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46 ABSTRACT
47
48 Objectives: AI algorithms have been developed to detect imaging features on chest X-ray 

49 (CXR), however most of these algorithms are limited to detecting a single finding or a small set of 

50 findings. Recently, a comprehensive AI model capable of detecting 124 CXR findings was developed and 

51 cleared for clinical use. The aim of this study was to evaluate the real-world performance of the model as 

52 a diagnostic assistance device for radiologists.

53 Design: This prospective real-world multicentre study involved a group of radiologists using the 

54 model in their daily reporting workflow to report consecutive chest X-rays and recording their case-by-

55 case feedback on level of agreement with the model findings and whether this significantly affected their 

56 reporting.

57 Setting: The study took place at multiple radiology clinics and hospitals within a large radiology 

58 network in Australia between November and December, 2020.

59 Participants: Eleven consultant radiologists of general diagnostic and interventional 

60 backgrounds, and varying levels of experience participated in this study.

61 Primary outcome measures: Proportion of CXR cases that had significant material changes to 

62 the radiologist report, to patient management, or to imaging recommendations due to the model's 

63 recommendations. Level of agreement between the radiologist and the model findings.

64 Results: Of  2,972 cases reviewed with the model, 92 cases (3.1%) had significant 

65 report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further 

66 imaging recommendations. In terms of agreement with the model, 2,572 cases showed complete 

67 agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There 

68 were 16 findings across 13 cases (0.5%) that were deemed to be missed by the model.

69 Conclusions: Use of an AI model in a real-world reporting environment significantly improved 

70 radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI 

71 decision support to improve clinical practice.

72

73
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74 ARTICLE SUMMARY
75
76
77 Strengths and limitations of this study
78  This is the first study to evaluate the real-world significance of integrating a comprehensive 

79 CXR AI model into a radiology workflow.

80  This was a multicentre study conducted across a mix of public hospitals, private hospitals, 

81 and community clinic settings.

82  Due to the design of the study, diagnostic accuracy of the decision support system was not a 

83 measurable outcome.

84  Results of this study are self-reported and may therefore be prone to bias.

85  Determination of the significance of report changes due to the model's recommendations was 

86 made at the discretion of each radiologist on a case-by-case basis.

87
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88 INTRODUCTION
89

90 Radiology is a data-rich medical specialty and is well placed to embrace artificial intelligence [1] 

91 especially in high volume imaging tasks such as chest x-ray imaging.  The rapid application of X-ray 

92 technology to diagnosing chest diseases at the end of the 19th century led to the chest X-ray (CXR) 

93 becoming a first-line diagnostic imaging tool [2] and it remains an essential component of the diagnostic 

94 pathway for chest disease. Due to advancements in digital image acquisition, low ionising radiation and 

95 low cost, the chest radiograph is more easily accessible worldwide than any other imaging modality [3]. 

96

97 The challenges of interpreting CXR, however, have not lessened over the last half-century. CXR 

98 images are 2D representations of complex 3D structures, relying on soft tissue contrast between structures 

99 of different densities. Multiple overlapping structures lead to reduced visibility of both normal and 

100 abnormal structures [4], with up to 40% of the lung parenchyma obscured by overlying ribs and the 

101 mediastinum [5]. This can be further exacerbated by other factors including the degree of inspiration, 

102 other devices in the field of view, and patient positioning. In addition, there is a wide range of pathology 

103 in the chest which is visible to varying degrees on the CXR. These factors combine to make CXRs 

104 difficult to accurately interpret, with an error rate of 20-50% for CXRs containing radiographic evidence 

105 of disease reported in the literature [6]. Notably, lung cancer is one of the most common cancers 

106 worldwide and is the most common cause of cancer death worldwide [7], and CXR interpretation error 

107 accounts for 90% of cases where lung cancer is missed [8]. Despite technological advancements in CXR 

108 over the past 50 years, this level of diagnostic error has remained constant [6]. 

109

110 A rapidly developing field attempting to assist radiologists in radiological interpretation involves 

111 the application of machine learning, in particular deep neural networks [9]. Deep neural networks learn 

112 patterns in large, complex datasets, enabling the detection of subtle features and outcome prediction 

113 [10,11]. The potential of these algorithms has grown rapidly in the past decade thanks to the development 

114 of more useful neural network models, the advancements in computational power, and the increase in the 

115 volume and availability of digital imaging datasets [11]. Of note is the rise of convolutional neural 
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116 networks (CNNs), a type of deep neural network that excels at image feature extraction and classification, 

117 and demonstrate strong performance in medical image analysis, leading to the rapid advancement of 

118 computer vision in medical imaging [12,13]. CNNs have been used to develop models to successfully 

119 detect targeted clinical findings on CXR, including lung cancer [14,15], pneumonia [16,17], COVID-19 

120 [18], pneumothorax [19–22], pneumoconiosis [23], cardiomegaly [24], pulmonary hypertension [25] and 

121 tuberculosis [26–30]. These studies highlight the effectiveness of applied machine learning in CXR 

122 interpretation, however most of these deep learning systems are limited in scope to a single finding or a 

123 small set of findings, therefore lacking the broad utility that would make them useful in clinical practice. 

124

125 Recently, our group developed a comprehensive deep learning CXR decision support model, 

126 which was designed to assist clinicians in CXR interpretation and improve diagnostic accuracy, validated 

127 for 124 clinically relevant findings seen on frontal and lateral chest radiographs [31]. The primary 

128 objective of the current study was to evaluate the real-world performance of the model as a diagnostic 

129 assist device for radiologists in both hospital and community clinic settings. This involved examining the 

130 frequency at which the model's recommendations led to a ‘significant impact on the report’, defined as 

131 the inclusion of findings recommended by the model which altered the radiologists report in a meaningful 

132 way. The rate of change in patient management and recommendations for further imaging were also 

133 evaluated. A secondary endpoint was investigating the agreement between the radiologist and the 

134 findings detected by the model. The other secondary endpoint was the assessment of radiologist attitudes 

135 towards the tool and the AI models in general.

136
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137 METHODS
138

139 Ethics Statement

140 This study was approved by the institutional human research ethics committee of the Wesley 

141 Hospital, Brisbane, Queensland Australia (2020.14.324).  The requirement of patient consent was waived 

142 by the ethics committee due to the low-risk nature of the study.

143

144 Model development and validation 

145 A modified version of a commercially available CNN-based decision support system (CXR 

146 viewer) (Annalise CXR ver 1.2, Annalise-AI, Sydney, Australia) was evaluated [32]. Details of model 

147 development and validation have been published in Seah et al [31]. Briefly, a deep learning model 

148 consisting of attribute and classification CNNs based on the EfficientNet architecture [33] and a 

149 segmentation CNN based on U-Net [34] with EfficientNet backbone was developed.  The model was 

150 trained on a dataset consisting of 821,681 de-identified CXR images from 284,649 patients originating 

151 from inpatient, outpatient and emergency settings across Australia, Europe, and North America. Training 

152 dataset labelling involved independent triple labelling of all images by three radiologists selected from a 

153 wider pool of 120 consultant radiologists.  The model was validated for 124 clinical findings in a multi-

154 reader, multi-case (MRMC) study [31]. Thirty-four of these findings were deemed priority findings based 

155 on their clinical importance. The full list of 124 findings is available in Supplementary Table 1, and the 

156 34 critical findings are listed in Table 1, the full list of findings were identical for this study. Ground truth 

157 labels for the validation study dataset were determined by a consensus of three independent radiologists 

158 drawn from a pool of seven fully credentialed subspecialty thoracic radiologists. The algorithm is 

159 publicly available at https://cxrdemo.annalise.ai. The AI model was used in line with pre-existing 

160 regulatory approval. 

161

162
163 Table 1 - List of the 34 critical clinical findings that the model is validated to detect. ETT: endotracheal tube, NGT: 
164 nasogastric tube, PAC: pulmonary artery catheter.

Critical Clinical Findings 
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Acute humerus fracture Loculated effusion Subcutaneous emphysema 
Acute rib fracture Lung collapse Subdiaphragmatic gas 
Air Space Opacity - Multifocal Multiple masses or nodules Suboptimal central line 
Cavitating mass with content Perihilar airspace opacity Suboptimal ETT 
Cavitating mass(es) Pneumomediastinum Suboptimal NGT 
Diffuse airspace opacity Pulmonary congestion Suboptimal PAC 
Diffuse lower airspace opacity Segmental collapse Superior mediastinal mass 
Diffuse upper airspace opacity Shoulder dislocation Tension pneumothorax 
Focal airspace opacity Simple effusion Tracheal deviation 
Hilar lymphadenopathy Simple pneumothorax Widened aortic contour 
Inferior mediastinal mass Solitary lung mass Widened cardiac silhouette 
 Solitary lung nodule  

165
166
167 Technical Integration 
168 Prior to the start of the study, technical integration of the software into existing radiology 

169 practice systems and testing occurred over several weeks. First, an integration adapter was installed 

170 on the IT network of each radiology clinic and acted as a gateway between the internal IT 

171 infrastructure and the AI model. Auto-routing rules were established ensuring only CXR studies were 

172 forwarded to the Integration Adapter from the picture archiving and communication system (PACS). 

173 Following a successful testing period, the Annalise CXR viewer was installed and configured on 

174 workstations for the group of study radiologists. 

175

176 Study Participants

177 Eleven consultant radiologists working for a large Australian radiology network were invited to 

178 participate in the study through their local radiologist network. This group included a mix of general 

179 diagnostic and interventional radiologists who had completed specialist radiology training. The group 

180 included radiologists with a range of experience levels: five radiologists had 0–5 years post-training 

181 experience, three radiologists had 6–10 years of experience, and three radiologists had more than 10 years 

182 of experience. Radiologists were situated across four states in Australia and worked in public hospitals, 

183 private hospitals and community clinic settings. Written informed consent was obtained from each 

184 participating radiologist. Prior to study commencement, each radiologist attended a training seminar and a 

185 one-on-one training session to fully understand the CXR viewer and its features. In addition, the 
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186 participating radiologists were able to familiarise themselves with the viewer prior to commencement of 

187 data collection. 

188

189 CXR Case Selection

190 In this multicentre real-world prospective study, all consecutive chest radiographs reported by the 

191 radiologists originating from inpatient, outpatient, and emergency settings were included for a period 

192 covering nearly six weeks. The CXR cases were reported with the assistance of the AI tool in real-world 

193 clinical practice, using high resolution diagnostic radiology monitors within the radiologists’ normal 

194 reporting environment.

195

196 At least one frontal chest radiograph was required for analysis by the model, and cases that did 

197 not include at least one were excluded. Chest radiographs from patients aged younger than 16 years were 

198 excluded, as the CXR viewer has not been validated in these patients. Data from all sources was de-

199 identified for analysis.

200

201 AI-Assisted Reporting

202 For each CXR case, radiologists produced their clinical report with access to clinical information, 

203 the referral and available patient history, in line with the normal workflow. Model output was displayed 

204 to the radiologist in a customised image viewer, linked to the image in the PACS, automatically 

205 launching when a CXR case was opened (Figure 1)

206  

207 The modified version of the commercially available AI software gathered feedback from 

208 radiologists during the reporting process. For each case, the model provided a list of suggested findings, 

209 listed as “priority” or “other”, along with a confidence indicator and, in some cases, a region of interest 

210 localiser overlayed on the image. The CXR viewer was configured to display its findings after the 

211 radiologists initial read of the case. For each case, the radiologist was asked to review the CXR viewer’s 

212 findings and provide feedback within the viewer. The options presented to the radiologists in the viewer 

213 are listed in Table 2.
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214

215 Table 2 - List of review options presented to the radiologist with each case.

REVIEW OPTION DESCRIPTION

Rejected clinical finding A model-detected finding disputed by the radiologist

Missed clinical finding A model-detected finding missed by the radiologist

Add additional findings Finding(s) identified by the radiologist but not identified by the model

These findings significantly 
impacted my report

A yes/no binary question relating to the effect of the model output on 
the radiologist report

These findings may impact 
patient management

A yes/no binary question relating to the effect of the model output on 
patient management, as perceived by the reporting radiologist

These findings led to additional 
imaging recommendations

A binary yes/no question related to whether the radiologist 
recommended further imaging based on the model output

216
217
218
219

220 The outcome measure of ‘significant impact on the report’ was the primary outcome measure. 

221 A significant change was described as the inclusion of findings recommended by the model, which 

222 altered the radiologists report in a meaningful way. As this varied by patient and clinical setting, it 

223 was left to the discretion of the radiologist. For example, missing a pneumothorax in a ventilated ICU 

224 patient with known pneumothorax would not have the same significance as a previously unknown 

225 pneumothorax in an outpatient. During the analysis of radiologist feedback, it was assumed that a 

226 change in patient management or further imaging recommendation would not occur without 

227 radiologists indicating a material change in the CXR report, and thus management and imaging 

228 questions were dependent on a significant change in the report. Free text input describing missed 

229 findings or other relevant data were manually added after data collection was complete. 

230

231 Post-Study Survey
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232 Upon completion of data collection, a post-study survey was distributed to all participating 

233 radiologists to obtain feedback on the usefulness of the CXR viewer and how it affected their opinion of 

234 AI in radiology. A table of the survey questions is presented in Supplementary Table 2.

235

236 Statistics and Data Analysis 

237 A 1% rate of significant changes in reports (the primary outcome measure) was deemed to be 

238 clinically significant prior to commencing the study. Based on estimations of the prevalence of missed 

239 critical findings on CXR, preliminary power calculations estimated that the number of cases required to 

240 detect at least a 1% rate of significant changes in reports was approximately 2000 cases in total, with 

241 alpha value 0.05 and desired power of 0.90. To account for any dropout in radiologists or cases, a target 

242 of 3000 cases was set for the study. Ten radiologists were recruited, with an eleventh included for any 

243 unexpected participant drop out and to achieve this target in a reasonable time period. 

244

245 A two-tailed binomial test was used to test the hypothesis that the rate of significant report 

246 change, patient management change, or imaging recommendation change was 1%. To ensure that the 

247 sampling of CXRs reasonably approximates a random snapshot of the true population, radiologists in 

248 various states, experience levels as well as different conditions of practice (community clinic vs hospital 

249 based) were selected. Additionally, the study was conducted prospectively which further aligns the 

250 structure of the sampled data with the expected structure of the population, justifying the choice of 

251 analysing the sample using a binomial test without adjustment for each radiologist. 

252 Multivariate logistic regression using generalised linear mixed effect analysis was used to assess 

253 the effect of several possible confounders on the measured outcomes, including the number of critical 

254 clinical findings per case identified by the model, the inpatient/outpatient status of the patients, the 

255 experience level of the radiologists, and the presence or absence of a lateral radiograph. The Wald test 

256 was applied to the derived regression coefficients to determine their significance. 

257 Radiologists were grouped by experience level into 0-5 years post completion of radiology 

258 training, 6-10 years, and more than ten years. A likelihood ratio test comparing a binomial logistic 

259 regression with categorical radiologist experience against a null model was performed to assess the 
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260 hypothesis that each of the outcomes (significant changes in reports, management, or imaging 

261 recommendation) were associated with experience. 

262

263 A significance threshold of 0.05 was chosen, with the Benjamini-Hochberg procedure [35] 

264 applied to all reported outcomes to account for multiple hypothesis testing. Two clinically qualified 

265 researchers independently performed statistical analyses using different software. Calculations were 

266 performed in Excel 2016 with RealStatistics resource pack and cross-checked in Python 3.7 using the 

267 Pandas 1.0.5 [36], NumPy 1.18.5 [37], SciPy 1.4.1 [38], Scikit-Learn 0.24.0 [39], pymer4 0.7.1 (linked to 

268 R 3.4.1, Ime4 1.1.26) [40] and Statsmodels 0.12.1 [41] libraries.

269
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270 RESULTS
271

272 A total of 2,972 cases were reported by 11 radiologists over a period of six weeks.  These cases 

273 came from 2,665 unique patients (52.7% male), with a median age of 67 (IQR 50–77). Information on 

274 radiologist experience, diagnostic/interventional specialty, number of cases reported, source of cases and 

275 outcome measures for each radiologist are listed in Table 3. 

276

277 Table 3 - Demographics and results for the eleven radiologists involved in this study. Percentages (%) represent the 
278 associated value as a proportion of the total case number for that radiologist.

Radiologist 
ID

Number of 
years post-

training

Cases 
reported (%
 outpatient)

Interventi
onal?

Report 
changes (%)

Patient 
management 
changes (%)

Imaging reco
mmendations 

(%)

1 19 136 (21.3) Yes 1 (0.7) 1 (0.7) 0 (0.0)

2 1 325 (46.2) No 4 (1.2) 0 (0.0 1 (0.3)

3 4 230 (86.1) Yes 20 (8.6) 14 (6.1) 10 (4.3)

4 6 375 (22.7) No 3 (1.0) 0 (0.0) 1 (0.2)

5 4 186 (45.7) No 22 (11.8) 9 (4.8) 8 (4.3)

6 20 333 (11.1) No 3 (1.0) 2 (0.6) 1 (0.3)

7 3 312 (48.4) Yes 15 (4.8) 8 (2.5) 1 (0.3)

8 26 408 (39.7) No 10 (2.4) 5 (1.2) 4 (1.0)

9 9 214 (43.0) No 6 (2.8) 2 (0.9) 2 (0.9)

10 6 159 (98.1) No 1 (0.6) 1 (0.6) 1 (0.6)

11 5 294 (40.1) No 7 (2.4) 1 (0.3) 0 (0.0)

Total 2,972 92 (3.1) 43 (1.4) 29 (1.0)

279
280
281
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282 Of the 2,972 cases, 1,825 (61.4%) cases had lateral (as well as frontal) radiographs available for 

283 interpretation. 1,709 (57.5%) cases were from an inpatient setting, and 1,263 (42.5%) from an outpatient 

284 setting. The median number of findings per case was five (mean: 5.1, SD: 3.9), with a wide range in the 

285 number of findings per case (maximum=20). A total of 364 cases returned zero findings predicted by the 

286 model from the complete 124 findings list. 1,526 of the 2,972 cases had one or more critical findings 

287 detected by the CXR viewer, with the critical findings in 1,459 (96%) of these cases being confirmed by 

288 the radiologist. The number of critical findings per case is summarised in Error! Reference source not 

289 found.. 

290

291 Influence of the AI model on radiologist reporting

292 Across all 2,972 cases, there were 92 cases identified by radiologists as having significant report 

293 changes (3.1%), 43 cases of changed patient management (1.4%) and 29 cases of additional imaging 

294 recommendations (1.0%) as a result of exposure to the AI model output. When compared to the 

295 hypothesised 1% rate of change, the findings were significantly higher for changed reports (p <0.01) and 

296 changed patient management (p<0.01), and not significantly different for rate of imaging 

297 recommendation (p=0.50).

298

299 Agreement with model findings

300 Of the 2,972 cases, 2,569 had no findings rejected or added by the radiologists, indicating 

301 agreement with the model over all 124 possible findings in 86.5% of cases. 306 (10.2%) cases had one 

302 finding rejected by the radiologist and 84 (2.8%) had two or more findings rejected by the radiologist. 13 

303 cases (0.5%) had findings (16 in total) added by the radiologists which they deemed were missed by the 

304 model, of which 8 were critical findings. These are presented in Error! Reference source not found..

305
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306

307 Table 4 - Findings added by the radiologist, and their respective counts. Critical findings are highlighted.

Finding Added Count
Atelectasis 4
Solitary Lung Nodule 3
Cardiac valve prosthesis 2
Solitary Lung Mass 1
Pneumomediastinum 1
Pneumothorax 1
Spinal Wedge Fracture 1
Pulmonary Congestion 1
Peribronchial Thickening 1
Subdiaphragmatic Gas 1

308
309
310

311 Factors influencing reporting, management, or imaging recommendation

312 The number of critical findings displayed by the model was significantly higher in cases where 

313 there was a change in report, patient management, or imaging recommendation (p < 0.001, p = 0.001, p = 

314 0.004; Table 5). The presence of a lateral projection image in the CXR case interpreted by the model was 

315 associated with a significantly greater likelihood of changes to imaging recommendation (p = 0.005), but 

316 not to the report or patient management (p = 0.105 and p = 0.061, respectively). 

317

318 Radiologists with fewer than 5 years consultant experience contributed 1,347 cases, and indicated 

319 a rate of 5.0% for significant report change, 2.4% patient management change, and 1.5% 

320 recommendations for further imaging. These numbers were higher than for the radiologists with 6-10 

321 years of experience (1.3%, 0.4%, 0.5% respectively over 748 cases) and also for radiologists with greater 

322 than 10 years of experience (1.6%, 0.9%, 0.6% over 877 cases). However, a likelihood ratio test applied 

323 to binomial logistic regression analysis indicated that the level of radiologist experience did not 

324 significantly influence the rate of change in report, patient management, or imaging recommendation (p = 

325 0.120, p = 0.262, and p = 0.516, respectively).   Whether a patient was imaged as an inpatient or 

326 outpatient was not significantly associated with any change in report, patient management, or imaging 

327 recommendation (p = 0.358, p = 0.572, p = 0.326, respectively).
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328 Table 5 - Factors affecting AI model influence on report, patient management, or imaging recommendation. Significance 
329 testing by the Benjamini-Hochberg algorithm to account for multiple hypotheses. Odds ratios derived from stepwise logistic 
330 regression coefficients with confidence intervals calculated with Benjamini-adjusted thresholds. Radiologist experience 
331 analysed as a categorical variable with odds ratios representing effect of changing experience levels from the baseline (0 to 
332 5 years) to a different level.

Predictor  Change  Odds Ratios (Adjusted CI) P 
Value  

Benjamini-Adjusted 
Threshold  Significance  

Number of Critical 
Findings   Report   1.306 (1.132-1.507) 0 0.0042 YES 

Number of Critical 
Findings   Patient Management   1.267 (1.056-1.521) 0.001 0.0083 YES 

Number of Critical 
Findings   

Imaging 
Recommendation   1.319 (1.035-1.681) 0.004 0.0125 YES 

Lateral CXR   Imaging 
Recommendation   6.495 (1.297-32.530) 0.005 0.0167 YES 

Lateral CXR   Patient Management   2.158 (0.837-5.565) 0.061 0.0208 NO 

Lateral CXR   Report   1.542 (0.848-2.805) 0.105 0.025 NO 

Radiologist 
Experience   Report   

0 to 5 years: Baseline 
6 to 10 years: 0.255 (0.043-1.521) 
> 10 years: 0.305 (0.065-1.439) 

0.120 0.0292 NO 

Radiologist 
Experience   Patient Management   

0 to 5 years: Baseline 
6 to 10 years: 0.165 (0.009-3.214) 
> 10 years: 0.378 (0.054-2.654) 

0.262 0.0333 NO 

Radiologist 
Experience   

Imaging 
Recommendation   

0 to 5 years: Baseline 
6 to 10 years: 0.357 (0.034-3.783) 
> 10 years: 0.380 (0.044-3.287) 

0.516 0.0458 NO 

Inpatient/Outpatient   Imaging 
Recommendation   1.550 (0.613-3.919) 0.326 0.0375 NO 

Inpatient/Outpatient   Report   0.794 (0.476-1.323) 0.358 0.0417 NO 

Inpatient/Outpatient   Patient Management   0.818 (0.408-1.640) 0.572 0.0500 NO 

333

334 Survey Results

335 The post-study survey was completed by 10 out of the 11 radiologists (Figure 3 and Figure 4). 

336 Notably, 70% of participants felt that their reporting time was slightly worse, however when asked how 

337 satisfied they were with their reporting time, 70% indicated that they were satisfied.
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338 Ninety percent of radiologists responded that their reporting accuracy was improved while using 

339 the CXR viewer and 90% of participants were satisfied with accuracy of the CXR model’s findings. 

340 Ninety percent of radiologists demonstrated an improved attitude towards the use of the AI diagnostic 

341 viewer by the end of the study and 90% demonstrated an improved attitude towards AI in general. No 

342 radiologists reported a more negative attitude towards the CXR viewer or towards AI in general.
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343 DISCUSSION

344 We have previously shown that using the output of this comprehensive deep learning model 

345 improved radiologist diagnostic accuracy [31] in a non-clinical setting, but it is important to demonstrate 

346 that this improvement translates into meaningful change in a real-world environment. In this multicentre 

347 real-world prospective study, we determined how often the finding recommendations of the 

348 comprehensive deep learning model led to a material change in the radiologist's report, a change in the 

349 patient management recommendation, or a change in the subsequent imaging recommendation. To the 

350 authors’ knowledge, this is the first time that the impact of a comprehensive deep learning model 

351 developed to detect radiological findings on CXR has been studied in a real-world reporting environment. 

352 Other commercially available deep learning models able to detect multiple findings on CXR have been 

353 studied in the non-clinical setting, yielding encouraging results and outperforming physicians in the 

354 detection of major thoracic findings [42] as well as improving resident diagnostic sensitivity [43]. Other 

355 models have demonstrated diagnostic accuracy that is comparable to that of test radiologists [44].

356

357 We showed that radiologists agreed with all findings identified by the AI model in 86.5% of 

358 cases on a per case basis. Notably, there was a significant change to the report in 3.1% of cases leading to 

359 changes in recommended patient management in 1.4% of cases, and changes to imaging 

360 recommendations in 1% of cases. Of note, two lung lesions that were flagged by the model, but missed by 

361 radiologists, led to additional imaging and changed management and were subsequently diagnosed as 

362 lung carcinoma, highlighting the real-world value of integrating this type of system into the radiology 

363 workflow.

364

365 The significant impact of the CXR viewer on radiologist reporting and recommendations did 

366 however come at the cost of false positives, with 13% of cases having one or more model findings 

367 rejected by the radiologist. When this false positive rate is compared against the false positive rates per 

368 case reported in other studies investigating CXR models, which range from 14 – 88% [14,45,46], it is 

369 considered an acceptable value. Furthermore, these studies report false-positive rates for CXR models 
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370 which only detect lung nodules, while the current study this represents the false positive rate across 124 

371 findings. In addition, this trade-off appears to be reasonable to the participating radiologists, who reported 

372 a high level of satisfaction with the model. 

373

374 In this study, analysis of radiologists by experience level using logistic regression found no 

375 significant relationship between experience level and increased changes to reports, patient management 

376 changes, or imaging recommendations as a result of the model. Statistical analysis of the relationship 

377 between experience level and change in report was associated with a p value of 0.12, suggesting that, 

378 with further research, a significant relationship may be identified. It is expected that the inclusion of a 

379 larger group of radiologists may lead to a significant finding, as the association between experience and 

380 level of change has been noted in other studies. For example Jang et al., showed that less experienced 

381 radiologists benefited the most from the diagnostic assistance in detecting lung nodules on CXR [14]. The 

382 primary factor that influenced the likelihood of the model findings leading to a change in the report was 

383 the presence of critical findings in the model's recommendation. This is particularly notable because it 

384 indicates that the changes to the report are significant. They did not simply involve the inclusion of 

385 additional non-critical findings in the report, which may be interpreted as overestimating the impact of 

386 the model. The inpatient or outpatient status of a case was found not to significantly affect the likelihood 

387 of significant changes to the radiologists’ report, to patient management, or to imaging recommendations.

388

389 The post-study survey provided further insight into the impact that the CXR viewer had on 

390 participant reporting, in addition to the level of agreement and changes to the radiology report and patient 

391 management recommendations outlined above. The first notable response was that the CXR viewer may 

392 have negatively affected reporting times (albeit only mildly) for the majority of radiologists. This 

393 outcome was expected in this study setting because the radiologists were taking additional time to provide 

394 feedback on the model's recommendations for each case. Previous studies that surveyed radiologists 

395 reported that 74.4% thought AI would lower the interpretation time [47]. It is notable that even with the 

396 negative impact the model had on reporting time, the majority of radiologists (70%) were still satisfied 

397 with reporting time while using the CXR viewer, suggesting that the diagnostic improvements offered by 
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398 the model were enough to offset the additional perceived reporting time. Additional insight from the 

399 survey suggested that very little training was required before radiologists felt comfortable using the tool. 

400 This is useful as education on AI has been a primary concern amongst clinicians, as a large proportion of 

401 radiologists report having little knowledge of AI [48].

402

403 Limitations and future research 

404 The results presented in this study are self-reported by participating radiologists and are likely an 

405 underestimation of the model's actual impact. It is expected that radiologists would not report every 

406 instance in which they made an interpretive error. Another limitation is that there was no objective gold 

407 standard against which the radiologist and model interpretation could be measured. This is a small-scale 

408 study involving a limited sample size, conducted over several weeks. As a result, it lacks the statistical 

409 power to examine the benefit of the model on a finding-by-finding basis. In future, it would be beneficial 

410 to conduct a similar study with a larger sample size to allow for more powerful statistical analysis and 

411 examination of specific finding changes. Another useful next step would be to include a gold standard to 

412 determine the ground truth for the CXR findings, as this would prevent any under reporting which may 

413 occur with self-reported results, as well as enable the detection of false negatives as a result of the CXR 

414 viewer.

415

416 Conclusion

417 The present study indicated that the integration of a comprehensive AI model capable of 

418 detecting 124 findings on CXR into a radiology workflow led to significant changes in reports and patient 

419 management, with an acceptable rate of additional imaging recommendations. These results were not 

420 affected by the inpatient status of the patient, and although approaching significance, the experience level 

421 of the radiologists did not significantly relate to the primary endpoint outcomes. In secondary endpoint 

422 outcomes, the model output showed good agreement with radiologists, and radiologists showed high rates 

423 of satisfaction with their reporting times and diagnostic accuracy when using the CXR viewer as a 

424 diagnostic assist device. Results highlight the usefulness of AI-driven decision support tools in improving 

425 clinical practice and patient outcomes. 
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595 FIGURE LEGENDS

596 Figure 1 - Flow diagram illustrating the AI-assisted reporting process described in this study. (RIS: Radiological 
597 information system) 
598  
599  
600 Figure 2 - Counts of numbers of critical findings for the cases seen by the radiologist, defined as the number of critical 
601 findings agreed + the number of critical findings added. The number of cases which returned zero findings was 1,513. 
602  
603
604 Figure 3 – Diverging stacked bar chart depicting the first set of radiologist survey responses. 
605  
606  
607 Figure 4 – Diverging stacked bar chart visualising the second set of survey responses of the radiologists. 
608
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Figure 1 - Flow diagram illustrating the AI-assisted reporting process described in this study. RIS: 
Radiological information system. 
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Figure 2 - Counts of numbers of critical findings for the cases seen by the radiologist, defined as the number 
of critical findings agreed + the number of critical findings added. The number of cases which returned zero 

findings was 1,513. 
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Figure 3 – Diverging stacked bar chart depicting the first set of radiologist survey responses. 
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Figure 4 – Diverging stacked bar chart visualising the second set of survey responses of the radiologists. 
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Supplementary Table 1 - List of the 124 findings, including 34 critical findings which the model is validated to detect. ETT: 

endotracheal tube, NGT: nasogastric tube, PAC: pulmonary artery catheter. 

Critical Clinical Findings  

Acute humerus fracture  Loculated effusion  Subcutaneous emphysema  

Acute rib fracture  Lung collapse  Subdiaphragmatic gas  

Air Space Opacity - Multifocal  Multiple masses or nodules  Suboptimal central line  

Cavitating mass with content  Perihilar airspace opacity  Suboptimal ETT  

Cavitating mass(es)  Pneumomediastinum  Suboptimal NGT  

Diffuse airspace opacity  Pulmonary congestion  Suboptimal PAC  

Diffuse lower airspace opacity  Segmental collapse  Superior mediastinal mass  

Diffuse upper airspace opacity  Shoulder dislocation  Tension pneumothorax  

Focal airspace opacity  Simple effusion  Tracheal deviation  

Hilar lymphadenopathy  Simple pneumothorax  Widened aortic contour  

Inferior mediastinal mass  Solitary lung mass  Widened cardiac silhouette  

  Solitary lung nodule    

Non-Critical Clinical Findings  

Abdominal Clips   Coronary Stent  Pectus Excavatum   

Acute Clavicle Fracture   Diaphragmatic Elevation   Peribronchial Cuffing   

Airway Stent   Diaphragmatic Eventration   Pericardial Fat Pad   

Aortic Arch Calcification   Diffuse Fibrotic Volume Loss   Pleural Mass   

Aortic Stent   Diffuse Interstitial   Post Resection Volume Loss   

Atelectasis   
Diffuse Nodular / Miliary 
Lesions   

Pulmonary Arterial Catheter   

Axillary Clips   Diffuse Pleural Thickening   Pulmonary Artery Enlargement   

Basal Predominant Interstitial   Diffuse Spinal Osteophytes   Reduced Lung Markings   

Biliary Stent   Distended Bowel   Rib Fixation   

Breast Implant   Electronic Cardiac Devices   Rib Lesion   

Bronchiectasis   Endotracheal Tube   Rib Resection   

Bullae Diffuse   Gallstones   Rotator Cuff Anchor   

Bullae Lower   Gastric Band   Scapular Fracture   

Bullae Upper   Hiatus Hernia   Scapular Lesion   

Calcified Axillary Nodes   Humeral Lesion   Scoliosis   

Calcified Granuloma (<5mm)   Intercostal Drain   Shoulder Arthritis   

Calcified Hilar Lymphadenopathy   Internal Foreign Body   Shoulder Fixation   

Calcified Mass (>5mm)   Kyphosis   Shoulder Replacement   

Calcified Neck Nodes   
Lower Zone Fibrotic Volume 
Loss   

Spinal Fixation   

Calcified Pleural Plaques   Lung Sutures   Spine Arthritis   

Cardiac Valve Prosthesis   Mastectomy   Spine Lesion   

Central Venous Catheter   Mediastinal Clips   Spine Wedge Fracture   

Cervical Flexion   Nasogastric Tube   Sternotomy Wires   

Chronic Clavicle Fracture   Neck Clips   Suboptimal Gastric Band   

Chronic Humerus Fracture   Nipple Shadow   Unfolded Aorta   

Chronic Rib Fracture   Oesophageal Stent   Upper Predominant Interstitial   

Clavicle Fixation   Osteopaenia   
Upper Zone Fibrotic Volume 
Loss  

Clavicle Lesion  Pectus Carinatum    
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Technical Findings  

Chest Incompletely Imaged  Image Obscured  Underexposed  

Hyperinflation  Overexposed  Underinflation  

  Patient Rotation    
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Supplementary Table 2 – Example of the survey questions provided to the radiologists at the end of the study. 

 Significantly 
worse 

Moderately 
worse 

Slightly 
worse 

About the 
same 

Slightly 
better 

Moderately 
better 

Significantly 
better 

How do you feel this tool impacted 
reporting time?  o o o o o o o 

How do you feel this tool impacted 
reporting accuracy?  o o o o o o o 

  Very 
dissatisfied 

Dissatisfied 
Somewhat 
dissatisfied 

Neutral 
Somewhat 

satisfied 
Satisfied 

Very 
dissatisfied 

How satisfied were you with 
reporting time using this CXR tool?  o o o o o o o 

How satisfied were you with the 
accuracy of this CXR tool's results?  o o o o o o o 

  Significantly 
more 

negative 

Moderately 
more 

negative 

Slightly 
more 

negative 

About the 
same 

Slightly 
more 

positive 

Moderately 
more 

negative 

Significantly 
more 

negative 

Did your attitude towards the CXR 
tool itself change from start to end of 
the trial?  

o o o o o o o 

Has your attitude towards AI in 
general changed after using this CXR 
tool?  

o o o o o o o 

    Strongly 
disagree 

Somewhat 
disagree 

Neutral 
Somewhat 

agree 
Strongly 

agree 
  

I think that I would like to use this 
system frequently.   o o o o o  

I found the system unnecessarily 
complex.   o o o o o  

I thought the system was easy to use.   o o o o o  

I think that I would need the support 
of a technical person to be able to 
use this system.  

 o o o o o  

I found the various functions in this 
system were well integrated.   o o o o o  

I thought there was too much 
inconsistency in this system.   o o o o o  

I would imagine that most people 
would learn to use this system very 
quickly.  

 o o o o o  

I found the system very cumbersome 
to use.   o o o o o  

I felt very confident using the system.   o o o o o  

I needed to learn a lot of things 
before I could get going with this 
system.  

 o o o o o  
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I would be disappointed if I could no 
longer use the CXR AI tool in my 
practice.  

 o o o o o  
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CLAIM:  Checklist for Artificial Intelligence in Medical Imaging

Section / Topic No. Item

TITLE / 
ABSTRACT

1 Identification as a study of AI methodology, 
specifying the category of technology used (e.g., 
deep learning)

Yes

2 Structured summary of study design, methods, 
results, and conclusions 

Yes

INTRODUCTION
3 Scientific and clinical background, including the 

intended use and clinical role of the AI approach
Yes – page 4/5

4 Study objectives and hypotheses Yes – page 5

METHODS
Study Design 5 Prospective or retrospective study Yes – page 8 (under: “CXR case 

section”)
6 Study goal, such as model creation, exploratory 

study, feasibility study, non-inferiority trial
Yes – page 8 (under: “CXR case 

section”)

Data 7 Data sources Yes – page 8 (under: “CXR case 
section”)

8 Eligibility criteria: how, where, and when potentially 
eligible participants or studies were identified (e.g.,  
symptoms, results from previous tests, inclusion in 
registry, patient-care setting, location, dates)

Yes – page 8 (under: “CXR case 
section”)

9 Data pre-processing steps N/A

10 Selection of data subsets, if applicable N/A

11 Definitions of data elements, with references to 
Common Data Elements

Yes – page 8/9 (under: “AI-
assisted reporting)

12 De-identification methods Yes – page 8 (under: “CXR case 
section”)

13 How missing data were handled N/A

Ground Truth 14 Definition of ground truth reference standard, in 
sufficient detail to allow replication

Yes – page 6 (under: “model 
development and validation”)

15 Rationale for choosing the reference standard (if 
alternatives exist)

N/A

16 Source of ground-truth annotations; qualifications 
and preparation of annotators

N/A – Described in reference 
31

17 Annotation tools N/A – Described in reference 
31

18 Measurement of inter- and intrarater variability; 
methods to mitigate variability and/or resolve 
discrepancies

N/A – Described in reference 
31
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Data Partitions 19 Intended sample size and how it was determined Yes – page 10 (under: 
”statistics and data analysis”)

20 How data were assigned to partitions; specify 
proportions

N/A

21 Level at which partitions are disjoint (e.g., image, 
study, patient, institution)

N/A

Model 22 Detailed description of model, including inputs, 
outputs, all intermediate layers and connections

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

23 Software libraries, frameworks, and packages Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

24 Initialization of model parameters (e.g., 
randomization, transfer learning)

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

Training 25 Details of training approach, including data 
augmentation, hyperparameters, number of models 
trained

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

26 Method of selecting the final model N/A

27 Ensembling techniques, if applicable N/A

Evaluation 28 Metrics of model performance Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

29 Statistical measures of significance and uncertainty 
(e.g., confidence intervals)

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

30 Robustness or sensitivity analysis N/A

31 Methods for explainability or interpretability (e.g., 
saliency maps), and how they were validated

N/A

32 Validation or testing on external data N/A

RESULTS
Data 33 Flow of participants or cases, using a diagram to 

indicate inclusion and exclusion
Yes – Figure 1

34 Demographic and clinical characteristics of cases in 
each partition

N/A

Model 
performance

35 Performance metrics for optimal model(s) on all data 
partitions

N/A

36 Estimates of diagnostic accuracy and their precision 
(such as 95% confidence intervals)

N/A

37 Failure analysis of incorrectly classified cases N/A

DISCUSSION
38 Study limitations, including potential bias, statistical 

uncertainty, and generalizability
Yes – page 13 (under: “ 
limitations and future 

research”)
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39 Implications for practice, including the intended use 
and/or clinical role 

Yes – page 13 (under: 
“conclusion”)

OTHER 
INFORMATION

40 Registration number and name of registry N/A

41 Where the full study protocol can be accessed N/A

42 Sources of funding and other support; role of 
funders

Yes – page 21

Mongan J, Moy L, Kahn CE Jr.  Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for 
authors and reviewers.  Radiol Artif Intell 2020; 2(2):e200029. https://doi.org/10.1148/ryai.2020200029
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42 ABSTRACT
43
44 Objectives: AI algorithms have been developed to detect imaging features on chest X-ray (CXR) 

45 with a comprehensive AI model capable of detecting 124 CXR findings being recently developed. The 

46 aim of this study was to evaluate the real-world usefulness of the model as a diagnostic assistance device 

47 for radiologists.

48 Design: This prospective real-world multicentre study involved a group of radiologists using the 

49 model in their daily reporting workflow to report consecutive chest X-rays and recording their feedback 

50 on level of agreement with the model findings and whether this significantly affected their reporting.

51 Setting: The study took place at radiology clinics and hospitals within a large radiology network 

52 in Australia between November and December 2020.

53 Participants: Eleven consultant diagnostic radiologists of varying levels of experience 

54 participated in this study.

55 Primary and secondary outcome measures: Proportion of CXR cases where use of the AI 

56 model led to significant material changes to the radiologist report, to patient management, or to imaging 

57 recommendations. Additionally, level of agreement between radiologists and the model findings, and 

58 radiologist attitudes towards the model were assessed.

59 Results: Of 2,972 cases reviewed with the model, 92 cases (3.1%) had significant 

60 report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further 

61 imaging recommendations. In terms of agreement with the model, 2,572 cases showed complete 

62 agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There 

63 were 16 findings across 13 cases (0.5%) deemed to be missed by the model. Nine out of 10 radiologists 

64 felt their accuracy was improved with the model and were more positive towards AI post-study.

65 Conclusions: Use of an AI model in a real-world reporting environment significantly improved 

66 radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI 

67 diagnostic support to improve clinical practice.

68

69
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70 ARTICLE SUMMARY
71
72
73 Strengths and limitations of this study
74  This study substantially adds to the limited literature on real-world evaluation of 

75 comprehensive CXR AI models in radiology workflow.

76  This was a multicentre study conducted across a mix of public hospitals, private hospitals, 

77 and community clinic settings.

78  Due to the design of the study, diagnostic accuracy of the decision support system was not a 

79 measurable outcome.

80  Results of this study are self-reported and may therefore be prone to bias.

81  Determination of the significance of report changes due to the model's recommendations was 

82 made at the discretion of each radiologist on a case-by-case basis.

83
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84 INTRODUCTION
85

86 Radiology is a data-rich medical specialty and is well placed to embrace artificial intelligence 

87 [1].This is especially true in high volume imaging tasks such as chest X-ray imaging.  The rapid 

88 application of X-ray technology to diagnosing chest diseases at the end of the 19th century led to the chest 

89 X-ray (CXR) becoming a first-line diagnostic imaging tool [2] and it remains an essential component of 

90 the diagnostic pathway for chest disease. Due to advancements in digital image acquisition, low ionising 

91 radiation dose and low cost, the chest radiograph is more easily accessible worldwide than any other 

92 imaging modality [3]. 

93

94 The challenges of interpreting CXR, however, have not lessened over the last half-century. CXR 

95 images are 2D representations of complex 3D structures, relying on soft tissue contrast between structures 

96 of different densities. Multiple overlapping structures lead to reduced visibility of both normal and 

97 abnormal structures [4], with up to 40% of the lung parenchyma obscured by overlying ribs and the 

98 mediastinum [5]. This can be further exacerbated by other factors including the degree of inspiration, 

99 other devices in the field of view, and patient positioning. In addition, there is a wide range of pathology 

100 in the chest which is visible to varying degrees on the CXR. These factors combine to make CXRs 

101 difficult to accurately interpret, with an error rate of 20-50% for CXRs containing radiographic evidence 

102 of disease reported in the literature [6]. Notably, lung cancer is one of the most common cancers 

103 worldwide and is the most common cause of cancer death [7], and CXR interpretation error accounts for 

104 90% of cases where lung cancer is missed [8]. Despite technological advancements in CXR over the past 

105 50 years, this level of diagnostic error has remained constant [6]. 

106

107 A rapidly developing field attempting to assist radiologists in radiological interpretation involves 

108 the application of machine learning, in particular deep neural networks [9]. Deep neural networks learn 

109 patterns in large, complex datasets, enabling the detection of subtle features and outcome prediction 

110 [10,11]. The potential of these algorithms has grown rapidly in the past decade thanks to the development 

111 of more useful neural network models, advancements in computational power, and an increase in the 
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112 volume and availability of digital imaging datasets [11]. Of note is the rise of convolutional neural 

113 networks (CNNs), a type of deep neural network that excels at image feature extraction and classification, 

114 and demonstrates strong performance in medical image analysis, leading to the rapid advancement of 

115 computer vision in medical imaging [12,13]. CNNs have been used to develop models to successfully 

116 detect targeted clinical findings on CXR, including lung cancer [14,15], pneumonia [16,17], COVID-19 

117 [18], pneumothorax [19–22], pneumoconiosis [23], cardiomegaly [24], pulmonary hypertension [25] and 

118 tuberculosis [26–30]. These studies highlight the effectiveness of applied machine learning in CXR 

119 interpretation, however most of these deep learning systems are limited in scope to a single finding or a 

120 small set of findings, therefore lacking the broad utility that would make them useful in clinical practice. 

121

122 Recently, our group developed a comprehensive deep learning CXR diagnostic assist device, 

123 which was designed to assist clinicians in CXR interpretation and improve diagnostic accuracy, validated 

124 for 124 clinically relevant findings seen on frontal and lateral chest radiographs [31]. The primary 

125 objective of the current study was to evaluate the real-world usefulness of the model as a diagnostic assist 

126 device for radiologists in both hospital and community clinic settings. This involved examining the 

127 frequency at which the model's recommendations led to a ‘significant impact on the report’, defined as 

128 the inclusion of findings recommended by the model which altered the radiologists report in a meaningful 

129 way. The frequency of change in patient management and recommendations for further imaging were 

130 also evaluated. Secondary endpoints included: (1) investigating agreement between radiologists and the 

131 findings detected by the model; and (2) assessing radiologist attitudes towards the tool and AI models in 

132 general.

133
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134 METHODS
135

136 Ethics Statement

137 This study was approved by the institutional human research ethics committee of the Wesley 

138 Hospital, Brisbane, Queensland Australia (2020.14.324). Written informed consent was obtained from 

139 each participating radiologist. The requirement of patient consent was waived by the ethics committee 

140 due to the low-risk nature of the study.

141

142 Model development and validation 

143 A modified version of a commercially available AI tool for use as a diagnostic assist device 

144 displaying results within a viewer (CXR viewer; Annalise CXR ver 1.2, Annalise-AI, Sydney, Australia) 

145 was evaluated [32]. The AI tool deploys an underlying machine learning model, developed and validated 

146 by Seah et al [31], which consists of attribute and classification CNNs based on the EfficientNet 

147 architecture [33] and a segmentation CNN based on U-Net [34] with EfficientNet backbone.  The model 

148 was trained on 821,681 de-identified CXR images from 284,649 patients originating from inpatient, 

149 outpatient and emergency settings across Australia, Europe, and North America. Training dataset 

150 labelling involved independent triple labelling of all images by three radiologists selected from a wider 

151 pool of 120 consultant radiologists (none of whom were employed by the radiology network involved in 

152 this current study). The model was validated for 124 clinical findings in a multi-reader, multi-case 

153 (MRMC) study [31]. Thirty-four of these findings were deemed priority findings based on their clinical 

154 importance. The full list of 124 findings is available in Supplementary Table 1. Ground truth labels for 

155 the validation study dataset were determined by a consensus of three independent radiologists drawn from 

156 a pool of seven fully credentialed subspecialty thoracic radiologists. The algorithm is publicly available at 

157 https://cxrdemo.annalise.ai. The AI model was used in line with pre-existing regulatory approval [35]. 

158

159 Technical Integration 
160 Prior to the start of the study, technical integration of the software into existing radiology 

161 practice systems and testing occurred over several weeks. First, an integration adapter was installed 
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162 on the IT network of each radiology clinic and acted as a gateway between the internal IT 

163 infrastructure and the AI model. Auto-routing rules were established ensuring only CXR studies were 

164 forwarded to the integration adapter from the picture archiving and communication system (PACS). 

165 Following a successful testing period, the Annalise CXR viewer was installed and configured on 

166 workstations for the group of study radiologists. 

167

168 Study Participants

169 Eleven consultant radiologists working for a large Australian radiology network were invited to 

170 participate in the study through their local radiologist network. This group included general diagnostic 

171 radiologists who had completed specialist radiology training and passed all diagnostic radiology college 

172 examinations required for consultant accreditation in Australia. All radiologists reported the minimum of 

173 2000 chest radiographs per year (either within the radiology network or through other institutions) 

174 suggested to maintain competency [36].  No subspecialist chest radiologists were included. 

175

176 The group included radiologists with a range of experience levels: five radiologists had 0–5 years 

177 post-training experience, three radiologists had 6–10 years of experience, and three radiologists had more 

178 than 10 years of experience. Radiologists were situated across four states in Australia and worked in 

179 public hospitals, private hospitals and community clinic settings. Both on site and remote reporting was 

180 included, in line with regular workflow. Prior to study commencement, each radiologist attended a 

181 training seminar and a one-on-one training session to fully understand the CXR viewer and its features. In 

182 addition, the participating radiologists were able to familiarise themselves with the viewer prior to 

183 commencement of data collection. 

184

185 CXR Case Selection

186 In this multicentre real-world prospective study, all consecutive chest radiographs reported by the 

187 radiologists originating from inpatient, outpatient, and emergency settings were included for a period 

188 covering nearly six weeks. The CXR cases were reported with the assistance of the AI tool in real-world 

189 clinical practice, using high resolution diagnostic radiology monitors within the radiologists’ normal 
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190 reporting environment. As per usual workflow across a large radiology network spanning a 

191 geographically large area with many regional and remote clinics, both on-site and remote reporting of 

192 CXR cases was undertaken. A total of 106 sites contributed cases with case numbers varying from one 

193 case up to a maximum of 271 cases at the busiest site.

194

195 At least one frontal chest radiograph was required for analysis by the model, and cases that did 

196 not include at least one were excluded. Chest radiographs from patients aged younger than 16 years were 

197 excluded. Data from all sources was de-identified for analysis.

198

199 AI-Assisted Reporting

200 For each CXR case, radiologists produced their clinical report with access to clinical information, 

201 the referral and available patient history, in line with the normal workflow. The AI model analyses the 

202 CXR image(s) for each case but does not incorporate clinical inputs (such as previous imaging, referral 

203 information or patient demographic data) into the analysis. Model output was displayed to the radiologist 

204 in a user interface, linked to the image in the PACS, automatically launching when a CXR case was 

205 opened (Figure 1).

206  

207 A modified version of the commercially available AI software was employed for this study, 

208 which incorporated changes into the user interface to allow radiologists to provide feedback on model 

209 recommendations. No changes were made to the underlying model. An example of the modified model 

210 user interface is presented in figure 2. For each case, the model provided a list of suggested findings, 

211 listed as “priority” or “other”, along with a confidence indicator. For a subset of findings, a region of 

212 interest localiser was overlayed on the image and the model indicated whether the finding was on the left 

213 or the right side, or both (see Supplementary Table 1). The CXR viewer was configured to display its 

214 findings after the radiologists’ initial read of the case. For each case, radiologists were asked to review the 

215 CXR viewer’s findings and provide feedback within the viewer. The options presented to the radiologists 

216 in the viewer are listed in Table 1.

217
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218 Table 1 - List of review options presented to the radiologist with each case.

REVIEW OPTION DESCRIPTION

Rejected clinical finding A model-detected finding disputed by the radiologist

Missed clinical finding A model-detected finding missed by the radiologist

Add additional findings Finding(s) identified by the radiologist but not identified by the model

These findings significantly 
impacted my report

A yes/no binary question relating to the effect of the model output on 
the radiologist report

These findings may impact 
patient management

A yes/no binary question relating to the effect of the model output on 
patient management, as perceived by the reporting radiologist

These findings led to additional 
imaging recommendations

A binary yes/no question related to whether the radiologist 
recommended further imaging based on the model output

219
220

221 The outcome measure of ‘significant impact on the report’ was the primary outcome measure. 

222 A significant change was described as the inclusion of findings recommended by the model, which 

223 altered the radiologists report in a meaningful way. As this varied by patient and clinical setting, it 

224 was left to the discretion of the radiologist. During the analysis of radiologist feedback, it was 

225 assumed that a change in patient management or further imaging recommendation would not occur 

226 without radiologists indicating a material change in the CXR report, and thus management and 

227 imaging questions were dependent on a significant change in the report. This was also patient-

228 specific; for example, missing a pneumothorax in a ventilated patient with known pneumothorax 

229 would not have the same impact on patient management as a previously unknown pneumothorax in an 

230 outpatient. Free text input describing missed findings or other relevant data were manually added after 

231 data collection was complete. 

232 No formal adjudication of cases showing discrepancy between radiologist and model 

233 interpretation was performed. The study was not designed as a diagnostic accuracy validation. No 

234 review or ground truthing process was performed. Radiologists remained responsible for image 

235 interpretation and formulation of the report.
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236

237 Post-Study Survey

238 Upon completion of data collection, a post-study survey was distributed to all participating 

239 radiologists to obtain feedback on the usefulness of the CXR viewer and how it affected their opinion of 

240 AI in radiology. A table of the survey questions is presented in Supplementary Table 2.

241

242 Statistics and Data Analysis 

243 A 1% rate of significant changes in reports (the primary outcome measure) was deemed to be 

244 clinically significant prior to commencing the study. Based on estimations of the prevalence of missed 

245 critical findings on CXR, preliminary power calculations estimated that the number of cases required to 

246 detect at least a 1% rate of significant changes in reports was approximately 2000 cases in total, with 

247 alpha value 0.05 and desired power of 0.90. To account for any dropout in radiologists or cases, a target 

248 of 3000 cases was set for the study. Ten radiologists were recruited, with an eleventh included for any 

249 unexpected participant drop out and to achieve this target in a reasonable time period. 

250

251 A two-tailed binomial test was used to test the hypothesis that the rate of significant report 

252 change, patient management change, or imaging recommendation change was at least 1%. To ensure that 

253 the sampling of CXRs reasonably approximated a random snapshot of the true population, radiologists in 

254 various states, experience levels as well as different conditions of practice (community clinic vs hospital 

255 based) were selected. Additionally, the study was conducted prospectively which further aligned the 

256 structure of the sampled data with the expected structure of the population, justifying the choice of 

257 analysing the sample using a binomial test without adjustment for each radiologist. 

258 Multivariate logistic regression using generalised linear mixed effect analysis was used to assess 

259 the effect of several possible confounders on the measured outcomes, including the number of critical 

260 clinical findings per case identified by the model, the inpatient/outpatient status of the patients, the 

261 experience level of the radiologists, and the presence or absence of a lateral radiograph. The Wald test 

262 was applied to the derived regression coefficients to determine their significance. 
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263 Radiologists were grouped by experience level into 0-5 years post completion of radiology 

264 training, 6-10 years, and more than ten years. A likelihood ratio test comparing a binomial logistic 

265 regression with categorical radiologist experience against a null model was performed to assess the 

266 hypothesis that the outcomes (significant changes in reports, management, or imaging recommendation) 

267 were associated with experience. 

268

269 A significance threshold of 0.05 was chosen, with the Benjamini-Hochberg procedure [37] 

270 applied to all reported outcomes to account for multiple hypothesis testing. Two clinically qualified 

271 researchers independently performed statistical analyses using different software. Calculations were 

272 performed in Excel 2016 with RealStatistics resource pack and cross-checked in Python 3.7 using the 

273 Pandas 1.0.5 [38], NumPy 1.18.5 [39], SciPy 1.4.1 [40], Scikit-Learn 0.24.0 [41], pymer4 0.7.1 (linked to 

274 R 3.4.1, Ime4 1.1.26) [42] and Statsmodels 0.12.1 [43] libraries.

275
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276 RESULTS
277

278 A total of 2,972 cases were reported by 11 radiologists over a period of six weeks.  These cases 

279 came from 2,665 unique patients (52.7% male), with a median age of 67 (IQR 50–77). Information on 

280 radiologist experience, number of cases reported, source of cases and outcome measures for each 

281 radiologist are listed in Table 2. 

282

283 Table 2 - Demographics and results for the eleven radiologists involved in this study. Percentages (%) represent the 
284 associated value as a proportion of the total case number for that radiologist.

Radiologist 
ID

Number of 
years post-

training

Cases 
reported (%
 outpatient)

Significant 
report impact 

(%)

Patient 
management 
changes (%)

Imaging reco
mmendations 

(%)

1 19 136 (21.3) 1 (0.7) 1 (0.7) 0 (0.0)

2 1 325 (46.2) 4 (1.2) 0 (0.0 1 (0.3)

3 4 230 (86.1) 20 (8.6) 14 (6.1) 10 (4.3)

4 6 375 (22.7) 3 (1.0) 0 (0.0) 1 (0.2)

5 4 186 (45.7) 22 (11.8) 9 (4.8) 8 (4.3)

6 20 333 (11.1) 3 (1.0) 2 (0.6) 1 (0.3)

7 3 312 (48.4) 15 (4.8) 8 (2.5) 1 (0.3)

8 26 408 (39.7) 10 (2.4) 5 (1.2) 4 (1.0)

9 9 214 (43.0) 6 (2.8) 2 (0.9) 2 (0.9)

10 6 159 (98.1) 1 (0.6) 1 (0.6) 1 (0.6)

11 5 294 (40.1) 7 (2.4) 1 (0.3) 0 (0.0)

Total 2,972 92 (3.1) 43 (1.4) 29 (1.0)

285
286
287
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288 Of the 2,972 cases, 1,825 (61.4%) cases had lateral (as well as frontal) radiographs available for 

289 interpretation. 1,709 (57.5%) cases were from an inpatient setting, and 1,263 (42.5%) from an outpatient 

290 setting. The median number of findings per case was five (mean: 5.1, SD: 3.9), with a wide range in the 

291 number of findings per case (maximum=20). A total of 364 cases returned zero findings predicted by the 

292 model from the complete 124 findings list. 1,526 of the 2,972 cases had one or more critical findings 

293 detected by the CXR viewer, with the critical findings in 1,459 (96%) of these cases being confirmed by 

294 the radiologist. The number of critical findings per case is summarised in Figure 3. 

295

296 Influence of the AI model on radiologist reporting

297 Across all 2,972 cases, there were 92 cases identified by radiologists as having significant report 

298 changes (3.1%), 43 cases of changed patient management (1.4%) and 29 cases of additional imaging 

299 recommendations (1.0%) as a result of exposure to the AI model output. When compared to the 

300 hypothesised 1% rate of change, the findings were significantly higher for changed reports (p <0.01) and 

301 changed patient management (p<0.01), and not significantly different for rate of imaging 

302 recommendation (p=0.50).

303

304 Agreement with model findings

305 Of the 2,972 cases, 2,569 had no findings rejected or added by the radiologists, indicating 

306 agreement with the model over all 124 possible findings in 86.5% of cases. 306 (10.2%) cases had one 

307 finding rejected by the radiologist and 84 (2.8%) had two or more findings rejected by the radiologist. 

308 202 (5.3%) critical findings detected by the model were rejected by radiologists. The missed and rejected 

309 critical findings are detailed in Table 3.

310 13 cases (0.5%) had findings (16 in total) added by the radiologists which they deemed were missed by 

311 the model, of which 8 were critical findings (see Table 3). The remaining 8 non-critical missed findings 

312 were atelectasis (4 findings), cardiac valve prosthesis (2 findings), spinal wedge fracture (1 finding) and 

313 peribronchial thickening (1 finding).
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314 Table 3 – Breakdown of the critical findings detected by the model and the level of radiologist agreement with each, 
315 including the number of findings reportedly missed by the model (and added by the radiologist) or missed by the radiologist. 
316 Percentages (%) represent the associated value as a proportion of the total number of findings displayed by the model.

Critical Finding Displayed by 
model

Radiologist 
agreed with 
finding (%)

Radiologist 
rejected 

finding (%)
Added in by 
radiologist

Missed by 
radiologist

Acute aortic syndrome 2 2.0 (100.0) 0 (0.0) 0 0 
Acute humerus fracture 5 5 (100.0) 0 (0.0) 0 0 
Acute rib fracture 54 39 (72.2) 15 (27.8) 0 5 
Cardiomegaly 1,008 979 (97.1) 29 (2.9) 0 0 
Cavitating mass 14 13 (92.9) 1 (7.1) 0 0 
Cavitating mass internal content 6 5 (83.3) 1 (16.7) 0 0 
Diffuse airspace opacity 13 13 (100.0) 0 (0.0) 0 0 
Diffuse lower airspace opacity 153 148 (96.7) 5 (3.3) 0 0 
Diffuse perihilar airspace opacity 45 45 (100.0) 0 (0.0) 0 0 
Diffuse upper airspace opacity 2 2 (100.0) 0 (0.0) 0 0 
Focal airspace opacity 341 321 (94.1) 20 (5.9) 0 2 
Hilar lymphadenopathy 8 6 (75.0) 2 (25.0) 0 0 
Inferior mediastinal mass 8 7 (87.5) 1 (12.5) 0 0 
Loculated effusion 87 80 (92.0) 7 (8.0) 0 1 
Lung collapse 11 10 (90.9) 1 (9.1) 0 0 
Malpositioned CVC 85 78 (91.8) 7 (8.2) 0 1 
Malpositioned ETT 52 43 (82.7) 9 (17.3) 0 0 
Malpositioned NGT 39 31 (79.5) 8 (20.5) 0 0 
Malpositioned PAC 13 9 (69.2) 4 (30.8) 0 0 
Multifocal airspace opacity 125 120 (96.0) 5 (4.0) 0 1 
Multiple pulmonary masses 43 38 (88.4) 5 (11.6) 0 0 
Pneumomediastinum 5 5 (100.0) 0 (0.0) 1 0 
Pulmonary congestion 220 215 (97.7) 5 (2.3) 1 0 
Segmental collapse 292 290 (99.3) 2 (0.7) 0 1 
Shoulder dislocation 1 0 (0.0) 1 (100.0) 0 0 
Simple effusion 687 650 (94.6) 37 (5.4) 0 1 
Simple pneumothorax 90 77 (85.6) 13 (14.4) 1 1 
Single pulmonary mass 41 38 (92.7) 3 (7.3) 1 1 
Single pulmonary nodule 105 95 (90.5) 10 (9.5) 3 5 
Subcutaneous emphysema 53 51 (96.2) 2 (3.8) 0 1 
Subdiaphragmatic gas 7 7 (100.0) 0 (0.0) 1 0 
Superior mediastinal mass 37 32 (86.5) 5 (13.5) 0 0 
Tension pneumothorax 11 7 (63.6) 4 (36.4) 0 0 
Tracheal deviation 133 133 (100.0) 0 (0.0) 0 0 

Total 3,796 3,594 (94.7) 202 (5.3) 8 20 

317
318

319 Factors influencing reporting, management, or imaging recommendation

320 The number of critical findings displayed by the model was significantly higher in cases where 

321 there was a change in report, patient management, or imaging recommendation (p < 0.001, p = 0.001, p = 

322 0.004; Table 4). The presence of a lateral projection image in the CXR case interpreted by the model was 

Page 15 of 40

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 14, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
20 D

ecem
b

er 2021. 
10.1136/b

m
jo

p
en

-2021-052902 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review only

323 associated with a significantly greater likelihood of changes to imaging recommendation (p = 0.005), but 

324 not to the report or patient management (p = 0.105 and p = 0.061, respectively). 

325

326 Radiologists with fewer than 5 years consultant experience contributed 1,347 cases, and indicated 

327 a rate of 5.0% for significant report change, 2.4% patient management change, and 1.5% 

328 recommendations for further imaging. These numbers were higher than for the radiologists with 6-10 

329 years of experience (1.3%, 0.4%, 0.5% respectively over 748 cases) and also for radiologists with greater 

330 than 10 years of experience (1.6%, 0.9%, 0.6% over 877 cases). However, a likelihood ratio test applied 

331 to binomial logistic regression analysis indicated that the level of radiologist experience did not 

332 significantly influence the rate of change in report, patient management, or imaging recommendation (p = 

333 0.120, p = 0.262, and p = 0.516, respectively).   Whether a patient was imaged as an inpatient or 

334 outpatient was not significantly associated with any change in report, patient management, or imaging 

335 recommendation (p = 0.358, p = 0.572, p = 0.326, respectively).
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336 Table 4 - Factors affecting AI model influence on report, patient management, or imaging recommendation. Significance 
337 testing by the Benjamini-Hochberg algorithm to account for multiple hypotheses. Odds ratios derived from stepwise logistic 
338 regression coefficients with confidence intervals calculated with Benjamini-adjusted thresholds. Radiologist experience 
339 analysed as a categorical variable with odds ratios representing effect of changing experience levels from the baseline (0 to 
340 5 years) to a different level.

Predictor  Change  Odds Ratios (Adjusted CI) P 
Value  

Benjamini-Adjusted 
Threshold  Significance  

Number of Critical 
Findings   Report   1.306 (1.132-1.507) 0 0.0042 YES 

Number of Critical 
Findings   Patient Management   1.267 (1.056-1.521) 0.001 0.0083 YES 

Number of Critical 
Findings   

Imaging 
Recommendation   1.319 (1.035-1.681) 0.004 0.0125 YES 

Lateral CXR   Imaging 
Recommendation   6.495 (1.297-32.530) 0.005 0.0167 YES 

Lateral CXR   Patient Management   2.158 (0.837-5.565) 0.061 0.0208 NO 

Lateral CXR   Report   1.542 (0.848-2.805) 0.105 0.025 NO 

Radiologist 
Experience   Report   

0 to 5 years: Baseline 
6 to 10 years: 0.255 (0.043-1.521) 
> 10 years: 0.305 (0.065-1.439) 

0.120 0.0292 NO 

Radiologist 
Experience   Patient Management   

0 to 5 years: Baseline 
6 to 10 years: 0.165 (0.009-3.214) 
> 10 years: 0.378 (0.054-2.654) 

0.262 0.0333 NO 

Radiologist 
Experience   

Imaging 
Recommendation   

0 to 5 years: Baseline 
6 to 10 years: 0.357 (0.034-3.783) 
> 10 years: 0.380 (0.044-3.287) 

0.516 0.0458 NO 

Inpatient/Outpatient   Imaging 
Recommendation   1.550 (0.613-3.919) 0.326 0.0375 NO 

Inpatient/Outpatient   Report   0.794 (0.476-1.323) 0.358 0.0417 NO 

Inpatient/Outpatient   Patient Management   0.818 (0.408-1.640) 0.572 0.0500 NO 

341

342 Survey Results

343 The post-study survey was completed by ten out of the eleven radiologists (Figure 4 and Figure 

344 5). Notably, 7 (70%) participants felt that their reporting time was slightly worse, however when asked 

345 how satisfied they were with their reporting time, 7 (70%) indicated that they were satisfied.
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346 Nine out of ten radiologists responded that their reporting accuracy was improved while using the 

347 CXR viewer, with nine out of ten (90%) participants being satisfied with accuracy of the CXR model’s 

348 findings. Nine radiologists (90%) demonstrated an improved attitude towards the use of the AI diagnostic 

349 viewer by the end of the study and 9 (90%) demonstrated an improved attitude towards AI in general. No 

350 radiologists reported a more negative attitude towards the CXR viewer or towards AI in general.
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351 DISCUSSION

352 We have previously shown that using the output of this comprehensive deep learning model 

353 improved radiologist diagnostic accuracy [44] in a non-clinical setting, but it is important to demonstrate 

354 that this improvement translates into meaningful change in a real-world environment. In this multicentre 

355 real-world prospective study, we determined how often the finding recommendations of the 

356 comprehensive deep learning model led to a material change in the radiologist's report, a change in the 

357 patient management recommendation, or a change in subsequent imaging recommendation. To the 

358 authors’ knowledge, this is the first time that the impact of a comprehensive deep learning model 

359 developed to detect radiological findings on CXR has been studied in a real-world reporting environment. 

360 Other commercially available deep learning models able to detect multiple findings on CXR have been 

361 studied in the non-clinical setting, yielding encouraging results and outperforming physicians in the 

362 detection of major thoracic findings [45] as well as improving resident diagnostic sensitivity [46]. Other 

363 models have demonstrated diagnostic accuracy that is comparable to that of test radiologists [47]. 

364 Additionally, studies have yielded promising results for the use of models in population screening, 

365 particularly for tuberculosis, where several models have met the minimum WHO recommendations for 

366 tuberculosis triage tests [29,48].

367

368 We showed that radiologists agreed with all findings identified by the AI model in 86.5% of 

369 cases on a per case basis, while on a per finding basis, agreed with the critical findings identified by the 

370 model on 94.7% of findings. Notably, there was a significant change to the report in 3.1% of cases 

371 leading to changes in recommended patient management in 1.4% of cases, and changes to imaging 

372 recommendations in 1% of cases. Of note, 146 lung lesions (solitary lung nodule and solitary lung mass) 

373 were present in the dataset according to the model. Two lung lesions flagged by the model but missed by 

374 radiologists were recommended for additional imaging and changed management, subsequently 

375 diagnosed as lung carcinoma, highlighting the real-world value of integrating this type of system into the 

376 radiology workflow. However, four findings of lung nodule were flagged by the radiologists as missed by 

377 the model, indicating that the model alone is not intended to replace radiologist interpretation.
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378

379 The significant impact of the CXR viewer on radiologist reporting and recommendations did 

380 however come at the cost of false positives, with 13% of cases having one or more model findings 

381 rejected by the radiologist. When this false positive rate is compared against the false positive rates per 

382 case reported in other studies investigating CXR models, which range from 14 – 88% [14,49,50], it is 

383 considered acceptable. Furthermore, these studies report false-positive rates for CXR models that only 

384 detect lung nodules, while in the current study this represents the false positive rate across 124 findings. 

385 Notably, on a per finding basis, only 5.3% of critical findings detected by the model were rejected by the 

386 radiologist. However, there were several outliers in the critical findings group that had noticeably higher 

387 rates of rejection, including acute rib fracture, hilar lymphadenopathy, malpositioned NGT/PAC, shoulder 

388 dislocation and tension pneumothorax. Several explanations for this are low sample size, the subjectivity 

389 of diagnosis and heightened model sensitivity at the expense of specificity. Overall, this trade-off appears 

390 to be reasonable to the participating radiologists, who reported a high level of satisfaction with the model. 

391

392 In this study, analysis of radiologists by experience level using logistic regression found no 

393 statistically significant relationship between experience level and increased changes to reports, patient 

394 management changes, or imaging recommendations as a result of the model. Statistical analysis of the 

395 relationship between experience level and change in report was associated with a p value of 0.12, 

396 suggesting that, with further research, a significant relationship may be identified. It is expected that the 

397 inclusion of a larger group of radiologists may lead to a significant finding, as the association between 

398 experience and level of change has been noted in other studies. For example Jang et al., showed that less 

399 experienced radiologists benefited the most from the diagnostic assistance in detecting lung nodules on 

400 CXR [14]. In this study, three of the 11 radiologists contributed a higher than average incidence of the 

401 primary outcome of report change, and these were all less experienced radiologists compared to the 

402 cohort average experience level. Whilst this may be due to variations in individual radiologist 

403 interpretation of ‘significant report change’, the consistency of experience level across these three 

404 radiologists suggests a relationship with experience level and tool impact. 

405
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406 The primary factor that influenced the likelihood of the model findings leading to a change in the 

407 report was the presence of critical findings in the model's recommendation. This is particularly notable 

408 because it indicates that the changes to the report are significant. They did not simply involve the 

409 inclusion of additional non-critical findings in the report, which may be interpreted as overestimating the 

410 impact of the model. The inpatient or outpatient status of a case was found not to significantly affect the 

411 likelihood of significant changes to the radiologists’ report, to patient management, or to imaging 

412 recommendations.

413

414 The post-study survey provided further insight into the impact that the CXR viewer had on 

415 participant reporting, in addition to the level of agreement and changes to the radiology report and patient 

416 management recommendations outlined above. The first notable response was that the CXR viewer may 

417 have negatively affected reporting times (albeit only mildly) for the majority of radiologists. This 

418 outcome was expected in this study setting because the radiologists were taking additional time to provide 

419 feedback on the model's recommendations for each case. Previous studies that surveyed radiologists 

420 reported that 74.4% thought AI would lower the interpretation time [51]. It is notable that even with the 

421 negative impact the model had on reporting time, the majority of radiologists (70%) were still satisfied 

422 with reporting time while using the CXR viewer, suggesting that the diagnostic improvements offered by 

423 the model were enough to offset the additional perceived reporting time. Additional insight from the 

424 survey suggested that very little training was required before radiologists felt comfortable using the tool. 

425 This is useful as education on AI has been a primary concern amongst clinicians, as a large proportion of 

426 radiologists report having little knowledge of AI [52].

427

428 Limitations and future research 

429 The results presented in this study are self-reported by participating radiologists and are likely an 

430 underestimation of the model's actual impact. It is expected that radiologists would not report every 

431 instance in which they made an interpretive error. Another limitation is that there was no objective gold 

432 standard against which the radiologist and model interpretation could be measured. This is a small-scale 

433 study involving a limited sample size, conducted over several weeks. As a result, it lacks the statistical 
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434 power to examine the benefit of the model on a finding-by-finding basis. In future, it would be beneficial 

435 to conduct a similar study with a larger sample size to allow for more powerful statistical analysis and 

436 examination of specific finding changes. Another useful next step would be to include a gold standard to 

437 determine the ground truth for the CXR findings, as this would prevent any under reporting which may 

438 occur with self-reported results, as well as enable the detection of false negatives as a result of the CXR 

439 viewer.

440 Although none of the cases evaluated in this study had been seen by the model previously, we 

441 note that one of the five data sources used for model training originated from the same radiology network. 

442 This therefore cannot be considered as true external evaluation. Further work in truly external institutions 

443 in the future are welcomed.

444

445 Conclusion

446 The present study indicated that the integration of a comprehensive AI model capable of 

447 detecting 124 findings on CXR into a radiology workflow led to significant changes in reports and patient 

448 management, with an acceptable rate of additional imaging recommendations. These results were not 

449 affected by the inpatient status of the patient, and although approaching significance, the experience level 

450 of the radiologists did not significantly relate to the primary endpoint outcomes. In secondary endpoint 

451 outcomes, the model output showed good agreement with radiologists, and radiologists showed high rates 

452 of satisfaction with their reporting times and diagnostic accuracy when using the CXR viewer as a 

453 diagnostic assist device. Results highlight the usefulness of AI-driven diagnostic assist tools in improving 

454 clinical practice and patient outcomes. 
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639 FIGURE LEGENDS

640 Figure 1 – Flow diagram illustrating the AI-assisted reporting process described in this study. (RIS: Radiological 
641 information system) 
642  
643 Figure 2 – Example of the modified user interface used by the participating radiologists in this study. The red box highlights 
644 the feedback options added to the interface for this study.
645
646 Figure 3 – Counts of numbers of critical findings for the cases seen by the radiologist, defined as the number of critical 
647 findings agreed + the number of critical findings added. The number of cases which returned zero findings was 1,513. 
648  
649 Figure 4 – Diverging stacked bar chart depicting the first set of radiologist survey responses. 
650  
651  Figure 5 – Diverging stacked bar chart visualising the second set of survey responses of the radiologists. 

652
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Figure 1 – Flow diagram illustrating the AI-assisted reporting process described in this study. (RIS: 
Radiological information system) 
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Figure 2 – Example of the modified user interface used by the participating radiologists in this study. The red 
box highlights the feedback options added to the interface for this study. 
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Figure 3 – Counts of numbers of critical findings for the cases seen by the radiologist, defined as the number 
of critical findings agreed + the number of critical findings added. The number of cases which returned zero 

findings was 1,513. 
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Figure 4 - Diverging stacked bar chart depicting the first set of radiologist survey responses. 
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Figure 5 – Diverging stacked bar chart visualising the second set of survey responses of the radiologists. 
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Supplementary Table 1 - List of the 124 findings, including 34 critical findings which the model is validated to detect. The 

format used by the model to recommend each finding are presented in brackets (Laterality: indicates whether the predicted 
finding is present on the left or right side, or both. ROI: a predicted region of interest localiser is overlayed on the image. 

None: no segmentation). ETT: endotracheal tube, NGT: nasogastric tube, PAC: pulmonary artery catheter.  

Critical Clinical Findings (Localisation) 

Acute humerus fracture (Laterality) Loculated effusion (ROI) 
Subcutaneous emphysema 
(Laterality) 

Acute rib fracture (ROI) Lung collapse (Laterality) Subdiaphragmatic gas (None) 

Air Space Opacity – Multifocal 
(ROI) 

Multiple masses or nodules 
(ROI) 

Suboptimal central line (ROI) 

Cavitating mass with content 
(ROI) 

Perihilar airspace opacity 
(Laterality) 

Suboptimal ETT (None) 

Cavitating mass(es) (ROI) Pneumomediastinum (None) Suboptimal NGT (ROI) 

Diffuse airspace opacity (Laterality) Pulmonary congestion (None) Suboptimal PAC (None) 

Diffuse lower airspace opacity 
(Laterality) 

Segmental collapse (ROI) 
Superior mediastinal mass 
(None) 

Diffuse upper airspace opacity 
(Laterality) 

Shoulder dislocation 
(Laterality) 

Tension pneumothorax (ROI) 

Focal airspace opacity (ROI) Simple effusion (ROI) Tracheal deviation (None) 

Hilar lymphadenopathy (None) Simple pneumothorax (ROI) 
Widened aortic 
contour (None) 

Inferior mediastinal mass (None) Solitary lung mass (ROI) 
Widened cardiac 
silhouette (None) 

  Solitary lung nodule (ROI)   

Non-Critical Clinical Findings (Localisation) 

Abdominal Clips (None) Coronary Stent (None) Pectus Excavatum (None) 

Acute Clavicle Fracture (Laterality) 
Diaphragmatic Elevation 
(None) 

Peribronchial Cuffing (None) 

Airway Stent (None) 
Diaphragmatic Eventration 
(None) 

Pericardial Fat Pad (None) 

Aortic Arch Calcification (None) 
Diffuse Fibrotic Volume Loss 
(Laterality) 

Pleural Mass (ROI) 

Aortic Stent (None) Diffuse Interstitial (Laterality) 
Post Resection Volume Loss 
(Laterality) 

Atelectasis (ROI) 
Diffuse Nodular / Miliary 
Lesions (Laterality) 

Pulmonary Arterial Catheter 
(None) 

Axillary Clips (Laterality) 
Diffuse Pleural Thickening 
(None) 

Pulmonary Artery 
Enlargement (None) 

Basal Predominant Interstitial 
(Laterality) 

Diffuse Spinal Osteophytes 
(None) 

Reduced Lung 
Markings (None) 

Biliary Stent (None) Distended Bowel (None) Rib Fixation (Laterality) 

Breast Implant (None) 
Electronic Cardiac Devices 
(None) 

Rib Lesion (ROI) 

Bronchiectasis (None) Endotracheal Tube (None) Rib Resection (None) 

Bullae Diffuse (None) Gallstones (None) 
Rotator Cuff Anchor 
(Laterality) 
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Bullae Lower (None) Gastric Band (None) Scapular Fracture (Laterality) 

Bullae Upper (None) Hiatus Hernia (None) Scapular Lesion (ROI) 

Calcified Axillary Nodes (None) Humeral Lesion (ROI) Scoliosis (None) 

Calcified Granuloma (<5mm) 
(None) 

Intercostal Drain (Laterality) Shoulder Arthritis (None) 

Calcified Hilar Lymphadenopathy 
(None)  

Internal Foreign Body (ROI) Shoulder Fixation (Laterality) 

Calcified Mass (>5mm) (ROI) Kyphosis (None) 
Shoulder Replacement 
(Laterality) 

Calcified Neck Nodes (None) 
Lower Zone Fibrotic Volume 
Loss (Laterality) 

Spinal Fixation (None) 

Calcified Pleural Plaques (None) Lung Sutures (None) Spine Arthritis (None) 

Cardiac Valve Prosthesis (None) Mastectomy (None) Spine Lesion (ROI) 

Central Venous Catheter (ROI) Mediastinal Clips (None) Spine Wedge Fracture (ROI) 

Cervical Flexion (None) Nasogastric Tube (ROI) Sternotomy Wires (None) 

Chronic Clavicle Fracture (None) Neck Clips (Laterality) 
Suboptimal Gastric Band 
(None) 

Chronic Humerus Fracture (None) Nipple Shadow (None) Unfolded Aorta (None) 

Chronic Rib Fracture (None) Oesophageal Stent (None) 
Upper Predominant Interstitial 
(Laterality) 

Clavicle Fixation (Laterality) Osteopaenia (None) 
Upper Zone Fibrotic Volume 
Loss (Laterality) 

Clavicle Lesion (ROI) Pectus Carinatum (None)   

Technical Findings 

Chest Incompletely Imaged 
(None) 

Image Obscured (None) Underexposed (None) 

Hyperinflation (None) Overexposed (None) Underinflation (None) 

  Patient Rotation (None)   
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Supplementary Table 2 – Example of the survey questions provided to the radiologists at the end of the study. 

 Significantly 
worse 

Moderately 
worse 

Slightly 
worse 

About the 
same 

Slightly 
better 

Moderately 
better 

Significantly 
better 

How do you feel this tool impacted 
reporting time?  o o o o o o o 

How do you feel this tool impacted 
reporting accuracy?  o o o o o o o 

  Very 
dissatisfied 

Dissatisfied 
Somewhat 
dissatisfied 

Neutral 
Somewhat 

satisfied 
Satisfied 

Very 
dissatisfied 

How satisfied were you with 
reporting time using this CXR tool?  o o o o o o o 

How satisfied were you with the 
accuracy of this CXR tool's results?  o o o o o o o 

  Significantly 
more 

negative 

Moderately 
more 

negative 

Slightly 
more 

negative 

About the 
same 

Slightly 
more 

positive 

Moderately 
more 

negative 

Significantly 
more 

negative 

Did your attitude towards the CXR 
tool itself change from start to end of 
the trial?  

o o o o o o o 

Has your attitude towards AI in 
general changed after using this CXR 
tool?  

o o o o o o o 

    Strongly 
disagree 

Somewhat 
disagree 

Neutral 
Somewhat 

agree 
Strongly 

agree 
  

I think that I would like to use this 
system frequently.   o o o o o  

I found the system unnecessarily 
complex.   o o o o o  

I thought the system was easy to use.   o o o o o  

I think that I would need the support 
of a technical person to be able to 
use this system.  

 o o o o o  

I found the various functions in this 
system were well integrated.   o o o o o  

I thought there was too much 
inconsistency in this system.   o o o o o  

I would imagine that most people 
would learn to use this system very 
quickly.  

 o o o o o  

I found the system very cumbersome 
to use.   o o o o o  

I felt very confident using the system.   o o o o o  

I needed to learn a lot of things 
before I could get going with this 
system.  

 o o o o o  
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I would be disappointed if I could no 
longer use the CXR AI tool in my 
practice.  

 o o o o o  
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CLAIM:  Checklist for Artificial Intelligence in Medical Imaging

Section / Topic No. Item

TITLE / 
ABSTRACT

1 Identification as a study of AI methodology, 
specifying the category of technology used (e.g., 
deep learning)

Yes

2 Structured summary of study design, methods, 
results, and conclusions 

Yes

INTRODUCTION
3 Scientific and clinical background, including the 

intended use and clinical role of the AI approach
Yes – page 4/5

4 Study objectives and hypotheses Yes – page 5

METHODS
Study Design 5 Prospective or retrospective study Yes – page 8 (under: “CXR case 

section”)
6 Study goal, such as model creation, exploratory 

study, feasibility study, non-inferiority trial
Yes – page 8 (under: “CXR case 

section”)

Data 7 Data sources Yes – page 8 (under: “CXR case 
section”)

8 Eligibility criteria: how, where, and when potentially 
eligible participants or studies were identified (e.g.,  
symptoms, results from previous tests, inclusion in 
registry, patient-care setting, location, dates)

Yes – page 8 (under: “CXR case 
section”)

9 Data pre-processing steps N/A

10 Selection of data subsets, if applicable N/A

11 Definitions of data elements, with references to 
Common Data Elements

Yes – page 8/9 (under: “AI-
assisted reporting)

12 De-identification methods Yes – page 8 (under: “CXR case 
section”)

13 How missing data were handled N/A

Ground Truth 14 Definition of ground truth reference standard, in 
sufficient detail to allow replication

Yes – page 6 (under: “model 
development and validation”)

15 Rationale for choosing the reference standard (if 
alternatives exist)

N/A

16 Source of ground-truth annotations; qualifications 
and preparation of annotators

N/A – Described in reference 
31

17 Annotation tools N/A – Described in reference 
31

18 Measurement of inter- and intrarater variability; 
methods to mitigate variability and/or resolve 
discrepancies

N/A – Described in reference 
31
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Data Partitions 19 Intended sample size and how it was determined Yes – page 10 (under: 
”statistics and data analysis”)

20 How data were assigned to partitions; specify 
proportions

N/A

21 Level at which partitions are disjoint (e.g., image, 
study, patient, institution)

N/A

Model 22 Detailed description of model, including inputs, 
outputs, all intermediate layers and connections

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

23 Software libraries, frameworks, and packages Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

24 Initialization of model parameters (e.g., 
randomization, transfer learning)

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

Training 25 Details of training approach, including data 
augmentation, hyperparameters, number of models 
trained

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

26 Method of selecting the final model N/A

27 Ensembling techniques, if applicable N/A

Evaluation 28 Metrics of model performance Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

29 Statistical measures of significance and uncertainty 
(e.g., confidence intervals)

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

30 Robustness or sensitivity analysis N/A

31 Methods for explainability or interpretability (e.g., 
saliency maps), and how they were validated

N/A

32 Validation or testing on external data N/A

RESULTS
Data 33 Flow of participants or cases, using a diagram to 

indicate inclusion and exclusion
Yes – Figure 1

34 Demographic and clinical characteristics of cases in 
each partition

N/A

Model 
performance

35 Performance metrics for optimal model(s) on all data 
partitions

N/A

36 Estimates of diagnostic accuracy and their precision 
(such as 95% confidence intervals)

N/A

37 Failure analysis of incorrectly classified cases N/A

DISCUSSION
38 Study limitations, including potential bias, statistical 

uncertainty, and generalizability
Yes – page 13 (under: “ 
limitations and future 

research”)
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39 Implications for practice, including the intended use 
and/or clinical role 

Yes – page 13 (under: 
“conclusion”)

OTHER 
INFORMATION

40 Registration number and name of registry N/A

41 Where the full study protocol can be accessed N/A

42 Sources of funding and other support; role of 
funders

Yes – page 21

Mongan J, Moy L, Kahn CE Jr.  Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for 
authors and reviewers.  Radiol Artif Intell 2020; 2(2):e200029. https://doi.org/10.1148/ryai.2020200029
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42 ABSTRACT
43
44 Objectives: AI algorithms have been developed to detect imaging features on chest X-ray (CXR) 

45 with a comprehensive AI model capable of detecting 124 CXR findings being recently developed. The 

46 aim of this study was to evaluate the real-world usefulness of the model as a diagnostic assistance device 

47 for radiologists.

48 Design: This prospective real-world multicentre study involved a group of radiologists using the 

49 model in their daily reporting workflow to report consecutive chest X-rays and recording their feedback 

50 on level of agreement with the model findings and whether this significantly affected their reporting.

51 Setting: The study took place at radiology clinics and hospitals within a large radiology network 

52 in Australia between November and December 2020.

53 Participants: Eleven consultant diagnostic radiologists of varying levels of experience 

54 participated in this study.

55 Primary and secondary outcome measures: Proportion of CXR cases where use of the AI 

56 model led to significant material changes to the radiologist report, to patient management, or to imaging 

57 recommendations. Additionally, level of agreement between radiologists and the model findings, and 

58 radiologist attitudes towards the model were assessed.

59 Results: Of 2,972 cases reviewed with the model, 92 cases (3.1%) had significant 

60 report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further 

61 imaging recommendations. In terms of agreement with the model, 2,572 cases showed complete 

62 agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There 

63 were 16 findings across 13 cases (0.5%) deemed to be missed by the model. Nine out of 10 radiologists 

64 felt their accuracy was improved with the model and were more positive towards AI post-study.

65 Conclusions: Use of an AI model in a real-world reporting environment significantly improved 

66 radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI 

67 diagnostic support to improve clinical practice.

68

69
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70 ARTICLE SUMMARY
71
72
73 Strengths and limitations of this study
74  This study substantially adds to the limited literature on real-world evaluation of 

75 comprehensive CXR AI models in radiology workflow.

76  This was a multicentre study conducted across a mix of public hospitals, private hospitals, 

77 and community clinic settings.

78  Due to the design of the study, diagnostic accuracy of the decision support system was not a 

79 measurable outcome.

80  Results of this study are self-reported and may therefore be prone to bias.

81  Determination of the significance of report changes due to the model's recommendations was 

82 made at the discretion of each radiologist on a case-by-case basis.

83
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84 INTRODUCTION
85

86 Radiology is a data-rich medical specialty and is well placed to embrace artificial intelligence 

87 [1].This is especially true in high volume imaging tasks such as chest X-ray imaging.  The rapid 

88 application of X-ray technology to diagnosing chest diseases at the end of the 19th century led to the chest 

89 X-ray (CXR) becoming a first-line diagnostic imaging tool [2] and it remains an essential component of 

90 the diagnostic pathway for chest disease. Due to advancements in digital image acquisition, low ionising 

91 radiation dose and low cost, the chest radiograph is more easily accessible worldwide than any other 

92 imaging modality [3]. 

93

94 The challenges of interpreting CXR, however, have not lessened over the last half-century. CXR 

95 images are 2D representations of complex 3D structures, relying on soft tissue contrast between structures 

96 of different densities. Multiple overlapping structures lead to reduced visibility of both normal and 

97 abnormal structures [4], with up to 40% of the lung parenchyma obscured by overlying ribs and the 

98 mediastinum [5]. This can be further exacerbated by other factors including the degree of inspiration, 

99 other devices in the field of view, and patient positioning. In addition, there is a wide range of pathology 

100 in the chest which is visible to varying degrees on the CXR. These factors combine to make CXRs 

101 difficult to accurately interpret, with an error rate of 20-50% for CXRs containing radiographic evidence 

102 of disease reported in the literature [6]. Notably, lung cancer is one of the most common cancers 

103 worldwide and is the most common cause of cancer death [7], and CXR interpretation error accounts for 

104 90% of cases where lung cancer is missed [8]. Despite technological advancements in CXR over the past 

105 50 years, this level of diagnostic error has remained constant [6]. 

106

107 A rapidly developing field attempting to assist radiologists in radiological interpretation involves 

108 the application of machine learning, in particular deep neural networks [9]. Deep neural networks learn 

109 patterns in large, complex datasets, enabling the detection of subtle features and outcome prediction 

110 [10,11]. The potential of these algorithms has grown rapidly in the past decade thanks to the development 

111 of more useful neural network models, advancements in computational power, and an increase in the 
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112 volume and availability of digital imaging datasets [11]. Of note is the rise of convolutional neural 

113 networks (CNNs), a type of deep neural network that excels at image feature extraction and classification, 

114 and demonstrates strong performance in medical image analysis, leading to the rapid advancement of 

115 computer vision in medical imaging [12,13]. CNNs have been used to develop models to successfully 

116 detect targeted clinical findings on CXR, including lung cancer [14,15], pneumonia [16,17], COVID-19 

117 [18], pneumothorax [19–22], pneumoconiosis [23], cardiomegaly [24], pulmonary hypertension [25] and 

118 tuberculosis [26–30]. These studies highlight the effectiveness of applied machine learning in CXR 

119 interpretation, however most of these deep learning systems are limited in scope to a single finding or a 

120 small set of findings, therefore lacking the broad utility that would make them useful in clinical practice. 

121

122 Recently, our group developed a comprehensive deep learning CXR diagnostic assist device, 

123 which was designed to assist clinicians in CXR interpretation and improve diagnostic accuracy, validated 

124 for 124 clinically relevant findings seen on frontal and lateral chest radiographs [31]. The primary 

125 objective of the current study was to evaluate the real-world usefulness of the model as a diagnostic assist 

126 device for radiologists in both hospital and community clinic settings. This involved examining the 

127 frequency at which the model's recommendations led to a ‘significant impact on the report’, defined as 

128 the inclusion of findings recommended by the model which altered the radiologists report in a meaningful 

129 way. The frequency of change in patient management and recommendations for further imaging were 

130 also evaluated. Secondary endpoints included: (1) investigating agreement between radiologists and the 

131 findings detected by the model; and (2) assessing radiologist attitudes towards the tool and AI models in 

132 general.

133
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134 METHODS
135

136 Ethics Statement

137 This study was approved by the institutional human research ethics committee of the Wesley 

138 Hospital, Brisbane, Queensland Australia (2020.14.324). Written informed consent was obtained from 

139 each participating radiologist. The requirement of patient consent was waived by the ethics committee 

140 due to the low-risk nature of the study.

141

142 Model development and validation 

143 A modified version of a commercially available AI tool for use as a diagnostic assist device 

144 displaying results within a viewer (CXR viewer; Annalise CXR ver 1.2, Annalise-AI, Sydney, Australia) 

145 was evaluated [32]. The AI tool deploys an underlying machine learning model, developed and validated 

146 by Seah et al [31], which consists of attribute and classification CNNs based on the EfficientNet 

147 architecture [33] and a segmentation CNN based on U-Net [34] with EfficientNet backbone.  The model 

148 was trained on 821,681 de-identified CXR images from 284,649 patients originating from inpatient, 

149 outpatient and emergency settings across Australia, Europe, and North America. Training dataset 

150 labelling involved independent triple labelling of all images by three radiologists selected from a wider 

151 pool of 120 consultant radiologists (none of whom were employed by the radiology network involved in 

152 this current study). The model was validated for 124 clinical findings in a multi-reader, multi-case 

153 (MRMC) study [31]. Thirty-four of these findings were deemed priority findings based on their clinical 

154 importance. The full list of 124 findings is available in Supplementary Table 1. Ground truth labels for 

155 the validation study dataset were determined by a consensus of three independent radiologists drawn from 

156 a pool of seven fully credentialed subspecialty thoracic radiologists. The algorithm is publicly available at 

157 https://cxrdemo.annalise.ai. The AI model was used in line with pre-existing regulatory approval [35]. 

158

159 Technical Integration 
160 Prior to the start of the study, technical integration of the software into existing radiology 

161 practice systems and testing occurred over several weeks. First, an integration adapter was installed 
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162 on the IT network of each radiology clinic and acted as a gateway between the internal IT 

163 infrastructure and the AI model. Auto-routing rules were established ensuring only CXR studies were 

164 forwarded to the integration adapter from the picture archiving and communication system (PACS). 

165 Following a successful testing period, the Annalise CXR viewer was installed and configured on 

166 workstations for the group of study radiologists. 

167

168 Study Participants

169 Eleven consultant radiologists working for a large Australian radiology network were invited to 

170 participate in the study through their local radiologist network. This group included general diagnostic 

171 radiologists who had completed specialist radiology training and passed all diagnostic radiology college 

172 examinations required for consultant accreditation in Australia. All radiologists reported the minimum of 

173 2000 chest radiographs per year (either within the radiology network or through other institutions) 

174 suggested to maintain competency [36].  No subspecialist chest radiologists were included. 

175

176 The group included radiologists with a range of experience levels: five radiologists had 0–5 years 

177 post-training experience, three radiologists had 6–10 years of experience, and three radiologists had more 

178 than 10 years of experience. Radiologists were situated across four states in Australia and worked in 

179 public hospitals, private hospitals and community clinic settings. Both on site and remote reporting was 

180 included, in line with regular workflow. Prior to study commencement, each radiologist attended a 

181 training seminar and a one-on-one training session to fully understand the CXR viewer and its features. In 

182 addition, the participating radiologists were able to familiarise themselves with the viewer prior to 

183 commencement of data collection. 

184

185 CXR Case Selection

186 In this multicentre real-world prospective study, all consecutive chest radiographs reported by the 

187 radiologists originating from inpatient, outpatient, and emergency settings were included for a period 

188 covering nearly six weeks. The CXR cases were reported with the assistance of the AI tool in real-world 

189 clinical practice, using high resolution diagnostic radiology monitors within the radiologists’ normal 
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190 reporting environment. As per usual workflow across a large radiology network spanning a 

191 geographically large area with many regional and remote clinics, both on-site and remote reporting of 

192 CXR cases was undertaken. A total of 106 sites contributed cases with case numbers varying from one 

193 case up to a maximum of 271 cases at the busiest site.

194

195 At least one frontal chest radiograph was required for analysis by the model, and cases that did 

196 not include at least one were excluded. Chest radiographs from patients aged younger than 16 years were 

197 excluded. Data from all sources was de-identified for analysis.

198

199 AI-Assisted Reporting

200 For each CXR case, radiologists produced their clinical report with access to clinical information, 

201 the referral and available patient history, in line with the normal workflow. The AI model analyses the 

202 CXR image(s) for each case but does not incorporate clinical inputs (such as previous imaging, referral 

203 information or patient demographic data) into the analysis. Model output was displayed to the radiologist 

204 in a user interface, linked to the image in the PACS, automatically launching when a CXR case was 

205 opened (Figure 1).

206  

207 A modified version of the commercially available AI software was employed for this study, 

208 which incorporated changes into the user interface to allow radiologists to provide feedback on model 

209 recommendations. No changes were made to the underlying model. An example of the modified model 

210 user interface is presented in figure 2. For each case, the model provided a list of suggested findings, 

211 listed as “priority” or “other”, along with a confidence indicator. For a subset of findings, a region of 

212 interest localiser was overlayed on the image and the model indicated whether the finding was on the left 

213 or the right side, or both (see Supplementary Table 1). The CXR viewer was configured to display its 

214 findings after the radiologists’ initial read of the case. For each case, radiologists were asked to review the 

215 CXR viewer’s findings and provide feedback within the viewer. The options presented to the radiologists 

216 in the viewer are listed in Table 1.

217
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218 Table 1 - List of review options presented to the radiologist with each case.

REVIEW OPTION DESCRIPTION

Rejected clinical finding A model-detected finding disputed by the radiologist

Missed clinical finding A model-detected finding missed by the radiologist

Add additional findings Finding(s) identified by the radiologist but not identified by the model

These findings significantly 
impacted my report

A yes/no binary question relating to the effect of the model output on 
the radiologist report

These findings may impact 
patient management

A yes/no binary question relating to the effect of the model output on 
patient management, as perceived by the reporting radiologist

These findings led to additional 
imaging recommendations

A binary yes/no question related to whether the radiologist 
recommended further imaging based on the model output

219
220

221 The outcome measure of ‘significant impact on the report’ was the primary outcome measure. 

222 A significant change was described as the inclusion of findings recommended by the model, which 

223 altered the radiologists report in a meaningful way. As this varied by patient and clinical setting, it 

224 was left to the discretion of the radiologist. During the analysis of radiologist feedback, it was 

225 assumed that a change in patient management or further imaging recommendation would not occur 

226 without radiologists indicating a material change in the CXR report, and thus management and 

227 imaging questions were dependent on a significant change in the report. This was also patient-

228 specific; for example, missing a pneumothorax in a ventilated patient with known pneumothorax 

229 would not have the same impact on patient management as a previously unknown pneumothorax in an 

230 outpatient. Free text input describing missed findings or other relevant data were manually added after 

231 data collection was complete. 

232 No formal adjudication of cases showing discrepancy between radiologist and model 

233 interpretation was performed. The study was not designed as a diagnostic accuracy validation. No 

234 review or ground truthing process was performed. Radiologists remained responsible for image 

235 interpretation and formulation of the report.
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236

237 Post-Study Survey

238 Upon completion of data collection, a post-study survey was distributed to all participating 

239 radiologists to obtain feedback on the usefulness of the CXR viewer and how it affected their opinion of 

240 AI in radiology. A table of the survey questions is presented in Supplementary Table 2.

241

242 Statistics and Data Analysis 

243 A 1% rate of significant changes in reports (the primary outcome measure) was deemed to be 

244 clinically significant prior to commencing the study. Based on estimations of the prevalence of missed 

245 critical findings on CXR, preliminary power calculations estimated that the number of cases required to 

246 detect at least a 1% rate of significant changes in reports was approximately 2000 cases in total, with 

247 alpha value 0.05 and desired power of 0.90. To account for any dropout in radiologists or cases, a target 

248 of 3000 cases was set for the study. Ten radiologists were recruited, with an eleventh included for any 

249 unexpected participant drop out and to achieve this target in a reasonable time period. 

250

251 A two-tailed binomial test was used to test the hypothesis that the rate of significant report 

252 change, patient management change, or imaging recommendation change was at least 1%. To ensure that 

253 the sampling of CXRs reasonably approximated a random snapshot of the true population, radiologists in 

254 various states, experience levels as well as different conditions of practice (community clinic vs hospital 

255 based) were selected. Additionally, the study was conducted prospectively which further aligned the 

256 structure of the sampled data with the expected structure of the population, justifying the choice of 

257 analysing the sample using a binomial test without adjustment for each radiologist. 

258 Multivariate logistic regression using generalised linear mixed effect analysis was used to assess 

259 the effect of several possible confounders on the measured outcomes, including the number of critical 

260 clinical findings per case identified by the model, the inpatient/outpatient status of the patients, the 

261 experience level of the radiologists, and the presence or absence of a lateral radiograph. The Wald test 

262 was applied to the derived regression coefficients to determine their significance. 
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263 Radiologists were grouped by experience level into 0-5 years post completion of radiology 

264 training, 6-10 years, and more than ten years. A likelihood ratio test comparing a binomial logistic 

265 regression with categorical radiologist experience against a null model was performed to assess the 

266 hypothesis that the outcomes (significant changes in reports, management, or imaging recommendation) 

267 were associated with experience. 

268

269 A significance threshold of 0.05 was chosen, with the Benjamini-Hochberg procedure [37] 

270 applied to all reported outcomes to account for multiple hypothesis testing. Two clinically qualified 

271 researchers independently performed statistical analyses using different software. Calculations were 

272 performed in Excel 2016 with RealStatistics resource pack and cross-checked in Python 3.7 using the 

273 Pandas 1.0.5 [38], NumPy 1.18.5 [39], SciPy 1.4.1 [40], Scikit-Learn 0.24.0 [41], pymer4 0.7.1 (linked to 

274 R 3.4.1, Ime4 1.1.26) [42] and Statsmodels 0.12.1 [43] libraries.

275
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276 RESULTS
277

278 A total of 2,972 cases were reported by 11 radiologists over a period of six weeks.  These cases 

279 came from 2,665 unique patients (52.7% male), with a median age of 67 (IQR 50–77). Information on 

280 radiologist experience, number of cases reported, source of cases and outcome measures for each 

281 radiologist are listed in Table 2. 

282

283 Table 2 - Demographics and results for the eleven radiologists involved in this study. Percentages (%) represent the 
284 associated value as a proportion of the total case number for that radiologist.

Radiologist 
ID

Number of 
years post-

training

Cases 
reported (%
 outpatient)

Significant 
report impact 

(%)

Patient 
management 
changes (%)

Imaging reco
mmendations 

(%)

1 19 136 (21.3) 1 (0.7) 1 (0.7) 0 (0.0)

2 1 325 (46.2) 4 (1.2) 0 (0.0 1 (0.3)

3 4 230 (86.1) 20 (8.6) 14 (6.1) 10 (4.3)

4 6 375 (22.7) 3 (1.0) 0 (0.0) 1 (0.2)

5 4 186 (45.7) 22 (11.8) 9 (4.8) 8 (4.3)

6 20 333 (11.1) 3 (1.0) 2 (0.6) 1 (0.3)

7 3 312 (48.4) 15 (4.8) 8 (2.5) 1 (0.3)

8 26 408 (39.7) 10 (2.4) 5 (1.2) 4 (1.0)

9 9 214 (43.0) 6 (2.8) 2 (0.9) 2 (0.9)

10 6 159 (98.1) 1 (0.6) 1 (0.6) 1 (0.6)

11 5 294 (40.1) 7 (2.4) 1 (0.3) 0 (0.0)

Total 2,972 92 (3.1) 43 (1.4) 29 (1.0)

285
286
287
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288 Of the 2,972 cases, 1,825 (61.4%) cases had lateral (as well as frontal) radiographs available for 

289 interpretation. 1,709 (57.5%) cases were from an inpatient setting, and 1,263 (42.5%) from an outpatient 

290 setting. The median number of findings per case was five (mean: 5.1, SD: 3.9), with a wide range in the 

291 number of findings per case (maximum=20). A total of 364 cases returned zero findings predicted by the 

292 model from the complete 124 findings list. 1,526 of the 2,972 cases had one or more critical findings 

293 detected by the CXR viewer, with the critical findings in 1,459 (96%) of these cases being confirmed by 

294 the radiologist. The number of critical findings per case is summarised in Figure 3. 

295

296 Influence of the AI model on radiologist reporting

297 Across all 2,972 cases, there were 92 cases identified by radiologists as having significant report 

298 changes (3.1%), 43 cases of changed patient management (1.4%) and 29 cases of additional imaging 

299 recommendations (1.0%) as a result of exposure to the AI model output. When compared to the 

300 hypothesised 1% rate of change, the findings were significantly higher for changed reports (p <0.01) and 

301 changed patient management (p<0.01), and not significantly different for rate of imaging 

302 recommendation (p=0.50).

303

304 Agreement with model findings

305 Of the 2,972 cases, 2,569 had no findings rejected or added by the radiologists, indicating 

306 agreement with the model over all 124 possible findings in 86.5% of cases. 306 (10.2%) cases had one 

307 finding rejected by the radiologist and 84 (2.8%) had two or more findings rejected by the radiologist. 

308 202 (5.3%) critical findings detected by the model were rejected by radiologists. The missed and rejected 

309 critical findings are detailed in Table 3.

310 13 cases (0.5%) had findings (16 in total) added by the radiologists which they deemed were missed by 

311 the model, of which 8 were critical findings (see Table 3). The remaining 8 non-critical missed findings 

312 were atelectasis (4 findings), cardiac valve prosthesis (2 findings), spinal wedge fracture (1 finding) and 

313 peribronchial thickening (1 finding).
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314 Table 3 – Breakdown of the critical findings detected by the model and the level of radiologist agreement with each, 
315 including the number of findings reportedly missed by the model (and added by the radiologist) or missed by the radiologist. 
316 Percentages (%) represent the associated value as a proportion of the total number of findings displayed by the model.

Critical Finding Displayed by 
model

Radiologist 
agreed with 
finding (%)

Radiologist 
rejected 

finding (%)
Added in by 
radiologist

Missed by 
radiologist

Acute aortic syndrome 2 2.0 (100.0) 0 (0.0) 0 0 
Acute humerus fracture 5 5 (100.0) 0 (0.0) 0 0 
Acute rib fracture 54 39 (72.2) 15 (27.8) 0 5 
Cardiomegaly 1,008 979 (97.1) 29 (2.9) 0 0 
Cavitating mass 14 13 (92.9) 1 (7.1) 0 0 
Cavitating mass internal content 6 5 (83.3) 1 (16.7) 0 0 
Diffuse airspace opacity 13 13 (100.0) 0 (0.0) 0 0 
Diffuse lower airspace opacity 153 148 (96.7) 5 (3.3) 0 0 
Diffuse perihilar airspace opacity 45 45 (100.0) 0 (0.0) 0 0 
Diffuse upper airspace opacity 2 2 (100.0) 0 (0.0) 0 0 
Focal airspace opacity 341 321 (94.1) 20 (5.9) 0 2 
Hilar lymphadenopathy 8 6 (75.0) 2 (25.0) 0 0 
Inferior mediastinal mass 8 7 (87.5) 1 (12.5) 0 0 
Loculated effusion 87 80 (92.0) 7 (8.0) 0 1 
Lung collapse 11 10 (90.9) 1 (9.1) 0 0 
Malpositioned CVC 85 78 (91.8) 7 (8.2) 0 1 
Malpositioned ETT 52 43 (82.7) 9 (17.3) 0 0 
Malpositioned NGT 39 31 (79.5) 8 (20.5) 0 0 
Malpositioned PAC 13 9 (69.2) 4 (30.8) 0 0 
Multifocal airspace opacity 125 120 (96.0) 5 (4.0) 0 1 
Multiple pulmonary masses 43 38 (88.4) 5 (11.6) 0 0 
Pneumomediastinum 5 5 (100.0) 0 (0.0) 1 0 
Pulmonary congestion 220 215 (97.7) 5 (2.3) 1 0 
Segmental collapse 292 290 (99.3) 2 (0.7) 0 1 
Shoulder dislocation 1 0 (0.0) 1 (100.0) 0 0 
Simple effusion 687 650 (94.6) 37 (5.4) 0 1 
Simple pneumothorax 90 77 (85.6) 13 (14.4) 1 1 
Single pulmonary mass 41 38 (92.7) 3 (7.3) 1 1 
Single pulmonary nodule 105 95 (90.5) 10 (9.5) 3 5 
Subcutaneous emphysema 53 51 (96.2) 2 (3.8) 0 1 
Subdiaphragmatic gas 7 7 (100.0) 0 (0.0) 1 0 
Superior mediastinal mass 37 32 (86.5) 5 (13.5) 0 0 
Tension pneumothorax 11 7 (63.6) 4 (36.4) 0 0 
Tracheal deviation 133 133 (100.0) 0 (0.0) 0 0 

Total 3,796 3,594 (94.7) 202 (5.3) 8 20 

317
318

319 Factors influencing reporting, management, or imaging recommendation

320 The number of critical findings displayed by the model was significantly higher in cases where 

321 there was a change in report, patient management, or imaging recommendation (p < 0.001, p = 0.001, p = 

322 0.004; Table 4). The presence of a lateral projection image in the CXR case interpreted by the model was 
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323 associated with a significantly greater likelihood of changes to imaging recommendation (p = 0.005), but 

324 not to the report or patient management (p = 0.105 and p = 0.061, respectively). 

325

326 Radiologists with fewer than 5 years consultant experience contributed 1,347 cases, and indicated 

327 a rate of 5.0% for significant report change, 2.4% patient management change, and 1.5% 

328 recommendations for further imaging. These numbers were higher than for the radiologists with 6-10 

329 years of experience (1.3%, 0.4%, 0.5% respectively over 748 cases) and also for radiologists with greater 

330 than 10 years of experience (1.6%, 0.9%, 0.6% over 877 cases). However, a likelihood ratio test applied 

331 to binomial logistic regression analysis indicated that the level of radiologist experience did not 

332 significantly influence the rate of change in report, patient management, or imaging recommendation (p = 

333 0.120, p = 0.262, and p = 0.516, respectively).   Whether a patient was imaged as an inpatient or 

334 outpatient was not significantly associated with any change in report, patient management, or imaging 

335 recommendation (p = 0.358, p = 0.572, p = 0.326, respectively).
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336 Table 4 - Factors affecting AI model influence on report, patient management, or imaging recommendation. Significance 
337 testing by the Benjamini-Hochberg algorithm to account for multiple hypotheses. Odds ratios derived from stepwise logistic 
338 regression coefficients with confidence intervals calculated with Benjamini-adjusted thresholds. Radiologist experience 
339 analysed as a categorical variable with odds ratios representing effect of changing experience levels from the baseline (0 to 
340 5 years) to a different level.

Predictor  Change  Odds Ratios (Adjusted CI) P 
Value  

Benjamini-Adjusted 
Threshold  Significance  

Number of Critical 
Findings   Report   1.306 (1.132-1.507) 0 0.0042 YES 

Number of Critical 
Findings   Patient Management   1.267 (1.056-1.521) 0.001 0.0083 YES 

Number of Critical 
Findings   

Imaging 
Recommendation   1.319 (1.035-1.681) 0.004 0.0125 YES 

Lateral CXR   Imaging 
Recommendation   6.495 (1.297-32.530) 0.005 0.0167 YES 

Lateral CXR   Patient Management   2.158 (0.837-5.565) 0.061 0.0208 NO 

Lateral CXR   Report   1.542 (0.848-2.805) 0.105 0.025 NO 

Radiologist 
Experience   Report   

0 to 5 years: Baseline 
6 to 10 years: 0.255 (0.043-1.521) 
> 10 years: 0.305 (0.065-1.439) 

0.120 0.0292 NO 

Radiologist 
Experience   Patient Management   

0 to 5 years: Baseline 
6 to 10 years: 0.165 (0.009-3.214) 
> 10 years: 0.378 (0.054-2.654) 

0.262 0.0333 NO 

Radiologist 
Experience   

Imaging 
Recommendation   

0 to 5 years: Baseline 
6 to 10 years: 0.357 (0.034-3.783) 
> 10 years: 0.380 (0.044-3.287) 

0.516 0.0458 NO 

Inpatient/Outpatient   Imaging 
Recommendation   1.550 (0.613-3.919) 0.326 0.0375 NO 

Inpatient/Outpatient   Report   0.794 (0.476-1.323) 0.358 0.0417 NO 

Inpatient/Outpatient   Patient Management   0.818 (0.408-1.640) 0.572 0.0500 NO 

341

342 Survey Results

343 The post-study survey was completed by ten out of the eleven radiologists (Figure 4 and Figure 

344 5). Notably, 7 (70%) participants felt that their reporting time was slightly worse, however when asked 

345 how satisfied they were with their reporting time, 7 (70%) indicated that they were satisfied.
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346 Nine out of ten radiologists responded that their reporting accuracy was improved while using the 

347 CXR viewer, with nine out of ten (90%) participants being satisfied with accuracy of the CXR model’s 

348 findings. Nine radiologists (90%) demonstrated an improved attitude towards the use of the AI diagnostic 

349 viewer by the end of the study and 9 (90%) demonstrated an improved attitude towards AI in general. No 

350 radiologists reported a more negative attitude towards the CXR viewer or towards AI in general.
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351 DISCUSSION

352 We have previously shown that using the output of this comprehensive deep learning model 

353 improved radiologist diagnostic accuracy [44] in a non-clinical setting, but it is important to demonstrate 

354 that this improvement translates into meaningful change in a real-world environment. In this multicentre 

355 real-world prospective study, we determined how often the finding recommendations of the 

356 comprehensive deep learning model led to a material change in the radiologist's report, a change in the 

357 patient management recommendation, or a change in subsequent imaging recommendation. To the 

358 authors’ knowledge, this is the first time that the impact of a comprehensive deep learning model 

359 developed to detect radiological findings on CXR has been studied in a real-world reporting environment. 

360 Other commercially available deep learning models able to detect multiple findings on CXR have been 

361 studied in the non-clinical setting, yielding encouraging results and outperforming physicians in the 

362 detection of major thoracic findings [45] as well as improving resident diagnostic sensitivity [46]. Other 

363 models have demonstrated diagnostic accuracy that is comparable to that of test radiologists [47]. 

364 Additionally, studies have yielded promising results for the use of models in population screening, 

365 particularly for tuberculosis, where several models have met the minimum WHO recommendations for 

366 tuberculosis triage tests [29,48].

367

368 We showed that radiologists agreed with all findings identified by the AI model in 86.5% of 

369 cases on a per case basis, while on a per finding basis, agreed with the critical findings identified by the 

370 model on 94.7% of findings. Notably, there was a significant change to the report in 3.1% of cases 

371 leading to changes in recommended patient management in 1.4% of cases, and changes to imaging 

372 recommendations in 1% of cases. Of note, 146 lung lesions (solitary lung nodule and solitary lung mass) 

373 were present in the dataset according to the model. Two lung lesions flagged by the model but missed by 

374 radiologists were recommended for additional imaging and changed management, subsequently 

375 diagnosed as lung carcinoma, highlighting the real-world value of integrating this type of system into the 

376 radiology workflow. However, four findings of lung nodule were flagged by the radiologists as missed by 

377 the model, indicating that the model alone is not intended to replace radiologist interpretation.
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378

379 The significant impact of the CXR viewer on radiologist reporting and recommendations did 

380 however come at the cost of false positives, with 13% of cases having one or more model findings 

381 rejected by the radiologist. When this false positive rate is compared against the false positive rates per 

382 case reported in other studies investigating CXR models, which range from 14 – 88% [14,49,50], it is 

383 considered acceptable. Furthermore, these studies report false-positive rates for CXR models that only 

384 detect lung nodules, while in the current study this represents the false positive rate across 124 findings. 

385 Notably, on a per finding basis, only 5.3% of critical findings detected by the model were rejected by the 

386 radiologist. However, there were several outliers in the critical findings group that had noticeably higher 

387 rates of rejection, including acute rib fracture, hilar lymphadenopathy, malpositioned NGT/PAC, shoulder 

388 dislocation and tension pneumothorax. Several explanations for this are low sample size, the subjectivity 

389 of diagnosis (especially for hilar lymphadenopathy and tension features of pneumothorax), and 

390 heightened model sensitivity at the expense of specificity. In particular, the rate of ‘overcalling’ of 

391 malposition of nasogastric tubes was related to both the threshold choice (favouring sensitivity given the 

392 critical nature of NGT malposition) and the limitation in the model output in distinguishing malpositioned 

393 NGTs from incompletely visualised NGTs. This limitation has subsequently been addressed with model 

394 modifications. Overall, this trade-off appears to be reasonable to the participating radiologists, who 

395 reported a high level of satisfaction with the model. 

396

397 In this study, analysis of radiologists by experience level using logistic regression found no 

398 statistically significant relationship between experience level and increased changes to reports, patient 

399 management changes, or imaging recommendations as a result of the model. Statistical analysis of the 

400 relationship between experience level and change in report was associated with a p value of 0.12, 

401 suggesting that, with further research, a significant relationship may be identified. It is expected that the 

402 inclusion of a larger group of radiologists may lead to a significant finding, as the association between 

403 experience and level of change has been noted in other studies. For example Jang et al., showed that less 

404 experienced radiologists benefited the most from the diagnostic assistance in detecting lung nodules on 

405 CXR [14]. In this study, three of the 11 radiologists contributed a higher than average incidence of the 
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406 primary outcome of report change, and these were all less experienced radiologists compared to the 

407 cohort average experience level. Whilst this may be due to variations in individual radiologist 

408 interpretation of ‘significant report change’, the consistency of experience level across these three 

409 radiologists suggests a relationship with experience level and tool impact. 

410

411 The primary factor that influenced the likelihood of the model findings leading to a change in the 

412 report was the presence of critical findings in the model's recommendation. This is particularly notable 

413 because it indicates that the changes to the report are significant. They did not simply involve the 

414 inclusion of additional non-critical findings in the report, which may be interpreted as overestimating the 

415 impact of the model. The inpatient or outpatient status of a case was found not to significantly affect the 

416 likelihood of significant changes to the radiologists’ report, to patient management, or to imaging 

417 recommendations.

418

419 The post-study survey provided further insight into the impact that the CXR viewer had on 

420 participant reporting, in addition to the level of agreement and changes to the radiology report and patient 

421 management recommendations outlined above. The first notable response was that the CXR viewer may 

422 have negatively affected reporting times (albeit only mildly) for the majority of radiologists. This 

423 outcome was expected in this study setting because the radiologists were taking additional time to provide 

424 feedback on the model's recommendations for each case. Previous studies that surveyed radiologists 

425 reported that 74.4% thought AI would lower the interpretation time [51]. It is notable that even with the 

426 negative impact the model had on reporting time, the majority of radiologists (70%) were still satisfied 

427 with reporting time while using the CXR viewer, suggesting that the diagnostic improvements offered by 

428 the model were enough to offset the additional perceived reporting time. Additional insight from the 

429 survey suggested that very little training was required before radiologists felt comfortable using the tool. 

430 This is useful as education on AI has been a primary concern amongst clinicians, as a large proportion of 

431 radiologists report having little knowledge of AI [52].

432

433 Limitations and future research 
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434 The results presented in this study are self-reported by participating radiologists and are likely an 

435 underestimation of the model's actual impact. It is expected that radiologists would not report every 

436 instance in which they made an interpretive error. Another limitation is that there was no objective gold 

437 standard against which the radiologist and model interpretation could be measured. This is a small-scale 

438 study involving a limited sample size, conducted over several weeks. As a result, it lacks the statistical 

439 power to examine the benefit of the model on a finding-by-finding basis. In future, it would be beneficial 

440 to conduct a similar study with a larger sample size to allow for more powerful statistical analysis and 

441 examination of specific finding changes. Another useful next step would be to include a gold standard to 

442 determine the ground truth for the CXR findings, as this would prevent any under reporting which may 

443 occur with self-reported results, as well as enable the detection of false negatives as a result of the CXR 

444 viewer.

445 Although none of the cases evaluated in this study had been seen by the model previously, we 

446 note that one of the five data sources used for model training originated from the same radiology network. 

447 This therefore cannot be considered as true external evaluation. Further work in truly external institutions 

448 in the future are welcomed.

449

450 Conclusion

451 The present study indicated that the integration of a comprehensive AI model capable of 

452 detecting 124 findings on CXR into a radiology workflow led to significant changes in reports and patient 

453 management, with an acceptable rate of additional imaging recommendations. These results were not 

454 affected by the inpatient status of the patient, and although approaching significance, the experience level 

455 of the radiologists did not significantly relate to the primary endpoint outcomes. In secondary endpoint 

456 outcomes, the model output showed good agreement with radiologists, and radiologists showed high rates 

457 of satisfaction with their reporting times and diagnostic accuracy when using the CXR viewer as a 

458 diagnostic assist device. Results highlight the usefulness of AI-driven diagnostic assist tools in improving 

459 clinical practice and patient outcomes. 
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644 FIGURE LEGENDS

645 Figure 1 – Flow diagram illustrating the AI-assisted reporting process described in this study. (RIS: Radiological 
646 information system) 
647  
648 Figure 2 – Example of the modified user interface used by the participating radiologists in this study. The red box highlights 
649 the feedback options added to the interface for this study.
650
651 Figure 3 – Counts of numbers of critical findings for the cases seen by the radiologist, defined as the number of critical 
652 findings agreed + the number of critical findings added. The number of cases which returned zero findings was 1,513. 
653  
654 Figure 4 – Diverging stacked bar chart depicting the first set of radiologist survey responses. 
655  
656  Figure 5 – Diverging stacked bar chart visualising the second set of survey responses of the radiologists. 

657
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Figure 1 - Flow diagram illustrating the AI-assisted reporting process described in this study. (RIS: 
Radiological information system) 
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Figure 2 - Example of the modified user interface used by the participating radiologists in this study. The red 
box highlights the feedback options added to the interface for this study. 

254x190mm (300 x 300 DPI) 

Page 31 of 40

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 14, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
20 D

ecem
b

er 2021. 
10.1136/b

m
jo

p
en

-2021-052902 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review only

 

Figure 3 - Counts of numbers of critical findings for the cases seen by the radiologist, defined as the number 
of critical findings agreed + the number of critical findings added. The number of cases which returned zero 

findings was 1,513. 
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Figure 4 - Diverging stacked bar chart depicting the first set of radiologist survey responses. 
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Figure 5 - Diverging stacked bar chart visualising the second set of survey responses of the radiologists. 
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Supplementary Table 1 - List of the 124 findings, including 34 critical findings which the model is validated to detect. The 

format used by the model to recommend each finding are presented in brackets (Laterality: indicates whether the predicted 
finding is present on the left or right side, or both. ROI: a predicted region of interest localiser is overlayed on the image. 

None: no segmentation). ETT: endotracheal tube, NGT: nasogastric tube, PAC: pulmonary artery catheter.  

Critical Clinical Findings (Localisation) 

Acute humerus fracture (Laterality) Loculated effusion (ROI) 
Subcutaneous emphysema 
(Laterality) 

Acute rib fracture (ROI) Lung collapse (Laterality) Subdiaphragmatic gas (None) 

Air Space Opacity – Multifocal 
(ROI) 

Multiple masses or nodules 
(ROI) 

Suboptimal central line (ROI) 

Cavitating mass with content 
(ROI) 

Perihilar airspace opacity 
(Laterality) 

Suboptimal ETT (None) 

Cavitating mass(es) (ROI) Pneumomediastinum (None) Suboptimal NGT (ROI) 

Diffuse airspace opacity (Laterality) Pulmonary congestion (None) Suboptimal PAC (None) 

Diffuse lower airspace opacity 
(Laterality) 

Segmental collapse (ROI) 
Superior mediastinal mass 
(None) 

Diffuse upper airspace opacity 
(Laterality) 

Shoulder dislocation 
(Laterality) 

Tension pneumothorax (ROI) 

Focal airspace opacity (ROI) Simple effusion (ROI) Tracheal deviation (None) 

Hilar lymphadenopathy (None) Simple pneumothorax (ROI) 
Widened aortic 
contour (None) 

Inferior mediastinal mass (None) Solitary lung mass (ROI) 
Widened cardiac 
silhouette (None) 

  Solitary lung nodule (ROI)   

Non-Critical Clinical Findings (Localisation) 

Abdominal Clips (None) Coronary Stent (None) Pectus Excavatum (None) 

Acute Clavicle Fracture (Laterality) 
Diaphragmatic Elevation 
(None) 

Peribronchial Cuffing (None) 

Airway Stent (None) 
Diaphragmatic Eventration 
(None) 

Pericardial Fat Pad (None) 

Aortic Arch Calcification (None) 
Diffuse Fibrotic Volume Loss 
(Laterality) 

Pleural Mass (ROI) 

Aortic Stent (None) Diffuse Interstitial (Laterality) 
Post Resection Volume Loss 
(Laterality) 

Atelectasis (ROI) 
Diffuse Nodular / Miliary 
Lesions (Laterality) 

Pulmonary Arterial Catheter 
(None) 

Axillary Clips (Laterality) 
Diffuse Pleural Thickening 
(None) 

Pulmonary Artery 
Enlargement (None) 

Basal Predominant Interstitial 
(Laterality) 

Diffuse Spinal Osteophytes 
(None) 

Reduced Lung 
Markings (None) 

Biliary Stent (None) Distended Bowel (None) Rib Fixation (Laterality) 

Breast Implant (None) 
Electronic Cardiac Devices 
(None) 

Rib Lesion (ROI) 

Bronchiectasis (None) Endotracheal Tube (None) Rib Resection (None) 

Bullae Diffuse (None) Gallstones (None) 
Rotator Cuff Anchor 
(Laterality) 

Page 35 of 40

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 14, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
20 D

ecem
b

er 2021. 
10.1136/b

m
jo

p
en

-2021-052902 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review only

Bullae Lower (None) Gastric Band (None) Scapular Fracture (Laterality) 

Bullae Upper (None) Hiatus Hernia (None) Scapular Lesion (ROI) 

Calcified Axillary Nodes (None) Humeral Lesion (ROI) Scoliosis (None) 

Calcified Granuloma (<5mm) 
(None) 

Intercostal Drain (Laterality) Shoulder Arthritis (None) 

Calcified Hilar Lymphadenopathy 
(None)  

Internal Foreign Body (ROI) Shoulder Fixation (Laterality) 

Calcified Mass (>5mm) (ROI) Kyphosis (None) 
Shoulder Replacement 
(Laterality) 

Calcified Neck Nodes (None) 
Lower Zone Fibrotic Volume 
Loss (Laterality) 

Spinal Fixation (None) 

Calcified Pleural Plaques (None) Lung Sutures (None) Spine Arthritis (None) 

Cardiac Valve Prosthesis (None) Mastectomy (None) Spine Lesion (ROI) 

Central Venous Catheter (ROI) Mediastinal Clips (None) Spine Wedge Fracture (ROI) 

Cervical Flexion (None) Nasogastric Tube (ROI) Sternotomy Wires (None) 

Chronic Clavicle Fracture (None) Neck Clips (Laterality) 
Suboptimal Gastric Band 
(None) 

Chronic Humerus Fracture (None) Nipple Shadow (None) Unfolded Aorta (None) 

Chronic Rib Fracture (None) Oesophageal Stent (None) 
Upper Predominant Interstitial 
(Laterality) 

Clavicle Fixation (Laterality) Osteopaenia (None) 
Upper Zone Fibrotic Volume 
Loss (Laterality) 

Clavicle Lesion (ROI) Pectus Carinatum (None)   

Technical Findings 

Chest Incompletely Imaged 
(None) 

Image Obscured (None) Underexposed (None) 

Hyperinflation (None) Overexposed (None) Underinflation (None) 

  Patient Rotation (None)   
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Supplementary Table 2 – Example of the survey questions provided to the radiologists at the end of the study. 

 Significantly 
worse 

Moderately 
worse 

Slightly 
worse 

About the 
same 

Slightly 
better 

Moderately 
better 

Significantly 
better 

How do you feel this tool impacted 
reporting time?  o o o o o o o 

How do you feel this tool impacted 
reporting accuracy?  o o o o o o o 

  Very 
dissatisfied 

Dissatisfied 
Somewhat 
dissatisfied 

Neutral 
Somewhat 

satisfied 
Satisfied 

Very 
dissatisfied 

How satisfied were you with 
reporting time using this CXR tool?  o o o o o o o 

How satisfied were you with the 
accuracy of this CXR tool's results?  o o o o o o o 

  Significantly 
more 

negative 

Moderately 
more 

negative 

Slightly 
more 

negative 

About the 
same 

Slightly 
more 

positive 

Moderately 
more 

negative 

Significantly 
more 

negative 

Did your attitude towards the CXR 
tool itself change from start to end of 
the trial?  

o o o o o o o 

Has your attitude towards AI in 
general changed after using this CXR 
tool?  

o o o o o o o 

    Strongly 
disagree 

Somewhat 
disagree 

Neutral 
Somewhat 

agree 
Strongly 

agree 
  

I think that I would like to use this 
system frequently.   o o o o o  

I found the system unnecessarily 
complex.   o o o o o  

I thought the system was easy to use.   o o o o o  

I think that I would need the support 
of a technical person to be able to 
use this system.  

 o o o o o  

I found the various functions in this 
system were well integrated.   o o o o o  

I thought there was too much 
inconsistency in this system.   o o o o o  

I would imagine that most people 
would learn to use this system very 
quickly.  

 o o o o o  

I found the system very cumbersome 
to use.   o o o o o  

I felt very confident using the system.   o o o o o  

I needed to learn a lot of things 
before I could get going with this 
system.  

 o o o o o  
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I would be disappointed if I could no 
longer use the CXR AI tool in my 
practice.  

 o o o o o  
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CLAIM:  Checklist for Artificial Intelligence in Medical Imaging

Section / Topic No. Item

TITLE / 
ABSTRACT

1 Identification as a study of AI methodology, 
specifying the category of technology used (e.g., 
deep learning)

Yes

2 Structured summary of study design, methods, 
results, and conclusions 

Yes

INTRODUCTION
3 Scientific and clinical background, including the 

intended use and clinical role of the AI approach
Yes – page 4/5

4 Study objectives and hypotheses Yes – page 5

METHODS
Study Design 5 Prospective or retrospective study Yes – page 8 (under: “CXR case 

section”)
6 Study goal, such as model creation, exploratory 

study, feasibility study, non-inferiority trial
Yes – page 8 (under: “CXR case 

section”)

Data 7 Data sources Yes – page 8 (under: “CXR case 
section”)

8 Eligibility criteria: how, where, and when potentially 
eligible participants or studies were identified (e.g.,  
symptoms, results from previous tests, inclusion in 
registry, patient-care setting, location, dates)

Yes – page 8 (under: “CXR case 
section”)

9 Data pre-processing steps N/A

10 Selection of data subsets, if applicable N/A

11 Definitions of data elements, with references to 
Common Data Elements

Yes – page 8/9 (under: “AI-
assisted reporting)

12 De-identification methods Yes – page 8 (under: “CXR case 
section”)

13 How missing data were handled N/A

Ground Truth 14 Definition of ground truth reference standard, in 
sufficient detail to allow replication

Yes – page 6 (under: “model 
development and validation”)

15 Rationale for choosing the reference standard (if 
alternatives exist)

N/A

16 Source of ground-truth annotations; qualifications 
and preparation of annotators

N/A – Described in reference 
31

17 Annotation tools N/A – Described in reference 
31

18 Measurement of inter- and intrarater variability; 
methods to mitigate variability and/or resolve 
discrepancies

N/A – Described in reference 
31
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Data Partitions 19 Intended sample size and how it was determined Yes – page 10 (under: 
”statistics and data analysis”)

20 How data were assigned to partitions; specify 
proportions

N/A

21 Level at which partitions are disjoint (e.g., image, 
study, patient, institution)

N/A

Model 22 Detailed description of model, including inputs, 
outputs, all intermediate layers and connections

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

23 Software libraries, frameworks, and packages Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

24 Initialization of model parameters (e.g., 
randomization, transfer learning)

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

Training 25 Details of training approach, including data 
augmentation, hyperparameters, number of models 
trained

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

26 Method of selecting the final model N/A

27 Ensembling techniques, if applicable N/A

Evaluation 28 Metrics of model performance Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

29 Statistical measures of significance and uncertainty 
(e.g., confidence intervals)

Yes – page 6 (under: “model 
development and validation”) 
and described in reference 31

30 Robustness or sensitivity analysis N/A

31 Methods for explainability or interpretability (e.g., 
saliency maps), and how they were validated

N/A

32 Validation or testing on external data N/A

RESULTS
Data 33 Flow of participants or cases, using a diagram to 

indicate inclusion and exclusion
Yes – Figure 1

34 Demographic and clinical characteristics of cases in 
each partition

N/A

Model 
performance

35 Performance metrics for optimal model(s) on all data 
partitions

N/A

36 Estimates of diagnostic accuracy and their precision 
(such as 95% confidence intervals)

N/A

37 Failure analysis of incorrectly classified cases N/A

DISCUSSION
38 Study limitations, including potential bias, statistical 

uncertainty, and generalizability
Yes – page 13 (under: “ 
limitations and future 

research”)

Page 40 of 40

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
n

seig
n

em
en

t S
u

p
erieu

r (A
B

E
S

)
at A

g
en

ce B
ib

lio
g

rap
h

iq
u

e d
e l

 
o

n
 Ju

n
e 14, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
20 D

ecem
b

er 2021. 
10.1136/b

m
jo

p
en

-2021-052902 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


For peer review only

39 Implications for practice, including the intended use 
and/or clinical role 

Yes – page 13 (under: 
“conclusion”)

OTHER 
INFORMATION

40 Registration number and name of registry N/A

41 Where the full study protocol can be accessed N/A

42 Sources of funding and other support; role of 
funders

Yes – page 21

Mongan J, Moy L, Kahn CE Jr.  Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for 
authors and reviewers.  Radiol Artif Intell 2020; 2(2):e200029. https://doi.org/10.1148/ryai.2020200029
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