data     | <b>at</b><br>58.7 ( <b>&amp;</b> .9, 69.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.00%   | Prediction<br>perform<br>prognos |
| Zhang et al (2015)                                                                                      | China   | 2008.01-<br>2013.10          | 1              | 360                                   | 77    | Prospective cohort   | Cohort       | 57.8 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.80%   | Develop<br>without               |

|                           |                   |                       |                 |      | В   | MJ Open                 |          | njopen-2020-042435 on 57∓ebruar⊛ 2021.<br>4 by copyright, including for uses related              |        |                                                             |
|---------------------------|-------------------|-----------------------|-----------------|------|-----|-------------------------|----------|---------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------|
| LAFÇI et al<br>(2014)     | Turkey            | 2007.01-<br>2012.01   | 1               | 104  | 33  | Retrospective cohort    | EMR data | ing for us                                                                                        | 73.08% | Prediction<br>performance<br>prognostic facto               |
| Wen et al<br>(2013)       | China             | 2007.01-<br>2011.10   | 1               | 114  | 31  | Prospective cohort      | Cohort   | uarses related                                                                                    | 84.20% | Prediction<br>performance<br>prognostic facto<br>Prediction |
| Guo et al<br>(2019)       | China             | 2015.12-<br>2017.08   |                 | 109  | 31  | Prospective cohort      | Cohort   | <b>5 8 0</b> 12 2                                                                                 | 59.63% | performance<br>prognostic facto                             |
| Ohlmann et al (2006)      | France            | 1997.01-<br>2003.12   | 1               | 93   | 22  | Retrospective cohort    | EMR data | b text and data mining, J                                                                         | 66.00% | Prediction<br>performance<br>prognostic facto               |
| Ge et al<br>(2013)        | China             | 2009.02-<br>2012.02   | 1               | 384  | 31  | Retrospective cohort    | Cohort   | ta me<br>me<br>me<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | 20.05% | External Validation                                         |
| Tolenaar et al<br>(2014)  | Multination<br>al | 1996.01-<br>2013.04   | Multicent<br>er | 1034 | 110 | Prospective cohort      | Registry | ing, 63.414.0                                                                                     | 65.10% | Develop a mo<br>without validat                             |
| Mehta et al<br>(2002)     | 6 countries       | 1996.01-<br>1999.12   | 18              | 547  | 178 | Prospective cohort      | Registry | ntrainf(                                                                                          | 65.50% | Develop a mo<br>without validat                             |
| Yu et al<br>(2016)        | USA               | 2008-2013             | 1               | 79   | 13  | Retrospective<br>cohort | EMR data | grang 51-70)                                                                                      | 65.80% | External<br>validation<br>Prediction                        |
| Feng et al (2017)         | China             | 2010.02-<br>2014.12   | 1               | 136  | 39  | Prospective cohort      | EMR data | d 53.5010.3                                                                                       | 56.60% | performance<br>prognostic fact                              |
| Ghoreishi et al<br>(2018) | USA               | 2002.01-<br>2015.12   | 1               | 269  | 43  | Retrospective cohort    | EMR data | n stine                                                                                           | 67.00% | Develop a mo<br>without validat                             |
| Zhang et al (2016)        | China             | 2014.01-<br>2015.06   | 1               | 67   | 26  | Retrospective cohort    | EMR data | g, 63 $\pm$ 14.0<br>Al training 51-70)<br>frame 12, 2025 at 55 $\pm$ 14.1                         |        | Prediction<br>performance<br>prognostic fact                |
| Macrina et al (2010)      | Italy             | 2002.01-late<br>2008  | 2               | 235  | 84  | Prospective cohort      | EMR data | Age                                                                                               |        | Develop a mo<br>with inter<br>validation                    |
| Macrina et al<br>(2009)   | Italy             | 2001.01-early<br>2008 | 2               | 208  | 53  | Prospective cohort      | EMR data | Survivers:61±12;<br>Nonservivors:<br>69 ±10                                                       | 64.00% | Develop a mo<br>with inter<br>validation                    |

| ge 35 of 34 |                         |                   |                           |                      |              | В                   | MJ Open                  |                     | njopen-2<br>1 by copy                                                         |        |                                                    |
|-------------|-------------------------|-------------------|---------------------------|----------------------|--------------|---------------------|--------------------------|---------------------|-------------------------------------------------------------------------------|--------|----------------------------------------------------|
|             |                         |                   |                           |                      |              |                     |                          |                     | njopen-2020-042435<br>1 by copyright, includ                                  |        |                                                    |
|             | Li et al<br>(2019)      | China             | 2007-2013.08              | 1                    | 134          | 19                  | Prospective cohort       | EMR data            | Mat: $5039 \pm 13.70$ ,<br>Stomer 52.17 $\pm$<br>1255                         | 67.3%  | Prediction<br>performance of<br>prognostic factors |
|             | Centofanti et al (2006) | Multination<br>al | 1980-2004                 | Multicenter          | 616          | 154                 | Prospective cohort       | Registry            | -eb <sub>555</sub><br>Enseig<br>pr uses reig                                  |        | Develop a model<br>without validation              |
|             | Santini et al<br>(2007) |                   | 1979-2004                 |                      | 311          | 72                  | Retrospective cohort     | EMR data            | nement<br>ated to t                                                           | 72.00% | Develop a model without validation                 |
|             | Rampoldi et al (2007)   | Multination<br>al | 1996-2003                 | 18                   | 682          | 163                 | Retrospective cohort     | Registry            | wnlgat<br>Sugerie<br>and                                                      | 70.30% | Develop a model without validation                 |
|             | Leontyev et al (2016)   | Multination<br>al | 1996-2011                 | 2                    | 534          | 100                 | Prospective cohort       | Registry            | ed f <sup>≞</sup> <sup>14</sup><br>9ur (ABI<br>ndata m                        | 63.70% | Develop a model without validation                 |
|             | Zhang et al<br>(2019)   | China             | 2013.11.01-<br>2016.10.30 | 1                    | 188          | 17                  | Prospective cohort       | EMR data            | ining.57.50± 12.6                                                             | 77.10% | Develop a model without validation                 |
|             | Zhang et al (2020)      | China             | 2016.01-<br>2019.06       | 1                    | 186          | 40                  | Retrospective cohort     | EMR data            | 2021 5 ± 13<br>ignement Superieur (ABES)<br>Al training, Al training, and sin | 80.00% | Prediction<br>performance of<br>prognostic factors |
|             | Bedel et al (2019)      | Finland           | 2013.01-<br>2018.06       | 1                    | 96           | 17                  | Retrospective            | EMR data            | Al training, and similar technolog                                            | 81.20% | Prediction<br>performance of<br>prognostic factors |
|             | Gong et al<br>(2019)    | China             | 2015.01-<br>2017.05       | 1                    | 583          | 70                  | Retrospective cohort     | EMR data            | / on June ± 11.29<br>milar techñolog                                          |        | Prediction<br>performance of<br>prognostic factors |
|             |                         |                   |                           | pro-brain natriureti | c peptide; B | UN: blood urea nitr | ogen; TNC: Tenascin-C; H | EuroSCORE II: Euroj | ore: Aternational regist<br>pean System<br>gence<br>Bibliographique           |        |                                                    |
|             |                         |                   |                           | For peer re          | eview only   | y - http://bmjop    | oen.bmj.com/site/ab      | oout/guidelines.x   | html e                                                                        |        |                                                    |

# **BMJ Open**

# Prognostic factors and prediction models for acute aortic dissection: a systematic review

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2020-042435.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date Submitted by the<br>Author:     | 11-Dec-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Complete List of Authors:            | Ren, Yan; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics<br>Huang, Shiyao; Sichuan University West China Hospital, Chinese<br>Evidence-based Medicine Center and National Clinical Research Center<br>for Geriatrics<br>Li, Qianrui; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics; Sichuan University West China Hospital, Department of<br>Nuclear Medicine<br>Liu, Chunrong; Sichuan University West China Hospital, Chinese<br>Evidence-based Medicine Center and National Clinical Research Center<br>for Geriatrics<br>Li, Ling; Sichuan University West China Hospital, Chinese<br>Evidence-based Medicine Center and National Clinical Research Center<br>for Geriatrics<br>Li, Ling; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics<br>Tan, Jing; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics<br>Zou, Kang; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics<br>Zou, Kang; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics<br>Sun, Xin; Sichuan University West China Hospital, Chinese Evidence-<br>based Medicine Center and National Clinical Research Center for<br>Geriatrics |
| <b>Primary Subject<br/>Heading</b> : | Research methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secondary Subject Heading:           | Cardiovascular medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Keywords:                            | CARDIOLOGY, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies



Prognostic factors and prediction models for acute aortic dissection: a systematic review

Yan Ren<sup>1</sup>, Shiyao Huang<sup>1</sup>, Qianrui Li<sup>1,2</sup>, Chunrong Liu<sup>1</sup>, Ling Li<sup>1</sup>, Jing Tan<sup>1</sup>, Kang Zou<sup>1</sup>, Xin Sun<sup>1</sup>\*

# Affiliations

 Chinese Evidence-based Medicine Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China;
 Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China

\* Correspondence: Xin Sun

Xin Sun, Chinese Evidence-based Medicine Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China;

E-mail: sunxin@wchscu.cn

#### Abstract

**Objective** Our study aimed to systematically review the methodological characteristics of studies that identified prognostic factors or developed or validated models for predicting mortalities among AAD patients, which would inform future work.

Design/setting a methodological review of published studies.

**Methods** We searched PubMed and EMBASE from inception to June 2020 for studies about prognostic factors or prediction models on mortality among AAD patients. Two reviewers independently collected the information about methodological characteristics. We also documented the information about the performance of the prognostic factors or prediction models.

**Results** Thirty-two studies were included, of which 18 evaluated the performance of prognostic factors, and 14 developed or validated prediction models. Of the 32 studies, 23 (72%) were single-center studies, 22 (69%) used data from electronic medical records, 19 (59%) chose retrospective cohort study design; 26 (81%) did not report missing predictor data, and five (16%) that reported missing predictor data used complete-case analysis. Among the 14 prediction model studies, only three (21%) had the event per variable over 20, and only five (36%) reported both discrimination and calibration statistics. Among model development studies, three (27%) did not report statistical methods, three (27%) exclusively used statistical significance threshold for selecting predictors, and seven (64%) did not report the methods for handling continuous predictors. Most prediction models were considered at high risk of bias. The performance of prognostic factors showed varying discrimination (AUC 0.58 to 0.95), and the performance of prediction models also varied substantially (AUC 0.49 to 0.91). Only six studies reported calibration statistic.

**Conclusions** The methods used for prognostic studies on mortality among AAD patients -including prediction models or prognostic factor studies – were suboptimal, and the model performance highly varied. Substantial efforts are warranted to improve the use of the methods in this population.

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

# Strengths and limitations of this study

- This systematic review study is the first to identify methodological gaps and assess the performance of the prognostic factors or prediction models among all studies addressing individual prognostic factors or developing or validating prediction models on mortality among AAD patients.
- This review designed a comprehensive questionnaire that included items from both PROBAST and CHARMS checklists and assessed methodological gaps among all studies.
- This review is important that the methodological quality of models designed to support medical decision for AAD patients, substantial efforts are warranted to strengthen the use of rigorous methods for the accuracy and reliability of the performance in the future research.
- The small number of prediction models limit the recommendation in clinical practice, combining IRAD score and CRP model showed better discrimination than IRAD score, future studies may consider updating IRAD model by including other relevant biomarkers, which may further improve prognostic performance.
- Our review about the methodological characteristics was primarily based on reporting, which might be cases that the researchers had considered the methodological issues but did not clearly report.

#### Introduction

Acute aortic dissection (AAD) is a life-threatening cardiovascular disease with high mortality, characterized with acute onset and rapid progression. The mortality of untreated AAD was approximately 1%-2% per hour early following the onset of symptoms, and the overall in-hospital mortality was approximately 27%.<sup>12</sup> Treatment options for AAD include medical intervention, surgery or endovascular repair, the selection of which mainly depends on complications and prognosis of patients.<sup>3</sup> Better understanding of the disease prognosis, ideally predicting the risk of a serious outcome, is highly desirable for medical decision making and patient communication, among which mortality has the highest priority.

Several published systematic reviews assessed the association of inflammatory biomarkers (e.g. C-reactive protein) and marker of cardiac injury (i.e. troponin) with increased mortality in patients with AAD.<sup>4-6</sup> A few studies also developed or validated prediction models for mortality in AAD,<sup>7-9</sup> in which a combination of biomarkers, demographic and clinical characteristics were included.<sup>8 10-14</sup> As a result, they have received increasing use in clinical practice.

However, limited efforts have been made to systematically examine the performance of the prognostic factors or prediction models. In particular, a comprehensive assessment is strongly needed to investigate whether the published studies – either individual prognostic factor studies or prediction models – meet the desirable methodological rigors for clinical use, since suboptimal methods can compromise the accuracy and reliability of the risk estimation. This is particularly the case for AAD, a disease condition, whereby predictability of an adverse outcome has paramount importance. Therefore, we conducted a systematic review study to identify methodological gaps among all studies addressing individual prognostic factors or developing or validating prediction models on mortality among AAD patients.

#### Methods

 We conducted this systematic review according to a pre-specified protocol, which was not published.

# Eligibility criteria

We developed the eligibility criteria under the PICOTS guidance.<sup>15</sup> A study was eligible for inclusion if it included patients diagnosed with AAD; and aimed to identify or assess any prognostic factors for mortality, or develop or validate a prognostic model for mortality in AAD patients. We excluded a study if it was prediction model for AAD diagnosis only; or the report was a review, comment, letter or editorial, case report, protocol or conference abstract.

Predictors measured at any time point in the course of AAD were eligible. No restriction on study setting was applied; patients with AAD who visited any healthcare facilities were eligible. We defined a prognostic prediction model as a multivariable model, predicting risk of specific outcomes occurring in future by selected predictors.<sup>16</sup>

#### Literature search and screening

We searched PubMed and EMBASE from inception to June 2020 for relevant reports published in English language. We conducted the search using the MeSH terms and free texts to identify reports about AAD, including "aortic dissecting aneurysm", "aortic aneurysm", "aortic dissection\*", and "aortic dissecting hematoma". We applied a validate search strategy for searching prediction models, which proved to have high sensitivity and specificity.<sup>17</sup> The full search strategy was presented as Appendix A. Two investigators (YR and SH) independently screened all searched reports, and resolved any disagreements through discussion with a third investigator (CL). We also manually searched for additional articles from the reference lists of all selected articles.

#### **Data Extraction**

We collected the following general information from each eligible study, including first

author, year of publication, study aim, region of study, type of aortic dissection, age, sex ratio. We carefully collected information about performance of identified prognostic factors or prediction models, including their names and results about discrimination, calibration, sensitivity and specificity. Discrimination and calibration are the two key measures for evaluating the predictive performance of the prognostic factors or prediction models.<sup>18</sup>

In order to examine the methods used among these prognoses studies, a team of methods-trained, experienced methodologists expertise with prognostic studies and prediction models convened to develop a questionnaire through a consensus process. They firstly consulted items from the published statements and tools (e.g., PROBAST, CHARMS checklist) about prognoses studies,<sup>19,20</sup> and brainstormed for additional items. Subsequently, they discussed the identified items about their relevance for methods, and dropped items that were deemed irrelevant. Finally, they achieved consensus about the items through group discussion and agreement.

Generally, this questionnaire consists of five domains: (1) **study design** (number of centres, sample size, number of events, data sources, epidemiological design), (2) **participants** (definition and selection of participants); (3) **predictors** (definition and measurement of predictors); (4) **outcome** (definition and measurement of outcomes); (5) **analysis** (were all enrolled participants included in the analysis, the number of events per variable (EPV), statistical method for selecting and handling predictors, missing data, model structure used in the study, and relevant model performance measures evaluated for addressing prognostic factors or prediction models). The questionnaire was presented as Appendix B.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Additionally, we used a risk of bias assessment tool adapted from the PROBAST tool to assess the risk of bias for prediction modelling studies.<sup>15,20</sup> The detailed tool and assessment criteria were presented in Appendix C.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

#### Statistical analysis

Categorical variables were expressed as the number of frequencies and proportion. For quantitative variables, data were summarized by mean and standard deviation or median with interquartile range according to normality tests.

#### Results

In total, 13555 records were identified, among which 155 were selected for full-text screening, and 32 studies were eligible and included in the final analysis (Figure 1).

#### [Figure 1 here]

#### General characteristics of included studies

The 32 eligible studies were published between 2002 and 2019 (Appendix table 1). Five (15%) were multinational studies, and 21 (66%) were conducted in the USA, China, and Europe. The dissection type of AAD patients were mostly Type-A (n = 21, 66%), followed by a mixture of Type-A and Type-B (n = 8, 25%). In-hospital mortality was the most frequently used outcome (n = 24, 75%) (Table 1).

Eighteen (56%) studies aimed to evaluate the performance of prognostic factors. The most commonly investigated prognostic factors were D-dimer (n = 8), NLR (n = 4) and CRP (n = 3). Fourteen (44%) studies aimed to develop or validate a prediction model, of which nine developed a new prediction model without any validation, two developed a new prediction model without any validation, two developed a new prediction model without any validation, two developed a new prediction model without any validation.

| Characteristics                                    | Number (%) |
|----------------------------------------------------|------------|
| Study region                                       |            |
| One country                                        | 27 (84.4)  |
| China                                              | 14 (43.8)  |
| USA                                                | 3 (9.4)    |
| Europe                                             | 4 (12.5)   |
| Other                                              | 5 (15.6)   |
| Multinational                                      | 5 (15.6)   |
| Multicenter study                                  |            |
| Yes                                                | 9 (28.1)   |
| No                                                 | 23 (71.9)  |
| The most commonly reported prognostic              |            |
| biomarkers (n=18)                                  |            |
| D-dimer                                            | 8 (44.4)   |
| NLR                                                | 4 (22.2)   |
| CRP                                                | 3 (16.7)   |
| Study purpose                                      |            |
| Identification or assessment of prognostic factors | 18 (56.2)  |
| Development or validation of a prediction models   | 14 (43.8)  |
| Develop a model without validation                 | 9 (28.1)   |
| Develop a model internal validation                | 2 (6.3)    |
| External validation                                | 3 (9.4)    |
| Dissection type                                    |            |
| А                                                  | 21 (65.6)  |
| В                                                  | 3 (9.4)    |
| A/B                                                | 8 (25.0)   |
| Outcome (some studies have more than one           |            |
| outcome, such as in-hospital mortality and 1-year  |            |
| mortality)                                         |            |
| In-hospital mortality                              | 24 (75.0)  |
| Operative mortality                                | 2 (6.25)   |
| 30-Day mortality                                   | 4 (12.5)   |
| Long term mortality (included 1-year mortality)    | 5 (15.6)   |

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

#### 

## Model performance

The performance of prognostic factors showed poor to strong discrimination (AUC 0.58 to 0.95). The AUC of single prognostic factor ranged from 0.58 to 0.92, and the one for combined prognostic factors ranged from 0.77 to 0.95 (DD and CRP: 0.95; NT-proBNP and aortic diameter: 0.83; TNC and D-dimer: 0.95; TNC and CRP: 0.91; cystatin C and hs-CRP:0.88; UA, D-dimer, and age: 0.77) (Table 2).

The developed or validated models from eleven studies showed poor to strong discrimination (AUC 0.49 to 0.91), only six reported calibrations, and of which five reported good calibrations (P>0.05). Rampoldi et al developed a prediction model and reported moderate discrimination (AUC 0.76). But through external validation, scoring systems developed by Rampoldi et al showed poor discrimination (30-day mortality: AUC 0.56, Operative mortality: AUC 0.62). Mehta et al (P value for the H-L test. =0.75) developed a prediction model using International Registry of Acute Aortic Dissection (IRAD) from multinational data and reported good calibration. Through external validation, IRAD score showed moderate discrimination (AUC 0.89) (Table 2).

Page 11 of 48

# BMJ Open

| 1<br>2<br>3                      |    |
|----------------------------------|----|
| 4<br>5<br>6<br>7<br>8            | s  |
| 9                                | Р  |
| 10                               | L  |
| 11<br>12                         | Z  |
| 12<br>13<br>14<br>15<br>16<br>17 | С  |
| 18<br>19<br>20<br>21             | F  |
| 22<br>23<br>24<br>25             | L  |
| 26<br>27                         | K  |
| 28                               | (2 |
| 29<br>30<br>31<br>32             | v  |
| 32<br>33                         | L  |
| 34<br>35                         | В  |
| 36<br>37                         | L  |
| 38                               | v  |
| 39                               |    |
| 40<br>41                         |    |
| 42                               |    |
| 43                               |    |
| 44<br>45                         |    |
| 45<br>46                         |    |

| BMJ Open                                                                                        | njope   |                      |
|-------------------------------------------------------------------------------------------------|---------|----------------------|
| opyrig                                                                                          | 11-2020 | 2<br>2<br>2          |
| Table 2. Reported discrimination and calibration of prognostic factors or prediction models for | acţ     | te aortic dissection |

| Study ID                                | Dissection<br>type | Predictor                        | Outcome                                   | AUC(95%CI)                | uding Hosmer-<br>for Hemeshow<br>users<br>gest                                                                                                                              | Sensitivity | Specificity |
|-----------------------------------------|--------------------|----------------------------------|-------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Prognostic factors                      |                    |                                  |                                           |                           | rela                                                                                                                                                                        |             |             |
| Liu et al (2018a) <sup>21</sup>         | А                  | Fibrinogen                       | In-hospital mortality                     | 0.686 (0.585-0.787)       | 021.<br>nem                                                                                                                                                                 | 71.90%      | 60.40%      |
| Zindovic et al (2018) <sup>22</sup>     | А                  | Preoperative lactic acid levels  | In-hospital mortality                     | 0.684                     | ent<br>to t                                                                                                                                                                 | 56.00%      | 72.00%      |
|                                         |                    |                                  | 1-year mortality                          | 0.673                     | wnlo<br>Sup<br>text                                                                                                                                                         | 48.00%      | 74.00%      |
|                                         |                    | Postoperative lactic acid levels | In-hospital mortality                     | 0.582                     | bade<br>and                                                                                                                                                                 |             |             |
|                                         |                    |                                  | 1-year mortality                          | 0.498                     | ed fi<br>9ur (                                                                                                                                                              |             |             |
| Oz et al $(2017)^{23}$                  | А                  | NLR                              | In-hospital mortality                     | 0.919 (0.832-1.00)        | AB<br>m                                                                                                                                                                     | 86.00%      | 91.00%      |
| Feng et al (2017) <sup>24</sup>         | А                  | serum cystatin C                 | Long-term mortality                       | 0.772 (0.692–0.839)       | ES)                                                                                                                                                                         | 78.53%      | 69.23%      |
|                                         |                    | hs-CRP                           | (followed up for 909                      | 0.640 (0.574–0.739)       | p://b                                                                                                                                                                       | 86.72%      | 46.51%      |
|                                         |                    | cystatin C, hs-CRP               | days)                                     | 0.883 (0.826–0.935)       | N tra                                                                                                                                                                       | 97.44%      | 65.92%      |
| Li et al (2016) <sup>11</sup>           | А                  | hs-TnT                           | Long-term mortality                       | 0.719 (0.621-0.803)       | ainii                                                                                                                                                                       | 70.80%      | 76.40%      |
|                                         |                    | hs-CRP                           | (followed up for 3.5                      | 0.700 (0.599-0.789)       | ng, a                                                                                                                                                                       | 48.90%      | 94.30%      |
|                                         |                    | D-dimer                          | years)                                    | 0.818 (0.724-0.891)       | nj.cc<br>and                                                                                                                                                                | 86.10%      | 71.40%      |
| Karakoyun et al<br>(2015) <sup>25</sup> | А                  | NLR                              | In-hospital mortality                     | 0.829 (0.674-0.984)       | ry 2021. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025<br>eignement Superieur (ABES) .<br>related to text and data mining, Al training, and similar technologies | 77.00%      | 74.00%      |
| Wen et al (2019) <sup>14</sup>          | A/B                | NT-proBNP                        | In-hospital mortality                     | 0.799 (0.707-0.891)       | Jun<br>r tec                                                                                                                                                                | 55.20%      | 95.70%      |
|                                         |                    | Aortic diameter                  |                                           | 0.724 (0.607-0.841)       | e 12<br>hno                                                                                                                                                                 | 58.60%      | 88.20%      |
|                                         |                    | NT-proBNP and aortic diameter    |                                           | 0.832 (0.735-0.929)       | 2, 20<br>plog                                                                                                                                                               | 79.30%      | 84.90%      |
| Liu et al (2018b) <sup>26</sup>         | A/B                | BUN                              | In-hospital mortality                     | 0.785 (0.662-0.909)       | )25 a                                                                                                                                                                       | 78.90%      | 72.20%      |
| Bennett et al (2017) <sup>27</sup>      | А                  | Serum lactic acid level          | In-hospital mortality                     | 0.88                      | at A                                                                                                                                                                        | 85.00%      | 77.00%      |
|                                         |                    |                                  | 1-year mortality                          | 0.81                      | gen                                                                                                                                                                         | 67.00%      | 84.00%      |
| LAFÇI et al (2014) <sup>28</sup>        | A/B                | NLR                              | In-hospital mortality                     | 0.634 (0.516-0.753)       | 2025 at Agence Bibli<br>ogies.                                                                                                                                              | 70.00%      | 53.00%      |
| Wen et al (2013) <sup>13</sup>          | A/B                | D-dimer                          | In-hospital mortality                     | 0.917 (0.85-0.96)         | Sibli                                                                                                                                                                       | 90.30%      | 75.90%      |
|                                         |                    |                                  | 10                                        |                           | ographiqu                                                                                                                                                                   |             |             |
|                                         |                    | For peer review on               | <b>10</b><br>ly - http://bmjopen.bmj.com/ | ˈsite/about/guidelines.xh | ographique de l                                                                                                                                                             |             |             |

|                                    |               |                         | BMJ Open              |                     | njopen-2020-<br>4 by copyrigh                                                                                                                                                                |         | I      |
|------------------------------------|---------------|-------------------------|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|                                    |               | CRP                     |                       | 0.822 (0.74-0.89)   |                                                                                                                                                                                              | 100.00% | 54.20% |
|                                    |               | D-dimer + CRP           |                       | 0.948 (0.89-0.98)   | 42435 on 5<br>including t                                                                                                                                                                    | 81.90%  | 96.80% |
| Guo et al (2019) <sup>10</sup>     | A/B           | TNC                     | In-hospital mortality | 0.884 (0.809-0.937) | on                                                                                                                                                                                           | 83.87%  | 83.33% |
|                                    |               | TNC + D-dimer           |                       | 0.946 (0.885-0.980) |                                                                                                                                                                                              | 90.30%  | 88.46% |
|                                    |               | D-dimer                 |                       | 0.787 (0.698-0.859) | February 2021. Downloaded from http://bmjopen.bmj.com/ on June 12, 2025<br>Enseignement Superieur (ABES).<br>for uses related to text and data mining, Al training, and similar technologies | 87.19%  | 64.10% |
|                                    |               | CRP                     |                       | 0.758 (0.667-0.835) | ary :<br>isei                                                                                                                                                                                | 90.32%  | 55.13% |
|                                    |               | TNC + CRP               |                       | 0.909 (0.839-0.956) | 202<br>gnei<br>late                                                                                                                                                                          | 90.32%  | 74.92% |
| Ohlmann et al (2006) <sup>12</sup> | A/B           | D-dimer                 | In-hospital mortality | 0.650 (0.584-0.716) | än.<br>ten D                                                                                                                                                                                 |         |        |
| Zhang et al (2016) <sup>29</sup>   | А             | WBC                     | In-hospital mortality |                     | own<br>t Su                                                                                                                                                                                  | 84.60%  | 65.90% |
|                                    |               | SBP                     |                       |                     | iloa<br>iper<br>it an                                                                                                                                                                        | 65.90%  | 69.20% |
|                                    |               | NT-proBNP               |                       |                     | ieur<br>ieur                                                                                                                                                                                 | 80.80%  | 51.20% |
|                                    |               | D-dimer                 |                       |                     | fror<br>(AE                                                                                                                                                                                  | 84.60%  | 70.70% |
| Li et al (2019) <sup>30</sup>      | В             | PLR                     | In-hospital mortality | 0.711 (0.580-0.840) | n <mark>ht</mark><br>BES                                                                                                                                                                     | 63.00%  | 88.00% |
| Zhang et al (2020) <sup>31</sup>   | А             | UA                      | In-hospital mortality | 0.678 (0.579-0.777) | ))).<br>ing,                                                                                                                                                                                 | 65.00%  | 67.10% |
|                                    |               | D-dimer                 |                       | 0.689 (0.589-0.790) | Alt                                                                                                                                                                                          | 44.70%  | 88.80% |
|                                    |               | age                     |                       | 0.616 (0.507-0.724) | rain                                                                                                                                                                                         | 37.50%  | 90.40% |
|                                    |               | UA, D-dimer, age        |                       | 0.771               | ing,                                                                                                                                                                                         |         |        |
| Bedel et al $(2019)^{32}$          | А             | NLR                     | In-hospital mortality | 0.746 (0.623-0.870) | ano mj.c                                                                                                                                                                                     | 70.60%  | 76.80% |
|                                    |               | PLR                     |                       | 0.750 (0.638-0.882) | d sir                                                                                                                                                                                        | 76.50%  | 78.10% |
| Gong et al (2019) <sup>33</sup>    | А             | Postoperative TnI       | 30-Day mortality      | 0.711               | nj.com/ on June 12, 2025 .<br>and similar technologies.                                                                                                                                      |         |        |
|                                    |               | Postoperative Mb        |                       | 0.699               | Jun<br>r tec                                                                                                                                                                                 |         |        |
|                                    |               | Preoperative CK-MB      |                       | 0.694               | le 1)<br>chn                                                                                                                                                                                 |         |        |
|                                    |               | Postoperative CK-MB     |                       | 0.678               | 2, 2(<br>plog                                                                                                                                                                                |         |        |
|                                    |               | Preoperative Creatinine |                       | 0.668               | )25<br>jies.                                                                                                                                                                                 |         |        |
|                                    |               | Preoperative Mb         |                       | 0.644               | . at A                                                                                                                                                                                       |         |        |
|                                    |               | Preoperative D-Dimer    |                       | 0.621               | Agence                                                                                                                                                                                       |         |        |
|                                    |               | Preoperative TnI        |                       | 0.618               | ce E                                                                                                                                                                                         |         |        |
| Prediction models                  |               |                         |                       |                     | Bibliog                                                                                                                                                                                      |         |        |
| Develop a model withou             | ıt validation |                         |                       |                     | iog                                                                                                                                                                                          |         |        |
|                                    |               |                         | 11                    |                     | nl                                                                                                                                                                                           |         |        |
|                                    |               |                         |                       |                     | ique                                                                                                                                                                                         |         |        |

| Page                 | 13 of 48                              |     |                                                                                                                                              | BMJ Open              | а by соругідп                                | njopen-2020                |                          |  |
|----------------------|---------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|----------------------------|--------------------------|--|
| 2<br>3<br>4<br>5     | Zhang et al (2015) <sup>34</sup>      | A/B | Hypotension, syncope, ischaemic complications,<br>renal dysfunction, type A, neutrophil percentage<br>$\geq$ 80%, surgery                    | In-hospital mortality |                                              |                            | 160<br>=0.314<br>=0.750  |  |
| 6<br>7<br>8<br>9     | Tolenaar et al (2014) <sup>8</sup>    | В   | Female, age, hypotension/ shock, periaortic<br>hematoma, aortic diameter ≥5.5 cm, mesenteric<br>ischemia, acute renal failure, limb ischemia | In-hospital mortality | tor uses re                                  | 5 February<br>Ensei        | =0.314                   |  |
| 10<br>11<br>12<br>13 | Mehta et al (2002) <sup>7</sup>       | A   | Age, female, abrupt onset pain, abnormal ECG,<br>any pulse deficit, kidney failure,<br>hypotension/shock/tamponade                           | In-hospital mortality | 0.740<br>0.750<br>Only reported the expected | 2021. Dowr<br>gnement Su   | :0.750                   |  |
| 14                   | Ghoreishi et al (2018)35              | А   | Lactic acid, creatinine, liver malperfusion                                                                                                  | Operative mortality   | 0.750 a                                      | nloa                       |                          |  |
| 15<br>16<br>17       | Centofanti et al (2006) <sup>36</sup> | А   | Age, coma, acute renal failure, shock, and redo operation                                                                                    | 30-Day mortality      | Only reported the expected                   | riegir (Al                 | y and observed mortality |  |
| 18<br>19<br>20<br>21 | Santini et al (2007) <sup>37</sup>    | А   | Age, cardiac tamponade, hypotension, acute<br>myocardial ischemia, mesenteric ischemia, acute<br>renal failure, neurologic injury            | In-hospital mortality | 0.763 (0.802-0.723)                          | m http://bm<br>BES) .      | 55.60% 82.90%            |  |
| 21<br>22<br>23<br>24 | Rampoldi et al (2007) <sup>38</sup>   | А   | Age > 70, history of aortic valve replacement,                                                                                               | In-hospital mortality | 0.760 Land similar technologies              | jopen.bmj.com/ on June 12, | =0.230                   |  |
| 25<br>26             |                                       |     | hypotension (systolic blood pressure < 100 mm                                                                                                |                       |                                              | j.com                      |                          |  |
| 27                   |                                       |     | Hg) or shock at presentation, migrating chest                                                                                                |                       |                                              | : on                       |                          |  |
| 28<br>29             |                                       |     | pain, preoperative cardiac tamponade, any pulse                                                                                              |                       | ır te                                        | َ<br>u                     |                          |  |
| 30                   |                                       |     | deficit, electrocardiogram with findings of                                                                                                  |                       | Chn                                          | ne 1                       |                          |  |
| 31                   |                                       |     | myocardial ischemia or infarction                                                                                                            |                       |                                              | 2<br>2                     |                          |  |
| 32<br>33<br>34       |                                       |     | Age > 70, history of aortic valve replacement,                                                                                               |                       | 0.810 ee                                     | at                         | =0.380                   |  |
| 35<br>36             |                                       |     | hypotension (systolic blood pressure < 100 mm                                                                                                |                       |                                              | Agence                     |                          |  |
| 37                   |                                       |     | Hg) or shock at presentation, migrating chest                                                                                                |                       |                                              | Bib                        |                          |  |
| 38<br>39             |                                       |     | pain, preoperative cardiac tamponade, any pulse                                                                                              |                       |                                              | Bibliog                    |                          |  |
| 40                   |                                       |     |                                                                                                                                              | 12                    |                                              | jrap                       |                          |  |
| 41                   |                                       |     |                                                                                                                                              |                       |                                              | raphique                   |                          |  |
| 42<br>43             |                                       |     | <b>F</b> . <b>1 1 1</b>                                                                                                                      |                       |                                              | ue de                      |                          |  |
| 44                   |                                       |     | For peer review only - http                                                                                                                  | p://pmjopen.bmj.com/  | /site/about/guidelines.xhtml                 | e                          |                          |  |
| 45                   |                                       |     |                                                                                                                                              |                       |                                              |                            |                          |  |
| 46                   |                                       |     |                                                                                                                                              |                       |                                              |                            |                          |  |

|                                     |             |                                                      | BMJ Open              |                                                                     | njopen-2020-<br>1 by copyrigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page 14                                                |
|-------------------------------------|-------------|------------------------------------------------------|-----------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                     |             | deficit, intraoperative hypotension, right ventricle |                       |                                                                     | 120-042435 on 5 Februar<br>Ens<br>ight, including for uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                                     |             | dysfunction at surgery, a necessity to perform a     |                       |                                                                     | 5 or<br>udir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
| 20                                  |             | coronary artery bypass graft                         |                       |                                                                     | n 5 I<br>ng fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| Leontyev et al (2016) <sup>39</sup> | А           | Age, Critical preoperative state, Malperfusion       | In-hospital mortality | 0.767 (0.715-0.819)                                                 | or <b>p</b> =0.60<br><b>c b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
|                                     | _           | syndrome, Coronary artery disease                    |                       |                                                                     | ruary<br>Ensei<br>Ises r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| Zhang et al (2019) <sup>40</sup>    | В           | Hypotension, Ischemic complications, Renal           | In-hospital mortality |                                                                     | y 202<br>eigne<br>relate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $86\%(risk score \ge 4) \qquad 78\%(risk score \ge 4)$ |
|                                     |             | dysfunction, Neutrophil percentage                   |                       |                                                                     | 021.<br>Nem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| Develop a model with in             | iternal val |                                                      |                       |                                                                     | ent<br>to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| Macrina et al $(2010)^{41}$         | А           | immediate post-operative chronic renal failure,      | Long-term mortality   | Support vector                                                      | wnlo<br>Sup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
|                                     |             | circulatory arrest time, the type of surgery on      | (564±48 days)         | machines:0.821,                                                     | oad<br>beric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
|                                     |             | ascending aorta plus hemi-arch, extracorporeal       |                       | Neural networks: 0.870                                              | baded fro<br>erieur (A<br>and data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                     |             | circulation time and the presence of Marfan          |                       |                                                                     | rom<br>(AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                                     |             | habitus                                              |                       |                                                                     | htt<br>ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
| Macrina et al (2009) <sup>42</sup>  | А           | immediate post-operative presence of dialysis in     | 30-Day mortality      | First Centre: multiple logis                                        | , <u>B</u> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
|                                     |             | continuous, renal complications, chronic renal       |                       | regression 0.879 (0.807-0.                                          | Al ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                                     |             | failure, coded operative brain protection            |                       | 932)                                                                | ope<br>rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
|                                     |             | (anterograde better than retrograde perfusion),      |                       |                                                                     | n.b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
|                                     |             | pre-operative neurological symptoms, age,            |                       |                                                                     | p://bmjopen.bmj.com/ on June<br>ŋġ, Al training, and similar tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                                     |             | previous cardiac surgery, the length of              |                       |                                                                     | d si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                                     |             | extracorporeal circulation, the                      |                       |                                                                     | / on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                                     |             | operative presence of hemopericardium and            |                       |                                                                     | Jur<br>Ir te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
|                                     |             | postoperative enterological complications            |                       |                                                                     | ne 1<br>chn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
|                                     |             | immediate post-operative presence of chronic         |                       | Second Centre: multiple logistic regression 0.879 (0.807-0.<br>932) | 12, 2025<br>nologjes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                                     |             | renal failure, coded operative brain protection      |                       | logistic regression 0.857 (0                                        | 025<br>gjes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
|                                     |             | (anterograde better than retrograde perfusion),      |                       | 0.785- 0.911)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
|                                     |             | post-operative presence of dialysis in continuous,   |                       | Second Centre: neural                                               | Agence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                                     |             | pre-operative neurological symptoms, post-           |                       | networks 0.905 (0.838 -                                             | nce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
|                                     |             | operative renal complications, the length of         |                       | 0.951)                                                              | Bib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
|                                     |             | extracorporeal circulation, age, the operative       |                       |                                                                     | Bibliog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
|                                     |             |                                                      | 13                    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
|                                     |             |                                                      | -                     |                                                                     | aphique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
|                                     |             |                                                      |                       |                                                                     | , in the second s |                                                        |
|                                     |             | For peer review only - htt                           | p://bmjopen.bmj.com/  | site/about/guidelines.xhtn                                          | nl <b>de</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |

| Page                                                                       | 15 of 48                                                       |               |                                                                                                                                                                                                                                      | BMJ Open                                               |                             | hijopen-zozo-<br>d by copyrigh | niopen-2020-                                                                                          |                                 |
|----------------------------------------------------------------------------|----------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                            |                                                                |               | presence of hemopericardium, pre-operative<br>presence of intubation, post-operative limb<br>ischemia and enterological complications and the<br>year of surgery                                                                     |                                                        |                             | t, including fo                | 0<br>4<br>4<br>2<br>4<br>2<br>4<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |                                 |
| 8                                                                          | External validation                                            | A /D          | EuroSCORE II                                                                                                                                                                                                                         | In hospital montality                                  | 0 400 (0 200 0 500)         | Ens                            |                                                                                                       |                                 |
| 9<br>10                                                                    | Ge et al (2013) <sup>43</sup><br>Yu et al (2016) <sup>44</sup> | A/B<br>A      | Scoring systems developed by Rampoldi et al                                                                                                                                                                                          | In-hospital mortality<br>Operative mortality           | 0.490 (0.390-0.590)<br>0.62 | eign<br>rela                   |                                                                                                       |                                 |
| 11                                                                         | 1 u et al (2010) <sup>14</sup>                                 | A             | Scoring systems developed by Kampolar et al                                                                                                                                                                                          | 30-day mortality                                       | 0.56                        | related                        |                                                                                                       |                                 |
| 12                                                                         |                                                                |               | Scoring systems developed by Centofanti et al                                                                                                                                                                                        | Operative mortality                                    | 0.66                        | to to                          |                                                                                                       |                                 |
| 13<br>14                                                                   |                                                                |               | Scoring systems developed by Centoranti et al                                                                                                                                                                                        | 30-day mortality                                       | 0.58                        | Supe<br>ext a                  |                                                                                                       |                                 |
| 15                                                                         |                                                                |               | Age                                                                                                                                                                                                                                  | Operative mortality                                    | 0.67                        | t Superieu<br>text and         |                                                                                                       |                                 |
| 16                                                                         | Vrsalovic et al (2015) <sup>9</sup>                            | А             | CRP                                                                                                                                                                                                                                  | In-hospital mortality                                  | 0.790 (0.784-0.796)         | ur (A<br>data                  | 83.00%                                                                                                | 80.00%                          |
| 17<br>18                                                                   |                                                                |               | IRAD score                                                                                                                                                                                                                           |                                                        | 0.740 (0.733-0.747)         | n Be                           | Ĭ                                                                                                     |                                 |
| 19                                                                         |                                                                |               | IRAD score + CRP                                                                                                                                                                                                                     |                                                        | 0.890 (0.886-0.894)         | s) .<br>ning                   |                                                                                                       |                                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29                                     | Rampoldi et al were ca<br>chest pain) + $(0.97 \times p$       | alculated for | io; CK-MB = creatine kinase MB isoenzyme; Mb= m<br>e each patient as $-3.20 + (0.68 \times age > 70) + (1)$<br>cardiac tamponade) + $(0.56 \times any pulse deficit)$<br>r each patient as: $-2.986 + (0.771 \times shock) + (0.56)$ | .44 × history of aortic va<br>+ (0.57 × electrocardiog | ram with findings of myo    | canalial                       | schemia or infarction).                                                                               | ion) + (0.88 $\times$ migrating |
| 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 |                                                                |               |                                                                                                                                                                                                                                      | 14                                                     |                             | nologies.                      | 12 2025 at Agence Bibliographique                                                                     |                                 |
| 43<br>44<br>45<br>46                                                       |                                                                |               | For peer review only - htt                                                                                                                                                                                                           | tp://bmjopen.bmj.com/                                  | site/about/guidelines.xh    |                                |                                                                                                       |                                 |

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

#### 

#### Methodological characteristics

Among the 32 studies, most were single-center studies (n = 23, 72%). The sample size varied from 35 to 1034 (median 165, interquartile range, 103–348), and the median number of events was 35 (23–72). Thirteen (41%) studies used prospective cohort study design, and the rest 19 (59%) used retrospective cohort study design; 22 (69%) used data from electronic medical records (EMR), five (16%) from cohort studies, and five (16%) from registries (Table 3).

Thirty-one (97%) studies clearly described inclusion and exclusion criteria for participants. The criteria used to define and to measure predictors in the study population were consistent among all included studies. The criteria for outcome definition and measurement was consistent in all but one study<sup>13</sup>. (Table 3).

22 (69%) studies included all enrolled participants in the analysis. In the handling of missing data, 30 (94%) studies reported no missing outcome data; 26 (81%) did not report missing predictor data, and 5 (16%) reported that there were some predictors with missing data, and used complete-case analysis to handle missing predictors (Table 3).

In 18 prognostic factor studies, nine (50%) had the events per variables (EPV) more than 20, eight (44%) between 10 and 20, and one (6%) less than 10; fifteen (83%) reported discrimination, sensitivity and specificity, other three (17%) only reported discrimination, or sensitivity and specificity; and 11 (61%) chose logistic regression model for the analysis, 5 (28%) used cox regression, 2 (11%) only used ROC analysis (Table 3).

In the 14 prediction model studies, only three (21%) had the EPV more than 20, eight (57%) between 10 and 20, and three (21%) less than 10; 10 (71%) chose logistic regression model for the analysis, other four studies used cox regression, support vector

 machines, neural networks and ROC analysis respectively. The performance measures were poorly reported: only five (36%) reported both discrimination and calibration statistics. Eleven (64%) studies reported discrimination, measured as AUC of the receiver operated curve, and six (43%) reported calibration, measured as P value for the H-L test. For developing a prediction model, three (27%) did not report any statistical methods and three (27%) simply used statistical significance for selecting predictors; seven (64%) did not report how to handle continuous predictors, four (36%) reported continuous predictor was transformed into categories (Table 3).

| Characteristics                                      | Number (%) or median  |  |  |  |
|------------------------------------------------------|-----------------------|--|--|--|
|                                                      | (interquartile range) |  |  |  |
| Sample size(n)                                       | 165 (103, 348)        |  |  |  |
| Death events(n)                                      | 35 (23, 72)           |  |  |  |
| Multicenter study                                    |                       |  |  |  |
| Yes                                                  | 9 (28.1)              |  |  |  |
| No                                                   | 23 (71.9)             |  |  |  |
| Epidemiological design                               |                       |  |  |  |
| Prospective cohort                                   | 13 (40.6)             |  |  |  |
| Retrospective cohort                                 | 19 (59.4)             |  |  |  |
| Data sources                                         |                       |  |  |  |
| Cohort study                                         | 5 (15.6)              |  |  |  |
| EMR data                                             | 22 (68.8)             |  |  |  |
| Registry                                             | 5 (15.6)              |  |  |  |
| Whether did the study clearly describe inclusion/    |                       |  |  |  |
| exclusion criteria for participants                  |                       |  |  |  |
| Yes                                                  | 31 (96.9)             |  |  |  |
| No                                                   | 1 (3.1)               |  |  |  |
| Consistent definition/diagnostic criteria of predict | ors                   |  |  |  |
| used in all participants                             |                       |  |  |  |
| Yes                                                  | 32 (100.0)            |  |  |  |
| No                                                   | 0 (0)                 |  |  |  |
| Consistent measurement of predictors used in all     |                       |  |  |  |
| participants                                         |                       |  |  |  |
| Yes                                                  | 32 (100.0)            |  |  |  |
| No                                                   | 0 (0)                 |  |  |  |

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Table 3. Methodological characteristics of included studies

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

| Consistent definition/diagnostic criteria of outcomes |          |
|-------------------------------------------------------|----------|
| used in all participants                              |          |
| Yes                                                   | 31 (96.9 |
| No                                                    | 1 (3.1)  |
| Consistent measurement of outcomes used in all        |          |
| participants                                          |          |
| Yes                                                   | 31 (96.9 |
| No                                                    | 1 (3.1)  |
| Were all enrolled participants included in the        |          |
| analysis?                                             |          |
| Yes                                                   | 22 (68.8 |
| No                                                    | 10 (31.2 |
| Was missing outcome data reported, and the            |          |
| methods handling missing outcome                      |          |
| Yes, complete-case analysis                           | 1 (3.1)  |
| No                                                    | 30 (93.8 |
| Not reported                                          | 1 (3.1)  |
| Was any missing predictor data reported, and the      |          |
| methods handling missing predictor                    |          |
| Yes, complete-case analysis                           | 5 (15.6) |
| No                                                    | 1 (3.1)  |
| Not reported                                          | 26 (81.3 |
| Prognostic factors (n=18) prediction models           |          |
| Number of outcomes/events in relation to the          |          |
| number of predictors for assessing prognostic factors |          |
| (Events Per Variable: EPVs)                           |          |
| <10                                                   | 1 (5.6)  |
| 10-20                                                 | 8 (44.4) |
| $\geq 20$                                             | 9 (50.0) |
| Model structure used in the study                     |          |
| Logistic regression                                   | 11 (61.1 |
| Cox regression                                        | 5 (27.8) |
| ROC analyses (Not report regression)                  | 2 (11.1) |
| Relevant model performance measures evaluated for     |          |
| addressing prognostic factors                         |          |
| AUC                                                   | 2 (11.1) |
| AUC, sensitivity, specificity                         | 15 (83.3 |
| Sensitivity, specificity                              | 1 (5.6)  |

| Prediction models (n=14)                           |           |
|----------------------------------------------------|-----------|
| Number of outcomes/events in relation to the       |           |
| number of predictors in multivariable analysis     |           |
| (Events Per Variable: EPVs)                        |           |
| <10                                                | 3 (21.4)  |
| 10-20                                              | 8 (57.1)  |
| ≥20                                                | 3 (21.4)  |
| Model structure used in the study                  |           |
| Logistic regression                                | 10 (71.4) |
| Cox regression                                     | 1 (7.1)   |
| ROC analyses (Not report regression)               | 1 (7.1)   |
| Logistic regression and support vector machines    | 1 (7.1)   |
| Logistic regression and neural networks            | 1 (7.1)   |
| Relevant model performance measures evaluated for  |           |
| addressing prediction models                       |           |
| AUC, P value of Hosmer-Lemeshow test               | 5 (35.7)  |
| AUC                                                | 4 (28.6)  |
| AUC, sensitivity, specificity                      | 2 (14.3)  |
| P value of Hosmer-Lemeshow test                    | 1 (7.1)   |
| Expected and observed                              | 1 (7.1)   |
| Sensitivity, specificity                           | 1 (7.1)   |
| Develop prediction models (n=11)                   |           |
| Statistical method for selecting predictors during |           |
| addressing prediction models                       |           |
| Univariate analysis of predictors by P value       | 3 (27.3)  |
| Univariate analysis of predictors by P value and   | 3 (27.3)  |
| other specific predictors                          |           |
| Stepwise selection                                 | 2 (18.1)  |
| Not reported                                       | 3 (27.3)  |
| Handling the predictors for addressing prediction  |           |
| models                                             |           |
| Continuous predictor was transformed into          | 4 (36.4)  |
| categories                                         |           |
| Not reported                                       | 7 (63.6)  |

EMR: electronic medical records

#### **Risk of bias assessment**

The risk of bias for 14 prediction models in the domains of participants, predictors, and outcome was low for most studies, while the risk of bias in the domain of sample size and missing data and statistical analysis was generally high (Table 4). Studies rated high and unclear risk of bias in the domains of sample size and missing data, due to low number of outcomes per variable (EPV < 10), or lack of information about the method on handling missing data. The main reasons for studies rated high and unclear risk of bias in the domains of statistical analysis were as below: the predictors are selected on the basis of univariable analysis prior to multivariable modeling, lack of information on whether continuous predictors are examined for nonlinearity and how categorical predictor groups are defined, and either calibration or discrimination are not reported. Table 4. Risk of bias of included prediction model studies

| Study ID                              | Participan<br>ts | predictor<br>s | Outcome | Sample size<br>and missing<br>data | Statistical<br>analysis |
|---------------------------------------|------------------|----------------|---------|------------------------------------|-------------------------|
| Zhang et al (2015) <sup>34</sup>      | L                | L              | L       | Н                                  | Н                       |
| Tolenaar et al $(2014)^8$             | L                | L              | L       | Н                                  | Н                       |
| Mehta et al (2002) <sup>7</sup>       | L                | L              | L       | U                                  | U                       |
| Ghoreishi et al (2018) <sup>35</sup>  | L                | L              | Н       | U                                  | Н                       |
| Centofanti et al (2006) <sup>36</sup> | L                | L              | L       | U                                  | Н                       |
| Santini et al (2007) <sup>37</sup>    | L                | L              | L       | U                                  | Н                       |
| Rampoldi et al (2007) <sup>38</sup>   | L                | L              | L       | L                                  | Н                       |
| Leontyev et al (2016) <sup>39</sup>   | L                | L              | L       | U                                  | Н                       |
| Zhang et al (2019) <sup>40</sup>      | L                | L              | L       | Н                                  | Н                       |
| Macrina et al (2010) <sup>41</sup>    | L                | L              | L       | Н                                  | Н                       |
| Macrina et al (2009) <sup>42</sup>    | L                | L              | L       | Н                                  | Н                       |
| Ge et al (2013) <sup>43</sup>         | Н                | Н              | L       | Н                                  | Н                       |
| Yu et al (2016) <sup>44</sup>         | L                | L              | L       | Н                                  | Н                       |
| Vrsalovic et al (2015) <sup>9</sup>   | L                | L              | L       | Н                                  | Н                       |

L: low risk; H: high risk; U: unclear risk

#### Discussion

## Summary study findings

Page 21 of 48

#### **BMJ** Open

In this systematic review, we identified 32 studies addressing prognostic factors or prediction models for mortality among AAD patients. As noticed in this review, the performance of prognostic factors or prediction models was most commonly evaluated by the AUC and H-L test. Most assessment of prognostic factors demonstrated moderate discrimination. The factors using combined TNC and D-dimer, or combined D-dimer and CRP showed strong discrimination (AUC 0.95). The prediction models showed poor to strong discrimination (AUC 0.49 to 0.91). The prediction model EuroSCORE II showed poor discriminative ability (AUC 0.49) and poor calibration (P value for the H-L test. <0.001). One explanation may be that EuroSCORE II is a risk model which allows the calculation of the risk of death after a heart surgery, and is not related to prognosis of patients with AAD, because not all patients with aortic dissection undergo surgical treatment, and some of them undergo endovascular treatment. Mehta et al.<sup>7</sup> model showed better discrimination (0.74) than the EuroSCORE II. Meanwhile, Mehta et al used IRAD from multinational data reported good calibration. Through external validation, IRAD score showed moderate discrimination (AUC 0.74), addition of CRP to IRAD score notably improved discrimination (AUC 0.89). Hence, the prediction model for mortality in AAD should consider including biomarkers as predictors to improve discrimination.

In this systematic review, we found that most studies had small number of sample sizes and events, were derived from a single-center study, and a relatively large proportion of studies chose to use retrospective data. Most studies did not describe information on missing data nor accounted for appropriate statistical methods for handle missing data. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

For developing or validating prediction models, we found that most were considered at high risk of bias; the number of EPV in most studies was relatively small, which result in prediction performance of models being possibly biased;<sup>45 46</sup> most studies did not evaluate both discrimination and calibration. Almost all studies reported discriminative ability of prediction models, while only six studies reported calibration. For developing prediction models, we found that some studies based on statistical significance for

selecting variable may lead to suboptimal models; most studies did not report how to handle the continuous variable, and linear assumption may be inappropriate.

#### Implications for future study

 Although some studies showed good discrimination and calibration. Our findings highlighted important methodological limitations among those studies. Then it is possible that the result is not accurate and reliable. So in the future, studies about prognostic factors or prediction models for mortality in AAD should enroll large patient population from multicenter setting, meanwhile consider cohort designs, the imputation of missing data. Multiple imputation techniques to deal with missing data are important when evaluating model performance. Excluding cases with missing data may lead to biased results.<sup>47</sup>

Studies about prediction models for mortality in AAD should consider appropriate methods for selecting variable and handling the continuous variable, and evaluating both discrimination and calibration. The number of participants and events should be planned, and the number of EPV should be at least 10. If the number of events is low relative to the number of predictors, penalized regression may be better than the standard regression. Stability selection and subsampling have demonstrated to yield more stable models based on a consistent selection of variables, so they should be used in future studies for prediction model.<sup>48</sup> Discrimination should not be reported in isolation because a poorly calibrated model can present the same discriminative capacity as a perfectly calibrated one.<sup>49</sup> Reporting both discrimination and calibration is highly recommended for evaluating performance measures. Validating the predictions models should be considered, as both model development and validation are essential processes for establishing a useful prediction model.<sup>50</sup>

A prediction model most suitable for clinical practice should include a relatively small number of variables, be easily interpreted, and have good statistical performance. Apart

from the well-established IRAD model, our review found that the combined IRAD score and CRP model used less variables and showed better discrimination than IRAD score alone. These characteristics may warrant daily practice of the combine model. Moreover, future studies may consider updating IRAD model by including other relevant biomarkers, which may further improve prognostic performance in clinical practice.

#### Strengths and limitations

To our knowledge, no systematic review looking at the methodology characteristics and performance of prognostic factors or predictive models for mortality in AAD has been published. Whether these existing prognostic factors or prediction models may be used to guide or improve clinical practice remains underexplored. Should we seek better prognostic factors or prediction models? Should we continue using and validating these prognostic factors or prediction models? There is consensus on this issue among commentators. We should seek better prognostic factors or prediction models. Substantial efforts are warranted to strengthen the use of rigorous methods for the accuracy and reliability of the performance in the future research. Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

A limitation of the present study is that our review about the methodological characteristics was primarily based on reporting. There might be cases that the researchers had considered the methodological issues but did not clearly report. This situation also emphasized the importance of complete reporting.

#### Conclusions

In conclusion, D-dimer, NLR, and CRP predictors were the most commonly used biomarkers, the performance of prognostic factors showed a poor to strong discrimination, the prediction models varied substantially, only six studies reported the calibration, and of which five reported good calibration. Meanwhile, many of these prognostic factors or predictive models are weak methodologically, several important

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

issues are needed to consider for strengthening for predicting mortality in AAD, such as the sample size, the methods for handling missing data, appropriate statistical analysis methods, and reporting both calibration and discrimination for prediction models. Substantial efforts are warranted to improve the use of the methods for better care of this population.

#### Contributors

Study concept and design: Yan Ren. Screening the articles: Yan Ren and Shiyao Huang. Acquisition of data: Yan Ren, Shiyao Huang and Chunrong Liu. Analysis of data: Yan Ren and Shiyao Huang. Drafting of the manuscript: Yan Ren. Writing - review & editing: Qianrui Li, Ling Li, Jing Tan, Kang Zou, and Xin Sun. Study supervision: Xin Sun.

#### **Funding Information**

This study was supported by National Key R&D Program of China (Grant No. 2017YFC1700406 and 2019YFC1709804) and 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. ZYYC08003).

#### **Competing Interests**

The authors declare no competing interests.

#### Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

#### Patient consent for publication

Not required.

#### Provenance and peer review

Not commissioned; externally peer reviewed.

#### Data availability statement

 All data relevant to the study are included in the article or uploaded as supplementary information. The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

#### **Ethics** approval

The current study is a secondary analysis of the research data. No ethical approval was required for our study.

# Reference

- Nienaber CA, Eagle KA. Aortic dissection: new frontiers in diagnosis and management: Part I: from etiology to diagnostic strategies. *Circulation* 2003;108:628-35.
- 2. Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. *Jama* 2000;283:897-903.
- 3. Nienaber CA, Clough RE. Management of acute aortic dissection. *The Lancet* 2015;385:800-11.
- Vrsalovic M. Prognostic effect of cardiac troponin elevation in acute aortic dissection: A meta-analysis. *Int J Cardiol* 2016;214:277-8.
- Hsieh WC, Henry BM, Hsieh CC, Maruna P, Omara M, Lindner J. Prognostic Role of Admission C-Reactive Protein Level as a Predictor of In-Hospital Mortality in Type-A Acute Aortic Dissection: A Meta-Analysis. *Vasc Endovascular Surg* 2019;53:547-57.
- Vrsalović M, Vrsalović Presečki A. Admission C-reactive protein and outcomes in acute aortic dissection: a systematic review. *Croatian Medical Journal* 2019;60:309-15.
- 7. Mehta RH, Suzuki T, Hagan PG, et al. Predicting death in patients with acute type a

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

aortic dissection. Circulation 2002;106:e224.

- Tolenaar JL, Froehlich W, Jonker FH, et al. Predicting in-hospital mortality in acute type b aortic dissection: Evidences from IRAD. *Circulation* 2013;128(22 SUPPL. 1).
- 9. Vrsalovic M, Zeljkovic I, Presecki AV, Pintaric H, Kruslin B. C-reactive protein, not cardiac troponin T, improves risk prediction in hypertensives with type A aortic dissection. *Blood Pressure* 2015;24:212-6.
- 10. Guo T, Zhou X, Zhu A, Peng W, Zhong Y, Chai X. The Role of Serum Tenascin-C in Predicting In-Hospital Death in Acute Aortic Dissection *Int Heart J.* 2019.
- 11. Li G, Wu XW, Lu WH, et al. High-sensitivity cardiac troponin T: A biomarker for the early risk stratification of type-A acute aortic dissection? *Archives of Cardiovascular Diseases* 2016;109:163-70.
- 12. Ohlmann P, Faure A, Morel O, et al. Diagnostic and prognostic value of circulating D-Dimers in patients with acute aortic dissection. *Crit Care Med* 2006;34:1358-64.
- 13. Wen D, Du X, Dong JZ, Zhou XL, Ma CS. Value of D-dimer and C reactive protein in predicting inhospital death in acute aortic dissection. *Heart* 2013;99:1192-7.
- 14. Wen D, Jia P, Du X, Dong JZ, Ma CS. Value of N-terminal pro-brain natriuretic peptide and aortic diameter in predicting in-hospital mortality in acute aortic dissection. *Cytokine* 2019;119:90-4.
- 15. Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. *BMJ* 2017;356:i6460.
- Hemingway H, Croft P, Perel P, et al. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. *BMJ* 2013;346:e5595.

| 17. | Geersing GJ, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons KG. Search                |
|-----|------------------------------------------------------------------------------------------------|
|     | filters for finding prognostic and diagnostic prediction studies in Medline to enhance         |
|     | systematic reviews. <i>PLoS One</i> 2012;7:e32844.                                             |
| 18. | Pencina MJ, D'Agostino RB, Sr. Evaluating Discrimination of Risk Prediction Models:            |
|     | The C Statistic. <i>Jama</i> 2015;314:1063-4.                                                  |
| 19. | Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data                     |
|     | extraction for systematic reviews of prediction modelling studies: the CHARMS                  |
|     | checklist. PLoS Med 2014;11:e1001744. doi:10.1371/journal.pmed.1001744.                        |
| 20. | Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias               |
|     | and Applicability of Prediction Model Studies. Ann Intern Med 2019;170:51-8.                   |
| 21. | Liu J, Sun LL, Wang J, Ji G. The relationship between fibrinogen and in-hospital               |
|     | mortality in patients with type A acute aortic dissection. American Journal of Emergency       |
|     | Medicine 2018;36:741-4.                                                                        |
| 22. | Zindovic I, Luts C, Bjursten H, et al. Perioperative Hyperlactemia Is a Poor Predictor of      |
|     | Outcome in Patients Undergoing Surgery for Acute Type-A Aortic Dissection. Journal             |
|     | of Cardiothoracic and Vascular Anesthesia 2018;32:2479-84.                                     |
| 23. | Oz K, Iyigun T, Karaman Z, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio           |
|     | and Risk Factors for Mortality in Patients with Stanford Type A Aortic Dissection. The         |
|     | <i>heart surgery forum</i> 2017;20:E119-23.                                                    |
| 24. | Feng WZ, Zhou JQ, Yu GM, Zeng Y, Xu P. Association of serum cystatin C levels with             |
|     | mortality in patients with acute type A aortic dissection. <i>Oncotarget</i> 2017;8:101103-11. |
| 25. | Karakoyun S, Gursoy MO, Akgun T, et al. Neutrophil-lymphocyte ratio may predict in-            |
|     | 26                                                                                             |
|     | 18.<br>19.<br>20.<br>21.<br>22.<br>23.                                                         |

 hospital mortality in patients with acute type A aortic dissection. Herz 2015;40:716-21.

- 26. Liu J, Sun LL, Wang J, Ji G. Blood urea nitrogen in the prediction of in-hospital mortality of patients with acute aortic dissection. *Cardiology Journal* 2018;25:371-6.
- Bennett JM, Wise ES, Hocking KM, Brophy CM, Eagle SS. Hyperlactemia Predicts Surgical Mortality in Patients Presenting With Acute Stanford Type-A Aortic Dissection. *J Cardiothorac Vasc Anesth* 2017;31:54-60.
- 28. Lafci G, Cicek OF, Uzun HA, et al. Relationship of admission neutrophil-to-lymphocyte ratio with in-hospital mortality in patients with acute type i aortic dissection. *Turkish Journal of Medical Sciences* 2014;44:186-92.
- 29. Zhang R, Chen S, Zhang H, et al. Biomarkers investigation for in-hospital death in patients with stanford type A acute aortic dissection. *International Heart Journal* 2016;57:622-6.
- 30. Li G, Zhao L, Ma Y, et al. Platelet count to lymphocyte count ratio may predict mortality in stanford type B acute aortic dissection. *International Journal of Clinical and Experimental Medicine* 2019;12:1922-8.
- 31. Zhang Y, Xu X, Lu Y, Guo L, Ma L. Preoperative uric acid predicts in-hospital death in patients with acute type a aortic dissection. *J Cardiothorac Surg* 2020;15:21.
- 32. Bedel C, Selvi F. Association of Platelet to Lymphocyte and Neutrophil to Lymphocyte Ratios with In-Hospital Mortality in Patients with Type A Acute Aortic Dissection. *Braz J Cardiovasc Surg* 2020;34:694-8.
- 33. Gong M, Wu Z, Guan X, Jiang W, Zhang H. Comparison of prognostic ability of perioperative myocardial biomarkers in acute type A aortic dissection. *Medicine*

#### BMJ Open

| 1        |     |                                                                                           |
|----------|-----|-------------------------------------------------------------------------------------------|
| 2        |     |                                                                                           |
| 3        |     |                                                                                           |
| 4<br>5   |     | <i>(Baltimore)</i> 2019;98:e17023.                                                        |
| 6        |     |                                                                                           |
| 7        | 34. | Zhang J, Jiang Y, Gao C, Feng J, Wang A. Risk factors for hospital death in patients      |
| 8        |     |                                                                                           |
| 9        |     | with courts partia disposition. Heart Lung and Circulation 2015;24:249, 52                |
| 10       |     | with acute aortic dissection. <i>Heart Lung and Circulation</i> 2015;24:348-53.           |
| 11       |     |                                                                                           |
| 12       | 35. | Ghoreishi M, Wise ES, Croal-Abrahams L, et al. A Novel Risk Score Predicts Operative      |
| 13       |     |                                                                                           |
| 14       |     | Mortality After Acute Type A Aortic Dissection Repair. Annals of Thoracic Surgery         |
| 15       |     | Mortailly Aller Acute Type A Aortic Dissection Repair. Annais of Thoracle Ourgery         |
| 16       |     |                                                                                           |
| 17       |     | 2018;106:1759-66.                                                                         |
| 18       |     |                                                                                           |
| 19       | 36. | Centofanti P, Flocco R, Ceresa F, et al. Is Surgery Always Mandatory for Type A Aortic    |
| 20<br>21 | 00. |                                                                                           |
| 21       |     |                                                                                           |
| 23       |     | Dissection? Annals of Thoracic Surgery 2006;82:1658-64.                                   |
| 24       |     |                                                                                           |
| 25       | 37. | Santini F, Montalbano G, Casali G, et al. Clinical presentation is the main predictor of  |
| 26       |     |                                                                                           |
| 27       |     |                                                                                           |
| 28       |     | in-hospital death for patients with acute type a aortic dissection admitted for surgical  |
| 29       |     |                                                                                           |
| 30       |     | treatment: A 25 years experience. International Journal of Cardiology 2007;115:305-       |
| 31       |     |                                                                                           |
| 32       |     | 11                                                                                        |
| 33       |     | 11.                                                                                       |
| 34       |     |                                                                                           |
| 35       | 38. | Rampoldi V, Trimarchi S, Eagle KA, et al. Simple Risk Models to Predict Surgical          |
| 36       |     |                                                                                           |
| 37<br>38 |     | Mortality in Acute Type A Aortic Dissection: The International Registry of Acute Aortic   |
| 39       |     |                                                                                           |
| 40       |     |                                                                                           |
| 41       |     | Dissection Score. Annals of Thoracic Surgery 2007;83:55-61.                               |
| 42       |     |                                                                                           |
| 43       | 39. | Leontyev S, Legare JF, Borger MA, et al. Creation of a Scorecard to Predict In-Hospital   |
| 44       |     |                                                                                           |
| 45       |     |                                                                                           |
| 46       |     | Death in Patients Undergoing Operations for Acute Type A Aortic Dissection. Annals        |
| 47       |     |                                                                                           |
| 48       |     | <i>of Thoracic Surgery</i> 2016;101:1700-6.                                               |
| 49       |     |                                                                                           |
| 50       | 40. | Zhang J, Cheng B, Yang M, Pan J, Feng J, Cheng Z. Predicting in-hospital death in         |
| 51<br>52 | 40. |                                                                                           |
| 52<br>53 |     |                                                                                           |
| 54       |     | patients with type B acute aortic dissection. <i>Medicine (Baltimore)</i> 2019;98:e16462. |
| 55       |     |                                                                                           |
| 56       | 41. | Macrina F, Puddu PE, Sciangula A, et al. Long-term mortality prediction after             |
| 57       |     |                                                                                           |
| 58       |     |                                                                                           |
| 59       |     | operations for type A ascending aortic dissection. Journal of cardiothoracic surgery      |

2010;5:42.

- 42. Macrina F, Puddu PE, Sciangula A, et al. Artificial neural networks versus multiple logistic regression to predict 30-day mortality after operations for type A ascending aortic dissection. *Open Cardiovascular Medicine Journal* 2009;3:81-95.
- 43. Ge Y, Sun L, Zhu J, et al. Can EuroSCORE II predict the mortality and length of intensive care unit stay after total aortic arch replacement with stented elephant trunk implantation for DeBakey type i aortic dissection? *Thoracic and Cardiovascular Surgeon* 2013;61:564-68.
- 44. Yu PJ, Cassiere HA, Kohn N, et al. Utility of Established Risk Models to Predict Surgical Mortality in Acute Type-A Aortic Dissection. *Journal of Cardiothoracic and Vascular Anesthesia* 2016;30:39-43.
- 45. Tan J, Qi Y, Liu C, et al. The use of rigorous methods was strongly warranted among prognostic prediction models for obstetric care. *J Clin Epidemiol* 2019;115:98-105.
- 46. Sahle BW, Owen AJ, Chin KL, Reid CM. Risk Prediction Models for Incident Heart Failure: A Systematic Review of Methodology and Model Performance. *J Card Fail* 2017;23:680-7.
- 47. Janssen KJ, Donders AR, Harrell FE, Jr., et al. Missing covariate data in medical research: to impute is better than to ignore. *J Clin Epidemiol* 2010;63:721-7.
- 48. Meinshausen N, Buhlmann P. Stability selection. *J R Statist Soc B* 2010;72:417–73.
- 49. Vickers AJ, Cronin AM. Traditional statistical methods for evaluating prediction models are uninformative as to clinical value: towards a decision analytic framework. *Semin Oncol* 2010;37:31-8.

| 1  |                                                                                          |
|----|------------------------------------------------------------------------------------------|
| 2  |                                                                                          |
| 3  |                                                                                          |
|    |                                                                                          |
| 4  | 50. Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction |
| 5  |                                                                                          |
| 6  |                                                                                          |
|    | model when there are few events. BMJ 2015;351:h3868.                                     |
| 7  |                                                                                          |
| 8  |                                                                                          |
| 9  |                                                                                          |
| 10 |                                                                                          |
|    |                                                                                          |
| 11 |                                                                                          |
| 12 |                                                                                          |
| 13 |                                                                                          |
|    |                                                                                          |
| 14 |                                                                                          |
| 15 |                                                                                          |
| 16 |                                                                                          |
| 17 |                                                                                          |
|    |                                                                                          |
| 18 |                                                                                          |
| 19 |                                                                                          |
| 20 |                                                                                          |
|    |                                                                                          |
| 21 |                                                                                          |
| 22 | Figure 1. Flow chart of study selection                                                  |
| 23 | Figure 1. Flow chart of study selection                                                  |
| 24 |                                                                                          |
|    |                                                                                          |
| 25 |                                                                                          |
| 26 |                                                                                          |
| 27 |                                                                                          |
| 28 |                                                                                          |
|    |                                                                                          |
| 29 |                                                                                          |
| 30 |                                                                                          |
| 31 |                                                                                          |
|    |                                                                                          |
| 32 |                                                                                          |
| 33 |                                                                                          |
| 34 |                                                                                          |
| 35 |                                                                                          |
|    |                                                                                          |
| 36 |                                                                                          |
| 37 |                                                                                          |
| 38 |                                                                                          |
|    |                                                                                          |
| 39 |                                                                                          |
| 40 |                                                                                          |
| 41 |                                                                                          |
| 42 |                                                                                          |
|    |                                                                                          |
| 43 |                                                                                          |
| 44 |                                                                                          |
| 45 |                                                                                          |
| 46 |                                                                                          |
|    |                                                                                          |
| 47 |                                                                                          |
| 48 |                                                                                          |
| 49 |                                                                                          |
| 50 |                                                                                          |
|    |                                                                                          |
| 51 |                                                                                          |
| 52 |                                                                                          |
| 53 |                                                                                          |
|    |                                                                                          |
| 54 |                                                                                          |
| 55 |                                                                                          |
| 56 |                                                                                          |
| 57 |                                                                                          |
|    |                                                                                          |
| 58 |                                                                                          |
| 59 |                                                                                          |
| 60 |                                                                                          |
|    | 30                                                                                       |
|    |                                                                                          |
|    |                                                                                          |
|    |                                                                                          |

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.



Page 33 of 48

|                             | Region  | Period of Data<br>Collection | Centers<br>(n) | size for<br>analysis<br>(n) | Event | Study design         | Data sources | Age (Man±SD or<br>Some Equation<br>Conversion (years)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Male (%) | Study purp                                 |
|-----------------------------|---------|------------------------------|----------------|-----------------------------|-------|----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------|
| Liu et al<br>(2018a)        | China   | 2006.01-<br>2017.01          | I              | 143                         | 32    | Retrospective cohort | EMR data     | <b>1ated</b><br><b>2021</b> $3.0, 62.0$<br><b>bend</b><br><b>bend</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.4</b><br><b>11.5</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>11.6</b><br><b>1</b> | 72.00%   | Prediction<br>performance<br>prognostic fa |
| Zindovic et al (2018)       | Sweden  | 2005.01-<br>2017.02          | Γ              | 277                         | 37    | Retrospective cohort | EMR data     | nloat11.4<br>Superior<br>and da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.86%   | Prediction<br>performance<br>prognostic fa |
| Oz et al (2017)             | Turkey  |                              | 1              | 57                          | 15    | Retrospective cohort | EMR data     | frog≇±10.5<br>(ABLES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.80%   | Prediction<br>performance<br>prognostic fa |
| Li et al<br>(2016)          | China   | 2010.05-<br>2014.06          | 4              | 103                         | 36    | Prospective cohort   | EMR data     | <b>A</b> 54.∰13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.93%   | Prediction<br>performance<br>prognostic f  |
| Vrsalovic et al<br>(2015)   | Croatia | 2006.01-<br>2013.12          | 1              | 54                          | 24    | Retrospective cohort | EMR data     | ain 69.#±14.0<br>g, br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.00%   | External validation                        |
| Karakoyun et al ,<br>(2015) | Turkey  | 2009-2013                    | 1              | 35                          | 9     | Retrospective cohort | EMR data     | and 55.99 +7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80.00%   | Prediction<br>performance<br>prognostic f  |
| Wen et al<br>(2019)         | China   | 2008.03-<br>2012.01          | 1              | 122                         | 29    | Prospective cohort   | Cohort       | ilar techne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.43%   | Prediction<br>performance<br>prognostic f  |
| Liu et al<br>(2018b)        | China   | 2012.12-<br>2016.06          | 1              | 192                         | 19    | Retrospective cohort | EMR data     | 12, 44.0, 62.0)<br>12, 14, 10, 62.0)<br>12, 12, 12, 12, 12, 12, 12, 12, 12, 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.60%   | Prediction<br>performance<br>prognostic f  |
| Bennett et al (2017)        | USA     | 2000-2014                    | 1              | 144                         | 38    | Retrospective cohort | EMR data     | <b>at</b><br>58.7 ( <b>A</b> .9, 69.7)<br><b>et</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.00%   | Prediction<br>performance<br>prognostic f  |
| Zhang et al<br>(2015)       | China   | 2008.01-<br>2013.10          | 1              | 360                         | 77    | Prospective cohort   | Cohort       | 57.8 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.80%   | Develop a<br>without vali                  |

d by copyright, includi njopen-2020-042435 o

|                                   |                   |                       |                 |      | U   | MJ Open                 |          | mjopen-2020-042435 on 57∓ebruars 2021.<br>55. Enseignem<br>4 by copyright, including for uses related |        |                                               |
|-----------------------------------|-------------------|-----------------------|-----------------|------|-----|-------------------------|----------|-------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|
| LAFÇI et al<br>(2014)             | Turkey            | 2007.01-<br>2012.01   | 1               | 104  | 33  | Retrospective cohort    | EMR data | ing for us                                                                                            | 73.08% | Prediction<br>performance<br>prognostic facto |
| Wen et al (2013)                  | China             | 2007.01-<br>2011.10   | 1               | 114  | 31  | Prospective cohort      | Cohort   | uars:±7.6<br>Ensଙ୍ଖ୍ୟ<br>ses relate                                                                   | 84.20% | Prediction<br>performance<br>prognostic facto |
| Guo et al<br>(2019)               | China             | 2015.12-<br>2017.08   | 1               | 109  | 31  | Prospective cohort      | Cohort   | + 0 -                                                                                                 | 59.63% | Prediction<br>performance<br>prognostic facto |
| Ohlmann et al (2006)              | France            | 1997.01-<br>2003.12   | 1               | 93   | 22  | Retrospective cohort    | EMR data | o text and da<br>text and da<br>da<br>da<br>text and da                                               | 66.00% | Prediction<br>performance<br>prognostic facto |
| Ge et al<br>(2013)                | China             | 2009.02-<br>2012.02   | 1               | 384  | 31  | Retrospective cohort    | Cohort   | d data mining,                                                                                        | 20.05% | External Validation                           |
| Tolenaar et al<br>(2014)          | Multination<br>al | 1996.01-<br>2013.04   | Multicent<br>er | 1034 | 110 | Prospective cohort      | Registry | ng, Al                                                                                                | 65.10% | Develop a mo<br>without validati              |
| Mehta et al<br>(2002)<br>Yu et al | 6 countries       | 1996.01-<br>1999.12   | 18              | 547  | 178 | Prospective cohort      | Registry | train 61.2 ±14.1                                                                                      | 65.50% | Develop a mo<br>without validati<br>External  |
| (2016)                            | USA               | 2008-2013             | 1               | 79   | 13  | Retrospective<br>cohort | EMR data | grang 51-70)                                                                                          | 65.80% | validation<br>Prediction                      |
| Feng et al (2017)                 | China             | 2010.02-<br>2014.12   | 1               | 136  | 39  | Prospective cohort      | EMR data | d 53.<br>53.<br>10.3                                                                                  | 56.60% | performance<br>prognostic facto               |
| Ghoreishi et al (2018)            | USA               | 2002.01-<br>2015.12   | 1               | 269  | 43  | Retrospective cohort    | EMR data | n ∰∎14<br>Iar tech                                                                                    | 67.00% | Develop a mo<br>without validati              |
| Zhang et al (2016)                | China             | 2014.01-<br>2015.06   | 1               | 67   | 26  | Retrospective cohort    | EMR data | g, AI training $51-70$ )<br>and similar technologies.                                                 |        | Prediction<br>performance<br>prognostic facto |
| Macrina et al<br>(2010)           | Italy             | 2002.01-late<br>2008  | 2               | 235  | 84  | Prospective cohort      | EMR data | 5 at Age<br>s.                                                                                        |        | Develop a mo<br>with inter<br>validation      |
| Macrina et al                     | Italy             | 2001.01-early<br>2008 | 2               | 208  | 53  | Prospective cohort      | EMR data | Survivers:61±12;<br>Nonservivors:<br>69 10                                                            | 64.00% | Develop a mo<br>with inter<br>validation      |

| 3 |                            |                   |                           |             |     | В   | BMJ Open             |          | ıjopen-<br>by cop                                                                                               |        |                                            |
|---|----------------------------|-------------------|---------------------------|-------------|-----|-----|----------------------|----------|-----------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------|
|   |                            |                   |                           |             |     |     |                      |          | njopen-2020-042435<br>J by copyright, inclu                                                                     |        |                                            |
|   | Li et al<br>(2019)         | China             | 2007-2013.08              | 1           | 134 | 19  | Prospective cohort   | EMR data | $M_{H} = 5059 \pm 13.70,$ $M_{H} = 52.17 \pm 55$                                                                | 67.3%  | Prediction<br>performance<br>prognostic fa |
|   | Centofanti et al<br>(2006) | Multination<br>al | 1980-2004                 | Multicenter | 616 | 154 | Prospective cohort   | Registry | ی<br>Bruary 20<br>Enseigr<br>uses rela                                                                          |        | Develop a m<br>without valid               |
|   | Santini et al<br>(2007)    |                   | 1979-2004                 |             | 311 | 72  | Retrospective cohort | EMR data | 1021 $5_{\pm 13}$<br>1021 $5_{\pm 13}$                                                                          | 72.00% | Develop a without valid                    |
|   | Rampoldi et al<br>(2007)   | Multination<br>al | 1996-2003                 | 18          | 682 | 163 | Retrospective cohort | Registry | wnloaded f<br>Superieur<br>and da                                                                               | 70.30% | Develop a n<br>without valid               |
|   | Leontyev et al (2016)      | Multination<br>al | 1996-2011                 | 2           | 534 | 100 | Prospective cohort   | Registry | ed ftom<br>data m                                                                                               | 63.70% | Develop a without valie                    |
|   | Zhang et al (2019)         | China             | 2013.11.01-<br>2016.10.30 | 1           | 188 | 17  | Prospective cohort   | EMR data | ining, A                                                                                                        | 77.10% | Develop a m<br>without valie               |
|   | Zhang et al (2020)         | China             | 2016.01-<br>2019.06       | 1           | 186 | 40  | Retrospective cohort | EMR data | ebruary 2021;55<br>Enseignement Superieur (ABES);<br>uses related to text and data mining, Al training, and sin | 80.00% | Prediction<br>performance<br>prognostic fa |
|   | Bedel et al<br>(2019)      | Finland           | 2013.01-<br>2018.06       | 1           | 96  | 17  | Retrospective        | EMR data | on ,<br>nilar                                                                                                   | 81.20% | Prediction<br>performance<br>prognostic fa |
|   | Gong et al<br>(2019)       | China             | 2015.01-<br>2017.05       | 1           | 583 | 70  | Retrospective cohort | EMR data | / on June 11.29<br>milar tech∺ologi                                                                             |        | Prediction<br>performance<br>prognostic fa |

 CRP: C-reactive protein; NT-proBNP: N-terminal pro-brain natriuretic peptide; BUN: blood urea nitrogen; TNC: Tenascin-C; EuroSCORE II: European System for Cardiac Operative Risk Evaluation.

Notes: The Liu et al (2018a) study and the Liu et al (2018b) study are the different prognostic models. Liu et al (2018a) study is for the relations in between fibrinogen and in-hospital mortality in patients with type A acute aortic dissection. Liu et al (2018b) study is for the relationship between blood urea nitrogen and in-hospital mortalit of patients with acute aortic dissection.

ibliographique de l

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

| 1<br>2   |  |
|----------|--|
| 3<br>4   |  |
| 5<br>6   |  |
| 7        |  |
| 8<br>9   |  |
| 10<br>11 |  |
| 12       |  |
| 13<br>14 |  |
| 15<br>16 |  |
| 17<br>18 |  |
| 19       |  |
| 20<br>21 |  |
| 22<br>23 |  |
| 24<br>25 |  |
| 26       |  |
| 27<br>28 |  |
| 29<br>30 |  |
| 31<br>32 |  |
| 33       |  |
| 34<br>35 |  |
| 36<br>37 |  |
| 38       |  |
| 39<br>40 |  |
| 41<br>42 |  |
| 43<br>44 |  |
| 45       |  |
| 46<br>47 |  |
| 48<br>49 |  |
| 50<br>51 |  |
| 52       |  |
| 53<br>54 |  |
| 55<br>56 |  |
| 57       |  |
| 58<br>59 |  |

59 60

| Da  | atabase: PubMed (until June, 2020)                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------|
| #1  | (aortic dissecting aneurysm[MeSH Terms]) OR aortic dissecting aneurysm                                      |
| #2  | 2 (aortic aneurysm[MeSH Terms]) OR aortic aneurysm                                                          |
| #3  | 3 (aortic dissection*[MeSH Terms]) OR aortic dissection*                                                    |
| #4  | (aortic dissecting hematoma) OR aortic dissecting hematoma[MeSH Terms]                                      |
| #5  | 5 #1 OR #2 OR #3 OR #4                                                                                      |
| #6  | 5 (validat* OR predict*[tiab] OR rule*) OR (predict* AND (outcome* OR risk* OR model*)) OR                  |
| ((1 | history OR variable* OR criteria OR scor* OR characteristic* OR finding* OR factor*) AND                    |
| (p  | redict* OR model* OR decision* OR identif* OR prognos*)) OR (decision* AND (model* OR                       |
| cli | inical* OR logistic models)) OR (prognostic AND (history OR variable* OR criteria OR scor* O                |
| ch  | aracteristic* OR finding* OR factor* OR model*)) OR "stratification" OR "ROC Curve"[MeSH]                   |
| 0   | R "discrimination" OR "discriminate" OR "c statistic" OR "area under the curve" OR "AUC" OR                 |
| "C  | Calibration" OR "Indices" OR "algorithm" OR "Multivariable")                                                |
| #7  | ((cohort[MeSH Terms]) OR cohort) OR (observational[MeSH Terms]) OR observational) OR                        |
| ((j | prospective[MeSH Terms]) OR prospective) OR((trial[MeSH Terms]) OR trial) OR                                |
| ((6 | epidemiology[MeSH Terms]) OR epidemiology) OR ((longitudinal[MeSH Terms]) OR                                |
| lo  | ngitudinal)                                                                                                 |
| #8  | 3 #5 AND #6 AND #7                                                                                          |
| #9  | (Animals[MeSH] NOT Humans[MeSH])                                                                            |
| #1  | 0 #8 NOT #9                                                                                                 |
| #1  | 1 English[Language]                                                                                         |
| #1  | 2 #10 AND #11                                                                                               |
| Da  | atabase: EMBASE (until June, 2020)                                                                          |
| #1  | aortic dissecting aneurysm.mp. or exp dissecting aortic aneurysm/                                           |
| #2  | 2 aortic aneurysm.mp. or exp aortic aneurysm/                                                               |
| #3  | 3 aortic dissection\$.mp. or exp aortic dissection/                                                         |
| #4  | exp aortic dissection/ or aortic dissecting hematoma.mp.                                                    |
| #5  | 5 #1 or #2 or #3 or #4                                                                                      |
| #6  | 5 exp cohort analysis/ or cohort.mp.                                                                        |
| #7  | exp observational study/ or observational.mp.                                                               |
| #8  | B prospective.mp. or exp prospective study/                                                                 |
| #9  | exp controlled clinical trial/ or exp "clinical trial (topic)"/ or exp "randomized controlled the           |
| (to | opic)"/ or trial.mp. or exp pragmatic trial/ or exp "controlled clinical trial (topic)"/ or exp clinical tr |
| or  | exp adaptive clinical trial/ or exp randomized controlled trial/                                            |
| #1  | 0 exp epidemiology/ or epidemiology.mp.                                                                     |
| #1  | 1 exp longitudinal study/ or longitudinal.mp.                                                               |
| #1  | 2 #6 or #7 or #8 or #9 or #10                                                                               |
| #1  | 3 (validat* or predict* or rule* or (predict* and (outcome* or risk* or model*)) or ((history               |
| va  | riable* or criteria or scor* or characteristic* or finding* or factor*) and (predict* or model*             |
| de  | ecision* or identif* or prognos*)) or (decision* and (model* or clinical* or logistic models))              |
| (p  | rognostic and (history or variable* or criteria or scor* or characteristic* or finding* or factor*          |
| m   | odel*)) or ('stratification' or 'ROC Curve' or 'discrimination' or 'discriminate' or 'c statistic' or 'a    |
|     | nder the curve' or 'AUC' or 'Calibration' or 'Indices' or 'algorithm' or 'Multivariable')).af.              |

 #14 #5 and #12 and #13#15 limit #14 to (human and english language)

to beet eview only

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

# **Appendix B**

# The questionnaire for prognostic factors and prediction models in acute aortic dissection

# 1. Study basic information

| 1.1 First author                 |    |                                              |
|----------------------------------|----|----------------------------------------------|
| 1.2 Year of Publication          |    |                                              |
| 1.3 Region                       |    |                                              |
| 1.4 Period of Data Collection    |    |                                              |
| 1.5 Dissection type              | 1) | А                                            |
|                                  | 2) | В                                            |
|                                  | 3) | A/B                                          |
| 1.6 Outcome (such as in-hospital |    |                                              |
| mortality, one-year mortality)   |    |                                              |
| 1.7 age(SD)(years)               |    |                                              |
| 1.8 male(%)                      |    |                                              |
| 1.9 Study purpose                | 1) | Prediction performance of prognostic factors |
|                                  | 2) | Develop a model without validation           |
|                                  | 3) | External validation                          |

# 2. performance information of prognostic factors or prediction models

| 2.1 Prognostic factors          |   |
|---------------------------------|---|
| 2.1.1 predictors 1              |   |
| The name of the predictors      |   |
| Cut-off value(or score)         | 6 |
| AUC(95% CI)                     | 1 |
| P value of Hosmer-Lemeshow test |   |
| sensitivity                     |   |
| specificity                     |   |
| 2.1.2 predictors 2              |   |
| The name of the predictors      |   |
| Cut-off value(or score)         |   |
| AUC(95% CI)                     |   |
| P value of Hosmer-Lemeshow test |   |
| sensitivity                     |   |
| specificity                     |   |
| 2.1.3 predictors 3              |   |
| The name of the predictors      |   |
| Cut-off value(or score)         |   |
| AUC(95% CI)                     |   |
| P value of Hosmer-Lemeshow test |   |
| sensitivity                     |   |

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

| 2.2 Prediction models                        |                                                                 |
|----------------------------------------------|-----------------------------------------------------------------|
| 2.2.1 Number of predictors in model, please  |                                                                 |
| specify the name of the predictors.          |                                                                 |
| 2.2.2 the type of model                      | 1) derivation model                                             |
| Check all that apply                         | 2) internal validation                                          |
| 11.5                                         | 3) external validation                                          |
| 2.2.2.1 Sampling method used for internal    | 1) Bootstrapping                                                |
| validation                                   | 2) Cross validation                                             |
| Check all that apply                         | 3) Split-sample                                                 |
|                                              | 4) Jackknifing procedure                                        |
|                                              | 5) Leave-one-out method                                         |
|                                              | <ul><li>6) Monte Carlo simulations</li></ul>                    |
|                                              | Other, specify                                                  |
| 2.2.2.2 External validation                  | 1) Temporal validation                                          |
| Check all that apply                         | <ol> <li>2) Geographical validation</li> </ol>                  |
|                                              | <ul><li>3) Other, specify</li></ul>                             |
| 2.2.3 What was the method used for assess    | 1) $R^2$                                                        |
| the overall performance                      | 2) Nagelkerke's $\mathbb{R}^2$                                  |
| Check all that apply                         | 3) Brier Score                                                  |
| check an that appry                          | 4) Other, specify                                               |
| 2.2.3.1 The reported value of the overall    | i) other, speerry                                               |
| performance                                  | <i>L</i> .                                                      |
| 2.2.4 What was the method used for           | 1) C statistic (ROC curve)                                      |
| assessing discrimination                     | <ol> <li>Harrell's overall c statistic</li> </ol>               |
| Check all that apply                         | <ul><li>3) Discrimination Slope(Box plots)</li></ul>            |
| check an that appry                          | <ul><li>4) Lorenz curve</li></ul>                               |
|                                              | 5) Log-rank                                                     |
|                                              | <ul><li>6) Other, specify</li></ul>                             |
| 2.2.4.1 The reported value of discrimination | of other, specify                                               |
| 2.2.5 What was the method used for           | 1) P value of Hosmer-Lemeshow test                              |
| assessing calibration                        | ,                                                               |
| e                                            |                                                                 |
| Check all that apply                         | <ul><li>3) Calibration slope</li><li>4) Other specify</li></ul> |
| 2.2.5.1 The reported value of                | 4) Other, specify                                               |
| 2.2.5.1 The reported value or judge of       |                                                                 |
| calibration                                  |                                                                 |
| 2.2.6 Reclassification NRI, % (95% CI/P      |                                                                 |
| Value)(NRI, Net reclassification Index)      |                                                                 |
| 2.2.7 Reclassification IDI, % (95% CI/P      |                                                                 |
| Value)( IDI, Integrative Discriminative      |                                                                 |
| Index)                                       |                                                                 |

# 3. The questionnaire about the methodological characteristics consists of five domains

Enseignement Superieur (ABES) Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

### Domain 1: Study design

| 1.1 No. of Centers                              |  |
|-------------------------------------------------|--|
| 1.2 No. of patients                             |  |
| 1.3 No. of Events                               |  |
| 1.4 Source of data (e.g., cohort, case-control, |  |
| randomized trial participants, EMR or registry  |  |
| data)                                           |  |
| 1.5 Study design (Retrospective cohort          |  |
| Prospective cohort, Nested case-control,        |  |
| Case-control study)                             |  |
|                                                 |  |

## **Domain 2: Participants**

| 2.1 Were appropriate data sources used, e.g., cohort, RCT, or | 1) Yes, specify |
|---------------------------------------------------------------|-----------------|
| nested case-control study data                                | 2) No, specify  |
|                                                               | 3) Not reported |
| 2.2 Whether did the study clearly describe inclusion criteria | 1) yes          |
|                                                               | 2) no           |
|                                                               | 3) Not reported |
| 2.3 Whether did the study clearly describe exclusion criteria | 1) yes          |
|                                                               | 2) no           |
|                                                               | 3) Not reported |

## **Domain 3: Predictors**

| 3.1 Consistent definition/diagnostic criteria of predictors used in | 1) | Yes          |
|---------------------------------------------------------------------|----|--------------|
| all participants                                                    | 2) | No           |
|                                                                     | 3) | Not reported |
| 3.2 Consistent measurement of predictors used in all participants   | 1) | Yes          |
|                                                                     | 2) | No           |
|                                                                     | 3) | Not reported |
|                                                                     |    |              |

# **Domain 4: Outcome**

| 4.1 Consistent definition/diagnostic criteria of outcomes used in | 1) Yes          |
|-------------------------------------------------------------------|-----------------|
| all participants                                                  | 2) No           |
|                                                                   | 3) Not reported |
| 4.2 Consistent measurement of outcomes used in all participants   | 1) Yes          |
|                                                                   | 2) No           |
|                                                                   | 3) Not reported |

## **Domain 5: Analysis**

| 5.1 Were all enrolled participants included in the | 1) | yes |
|----------------------------------------------------|----|-----|
| analysis?                                          | 2) | no  |

| 1                                                                                                                                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                 |  |
| 2                                                                                                                                                                                                                               |  |
| 3                                                                                                                                                                                                                               |  |
| 1                                                                                                                                                                                                                               |  |
| 4                                                                                                                                                                                                                               |  |
| 5                                                                                                                                                                                                                               |  |
| 6                                                                                                                                                                                                                               |  |
| -                                                                                                                                                                                                                               |  |
| /                                                                                                                                                                                                                               |  |
| 8                                                                                                                                                                                                                               |  |
| 0                                                                                                                                                                                                                               |  |
| 9                                                                                                                                                                                                                               |  |
| 10                                                                                                                                                                                                                              |  |
| 11                                                                                                                                                                                                                              |  |
| 10                                                                                                                                                                                                                              |  |
| 12                                                                                                                                                                                                                              |  |
| 13                                                                                                                                                                                                                              |  |
| 1/                                                                                                                                                                                                                              |  |
| 14                                                                                                                                                                                                                              |  |
| 15                                                                                                                                                                                                                              |  |
| 16                                                                                                                                                                                                                              |  |
| 17                                                                                                                                                                                                                              |  |
| 17                                                                                                                                                                                                                              |  |
| 18                                                                                                                                                                                                                              |  |
| 19                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                              |  |
| $2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 4 \\ 35 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$ |  |
| 21                                                                                                                                                                                                                              |  |
| 22                                                                                                                                                                                                                              |  |
| ~~                                                                                                                                                                                                                              |  |
| 23                                                                                                                                                                                                                              |  |
| 24                                                                                                                                                                                                                              |  |
| 25                                                                                                                                                                                                                              |  |
| 25                                                                                                                                                                                                                              |  |
| 26                                                                                                                                                                                                                              |  |
| 27                                                                                                                                                                                                                              |  |
| 27                                                                                                                                                                                                                              |  |
| 28                                                                                                                                                                                                                              |  |
| 29                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                              |  |
| 30                                                                                                                                                                                                                              |  |
| 31                                                                                                                                                                                                                              |  |
| 22                                                                                                                                                                                                                              |  |
| 52                                                                                                                                                                                                                              |  |
| 33                                                                                                                                                                                                                              |  |
| 34                                                                                                                                                                                                                              |  |
| 25                                                                                                                                                                                                                              |  |
| 35                                                                                                                                                                                                                              |  |
| 36                                                                                                                                                                                                                              |  |
| 37                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                              |  |
| 38                                                                                                                                                                                                                              |  |
| 39                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 40                                                                                                                                                                                                                              |  |
| 41                                                                                                                                                                                                                              |  |
| 42                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 43                                                                                                                                                                                                                              |  |
| 44                                                                                                                                                                                                                              |  |
| 45                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 46                                                                                                                                                                                                                              |  |
| 47                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 48                                                                                                                                                                                                                              |  |
| 49                                                                                                                                                                                                                              |  |
| 50                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 51                                                                                                                                                                                                                              |  |
| 52                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 53                                                                                                                                                                                                                              |  |
| 54                                                                                                                                                                                                                              |  |
| 55                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 56                                                                                                                                                                                                                              |  |
| 57                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                 |  |
| 58                                                                                                                                                                                                                              |  |
| 59                                                                                                                                                                                                                              |  |
| <u> </u>                                                                                                                                                                                                                        |  |

|                                                           | 3)  | Not reported                      |
|-----------------------------------------------------------|-----|-----------------------------------|
| 5.2 Number of outcomes/events in relation to the          | 1)  | ≥20                               |
| number of predictors in multivariable analysis (Events    | 2)  | 10-20                             |
| Per Variable: EPVs)                                       | 3)  | <10                               |
| 5.3 Statistical method for selecting predictors during    | 1)  | Backward selection                |
| addressing prognostic factors or prediction models        | 2)  | Forward selection                 |
| Check all that apply                                      | 3)  | Added a specific predictor for    |
|                                                           |     | existing model                    |
|                                                           | 4)  | All predictors included regardles |
|                                                           |     | of statistical significance       |
|                                                           | 5)  | Univariate analysis of predictors |
|                                                           |     | by p value                        |
|                                                           | 6)  | Other, specify:                   |
|                                                           | 7)  | Not reported                      |
| 5.4 Handling the predictors for addressing prognostic     | 1)  | Continuous predictor was          |
| factors or prediction models                              |     | transformed into categories       |
|                                                           | 2)  | Non-linear transformation         |
| Check all that apply                                      | 3)  | Not reported                      |
|                                                           | 4)  | Other, specify                    |
| 5.5 Were missing outcome data reported, and the           | 1)  | Yes, specify                      |
| methods handling missing outcome                          | 2)  | No                                |
|                                                           | 3)  | Not reported                      |
| 5.6 Was any missing predictor data reported, and the      | 1)  | Yes, specify                      |
| methods handling missing predictor                        | 2)  | No                                |
|                                                           | 3)  | Not reported                      |
| 5.7 Model structure used in the study                     | 1)  | Linear regression                 |
|                                                           | 2)  | Logistic regression               |
|                                                           | 3)  | Multinomial logistic              |
|                                                           | 4)  | Cox regression                    |
|                                                           | 5)  | Decision tree                     |
|                                                           | 6)  | Bayesian (and logistic)           |
|                                                           | 7)  | Machine learning                  |
|                                                           | 8)  | Artificial neural network         |
|                                                           | 9)  | Partial least squares-discriminan |
|                                                           |     | analysis                          |
|                                                           | 10) | -                                 |
| 5.8 Were relevant model performance measures              | 1)  | Both calibration and              |
| evaluated for addressing prognostic factors or prediction |     | discrimination are evaluated      |
| models                                                    | 2)  | Only calibration is evaluated     |
| Check all that apply                                      | 3)  | Only discrimination is evaluated  |
|                                                           | 4)  | Other, specify                    |
|                                                           | .,  | , speeiig                         |

## Appendix C Risk of bias assessment

### **Domain 1: Participants**

# 1.1 Were appropriate data sources used, e.g., cohort, RCT, or nested case-control study data? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If a cohort design (including RCT or proper registry data) or a nested case– control or case–cohort design (with proper adjustment of the baseline risk/hazard in the analysis) has

been used.

No/probably no: If a nonnested case-control design has been used.

No information: If the method of participant sampling is unclear.

1.2 Were all inclusions and exclusions of participants appropriate? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If inclusion and exclusion of participants was appropriate, so participants correspond to unselected participants of interest.

**No/probably no**: If participants are included who would already have been identified as having the outcome and so are no longer participants at suspicion of disease (diagnostic studies) or at risk of developing outcome (prognostic studies), or if specific subgroups are excluded that may have altered the performance of the prediction model for the intended target population.

**No information**: When there is no information on whether inappropriate inclusions or exclusions took place. Risk of bias introduced by participants or data sources

## Risk of bias introduced by predictors or their assessment (Low, High, Unclear)

**Low risk of bias**: If the answer to all signaling questions is "Yes" or "Probably yes," then risk of bias can be considered low. If  $\geq 1$  of the answers is "No" or "Probably no," the judgment could still be "Low risk of bias" but specific reasons should be provided why the risk of bias can be considered low.

**High risk of bias:** If the answer to any of the signaling questions is "No" or "Probably no," there is a potential for bias, except if defined at low risk of bias above.

**Unclear risk of bias:** If relevant information is missing for some of the signaling questions and none of the signaling questions is judged to put this domain at high risk of bias.

## **Domain 2: Predictors**

# 2.1 Were predictors defined and assessed in a similar way for all participants? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If definitions of predictors and their assessment were similar for all participants. **No/probably no**: If different definitions were used for the same predictor or if predictors requiring subjective interpretation were assessed by differently experienced assessors.

No information: If there is no information on how predictors were defined or assessed.

2.2 Were predictor assessments made without knowledge of outcome data? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If outcome information was stated as not used during predictor assessment or was clearly not (yet) available to those assessing predictors.

No/probably no: If it is clear that outcome information was used when assessing predictors.

**No information**: No information on whether predictors were assessed without knowledge of outcome information.

2.3 Are all predictors available at the time the model is intended to be used? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: All included predictors would be available at the time the model is intended to be used for prediction.

**No/probably no**: Predictors would not be available at the time the model is intended to be used for prediction.

**No information**: No information on whether predictors would be available at the time the model is intended to be used for prediction.

#### Risk of bias introduced by predictors or their assessment (Low, High, Unclear)

Low risk of bias: If the answer to all signaling questions is "Yes" or "Probably Yes," then risk of bias can be considered low. If  $\geq 1$  of the answers is "No" or "Probably no," the judgment could still be "Low risk of bias" but specific reasons should be provided why the risk of bias can be considered low, e.g., use of objective predictors not requiring subjective interpretation.

**High risk of bias**: If the answer to any of the signaling questions is "No" or "Probably no," there is a potential for bias.

**Unclear risk of bias**: If relevant information is missing for some of the signaling questions and none of the signaling questions is judged to put the domain at high risk of bias.

#### **Domain 3: Outcome**

# 3.1 Was the outcome determined appropriately? (Yes/probably yes, No/probably no, No information)

Enseignement Superieur (ABES) . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

**Yes/probably yes**: If a method of outcome determination has been used which is considered optimal or acceptable by guidelines or previous publications on the topic. Note: This is about level of measurement error within the method of determining the outcome (see concerns for applicability about whether the *definition* of the outcome method is appropriate).

**No/probably no**: If a clearly suboptimal method has been used that causes unacceptable error in determining outcome status in participants.

No information: No information on how outcome was determined.

# 3.2 Was a prespecified or standard outcome definition used? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If the method of outcome determination is objective, *or* if a standard outcome definition is used, *or* if prespecified categories are used to group outcomes.

No/probably no: If the outcome definition was not standard and not prespecified.

No information: No information on whether the outcome definition was prespecified or standard.

# **3.3** Were predictors excluded from the outcome definition? (Yes/probably yes, No/probably no, No information)

Yes/probably yes: If none of the predictors are included in the outcome definition.

**No/probably no**: If  $\geq 1$  of the predictors forms part of the outcome definition.

No information: No information on whether predictors are excluded from the outcome definition.

3.4 Was the outcome defined and determined in a similar way for all participants? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If outcomes were defined and determined in a similar way for all participants. **No/probably no**: If outcomes were clearly defined and determined in a different way for some participants.

**No information**: No information on whether outcomes were defined or determined in a similar way for all participants.

3.5 Was the outcome determined without knowledge of predictor information? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If predictor information was not known when determining the outcome status, *or* outcome status determination is clearly reported as determined without knowledge of predictor information.

**No/probably no**: If it is clear that predictor information was used when determining the outcome status.

**No information**: No information on whether outcome was determined without knowledge of predictor information.

3.6 Was the time interval between predictor assessment and outcome determination appropriate? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If the time interval between predictor assessment and outcome determination was appropriate to enable the correct type and representative number of relevant outcomes to be recorded, *or* if no information on the time interval is required to allow a representative number of the relevant outcome occur or if predictor assessment and outcome determination were from information taken within an appropriate time interval.

**No/probably no**: If the time interval between predictor assessment and outcome determination is too short or too long to enable the correct type and representative number of relevant outcomes to be recorded.

**No information**: If no information was provided on the time interval between predictor assessment and outcome determination.

### Risk of bias introduced by predictors or their assessment (Low, High, Unclear)

Low risk of bias: If the answer to all signaling questions is "Yes" or "Probably yes," then risk of bias can be considered low. If  $\geq 1$  of the answers is "No" or "Probably no," the judgment could still be low risk of bias, but specific reasons should be provided why the risk of bias can be considered low, e.g., when the outcome was determined with knowledge of predictor information but the outcome assessment did not require much interpretation by the assessor (e.g., death regardless of cause).

**High risk of bias**: If the answer to any of the signaling questions is "No" or "Probably no," there is a potential for bias.

**Unclear risk of bias:** If relevant information about the outcome is missing for some of the signaling questions and none of the signaling questions is judged to put this domain at high risk of bias.

#### Domain 4: Sample size and missing data

# 4.1 Were there a reasonable number of participants with the outcome? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes:** For model development studies, if the number of participants with the outcome relative to the number of candidate predictor parameters is  $\geq 20$  (EPV  $\geq 20$  Number of outcomes/events

#### **BMJ** Open

in relation to the number of candidate predictors (Events Per Variable: For EPVs between 10 and 20, the item should be rated as either probably yes or probably no, depending on the outcome frequency, overall model performance, and distribution of the predictors in the model.)). For model validation studies, if the number of participants with the outcome is  $\geq 100$ .

**No/probably no:** For model development studies, if the number of participants with the outcome relative to the number of candidate predictor parameters is <10 (EPV <10). For model validation studies, if the number of participants with the outcome is <100.

**No information:** For model development studies, no information on the number of candidate predictor parameters or number of participants with the outcome, such that the EPV cannot be calculated. For model validation studies, no information on the number of participants with the outcome.

4.2 Were all enrolled participants included in the analysis? (Yes/probably yes, No/probably no, No information)

Yes/probably yes: If all participants enrolled in the study are included in the data analysis.

**No/probably no:** If some or a subgroup of participants are inappropriately excluded from the analysis.

No information: No information on whether all enrolled participants are included in the analysis. 4.3 Were participants with missing data handled appropriately? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes:** If there are no missing values of predictors or outcomes and the study explicitly reports that participants are not excluded on the basis of missing data, or if missing values are handled using multiple imputation. Handling of missing data (e.g., complete-case analysis, imputation, or other methods)

**No/probably no:** If participants with missing data are omitted from the analysis, or if the method of handling missing data is clearly flawed, e.g., missing indicator method or inappropriate use of last value carried forward, or if the study had no explicit mention of methods to handle missing data. **No information:** If there is insufficient information to determine if the method of handling missing data is appropriate.

### Risk of bias introduced by predictors or their assessment (Low, High, Unclear)

Low risk of bias: If the answer to all signaling questions is "Yes" or "Probably yes," then risk of bias can be considered low. If  $\geq 1$  of the answers is "No" or "Probably no," the judgment could still be "Low risk of bias" but specific reasons should be provided why the risk of bias can be considered low.

**High risk of bias:** If the answer to any of the signaling questions is "No" or "Probably no," there is a potential for bias, except if defined at low risk of bias above.

**Unclear risk of bias:** If relevant information is missing for some of the signaling questions and none of the signaling questions is judged to put this domain at high risk of bias.

#### **Domain 5: Statistical analysis**

# 5.1 Were continuous and categorical predictors handled appropriately? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If continuous predictors are not converted into  $\geq 2$  categories when included in the model (i.e., dichotomized or categorized), or if continuous predictors are examined for

#### **BMJ** Open

nonlinearity using, for example, fractional polynomials or restricted cubic splines, or if categorical predictor groups are defined using a prespecified method. For model validation studies, if continuous predictors are included using the same definitions or transformations, and categorical variables are categorized using the same cut points, as compared with the development study.

No/probably no: If categorical predictor group definitions do not use a prespecified method.

For model development studies, if continuous predictors are converted into  $\geq 2$  categories when included in the model. For model validation studies, if continuous predictors are included using different definitions or transformations, or categorical variables are categorized using different cut points, as compared with the development study.

**No information**: No information on whether continuous predictors are examined for nonlinearity and no information on how categorical predictor groups are defined. For model validation studies, no information on whether the same definitions or transformations and the same cut points are used, as compared with the development study.

5.2 Was selection of predictors based on univariable analysis avoided?† (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If the predictors are not selected on the basis of univariable analysis prior to multivariable modeling.

**No/probably no**: If the predictors are selected on the basis of univariable analysis prior to multivariable modeling.

No information: If there is no information to indicate that univariable selection is avoided.

5.3 Were complexities in the data (e.g., censoring, competing risks, sampling of control participants) accounted for appropriately? (Yes/probably yes No/probably no No information)

**Yes/probably yes**: If any complexities in the data are accounted for appropriately, or if it is clear that any potential data complexities have been identified appropriately as unimportant.

No/probably no: If complexities in the data that could affect model performance are ignored.

**No information**: No information is provided on whether complexities in the data are present or accounted for appropriately if present.

5.4 Were relevant model performance measures evaluated appropriately? (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If both calibration (calibration plot, calibration slope, Hosmer-Lemeshow test) and discrimination (C-statistic, D-statistic, log-rank) are evaluated appropriately with confidence intervals (including relevant measures tailored for models predicting survival outcomes). Classification measures (e.g., sensitivity, specificity, predictive values, net reclassification improvement) and whether a-priori cut points were used.

**No/probably no**: If both calibration and discrimination are not evaluated, or if only goodness-of-fit tests, such as the Hosmer–Lemeshow test, are used to evaluate calibration, or if for models predicting survival outcomes performance measures accounting for censoring are not used, or if classification measures (like sensitivity, specificity, or predictive values) were presented using predicted probability thresholds derived from the data set at hand.

**No information**: Either calibration or discrimination are not reported, or no information is provided as to whether appropriate performance measures for survival outcomes are used (e.g., references to relevant literature or specific mention of methods, such as using Kaplan–Meier estimates), or no information on thresholds for estimating classification measures is given.

# 5.5 Were model overfitting and optimism in model performance accounted for?† (Yes/probably yes, No/probably no, No information)

**Yes/probably yes**: If internal validation techniques, such as bootstrapping and cross-validation including all model development procedures, have been used to account for any optimism in model fitting, and subsequent adjustment of the model performance estimates have been applied.

**No/probably no**: If no internal validation has been performed, or if internal validation consists only of a single random split-sample of participant data, or if the bootstrapping or cross-validation did not include all model development procedures including any variable selection.

**No information**: No information is provided on whether internal validation techniques, including all model development procedures, have been applied.

**5.6 Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis?†( Yes/probably yes, No/probably no, No information)** Yes/probably yes: If the predictors and regression coefficients in the final model correspond to reported results from multivariable analysis.

**No/probably no**: If the predictors and regression coefficients in the final model do not correspond to reported results from multivariable analysis.

**No information**: If it is unclear whether the regression coefficients in the final model correspond to reported results from multivariable analysis.

\*Development only

### Risk of bias introduced by the analysis (Low, High, Unclear)

Low risk of bias: If the answer to all signaling questions is "Yes" or "Probably yes," then risk of bias can be considered low. If  $\geq 1$  of the answers is "No" or "Probably no," the judgment could still be low risk of bias, but specific reasons should be provided why the risk of bias can be considered low.

**High risk of bias:** If the answer to any of the signaling questions is "No" or "Probably no," there is a potential for bias.

**Unclear risk of bias:** If relevant information about the analysis is missing for some of the signaling questions but none of the signaling question answers is judged to put the analysis at high risk of bias.

|                |                                    |     | BMJ Open d t                                                                                                                                                                                                           | Page 48 of 48         |
|----------------|------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1<br>2         | PRISMA 20                          | 009 | Checklist copyrigh                                                                                                                                                                                                     |                       |
| 3<br>4<br>5    | Section/topic                      | #   | Checklist item                                                                                                                                                                                                         | Reported<br>on page # |
| 6              | TITLE                              |     | ing 5                                                                                                                                                                                                                  |                       |
| 8              | Title                              | 1   | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                    | 1                     |
| 9<br>1(        | ABSTRACT                           | ·   | ses                                                                                                                                                                                |                       |
| 1<br>12<br>13  | Structured summary                 | 2   | Provide a structured summary including, as applicable: background; objectives; data so                                                                                                                                 | 2                     |
| 14<br>14       |                                    |     |                                                                                                                                                                                                                        |                       |
| 10             | Rationale                          | 3   | Describe the rationale for the review in the context of what is already known.                                                                                                                                         | 4                     |
| 1:             | Objectives                         | 4   | Provide an explicit statement of questions being addressed with reference to participants herventions, comparisons, outcomes, and study design (PICOS).                                                                | 4                     |
| 20             | METHODS                            |     |                                                                                                                                                                                                                        |                       |
| 2<br>22        | Protocol and registration          | 5   | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and if available, provide registration information including registration number.                                           | 5                     |
| 24             | Eligibility criteria               | 6   | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                 | 5                     |
| 20<br>21       | Information sources                | 7   | Describe all information sources (e.g., databases with dates of coverage, contact with stady authors to identify additional studies) in the search and date last searched.                                             | 5                     |
| 29<br>29<br>30 | Search                             | 8   | Present full electronic search strategy for at least one database, including any limits use should be repeated.                                                                                                        | 5                     |
| 3              | Study selection                    | 9   | State the process for selecting studies (i.e., screening, eligibility, included in systematic view, and, if applicable, included in the meta-analysis).                                                                | 5                     |
| 34<br>34       | Data collection process            | 10  | Describe method of data extraction from reports (e.g., piloted forms, independently, in diplicate) and any processes for obtaining and confirming data from investigators.                                             | 6                     |
| 30             | Data items                         | 11  | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                  | 6                     |
| 39<br>39<br>40 | Risk of bias in individual studies | 12  | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 6                     |
| 4              | Summary measures                   | 13  | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                          | 7                     |
| 42<br>43<br>44 | Synthesis of results               | 14  | Describe the methods of handling data and combining results of studies, if done, including neasures of consistency (e.g., l <sup>2</sup> ) for each meta-analysis.                                                     | 7                     |
| 4:<br>4(<br>4) | 5                                  | ·   | For peer review only - http://bmjagen.bmj.com/site/about/guidelines.xhtml                                                                                                                                              |                       |

| PRTSMA        | 2009 | Checklist |  |
|---------------|------|-----------|--|
| <b>FKTDMA</b> | 2003 | CHECKIISL |  |

| Page 49 of 48                                                                                            |                                                                                                                                                                                               | BMJ Open<br>BMJ Open                                                                                                                                                                                      |                       |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                          | 009                                                                                                                                                                                           | Checklist opyrigh                                                                                                                                                                                         |                       |
| 3<br>4 Section/topic<br>5                                                                                | #                                                                                                                                                                                             | Checklist item                                                                                                                                                                                            | Reported<br>on page # |
| 6 Risk of bias across studies                                                                            | 15                                                                                                                                                                                            | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., pudication bias, selective reporting within studies).                                                               | 7                     |
| Additional analyses                                                                                      | 16                                                                                                                                                                                            | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-reading sion), if done, indicating which were pre-specified.                                                        | No                    |
|                                                                                                          |                                                                                                                                                                                               | elate                                                                                                                                                                                                     |                       |
| 12<br>13 Study selection<br>14                                                                           | 17                                                                                                                                                                                            | Give numbers of studies screened, assessed for eligibility, and included in the review, where asons for exclusions at each stage, ideally with a flow diagram.                                            | 7                     |
| 15 Study characteristics                                                                                 | 18                                                                                                                                                                                            | For each study, present characteristics for which data were extracted (e.g., study size, Paces, follow-up period) and provide the citations.                                                              | 7                     |
| 18 Risk of bias within studies                                                                           | 19                                                                                                                                                                                            | Present data on risk of bias of each study and, if available, any outcome level assessme                                                                                                                  |                       |
| <sup>19</sup> Results of individual studies                                                              | 20                                                                                                                                                                                            | For all outcomes considered (benefits or harms), present, for each study: (a) simple suntained data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot | 7                     |
| 21<br>22 Synthesis of results                                                                            | 21                                                                                                                                                                                            | Present results of each meta-analysis done, including confidence intervals and measure of consistency.                                                                                                    | 7-10                  |
| <sup>23</sup> Risk of bias across studies                                                                | 22                                                                                                                                                                                            | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                           | 9                     |
| 24<br>25 Additional analysis                                                                             | 23                                                                                                                                                                                            | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta degression [see Item 16]).                                                                                     | No                    |
|                                                                                                          | <u> </u>                                                                                                                                                                                      | nd cc                                                                                                                                                                                                     |                       |
| 28 Summary of evidence<br>29                                                                             | 24                                                                                                                                                                                            | Summarize the main findings including the strength of evidence for each main outcome; diverse their relevance to key groups (e.g., healthcare providers, users, and policy makers).                       | 10-12                 |
| 30<br>31<br>32                                                                                           | 25                                                                                                                                                                                            | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.e., in bottom plete retrieval of identified research, reporting bias).                                        | 12                    |
| 33 Conclusions                                                                                           | 26                                                                                                                                                                                            | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                   | 13                    |
| 34<br>35 FUNDING                                                                                         | <u> </u>                                                                                                                                                                                      | ំ ដ<br>ក                                                                                                                                                                                                  |                       |
| 36 Funding<br>37                                                                                         | 27                                                                                                                                                                                            | Describe sources of funding for the systematic review and other support (e.g., supply of data; role of funders for the systematic review.                                                                 | 13                    |
| 38<br>39<br>40 <i>From:</i> Moher D, Liberati A, Tetzlafi<br>doi:10.1371/journal.pmed1000097<br>41<br>42 | han DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The BRISMA Statement. PLoS Med<br>For more information, visit: www.prisma-statement.org. | 6(6): e1000097.                                                                                                                                                                                           |                       |
| 43                                                                                                       |                                                                                                                                                                                               | Page 2 of 2                                                                                                                                                                                               |                       |
| 44<br>45                                                                                                 |                                                                                                                                                                                               | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                 |                       |